概率补充教材答案(完全版)
部编版高中数学必修二第十章概率带答案重点知识点大全
(名师选题)部编版高中数学必修二第十章概率带答案重点知识点大全单选题1、某制药厂正在测试一种减肥药的疗效,有1000名志愿者服用此药,体重变化结果统计如下:C .0.5D .0.62、若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足m 2+n 2<25的概率是( ) A .12B .1336C .49D .5123、甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为( ) A .0.8B .0.7C .0. 56D .0. 384、某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是( ) A .至多一次中靶B .两次都中靶C .只有一次中靶D .两次都没中靶5、已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A .事件“都是红色卡片”是随机事件B .事件“都是蓝色卡片”是不可能事件C .事件“至少有一张蓝色卡片”是必然事件D .事件“有1张红色卡片和2张蓝色卡片”是随机事件6、掷一枚骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 A .互斥但不相互独立B .相互独立但不互斥 C .互斥且相互独立D .既不相互独立也不互斥7、甲、乙两人练习射击,甲击中目标的概率为0.9,乙击中目标的概率为0.7,若两人同时射击一目标,则他们都击中的概率是( ) A .0.3B .0.63C .0.7D .0.98、分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6多选题9、袋子里有4个大小、质地完全相同的球,其中有2个红球、2个白球,从中不放回地依次随机摸出2个球,事件A=“两个球颜色相同”,事件B=“两个球颜色不同”,事件C=“第二次摸到红球”,事件D=“两个球都是红球”.下列说法正确的是()A.P(A∪B)=1B.C与D互斥C.D⊆C D.P(B)=P(C)+P(D)10、(多选题)在25件同类产品中,有2件次品,从中任取3件产品,其中是随机事件的是()A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品11、下列说法错误的是()A.随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率,买1000张这种彩票一定能中奖B.某种福利彩票的中奖概率为11000C.连续100次掷一枚硬币,结果出现了49次反面,则掷一枚硬币出现反面的概率为49100D.某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为明天不会降水填空题12、为防控新冠疫情,很多公共场所要求进人的人必须佩戴口罩.现有3人在一次外出时需要从蓝、白、红、黑、绿5种颜色各1只的口罩中随机选3只不同颜色的口罩,则蓝、白口罩同时被选中的概率为____________.部编版高中数学必修二第十章概率带答案(三十二)参考答案1、答案:D分析:由表中数据,用频率估计概率求解.由表中数据得:=0.6估计这个人体重减轻的概率约为p=6001000故选:D小提示:本题主要考查用频率估计概率,属于基础题.2、答案:B分析:利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.解:设连续投掷两次骰子,得到的点数依次为m、n,两次抛掷得到的结果可以用(m,n)表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足m2+n2<25有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,.所以满足m2+n2<25的概率P=1336故选:B3、答案:D解析:利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为:P=0.8×(1−0.7)+(1−0.8)×0.7=0.38.故选:D.4、答案:D分析:利用对立事件的定义判断可得出结论.对于A,“至多一次中靶”包含:一次中靶、两次都不中靶,“至少一次中靶”包含:一次中靶、两次都中靶,A选项不满足条件;对于B,“两次都中靶”与“至少一次中靶”是包含关系,B选项不满足条件;对于C,“只有一次中靶”与“至少一次中靶”是包含关系,C选项不满足条件;对于D,“两次都没有中靶”与“至少一次中靶”对立,D选项满足条件.故选:D.5、答案:C分析:根据随机事件、必然事件、不可能事件的定义判断.袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,在A中,事件“都是红色卡片”是随机事件,故A正确;在B中,事件“都是蓝色卡片”是不可能事件,故B正确;在C中,事件“至少有一张蓝色卡片”是随机事件,故C错误;在D中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D正确.故选:C.6、答案:B事件A={2,4,6},事件B={3,6},事件AB={6},基本事件空间Ω={1,2,3,4,5,6},所以P(A)=36=12,P(B)=2 6=13,P(AB)=16=12×13,即P(AB)=P(A)P(B),因此,事件A与B相互独立.当“出现6点”时,事件A,B同时发生,所以A,B不是互斥事件.故选B.7、答案:B分析:结合相互独立事件直接求解即可.设甲击中为事件A,乙击中为事件B,则P(AB)=P(A)⋅P(B)=0.9×0.7=0.63.故选:B8、答案:C分析:结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确. 对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C9、答案:ACD分析:根据事件的概率、互斥事件、事件的包含关系对选项逐一分析,由此确定正确选项. A,由于A∪B=Ω,所以P(A∪B)=1,A正确.B,事件C与事件D都包括“第1次是红球,第2次是红球”,所以C,D不是互斥事件,B错误. C,由于事件C=“第二次摸到红球”包含了事件D=“两个球都是红球”,所以D⊆C,C正确.D,P(B)=24×23+24×23=23,P(C)=12,P(D)=24×13=16,所以P(B)=P(C)+P(D),D正确.故选:ACD10、答案:AB分析:根据题意25件产品中只有2件次品,所以不可能取出3件都是次品,且至少有1件正品,即可得解.25件产品中只有2件次品,所以不可能取出3件都是次品,则“3件都是次品”不是随机事件,是不可能事件,又25件产品中只有2件次品,从中任取3件产品,则“至少有1件正品”为必然事件,而A,B是随机事件.故选:AB11、答案:BCD分析:根据概率的定义和生活中的概率判断各选项的对错.由频率和概率的关系可知随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率,A正确,,买1000张这种彩票不一定能中奖,B错误,某种福利彩票的中奖概率为11000掷一枚硬币出现反面的概率为1,C错误,2某市气象台预报“明天本市降水概率为70%”,指的是明天有70%的可能会降水,D错误,故选:BCD.12、答案:3##0.310分析:利用列举法和古典概型的概率计算公式可得答案.从蓝、白、红、黑、绿5种颜色各1只的口罩中选3只不同颜色的口罩,样本点列举如下:(蓝,白,红),(蓝,白,黑),(蓝,白,绿),(蓝,红,黑),(蓝,红,绿),(蓝,黑,绿),(白,红,黑),(白,红,绿),(白,黑,绿),(红,黑,绿),共有10个样本点,其中蓝、白色口罩同时被选中的样本点有(蓝,白,红),(蓝,白,黑),(蓝,白,绿),共3个样本点,所以蓝、白色口罩同时被选中.的概率为310.所以答案是:310。
概率论答案浙江大学第四版
概率论答案浙江大学第四版【篇一:概率论与数理统计浙江大学第四版-课后习题答案(完全版)】p> 浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)o1n?100?s???,???,n表小班人数 n??nn(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)s={10,11,12,???,n,???}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))s={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设a,b,c为三事件,用a,b,c的运算关系表示下列事件。
(1)a发生,b与c不发生。
表示为: a或a- (ab+ac)或a- (b∪c)(2)a,b都发生,而c不发生。
表示为: ab或ab-abc或ab-c表示为:a+b+c (3)a,b,c中至少有一个发生(4)a,b,c都发生,表示为:abc表示为:ac或s- (a+b+c)或a?b?c (5)a,b,c都不发生,(6)a,b,c中不多于一个发生,即a,b,c中至少有两个同时不发生相当于,,中至少有一个发生。
故表示为:??。
(7)a,b,c中不多于二个发生。
相当于:,,中至少有一个发生。
故表示为:??abc(8)a,b,c中至少有二个发生。
相当于:ab,bc,ac中至少有一个发生。
故表示为:ab+bc+ac6.[三] 设a,b是两事件且p (a)=0.6,p (b)=0.7. 问(1)在什么条件下p (ab)取到最大值,最大值是多少?(2)在什么条件下p (ab)取到最小值,最小值是多少?从而由加法定理得p (ab)=p (a)+p (b)-p (a∪b) (*)(1)从0≤p(ab)≤p(a)知,当ab=a,即a∩b时p(ab)取到最大值,最大值为p(ab)=p(a)=0.6,(2)从(*)式知,当a∪b=s时,p(ab)取最小值,最小值为p(ab)=0.6+0.7-1=0.3 。
概率论与数理统计第四版习题答案全
概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合; (3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB = (3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有1,2,3,4,5.从中任取3只,A —“最小为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验?解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、总机为300个用户服务.在一小时每一用户使用的概率等于0.01,求在一小时有4个用户使用的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------= 16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(xx F +=,则1)(0<<x F 因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P (3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA = (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-., 00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00030006),()(3032y y ex x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y i n i in X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]服从均匀分布,Y 在区间[0,2]服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为2X0 1 4 9即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X p pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x xx f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求:(1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而 2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f +--=π.。
概率论课后习题答案pdf
概率论课后习题答案pdf概率论课后习题答案pdf概率论是数学中的一门重要学科,研究的是随机事件发生的规律性。
在学习概率论的过程中,课后习题是巩固知识、提高应用能力的重要途径。
然而,对于一些复杂的概率题目,学生可能会遇到困惑和难以解答的情况。
因此,提供一份概率论课后习题答案pdf对于学生来说是非常有益的。
一、基础概率题1. 一个标准的扑克牌中,红桃和黑桃的数量各有多少张?答案:扑克牌一共有52张,其中红桃和黑桃各有13张。
2. 从一副标准扑克牌中,随机抽取两张牌,求两张牌都是红桃的概率。
答案:首先,从52张牌中抽取第一张红桃的概率为13/52。
然后,从剩下的51张牌中抽取第二张红桃的概率为12/51。
因此,两张牌都是红桃的概率为(13/52) * (12/51) = 1/17。
二、条件概率题1. 一家电子产品公司生产的手机中,10%的手机存在质量问题。
现在从该公司生产的手机中随机选择一个,发现该手机存在质量问题。
求该手机是该公司生产的概率。
答案:设事件A表示选择的手机存在质量问题,事件B表示该手机是该公司生产的。
根据条件概率的定义,我们需要求解P(B|A)。
根据题意,P(A) = 0.1,即选择的手机存在质量问题的概率为0.1。
又因为只有该公司生产的手机存在质量问题,所以P(A|B) = 1。
根据条件概率的公式,有P(B|A) = P(A|B) * P(B) / P(A) = 1 * P(B) / 0.1 = 10 * P(B)。
由于概率的取值范围在0到1之间,所以P(B)的取值范围也在0到0.1之间。
因此,该手机是该公司生产的概率为10 * P(B),其中0 <= P(B) <= 0.1。
三、随机变量题1. 设随机变量X表示一次抛掷一枚骰子的结果,求X的期望。
答案:一枚骰子的结果有1、2、3、4、5、6六种可能,每种可能出现的概率为1/6。
根据期望的定义,期望E(X) = (1/6) * 1 + (1/6) * 2 + (1/6) * 3 + (1/6) * 4 + (1/6) * 5 + (1/6) * 6 = 3.5。
概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版
概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。
表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。
概率课后习题答案(全)
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1, 且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1). 解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。
(完整版)概率论与数理统计第一章补充题与答案
概率论与数理统计补充习题第一章 随机事件与概率一、思考题1、概率研究的对象是什么?2、随机现象是否就是没有规律的现象?随机现象的特点是什么?3、概率是刻画什么的指标?4、概率的公理化定义的意义是什么?5、第一章的主要内容是什么?二、填空题1、填出下列事件的关系(1)、“20件产品全是合格品”与“20件产品中恰有一件是废品”为 .(2)、“20件产品全是合格品”与“20件产品中至少有一件是废品” 为 .(3)、“20件产品全是合格品”与“20件产品中至多有一件是废品” 为 .2、某人用步枪射击目标5次,i A =(第i 次击中目标 ),i B =(5次射击中击中目标i 次)(i =0,1,2,3,4,5),用文字叙述下列事件,并指出各对事件之间的关系.(1)、 51=i iA 为 . 51=i i B为 . 51=i i A 与 51=i i B 的关系为 .(2)、 52=i iA 为 . 52=i i B为 . 52=i i A 与 52=i i B 的关系为 .(3)、 21=i i A 与 53=i iA 的关系为 .(4)、 21=i iB 与 53=i i B 的关系为 .三、选择题1、下列各式中正确的有( ).(A )、A ∪B =(A-AB )∪B (B )、若A ∪C=B ∪C 则A=B(C )、若P (A )≥P (B )则A ⊃B2、若事件A 和B 互斥,且P (A )≠0,P (B )≠0,则( ).(A )、A 和B 互斥(B )、A 和B 不互斥 (C )、P (A-B )=P (A )(D )、P (A-B )=P (A )-P (B ) 3、若当事件A 和B 同时发生时,事件C 必发生,则( ).(A )、P (C )≤P (A )+P (B )-1(B )、P (C )≥P (A )+P (B )-1 (C )、P (C )=P (AB ) (D )、P (C )=P (A +B )4、设0<P (A )<1,0<P (B )<1,P (A |B )=1-P (A |B ),则事件A 和B ( ).(A )、互斥 (B )、对立 (C )、独立 (D )、不独立5、设0<P (B )<1,P [(A 1∪A 2)|B ]=P (A 1|B )+P (A 2|B ),则( ).(A )、P [(A 1∪A 2)|B ]=P (A 1|B )+P (A 2|B ) (B )、P (A 1B ∪A 2B )=P (A 1B )+P (A 2B )(C )、P (A 1∪A 2)=P (A 1|B )+P (A 2|B ) (D )、P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)6、设事件A 和B 满足P (B |A )=1,则( ).(A )、A ⊃B (B )、A ⊂B (C )、P (B |A )=0 (D )、P (AB )=P (A )7、对于任意二事件A 和B ,则( ).(A )、若Φ≠AB ,则A 、B 一定独立 (B )、若Φ≠AB ,则A 、B 有可能独立(C )、若Φ=AB ,则A 、B 一定独立 (D )、若Φ=AB ,则A 、B 一定不独立8、将一枚硬币独立的掷两次,引进事件如下:=1A {第一次出现正面} =2A {第二次出现正面}=3A {正反各出现一次} =4A {正面出现两次} 则事件( ).(A )、1A 、2A 、3A 相互独立 (B )、 2A 、3A 、4A 相互独立(C )、1A 、2A 、3A 两两独立 (D )、 2A 、3A 、4A 两两独立四、计算题1、P (A )=0.5,P (B )=0.3(1)、若B ⊂A ,求P (A ∪B )、P (A |A ∪B )(2)、若A、B互斥,求P(A B)(3)、若A与B互相独立,求P(A-B)、P(A-B|B)2、设事件A和B相互独立,P(A)=0.5,P(A∪B)=0.8,计算:(1)、P(A B) (2)、P(A∪B).3、P(A)=0.4,P(A∪B)=0.8,求P(B|A).4、设10件产品中有4件是次品,从中任取两件,已知所取两件产品中有一件是次品,求另一件是合格品的概率.5、甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.65,现已知目标被命中,求甲命中目标的概率.6、把4个球随机放入4个盒子中,求空盒子数分别为0,1,2,3的概率.7、甲、乙、丙分别有球为甲:3白2红、乙:全红、丙:红白各半,三人各随意拿出一球,然后甲从取出的球中随意取回一个,求甲的红球数增加的概率.8、在所有五位随机整数中(含以0开头的数字),任取一个整数,求下列事件的概率.(1)、恰有一个数字出现两次;(2)、最大的数字为6;(3)、五个数字恰好严格单增.9、从1,2,…,9这9个数字中,有放回地取三次,每次取一个,求下列事件的概率:(1)、A1:3个数字全不同;(2)、A2:3个数字没有偶数;(3)、A3:3个数字中最大数字为6;(4)、A4:3个数字形成一个单调(严格)数列;(5)、A5:3个数字之乘积能被10整除.10、每箱产品有10件,其次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验是次品,则认为该箱产品不合格而拒收.假设由于检验有误,一件正品被误检为次品的概率为2%,而一件次品被误检为正品的概率为5%.求一箱产品通过验收的概率.11、一个枪室里有10支枪,其中6支经过校正,命中率可达0.8,另外4支尚未校正,命中率仅为0.5.(1)、从枪室里任取一支枪,独立射击三次.求三次均命中目标的概率;(2)、从枪室里任取一支枪,射击一次,然后放回,如此连续三次,结果三次均命中目标,求取出的三支枪中有二支是校正过的概率.12.、设有来自三个地区的各10名,15名和25名的报名表.其中女生的报名表分别为3份,7份和5份.随机的取一个地区的报名表,从中先后抽出两份, 抽到哪个地区的报名表的可能性相等.求:(1)、先抽到的一份是女生表的概率p .(2)、已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .第一章补充习题答案一、思考1、答:随机现象的统计规律性.2、答:不然.随机现象具有不确定性,即试验之前不能确定哪一个事件发生.随机现象也具有确定性,即在相同条件下,随着试验的次数增多,事件A发生的频率越来越接近一个常数p,随机现象的这一性质,称为频率稳定性,也称统计规律性. 正是随机现象这一确定性,说明了一次试验时随机事件A发生的可能性大小——概率,是一定值.因此才有《概率论》.3、答:概率是测度随机事件发生的可能性大小的指标.4、答:其给出了一个指标是否有资格作为概率的评价标准.5、答:第一章首先给出了描述随机现象结果的术语:随机事件,介绍随机事件的关系与运算,使得复杂事件可以通过简单事件来描述,并为概率计算提供方便.给出了概率定义以及概率的基本关系式(性质、条件概率、乘法公式、全概与逆概公式),为概率计算打下基础.介绍了古典概型.其本身具有应用价值,也为掌握事件关系与练习概率计算搭了舞台.二、填空1、(1)、“20件产品全是合格品”与“20件产品中恰有一件是废品”为 互斥 .(2)、“20件产品全是合格品”与“20件产品中至少有一件是废品” 为 对立 .(3)、“20件产品全是合格品”与“20件产品中至多有一件是废品” 为 后者包含前者 .2、(1)、51=i i A 为 至少击中一次 . 51=i i B 为至少击中一次 . 51=i i A 与 51=i i B 的关系为 相等 .(2)、 52=i iA 为 后四次中至少击中一次 . 52=i i B 为 至少击中两次 . 52=i i A 与 52=i i B的关系为 不相等 .(3)、21=i i A 与 53=i i A 的关系为 没有必然联系 . (4)、 21=i iB 与 53=i i B 的关系为 互斥 .三、选择题1、(A )2、(C )证明 ()()()()()P A B P A AB P A P AB P A -=-=-=反例:(B ) 即B =A A =B ,A 、B 互斥、A 与B 仍互斥.(A ) A 与B 非互斥(D )P (B )≠0,显然不成立.3、(B )证明 AB C ⊂, P (AB )≤P (C )P (A+B )=P (A )+P (B )-P (AB )≤1; P (AB )≥P (A )+P (B )-1,所以P (C )≥P (A )+P (B )-1。
南邮概率统计补充习题参考答案 第三章补充习题参考答案
=
1 [Φ( 2b
z
+b− σ
μ )
− Φ(
z
−b− σ
μ )] ;
1
《概率论数理统计与随机过程—补充练习题第三章参考答案》
专业及班级
姓名
学号
评分等级
14.(1)
f
X
(
x)
=
⎧⎪e− ⎨ ⎪⎩0
ቤተ መጻሕፍቲ ባይዱ
x
x>0 ,
其它
fY
(
y)
=
⎧⎪ ye− ⎨ ⎪⎩0
y
y>0 其它
⎧1
(2)
f X |Y
(x
|
y)
=
⎪ ⎨
其它
fY|X ( y |
x)
=
fY ( y)
=
⎧⎪ μ e− μ ⎨
y
⎪⎩0
x > 0, y > 0 ; 其它
Z (3)分布律 p
0
μ λ+μ
1
⎧0
λ
,分布函数
FZ
(z)
=
⎪⎪ ⎨ ⎪
λ
μ +
μ
λ+μ
⎪⎩1
x<0 0≤ x <1。 x ≥1
2
x2
111 24 8 12 1 31 884
1 4
; 3 4
p{Y = y j } = p. j 1 1 1
1
6 23
Y 01 23
X
0
1 8
1 8
0
0
12.(1) 1 01 10
44
2 001 1
88
10.(1) (X ,Y ) (−3,1) (−3, 2) (−3,3) (−2,1) (−2, 2) (−3,3) (−1,1) (−1, 2) (−1,3) ;
概率论与数理统计浙大四版习题答案(完全真实)
概率论与数理统计习题答案精选版浙大第四版说明:剩余习题在学习辅导与习题选解第一章概率论的基本概念1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2. 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为:A或A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。
表示为:AB或AB-ABC或AB-C表示为:A+B+C (3)A,B,C中至少有一个发生(4)A,B,C都发生,表示为:ABC表示为:或S-(A+B+C)或(5)A,B,C都不发生,(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于,中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:A,,C中至少有一个发生。
故表示为:或ABC(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6. 在房间里有10人。
分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。
(1)求最小的号码为5的概率。
记“三人纪念章的最小号码为5”为事件A∵10人中任选3人为一组:选法有种,且每种选法等可能。
又事件A相当于:有一人号码为5,其余2人号码大于5。
这种组合的种数有∴(2)求最大的号码为5的概率。
概率数理统计补充习题全
概率数理统计补充习题第一章 随机事件及其概率一、填空题:1.设A 、B 、C 是三个事件,用A 、B 、C 的运算关系表示下列事件:(1)A 发生,B 与C 都不发生 ;(2)A 与B 都发生,而C 不发生 ;(3)A 、B 、C 都发生 ;(4)A 、B 、C 中至少有一个发生 ;(5)A 、B 、C 都不发生 ;(6)A 、B 、C 中不多于一个发生 ;(7)A 、B 、C 中不多于两个发生 ;(8)A 、B 、C 中至少有两个发生 ;(9)A 、B 、C 中恰有一个发生 ;(10)A 、B 、C 中恰有两个发生 .2.写出下列试验的样本空间:(1)将一枚硬币抛三次,观察出现正面的次数 ;(2)将一枚硬币抛三次,观察出现正、反面的情况 ;(3)将三枚不同的硬币抛一次,观察出现正、反面的情况 ;(4)将两颗不同的骰子抛一次,观察出现的点数 ;3.设A 、B 为两事件,且已知9.0)(=+B A P ,3.0)(=AB P ,若B A ⊃,则=-)(B A P ;4.设A 、B 为两事件,且已知6.0)(=A P ,8.0)(=B P ,7.0)|(=B A P ,则=+)(B A P ;5.设A 、B 为两事件,且已知8.0)(=A P ,4.0)(=B P ,3.0)|(=A B P ,则=)|(B A P ;6.设A 、B 为两事件,且已知9.0)(=B P ,6.0)(=AB P ,则=)(B A P ;7.设A 、B 为两事件,且已知52)(=A P ,54)(=B P ,65)|(=A B P ,则 (1)=)(AB P ; (2)=)|(B A P ;(3)=+)(B A P ; (4)=-)(B A P .8.设A 、B 为两事件,有(1)若A 、B 互不相容,则=)(AB P ;(2)若B A ⊃,则=)(AB P ;(3)若A 、B 相互独立,则=)(AB P ;(4)若A 、B 为对立事件,则=+)()(B P A P .9.设A 与B 相互独立,且()0.7P A =,()0.4P B =,则()P AB = .10.设()0.1P A =,()0.3P A B +=,且A 与B 互不相容,则()P B = .11.设1()3P A =,1()4P B =,1()2P A B +=,则=P A B +() . 12.若()0.5P A =,()0.4P B =,()0.3P A B -=,则()=P A B + ,=PA B +() . 13.已知()0.7P A =,()0.5P B =,()0.3P A B -=,则()=P AB ,()=P B A - ,(|)=P B A .14.已知1()4P A =,1(|)3P B A =,1(|)2P A B =,则()=P A B + . 15.设A 、B 、C 相互独立,且()()()0.2,0.4,0.3P A P B P C ===,则()P A B C ++= .16.设A 、B 为两个随机事件,且()0.4P A =,()0.8P B =,()0.5P AB =,则(|)P B A = .二、单项选择题:1.若两事件A 和B 同时出现的概率为0)(=AB P ,则 【 】(A )A 与B 互不相容(互斥); (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )0)(=A P 或0)(=B P .2.若事件21A A A =,则事件=A 【 】(A )21A A ; (B )21A A ; (C )21A A ; (D )21A A +.3.若A 、B 为两随机事件,且A B ⊂,则下列各式中不正确的是 【 】(A ))()(B P A P <; (B ))()(A P B P ≥;(C )0)(=B A P ; (D ))()(B P B A P =+.4.设A 和B 是两个概率不为零的互不相容事件,则下列结论中肯定正确的是;【 】(A )A 与B 互不相容; (B )A 与B 相容;(C ))()()(B P A P AB P =; (D ))()(A P B A P =-.5.对于任意两事件A 和B ,下列结论正确的是( );(A )若φ≠AB ,则A 、B 一定独立; (B )若φ≠AB ,则A 、B 有可能独立;(C )若φ=AB ,则A 、B 一定独立; (D )若φ=AB ,则A 、B 一定不独立.6. 设A 、B 为两个事件,则“这两个事件至少有一个没有发生”可表示为 【 】 ① A B ② AB AB + ③ A B + ④ A B +7. 以A 表示事件“零件长度合格,且直径不合格”,则其对立事件A 是 【 】 ① “零件长度不合格,且直径合格” ② “零件长度、直径均合格”③“零件长度不合格,或直径合格” ④ “零件长度不合格”8. 掷一颗均匀的骰子,下列事件中为必然事件的是 【 】 ① 出现的点数为偶数 ② 出现的点数小于六③ 出现的点数小于七 ④ 出现的点数大于七9. 事件B 发生而事件A 不发生的事件是 【 】 ① A B ⊂ ② A B ⊃ ③ B A - ④ B A -10. 掷一颗均匀的骰子,A 表示事件“出现的点数小于4”,B 表示事件“出现的点数大于4 ”,则 【 】 ① A 、B 对立 ② A 、B 互斥 ③ A 、B 独立 ④ A B ⊃11. 对于任意两事件A 、B ,则A B += 【 】 ①A B ② A B ③ A B ④ A B +12. 对于任意两事件A 、B ,则AB = 【 】 ①A B ② A B ③ A B ④ A B +13. 设事件A 和B 满足A B ⊂,则下列选项中正确的是 【 】 ① AB A = ② AB B = ③ A B -=Φ ④ A B A +=14. 设事件A 、B 的概率均大于0小于1,且A 、B 相互独立,则 【 】 ① A 与B 互不相容 ② A 与B 互不相容 ③ A 与B 相容 ④ A 与B 互不相容15. 有100个产品,其中96个是正品,4个是次品,现从中有放回地任取5次(每次任取一个,取后放回,共取五次),则取到的五个产品都是正品的概率为 【 】① 96100 ② 5965100C C ③ 5965100C ④ 5596100 16. 有100个产品,其中96个是正品,4个是次品,现从从中无放回地中任取5次(每次任取一个,取后不放回,共取五次),则取到的五个产品都是正品的概率为 【 】① 96100 ② 5965100C C ③ 5965100C ④ 559610017. 某人打靶的命中率为0.6, 现独立地射击了10次,10次射击中恰有3次命中的概率为【 】① 370.60.4⨯ ② 30.6 ③ 330.610⨯ ④ 337100.60.4C ⨯⨯ 18. 每次试验的成功率为p (01)p <<,独立重复进行试验直到第n 次才取得r 次成功 (1)r n ≤≤的概率为 【 】 ① 1()r r n r n C p p -⨯⨯- ② 111()r r n r n C p p ---⨯⨯- ③ 1()r n r p p -⨯- ④ 1111()r r n r n C p p ----⨯⨯-19.设在N 件产品中有1N 件次品,每次从中任意取出一件,有放回地取n 次,可看作 【 】 ① N 重Bernoulli 试验 ② 1N 重Bernoulli 试验③ n 重Bernoulli 试验 ④ 不是Bernoulli 试验20. 设在N 件产品中有1N 件次品,每次从中任意取出一件,无放回地取n 次,可看作 【 】 ③ N 重Bernoulli 试验 ② 1N 重Bernoulli 试验③ n 重Bernoulli 试验 ④ 不是Bernoulli 试验第二章 随机变量及分布1.填空题(1) 关系式 ,3,2,1}{===i p x X P i i 是离散型随机变量X 的概率分布的充要条件是____.(2)若某射手射击的命中率为4.0,则连续射击10次才命中目标的概率是____.(3)若X 的概率分布是则其分布函数 =≤=}{)(x X P x F(4)分布函数 }{)(x X P x F ≤= 在点x 处是____连续.(5)若X 的分布函数 ⎪⎩⎪⎨⎧≥<≤<=≤=11104.000}{)(x x x x X P x F 则X 是____型的,其分布律为____.(6)若X 的概率分布是则=-≥}1{X P ____,=-≤}1{X P(7)若X 的分布函数是 R x x X P x F ∈≤=}{)(则当21x x <时,=≤<}{21x X x P ____.(8)若 ⎩⎨⎧<<=其它010)(x kx x f 是某连续型随机变量X 的概率密度,则=k ____.(9)若X 的分布函数是 ⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F 则 =<<-}5.05.0{X P ____.(10)若X 是连续型随机变量,则对任何R x ∈恒有==}{x X P ___(11)设连续型随机变量X 的概率密度 ⎪⎩⎪⎨⎧≤≤-<≤=其它021210)(x x x xx f则 =≤}5.1{X P ____.(12)已知随机变量的密度函数 ⎩⎨⎧<<=其它0102)(x x x f则 ==}5.0{X P ____,=≤}5.0{X P ____.(13)若随机变量X 的密度函数 ⎩⎨⎧<<--=其它011)1()(2x x k x f则 =k ____,==}21{X P ____.(14)设随机变量X 的密度函数 ⎩⎨⎧<≤+=其它0201)(x Ax x f则 =A ____.2.单选题(1)下列结果中,构成分布列的是____.0120.30.40.5X A p ⎡⎤⎢⎥⎣⎦ 0120.30.20.5X B p ⎡⎤⎢⎥⎣⎦0120.40.30.5X C p ⎡⎤⎢⎥⎣⎦ 0120.50.30.4X D p ⎡⎤⎢⎥⎣⎦(2)若X 的分布函数是R x x X P x F ∈≤=}{)(,则对任意 R x x ∈21, 当 21x x < 时,有)()(}{1221x F x F x X x P A -=≤< )()(}{1221x F x F x X x P B -=<≤ )()(}{1221x F x F x X x P C -=<< )()(}{1221x F x F x X x P D -=≤≤(3)若X 的分布函数是R x x X P x F ∈≤=}{)(,则下列结论中成立是 )(x F A 在),(+∞-∞内处处连续 )(x F B 在),(+∞-∞内处处右连续 )(x F C 在),(+∞-∞内处处左连续 )(x F D 在),(+∞-∞内处处不连续(4)若X 的概率分布是100.30.7X p ⎡⎤⎢⎥⎣⎦,则其分布函数}{)(x X P x F ≤=是().⎪⎩⎪⎨⎧>≤<≤=11103.000)(x x x x F A ⎪⎩⎪⎨⎧≥<≤<=11103.00)(x x x x F B⎪⎩⎪⎨⎧>≤<≤=11107.000)(x x x x F C ⎪⎩⎪⎨⎧≥<≤<=11107.00)(x x x x F D(5)若X 的概率分布是012111362Xp ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列结果中成立的是( ) 0}0{=≤X P A 0}231{=≤<X P B 0}231{=≤≤X P C 31}0{=<X P D(6)若X 的分布函数是2()02412x x F x x x ≤⎧⎪⎪=<<⎨⎪≥⎪⎩,则下列结果中成立的是(). A X 的密度函数02()20xx f x ⎧<<⎪=⎨⎪⎩其它{2}0.5B P X ≥={01}0.2C P X <<= {0}0D P X <>(7)若X 的分布列是112111362X p -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列结果中成立的是( )2114111362X A p ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 2140.50.5XB p ⎡⎤⎢⎥⎣⎦{2}1C P X ≥= 1{1}3D P X <-=(8)若X 的概率密度是101()0x f x <<⎧=⎨⎩其它,则其分布函数是( ).01()0x x A F x <<⎧=⎨⎩其它 20.501()0x x B F x ⎧<<=⎨⎩其它200()0.50111x C F x x x x <⎧⎪=≤<⎨⎪≥⎩ 00()0111x D F x x x x <⎧⎪=≤<⎨⎪≥⎩(9)下列函数中,可作为密度函数的是( ) A 21()()1f x x R x =∈+ 21()(0)(1)B f x x x =-∞<≤+π21()(0)(1)C f x x x =≤<+∞+π 21()(1)D f x x R x =∈+π(10)下列函数中,可作为密度函数的是( )3sin [0,]()20x x A f x ⎧∈⎪=⎨⎪⎩其它π s i n (,)()220x x B f x ⎧∈-⎪=⎨⎪⎩其它ππ sin [0,]()20x x C f x ⎧∈⎪=⎨⎪⎩其它πs i n [0()0x x D f x ∈⎧=⎨⎩其它π (11)设随机变量X 的密度函数为()f x ,且()()f x f x -=,()F x 为X的分布函数。
(完整版)概率论与数理统计课后习题答案
·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)
(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)概率论与数理统计习题答案详解版(廖茂新复旦版)习题⼀1.设A,B,C为三个事件,⽤A,B,C的运算式表⽰下列事件:(1)A发⽣⽽B与C都不发⽣;(2)A,B,C⾄少有⼀个事件发⽣;(3)A,B,C⾄少有两个事件发⽣;(4)A,B,C恰好有两个事件发⽣;(5)A,B⾄少有⼀个发⽣⽽C不发⽣;(6)A,B,C都不发⽣.解:(1)A CB或A-B-C或A-(B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C)∪(AC B)∪(BC A).(5)(A∪B)C.(6)CY或CBA IA.B2.对于任意事件A,B,C,证明下列关系式:(1)(A+B) (A+B)(A+ B)(A+B)= ?;(2)AB+A B +A B+A B AB-= AB;(3)A-(B+C)=(A-B)-C.证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发⽣但B不发⽣的概率;(2)A,B都不发⽣的概率;(3)⾄少有⼀个事件不发⽣的概率.解(1)P(A B)=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(B A)=P(BA )=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB)=1-P(AB)=1-0.1=0.9.4.调查某单位得知。
购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD占5%,三种电器都购买占2%。
求下列事件的概率。
(1)⾄少购买⼀种电器的;(2)⾄多购买⼀种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
解:8/156.任意将10本书放在书架上。
其中有两套书,⼀套3本,另⼀套4本。
《概率论与数理统计》第二补充题答案解读
《概率论与数理统计》第二章补充题答案1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)13{},{1},{12}22P X P X P X ≤<≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ==========(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)0223535341(12)(2)(1)(2)10.3535P X F P X F F P X F F P X ≤==<≤=-=-=<<=--==--=3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 ea λ-=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ (2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==12322333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++ 33221233(0.6)(0.3)C (0.6)0.4C 0.7(0.3)++ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3+=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C(0.02)(0.98)0.01k k k k N -=+<∑利用泊松近似2000.02 4.np λ==⨯= 41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)(2)1(0)(1)P X P X P X ≥=-=-=0.10.11e0.1e --=--⨯8.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑9.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)eP X -== (2) 52(1)1(0)1eP X P X -≥=-==-10.设P {X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mmmp p --44)1(C , m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}.【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 11.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 12.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++213141451()4==- 13.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑即保险公司获利不少于10000元的概率在98%P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑即保险公司获利不少于20000元的概率约为62%14.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得||1e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰ 当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰ 11e 2x-=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩15.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率;(3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰ 33128[(150)]()327p P X =>==(2) 1223124C ()339p ==(3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 16.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 17.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+= 18.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=19.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些. 20.设X ~N (3,22),(1) 求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }. 【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=321.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=22.一工厂生产的电子管寿命X (小时)服从正态分布N (160,2σ),若要求P {120<X ≤200}≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤⎪⎝⎭404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故 4031.251.29σ≤= 23.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩24.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d xF x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩25.设随机变量X 的密度函数为(1) f (x )=||x ae-,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时01211()()d 0d d d x xF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩26.求标准正态分布的上α分位点,(1)α=0.01,求z α; (2)α=0.003,求z α,/2z α.【解】(1) ()0.01P X z α>=, 1()0.01z αΦ-=即 ()0.09z αΦ= 故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ-= 即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ= 即 /2()0.9985z αΦ=查表得 /2 2.96z α=27.设P {X =k }=(12)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==28.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )x Y F y P Y y P y P X y =≤=≤=≤ln ()dyX f x x -∞=⎰故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤ ⎪ ⎝⎭⎝()dX f x x =故 d ()()d Y Y X X f y F y f f y ⎤⎛==+⎥⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+-2/2,0y y -=>29.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数; (2) Z =-2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e )1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )X Y F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1X Y F y P y =≤= 即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他 (2) 由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥/21/2e d 1e z z x --==-⎰ 即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩030.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x x x x -=+⎰⎰222211arcsin 1πarcsin ππy y =+--()() 2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为22,01π()10,Y y f y y⎧<<⎪=-⎨⎪⎩其他 31.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。
概率课后习题解答
习题一3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件:(1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生.解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ;(5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A .6.一批产品共有200件,其中有6件废品,求:(1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率.解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得(1)0855.0)(32002194161≈=C C C A P ; (2)9122.0)(320031940≈=C C A P ;(3)0023.0)(32003611942632≈+=+C C C C A A P . 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P .解:4.08.05.0)|()()(=⨯==A B P A P AB P ,)]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-==3.0)4.06.05.0(1=-+-=.10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P .解:314.014.06.0)(1)()()()()(=--=--==B P B P B A P B P B A P B A P .13.一盒里有10个电子元件,其中有7个正品,3个次品.从中每次抽取一个,不放回地连续抽取四次,求第一、第二次取得次品且第三、第四次取得正品的概率.解:设事件i A 表示“第i 次取得次品”(4,3,2,1=i ),则所求的概率为)|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =201768792103=⨯⨯⨯=. 19.三人独立地去破译一个密码,他们能够译出的概率分别是51,31,41,问能将密码译出的概率是多少?解:设事件C B A ,,分别表示“第一人,第二人,第三人破译出密码”,显然事件C B A ,,相互独立,且41)(,31)(,51)(===C P B P A P ,则所求的概率为 53)411)(311)(511(1)()()(1)(=----=-=C P B P A P C B A P .20.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是02.0,03.0,05.0和03.0.假设各道工序是互不影响的,求加工出来的零件的次品率.解:设事件i A 表示“第i 道工序加工出次品”)4,3,2,1(=i ,显然事件4321,,,A A A A 相互独立,且03.0)(,05.0)(,03.0)(,02.0)(4321====A P A P A P A P ,则所求的概率为)()()()(1)(43214321A P A P A P A P A A A A P -=124.0)03.01)(05.01)(03.01)(02.01(1=-----=22.设一系统由三个元件联结而成(如图14-),各个元件独立地工作,且每个元件能正常工作的概率均为p (10<<p ).求系统能正常工作的概率.图14-解:设事件i A 表示“第i 个元件正常工作”)3,2,1(=i ,事件B表示“该系统正常工作”,显然,事件321,,A A A 相互独立,且p A P i =)(,则所求的概率为)()()()(])[()(32132313231321A A A P A A P A A P A A A A P A A A P B P -+===3232132312)()()()()()()(p p A P A P A P A P A P A P A P -=-+=.习题二2.离散型随机变量X 的概率函数为: (1)()2,1,2,,100;i P X i a i === (2)()2,1,2,,i P X i a i ===分别求(1)、(2)中a 的值.解:(1)121)21(22)(10010011001=--===∑∑==a a i X P i ii ,解得)12(21100-=a ; (2)1122)(11001=-===∑∑∞==aaa i X P i i i ,解得31=a .3.对某一目标进行射击,直到击中为止,若每次射击命中率为p ,求射击次数的概率分布.解:设随机变量X 表示“击中目标时的射击次数”,显然,X 可取 ,2,1,故X 的概率分布为: ,2,1,)1()(1=-==-k p p k X P k4.一大楼装有5个同类型的供水设备.调查表明在任一时刻t ,每个设备被使用的概率为0.1,且各个设备的使用是相互独立的.求在同一时刻被使用的设备数的概率分布,并求在同一时刻:(1)恰有2个设备被使用的概率; (2)至少有3个设备被使用的概率; (3)最多有3个设备被使用的概率; (4)至少有1个设备被使用的概率.解:设随机变量X 表示“在同一时刻被使用的设备数”,显然,),(~p n B X ,其中1.0,5==p n ,故X 的概率分布为5,,2,1,0,)9.0()1.0()()(555 ====-k C k X P k P k k k.(1)恰有2个设备被使用的概率为0729.0)9.0()1.0()2(32255==C P .(2)至少有3个设备被使用的概率为0086.0)9.0()1.0()(5355535==∑∑=-=k k k k k Ck P .(3)最多有3个设备被使用的概率为9995.0)9.0()1.0()(355305==∑∑=-=k k k k k Ck P .(4)至少有1个设备被使用的概率为4095.0)9.0(1)0(1)(55515=-=-=∑=P k P k .9.设随机变量X 的概率密度为1,0,21(),02,40, 2.xe xf x x x ⎧≤⎪⎪⎪=<<⎨⎪≥⎪⎪⎩求X 的分布函数.解:随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<+⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<++==⎰⎰⎰⎰⎰⎰∞-∞-∞-∞-.;;2200142121.;;22004121412121)()(20000x x x xe x x x dt dt e dt dt e dt e dt tf x F x t x t x tx,,,,,,10.设X 的分布函数为20,0,(),01,1, 1.x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩求:(1)系数A ;(2)X 的概率密度;(3)概率(0.50.8)P X ≤≤.解:(1)由于)(x F 是连续函数,有1)1()(lim 1==→F x F x ,而A Ax F x ==--→21lim )01(,11lim )01(1==++→x F ,故1=A ; (2)⎩⎨⎧<<='=.;1002)()(~其它,,x x x F x f X(3)39.0)5.0()8.0()8.05.0()8.05.0(=-=≤<=≤≤F F X P X P .13.随机变量X 的分布函数为20,0,(),05,251,5,x xF x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩ 求(1)X 的概率密度;(2)(36)P X <<.解:(1)对于连续型随机变量,有()()f x F x '=,所以2,05;()250,.x x f x ⎧<<⎪=⎨⎪⎩其它 (2) 25162531)3()6()63()63(2=-=-=≤<=<<F F X P X P . 14.某种电子元件的使用寿命X (单位:h )的概率密度为2100,100,()0,100.x f x x x ⎧≥⎪=⎨⎪<⎩求在150h 内:(1)3个电子元件中没有1个损坏的概率; (2)3个电子元件中只有1个损坏的概率; (3)3个电子元件全损坏的概率.解:设随机变量Y 表示“在150h 内,3个电子元件中损坏的元件数”,显然,),(~p n B Y ,其中31|100100)()150(,31501001501002150=-===≤==⎰⎰∞-x dx x dx x f X P p n , (1)3个电子元件中没有1个损坏的概率为:278)32()31()0(30033==C P ;(2)3个电子元件中只有1个损坏的概率为:94)32()31()1(131133==-C P ;(3)3个电子元件全损坏的概率为:271)32()31()3(03333==C P .16.已知随机变量X 只能取-1,0,2,3四个值,相应的概率依次为1357,,,24816C C C C,确定常数C .解 由3175+++=142168C C C C ,得C=3716. 16.一个袋内装有5个白球,3个红球.第一次从袋内任意取一个球,不放回,第二次又从袋内任意取两个球,i X 表示第i 次取到的白球数(1,2i =).求(1)12(,)X X 的联合概率分布;(2)12(0,0)P X X =≠,12()P X X =.解:(1)依题可知,随机变量1X 可取1,0,随机变量2X 可取2,1,0,而272251358),(C C C C C y x p yxy x x x -+--⋅= (2,1,0;1,0==y x ) 则),(21X X 的联合概率分布,1X 与2X 的边缘概率分布分别为(2)145)2,0()1,0()0,0(21=+=≠=p p X X P , 83)1,1()0,0()(21=+==p p X X P .17.袋中装有标上号码1,2,2的3 个球,从中任取一个并且不放回,然后再从袋中任取一球,以,X Y 分别记为第一、二次取到球上的号码数,求(,)X Y 的联合分布. 解:18.设二维随机变量(,)X Y 的联合概率密度为2(6),02,24,(,)0,k x y x y f x y --<<<<⎧=⎨⎩其它.求:(1)常数k ;(2)(1,3)P X Y <<;(3)( 1.5)P X <;(4)(4)P X Y +<.解:(1)由于1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,有⎰⎰--2042)6(2dy y x kdx116|)213(4)3(4]216[2202202422==-=-=--=⎰⎰k x x k dx x k dx y xy y k ,解得161=k ;(2)⎰⎰⎰⎰--==<<∞-∞-13213)6(81),()3,1(dy y x dx dxdy y x f Y X P83|)2127(81)27(81]216[811021010322=-=-=--=⎰⎰x x dx x dx y xy y ; (3)⎰⎰⎰⎰--==<∞-+∞∞-5.10425.1)6(81),()5.1(dy y x dx dxdy y x f X P3227|)213(41)3(41]216[815.1025.105.10422=-=-=--=⎰⎰x x dx x dx y xy y ; (4)dx y xy y dy y x dx Y X P xx ⎰⎰⎰----=--=<+204222042]216[81)6(81)4(32|)12431(161)128(1612023202=+-=+-=⎰x x x dx x x . 22.投掷一枚硬币直至正面出现为止,引入随机变量10Y ⎧=⎨⎩若首次投掷得到正面若首次投掷得到反面X 表示投掷总数.(1)求X 与Y 的联合概率分布及边缘概率分布.解:(1)依题可知,X 可取 ,2,1,而),3,2(,0),1(,21)1,1(),,3,2(,)21(),0(,0)1,0( ======x x p p x x p p x则X 与Y 的联合概率分布及边缘概率分布分别为24.设随机变量X 的概率分布为求2Y X =的概率分布.解:列表则2Y X =的概率分布为习题三1. 甲乙两台机器一天中出现次品的概率函数分别为若两台机器的日产量相同,问哪台机器较好?解:依题有,11.032.023.014.00)(=⨯+⨯+⨯+⨯=X E9.0032.025.013.00)(=⨯+⨯+⨯+⨯=Y E显然,)()(Y E X E >,即甲机器的平均次品数比乙机器的平均次品数大,故乙机器较好.2. 某种电子元件的寿命X (单位:h )的概率密度为2,0,()0,0.ax a xe x f x x -⎧>=⎨≤⎩其中0>a 为常数.求这种电子元件的平均寿命.解:⎰⎰⎰+∞-+∞-+∞∞--=⋅==202)()()(ax axe d ax dx xea x dx x xf X E⎰⎰+∞-+∞-∞+--=---=02)(2)2(|ax axax e xd dx axeeaxae a dx e xe ax ax ax 2|2)2(|2000=-=---=∞+-+∞-∞+-⎰.3. 设随机变量X 的概率密度为⎩⎨⎧<<=;,0;10,)(其它x kx x f a已知75.0)(=X E ,求a k 及的值.解:依题可知,⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+=+=+⇒⎪⎩⎪⎨⎧=⋅=⇒⎪⎩⎪⎨⎧==++∞+∞-∞+∞-⎰⎰⎰⎰2375.02|211|175.0175.0)(1)(1021011010a k a k x a k a k x a k dx kx x dx kx dx x xf dx x f a a a a 4. 设10只同种电器元件中有两只废品,装配仪器时,从这批元件中任取一只,若是废品,则扔掉重新任取一只,若仍是废品,则再扔掉重新任取一只.试求在取到正品之前已取出的废品数X 的概率分布与数学期望.解:依题可知,随机变量X 可取2,1,0,而,45898102)1()1(,54108)0()0(=⨯=======p X P p X P 451191102)2()2(=⨯⨯===p X P故随机变量X 的概率分布为且9245124581540)(=⨯+⨯+⨯=X E . 8.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤-+=;,0;10,1;01,1)(其它x x x x x f求)(X D .解:因⎰⎰⎰-++==-+∞∞-101)1()1()()(dx x x dx x x dx x xf X E0|)3121(|)3121(10320132=-++=-x x x x ⎰⎰⎰-++==-+∞∞-1201222)1()1()()(dx x x dx x x dx x f x X E61|)4131(|)4131(10430143=-++=-x x x x 故 61)]([)()(22=-=X E X E X D .9.设随机变量X 的概率密度函数为2(1),01;()0,;x x f x -<<⎧=⎨⎩其它求(),E X (X).D 解:101()2(1)3E X x x dx =-=⎰,1221()2(1)6E X x x dx =-=⎰, 222111()()[()]().6318D XE X E X =-=-=11.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤-+-<=;1,1;11,arcsin ;1,0)(x x x b a x x F试确定常数b a ,,并求)()(X D X E 及.解:因)(x F 为连续函数,则1)1()(lim 0)1()(lim 11===-=→-→F x F F x F x x ,,即⎪⎩⎪⎨⎧==⇒⎩⎨⎧=+=-+π1211)1arcsin(0)1arcsin(b a b a b a 则⎪⎩⎪⎨⎧≥<≤--<+=.;;11111arcsin 1210)(x x x x x F ,,,π,⎪⎩⎪⎨⎧<<--='=.;11011)()(~2其它,,x x x F x f X π 01)()(112=-==⎰⎰-+∞∞-dx xxdx x xf X E π⎰⎰⎰-=-==-∞+∞-122112222121)()(dx xx dx xx dx x f x X E ππ⎰⎰⎰-+--=----=12121221121211)1(2dx xdx x dx xx πππ21|arcsin 21412102=+⋅⋅-=x πππ, 所以,21)]([)()(22=-=X E X E X D .习题四1.设)2,5(~2N X ,求下列概率:(1))52(≤≤X P ;(2))2(≤X P ;(3))3(>X P ;(4))93(≤≤-X P .解:(1))0255.1()25525252()52(≤-≤-=-≤-≤-=≤≤X P X P X P 4332.019332.05.01)5.1()0()5.1()0(=-+=-Φ+Φ=-Φ-Φ=.(2))25225252()22()2(-≤-≤--=≤≤-=≤X P X P X P )5.3()5.1()5.1255.3(-Φ--Φ=-≤-≤-=X P 0666.09332.099977.0)5.1()5.3(=-=Φ-Φ=.(3)8413.0)1()1(1)125()25325()3(=Φ=-Φ-=->-=->-=>X P X P X P . (4))2254()25925253()93(≤-≤-=-≤-≤--=≤≤-X P X P X P 9772.01999968.09772.01)4()2()4()2(=-+=-Φ+Φ=-Φ-Φ=..3.已知随机变量),2(~2σN X ,且44.0)13(=≤-X P ,求)22(≥-X P .解:因)24222()42()13(σσσ-≤-≤-=≤≤=≤-X P X P X P44.0)0()2(=Φ-Φ=σ,即94.0)0(44.0)2(=Φ+=Φσ,则12.094.022)2(22)22()22(=⨯-=Φ-=≥-=≥-σσσX P X P .4. 已知随机变量),(~2σμN X ,且)1()3()1(-Φ=≥=-<X P X P ,求σμ,.解:依题有)1()1()1()1(-Φ=--Φ=--<-=-<σμσμσμX P X P ,)1()3()3(1)3()3(-Φ=--Φ=-Φ-=-≥-=≥σμσμσμσμX P X P ,由此可得,⎪⎩⎪⎨⎧=-=+1311σμσμ,解得.2,1==σμ6.设随机变量)1,0(~N X ,求)(2X E .解:因1)(,0)(==X D X E ,则.1)]([)()(22=+=X E X D X E 7.设随机变量21),9,2(~),4,0(~=XY N Y N X ρ,又设32Y X Z -=.求 (1))(Z E ,)(Z D .解:依题可知,9)(,4)(,2)(,0)(====Y D X D Y E X E , 由)()(),cov(Y D X D Y X XY ⋅=ρ得,.39421)()(),cov(=⨯⨯=⋅=Y D X D Y X XYρ (1)32)(31)(21)32()(-=-=-=Y E X E Y X E Z E ),cov(31212)()31()()21()32()(22Y X Y D X D Y X D Z D ⨯⨯-+=-=1331991441=⨯-⨯+⨯=. 11.一加法器同时收到48个噪声电压(1,2,,48)i X i =,设它们是相互独立的随机变量,且都在区间[0,10]上服从均匀分布,记481ii X X==∑,求(180)P X >.解:依题可知,32512)010()(,52100)(22=-===+==i i X D X E σμ,由独立同分布中心极限定理得48481(180)(180)ii i Xn P X P X P μ=->=>=>∑∑11(3)(3)0.99865=-Φ=-Φ-=Φ=.12. 一部件包括10个部分,每部分的长度是一个随机变量,它们相互独立,且服从同一分布,其数学期望为2mm ,均方差为0.05mm.规定总长度误差在0.1mm 内算合格品,试求产品合格的概率.解:设随机变量i X 表示“第i 个部分的长度”,1,2,,100.i =则12100,,,X X X 相互独立,05.0)(,2)(====i i X D X E σμ且1001i i X X ==∑表示“该部件的总长度”, 由独立同分布中心极限定理得(0.1)21P X n P μ-<=<=Φ- 2(0.2)120.579310.1586=Φ-=⨯-=.13. 掷硬币900次,试求: (1)至少出现正面480次的概率;(2)出现正面在420次到480次之间的概率.解:设随机变量X 表示“掷900次硬币中出现正面的次数”,则15)1(,450),21,900(~=-=p np np B X ,由棣莫弗—拉普拉斯中心极限定理得(1)0228.09772.01)2(1)1545048015450()480(=-=Φ-≈-≥-=≥X P X P (2)9544.019772.021)2(2)153015450()480420(=-⨯=-Φ≈<-=<<X P X P14. 一船舶在某海区航行,已知每遭受一次波浪的冲击,纵摇角大于3的概率31=p ,若船舶遭受了90000次波浪冲击,问其中有30500~29500次纵摇角度大于3的概率是多少?解:设随机变量X 表示“在90000次波浪冲击中纵摇角大于3的次数”,则2100)1(,30000),31,90000(~=-=p np np B X ,由棣莫弗—拉普拉斯中心极限定理得1)54.3(2)2100500210030000()3050029500(-Φ≈<-=<<X P X P20.9997710.99954.=⨯-=15.用切比雪夫不等式确定当投掷一枚均匀硬币时,需投多少次,才能使出现正面的频率在0.4至0.6之间的概率不小于90%.并用棣莫弗-拉普拉斯定理计算同一问题,然后进行比较.解:设需投硬币的次数为n ,随机变量X 表示“投掷n 次中硬币出现正面的次数”,显然,)21,(~n B X ,则.25.0)(,5.0)(n X D n X E ==(1)由切比雪夫不等式得)1.0)(()1.05.0()6.04.0(n X E X P n n X P nXP <-=<-=<<%90251)1.0(25.01)1.0()(122≥-=-=-≥n n n n X D即.250≥n(2)由棣莫弗-拉普拉斯定理得1)25.01.0(2)25.01.025.05.0()6.04.0(-Φ≈<-=<<nnn n n n X P n X P %901)5(2≥-Φ=n即95.0)5(≥Φn ,查表得65.15≥n ,即06.68≥n ,而+∈Z n ,故.69≥n 16.设有30个电子器件3021,,,D D D ,它们的使用情况如下:1D 损坏,2D 接着使用;2D 损坏,3D 接着使用等等.设器件i D 的使用寿命服从参数1.0=λ(单位:1-h )的指数分布.令T 为30个器件使用的总时数,问T 超过350h 的概率是多少?解:设随机变量i T 表示“第i 个电子器件的使用寿命”,.30,,2,1 =i 依题可知,3021,,,T T T 相互独立,1001)(,101)(),1.0(~22======λσλμi i i T D T E e T ,且∑==301i i T T ,由独立同分布中心极限定理得)30101030350(1)350()350()350(301301⨯-Φ-≈->-=>=>∑∑==σμσμn n n n TP T P T P i ii i1814.08186.01)91.0(1=-=Φ-=.17.某单位设置一电话总机,共有200架电话分机.设每个电话分机有5%的时间要使用外线通话,假定每个电话分机是否使用外线通话是相互独立的,问总机需要安装多少条外线才能以90%的概率保证每个分机都能即时使用.解:设需要安装m 条外线,随机变量X 表示“200架电话分机中要使用外线通话的架数”,显然,)05.0,200(~B X ,则5.9)(,10)(==X D X E ,由棣莫弗-拉普拉斯定理得%90)5.910()5.9105.910()(≥-Φ≈-≤-=≤m m X P m X P ,查表得28.15.910≥-m ,即95.13≥m ,而+∈Z m ,故14≥m ,即总机至少需要安装14条外线才能以90%的概率保证每个分机都能即时使用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1第九章 方差分析及回归分析1.解 分别以C B A μμμ,,记电池C B A ,,型号的平均寿命,我们需检验)05.0(=αC B A H μμμ==:0 C B A H μμμ,,:1不全相等现在15,5,3321=====n n n n S23521183215T ijj i T S x ===-=∑∑222211615.6Ssj A j j j j jT T S n x nx n n===-=-=∑∑4.216=-=A T E S S S8.3072==AA S S ,033.1812==E E S S 068.17==E A S S F又068.1789.3)12,2(05.0<=F 故在水平05.0=α下拒绝0H 。
即,各种型号的电池的寿命均值差异是显著的。
由于均值k j k j δδμμ-=-的置信度为α-1的置信区间为2[(j k x x t n s α-±- 由于0.02542.63044.4(2) 2.1788A B C x x x t ====故B A μμ-的置信度为95%的置信区间为]6.75,18.45[.C B μμ-的置信度为95%的置信区间为.55][-20.25,-8. C A μμ-的置信度为95%的置信区间为]-7.65,4.05[。
2.解 分别以321,,μμμ表示Ⅰ、Ⅱ、Ⅲ班的平均分数。
我们需检验)05.0(=α3210:μμμ==H3211,,:μμμH 不全相等。
现在40,13,15,12,3321=====n n n n S221113685.1jn ST ij j i T S x n===-=∑∑2222211335.35S sj A j jj j jT T S n x nx n n===-=-=∑∑75.13349=E S675.1672==A A S S ,80.36037==E E S S 4647.0==E A S S F又23.3)37,2(05.0=F 而23.3<F 故接受0H 。
3.解 分别以54321,,,,μμμμμ表示青霉素,四环素,链霉素,红霉素,氯霉素的百分比的均值。
需检验)05.0(=α假设:543210:μμμμμ====H 543211,,,,:μμμμμH 不全相等。
现在20,4,554321=======n n n n n n S22116876.78jn ST ij j i T S x n===-=∑∑2222115723.10Ssj A j j j j jT T S n x nx n n===-=-=∑∑70.1153=-=A T E S S S775.1430=A S ,91.76=E S60.18==E A S S F ,查表得:06.3)15,4(05.0=F由于06.3>F ,故拒绝0H ,即差异显著。
4.解 按题意需检验假设030201,,H H H 0:32101===αααH32111,,:αααH 不全为零 0:432102====ββββH )4,,1(:12 =i H i β不全为零 0:34121103====Y Y Y H334121113,,,:Y Y Y H 不全为零,,,ij i j T T T T 的计算如下表所示22222222503,4,2,(14109111410)147.8324T r S t S ====++++++-=22221250(906892)44.333824A S =++-=222221250(56676562)11.50624B S =+++-=22222222222221(241616221827221825221624)225027.0024A B A B S S S ⨯=+++++++++++---= 65.00E T A B A B S S S S S ⨯=---=又由于0.05(2,12) 3.89A F F =<,0.05(3,12) 3.49B F F =>,0.05(6,12) 3.00A B F F ⨯=>4 故只有A 因素的影响是显著的,即只有浓度的影响是显著的。
6.解图9-2设ˆˆˆya bx =+为y a bx =+的估计,则 6622111()1750006xx i i i i S x x ===-=∑∑6622111()6206yy ii i i S y y ===-=∑∑6661111()()198400188000103006xy i i i i i i i S x y x y ====-=-=∑∑∑ˆ0.05886xy xxS bS == 1111ˆˆ()()24.6287n ni i i i ay x b n n ===-=∑∑ 即 24.62870.0588y x =+ 7.解 (1)散点图如下:图9-1(2)221111() 2.59514.440.5327nn xx ii i i S x x n ===-=-⨯=∑∑221111()3104.221141.1684.037nn yy ii i i S y y n ===-=-⨯=∑∑51111()()85.6178.93 6.6086nnnxy i i i i i i i S x y x y n ====-=-=∑∑∑11ˆˆ12.5503,145.4 3.812.613.958477xyxx S yaS ===⨯-⨯⨯= ˆ13.958412.5503bx =+ (3) 01:0,:0H b H b =≠拒绝域为2(2)t t n α=≥-又 2ˆˆ0.0425622yy xyeS bS n n θσ-===--44.3720t = 又0.052(5) 2.5706t =0.025(5)t t > 故拒绝0H 即回归效果显著。
(4)由于b 的置信度为1α-的置信区间为2ˆˆ[(2)b t n α±-,故b 的置信度为0.95的置信区间为[11.8232,13.2774](5)0x x =处的置信度为1α-的预测区间为02ˆ[(2)y t n ασ±-代入可得[19.67,20.80] 8.解图9-3(1)622111()96.3894nnxx ii i i S x x n ===-=∑∑22111()94.7511nnyy ii i i S y y n ===-=∑∑1111()()95.2378nnnx y i i i i i i i S x y x y n ====-=∑∑∑ ˆ0.9881xy xxS bS == 1111ˆˆ()()0.1040n ni i i i ay x b n n ===-=-∑∑ ˆ0.10400.988yx =-+ (3)当 1.40x =时,0y 的置信度为0.95的预测区间为00.025ˆ[(16)y t σ±即为[13.29,14.17]9.解 (1)(2)图9-4(3)ln ln ln bxy aey a bx εε==++ 设111ln ln a ab b εε===2211111()922.8nnxx ii i i z a b x S x x n ε===++=-=∑∑1111()()80.0361nnnx z i i i i i i i S x z x z n ====-=-∑∑∑71ˆ0.0867318xz xxS b S ==- 11111ˆˆ()() 3.4798n ni i i i az x b n n ===-=∑∑ 1ˆˆ32.4556a a e ==故0.0867318ˆ32.4556x ye -= 10.解 (1)作散点图如下:图9-5(2)令212,x x x x ==则01122ˆˆˆˆy b b x b x =++01211010027.06711522529.56712040031.16712562531.36713090031b X Y B b b ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦1ˆ()B X X X Y -''=其中 5100225019.0333ˆ10022505500 1.00862250550014212500.020381X X B ⎡⎤⎡⎤⎢⎥⎢⎥'==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦故 2ˆ19.0333 1.00860.020381yx x =+- 11.解 (1)8012311117.6111110.311119.2111110.211118.4111111.111119.8111112.6b b X Y B b b ---⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦19.90.575ˆ()0.551.15BX X X Y -⎡⎤⎢⎥⎢⎥''==⎢⎥⎢⎥⎣⎦即 123ˆ9.90.5750.55 1.15yx x x =+++ (2)0121117.611110.31119.211110.21118.411111.11119.811112.6b X Y B b b --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦19.9ˆ()0.5751.15B X X X Y -⎡⎤⎢⎥''==⎢⎥⎢⎥⎣⎦即 13ˆ9.90.575 1.15yx x =++第10章 随机过程简介1.解 (1)先求1;2F x ⎛⎫⎪⎝⎭由于0112X ⎧⎛⎫=⎨⎪⎝⎭⎩,正面,反面9所以(12)X 的分布律为从而(12)X 得分布函数,即1;2F x ⎛⎫⎪⎝⎭为0,011;,01221,1x F x x x <⎧⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪≥⎪⎩ 再求()1;F x 由于()1X ⎧=⎨⎩-1,正面2,反面所以(1)X 的分布律为从而(1)X 得分布函数,即()1;F x 为()0,111;,1221,2x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩(2)由(1)知,((12),(1))X X 可能取值为:(0,-1),(0,2),(1,-1),(1,2)。
令H ={出现正面},T ={出现反面},则110,(1)1()0,(1)1221()0,(1)1211110222P X X P H P X X H P T P X X T ⎛⎫⎛⎫⎛⎫⎛⎫==-===- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭=⨯+⨯=10 110,(1)2()0,(1)2221()0,(1)221100022P X X P H P X X H P T P X X T ⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭=⨯+⨯=111,(1)1()1,(1)1221()1,(1)121100022P X X P H P X X H P T P X X T ⎛⎫⎛⎫⎛⎫⎛⎫==-===- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭=⨯+⨯=111,(1)2()1,(1)2221()1,(1)2211101222P X X P H P X X H P T P X X T ⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭=⨯+⨯=故((12),(1))X X 的联合分布函数为从而((12),(1))X X 的联合分布函数,即121,1;,2F x x ⎛⎫⎪⎝⎭为12121212120,0111,1;,,01,102221,1,2x x F x x x x x x x x <<-⎧⎪⎪⎛⎫=≤<≥-≥≤<⎨ ⎪⎝⎭⎪≥≥⎪⎩或或,-1 2.证明 先证明(){},Z t t -∞<<+∞是正态过程,由Y X ,相互独立同服从正态分布),0(2σN ,因此),(Y X 服从二维正态分布。