Nitroxide-Mediated Radical Polymerization from CdSe
北大考研-化学与分子工程学院研究生导师简介- 范星河 教授
爱考机构-北大考研-化学与分子工程学院研究生导师简介-范星河教授范星河教授化学楼W505室;电话:62751726Email:fanxh@所属研究组:周其凤研究组1982.1毕业于浙江大学,学士;1982.2-1995.3,江苏省化工研究所工程师;1997.3,国立日本鹿儿岛大学研究生院研究生;1999年,获1998年度国际Rotary奖学金;2000.3,国立日本鹿儿岛大学研究生院博士;2000.4-2010.5北京大学副教授;2010.5-至今北京大学教授。
翻译、编著:1)谢晓凤、范星河,燃料电池技术,化学工业出版社,2004,32)周其凤、范星河、谢晓凤,耐高温聚合物及复合材料,化学工业出版社,2004,93)范星河,图解液晶聚合物(中英对照),化学工业出版社,2005,2主讲课程:高分子综合实验、高分子反应工程近几年申请主要专利1)聚(苯撑苯并噁唑)(PBO)的预聚物聚[对苯二甲酰-1,5-(2,4-二羟基)苯二胺](PDHPTA)的制备方法,以及通过该预聚体(PDHPTA)制造聚(苯撑苯并噁唑)(PBO)的方法,周其凤、范星河、李磊、陈小芳、宛新华;031005497,已公开2)制备预聚体:聚{苯-1,4-双[(2,2-二氰基亚乙烯基)甲基]-(2,4-二羟基)苯-1,5-二亚胺}(PPMPI),以及通过该预聚体(PPMPI)制造聚(苯撑苯并噁唑)(PBO)的方法,周其凤、范星河、李磊、陈小芳、宛新华;031005497,已公开3)手性侧基共聚氨基酸酯的制备方法,周其凤、范星河、赵永峰、宛新华、陈小芳;031005500,已公开4)PMPCS/UHMWPE组合物与制备方法,周其凤、范星河、赵永峰、宛新华、陈小芳;03142670,已公开近几年承担科研项目1.铁电性液晶高分子结构与性能研究,教育部留学回国人员基金项目,项目负责人2.共轭型外场调控聚合物的设计与合成(20274003),国家自然科学基金委面上项目,项目负责人3.耐超高温聚合物基体树脂制备及其复合材料(2001AA335050),国家科学技术部863项目,子项目负责人4.甲壳型电致发光高分子的分子设计、合成与性能研究(重点104005),教育部科学技术研究重点项目,项目负责人5.先进聚合物基复合材料的多层次结构和性能研究(2003CB615605),国家重点基础研究发展计划(973计划),主要参加人6.甲壳型共轭液晶聚合物的分子设计、合成与性能研究(20574002),国家自然科学基金委面上项目,项目负责人7.新型液晶高分子材料的研究(重点01001),教育部科学技术研究重点项目,主要参加人8.聚烯烃主链液晶高分子的设计、合成及新材料研究(20134010),国家自然科学基金重点项目,主要参加人9.香蕉形铁电性液晶高分子的合成与性能研究,高等学校博士学科点专项科研基金面上项目,主要参加人10.硅杂化聚芳醚(酮)类耐高温基体树脂的分子设计、合成与性能研究(2047004),国家自然科学基金面上项目,主要参加人1.特种高分子液晶--------甲壳型高分子液晶目前主要研究:功能结构的分子设计与合成(1)共轭主链:乙炔基主链;芳杂环基。
RAFT聚合制备嵌段共聚物PS-b-PNIPAAm
RAFT聚合制备嵌段共聚物PS-b-PNIPAAm冯霞;马绍玲;王兆光【摘要】以三硫代十二烷酸-2-氰基异丙酯(CPDTC)为RAFTT试剂,以AIBN为引发剂,用可逆加成-断裂链转移(RAFT)活性自由基聚合方法制备了结构明确、窄分子质量分布的(Mw/Mn=1.283)的聚(苯乙烯)-b-聚(N-异丙基丙烯酰胺)嵌段共聚物,并通过核磁共振氢谱和凝胶渗透色谱对其表征.结果表明:PS-b-PNIPAAm嵌段共聚物已经成功合成,且合成纯度较高,分子质量分布较窄,嵌段比约为2∶1.【期刊名称】《天津工业大学学报》【年(卷),期】2016(035)001【总页数】5页(P12-16)【关键词】RAFT试剂;RAFT聚合;嵌段共聚物;苯乙烯;聚N-异丙基丙烯酰胺【作者】冯霞;马绍玲;王兆光【作者单位】天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387;天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387;天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387【正文语种】中文【中图分类】TQ325嵌段共聚物是由2种或多种化学性质不同的均聚物通过共价键相互连接而成的大分子.在纳米材料[1-2]、光电子材料[3-4]、生物医药[5-6]催化[7]等领域都有潜在的应用.聚N-异丙基丙烯酰胺(PNIPAAm)是研究最广泛的温敏性高分子,其临界溶液温度(LCST)约为32℃,并可以通过与亲水或疏水单体共聚来调节,因此,PNIPAAm被广泛应用于构建双亲水嵌段共聚物[8],以赋予共聚物温度响应性.而聚苯乙烯(PS)不溶于水,苯环结构较为稳定,能起到固定的作用. PS-b-PNIPAAm两亲嵌段共聚物兼具PNIPAAm的温敏特性和PS的稳定结构,是一种具有合成与研究价值的共聚物.目前嵌段共聚物的合成方法多种多样,例如:活性阴离子聚合、活性阳离子聚合、基团转移聚合、原子转移自由基聚合、活性配位聚合和可控/活性自由基聚合[9-11].活性离子聚合对反应条件的要求较为严格,使得其应用范围受到限制.与活性离子聚合和配位聚合相比,可控/活性自由基聚合具有反应条件温和、可选单体种类多和适用于多种聚合体系等优点.可控/活性自由基聚合法主要包括氮氧自由基聚合(NMRP)[12]、原子转移自由基聚合(ATRP)[13]和可逆加成断裂链转移(RAFT)自由基聚合[14-15].其中,RAFT聚合方法是最简单、条件最温和的合成方法之一.1998年,Rizzardo等[16]在第37届国际高分子学术讨论会上首次提出可逆加成断裂链转移(reversible addition-fragmentationchain transfer,RAFT)活性自由基聚合.与其他可控/活性自由基聚合方法相比,RAFT方法具有比较明显的优势,如适用单体范围广,多种功能性乙烯基单体都可作为反应单体;聚合温度较低,一般在60~70℃下就可以进行反应;得到的聚合物分子质量分布较窄,一般在1.3以下.此外,RAFT聚合反应过程中不会出现金属或金属盐类,产物不需要进一步提纯.1.1实验材料与仪器所用原材料包括:氢化钙,纯度95%,天津市江天化工技术有限公司产品;无水硫酸镁,分析纯,天津市江天化工技术有限公司产品;十二硫醇,纯度99%,天津希恩思生化科技有限公司产品;氢化钠,纯度80%,上海晶纯生化科技股份有限公司产品;二硫化碳,纯度95%,天津希恩思生化科技有限公司产品;碘,纯度99.8%,上海晶纯生化科技股份有限公司产品;N-异丙基丙烯酰胺,化学纯,日本东京公司化成工业株式会社产品;偶氮二异丁腈(AIBN)化学纯,上海市四赫维化工有限公司产品;乙醚,分析纯,天津市科密欧化学试剂有限公司产品;甲苯,分析纯,天津市科密欧化学试剂有限公司产品;甲醇,分析纯,天津市风船化学试剂科技公司产品;四氢呋喃,分析纯,天津市科密欧化学试剂有限公司产品;氘代氯仿,纯度98%,北大大北公司产品.所用仪器包括:电子天平(FA2004),天津天马衡基仪器有限公司产品;核磁共振波谱(AVANCE 300 MHz),瑞士BRUKER公司产品;凝胶渗透色谱仪(Viscotek 270),英国MALVERN公司产品;数显磁力搅拌器(98-3),巩义市英峪仪器厂产品;电热恒温水浴锅(SY21-N4C),北京市长风仪器仪表公司产品;电热真空干燥箱(DZG-401),天津市天宇实验仪器有限公司产品;低温水浴槽(W-3001),天津比朗实验仪器制造有限公司产品.1.2 RAFT试剂的合成RAFT试剂三硫代十二烷酸-2-氰基异丙酯(2-cyanopropan-2-yl dodecyl trithiocarbonate,CPDTC)属于甲基丙烯酸酯类衍生物,是一种具有极高效率的RAFT聚合链转移剂[17].图1为CPDTC的合成路线图.(1)在装有恒压滴液漏斗、球形冷凝管和密封机械搅拌的500 mL三口瓶中,加入3.15 g NaH(79 mmol)和150 mL无水乙醚,5℃条件下机械搅拌5 min.将15.4 g十二硫醇(76 mmol)加入恒压滴液漏斗中,将其缓慢滴入到三口瓶中,滴加时间为10 min.滴加完毕后反应2 h,反应过程中可以观察到大量气泡的溢出,浅灰色的NaH迅速变为粘稠的白色泥浆状十二烷基硫醇钠.(2)反应完毕后,将上述低温水浴槽的温度调到0℃,将6.0 g二硫化碳(78 mmol)置于恒压滴液漏斗中,缓慢滴加1 h.在此过程中会观察到黄色粘稠状物质的生成.反应完毕后,过滤,收集黄色固体三硫代十二烷酸钠.(3)将未加纯化的14.6 g(0.049 mol)三硫代十二烷酸钠加入到盛有100 mL 无水乙醚的250 mL单口烧瓶中,快速搅拌10 min,形成悬浮液.然后在0℃条件下分批添加6.3 g单质I2(0.025 mol),反应1 h,继续在室温条件下反应1 h.过滤除去未反应完的固体I2和白色固体碘化钠,收集黄褐色滤液.黄褐色滤液用硫代硫酸钠水溶液洗涤去掉残留的碘和水,分液收集有机层,无水硫酸镁干燥.旋蒸除溶剂之后得到13.6 g黄色固体三硫代十二烷酰二硫化物.(4)在50 mL圆底烧瓶中,分别加入2.2 g三硫代十二烷酰二硫化物(0.004 mol)、1.0 g AIBN(0.006 mol)和20 mL乙酸乙酯,加热回流24 h.反应完之后,旋蒸除溶剂,然后加入适量的正己烷,过滤除去未反应的AIBN和四甲基丁二腈.收集滤液,旋蒸除溶剂,以体积比为25∶1的正己烷和乙酸乙酯为洗脱剂,经硅胶柱处理收集黄色流动相部分,旋蒸除溶剂之后便可得到纯净黄色油状的2.2 g CPDTC,收率80%,置于冰箱中保存备用.1.3大分子链转移剂PS-CTA的合成室温条件下,在反应管中加入苯乙烯单体(5.958 0 g)、精制的AIBN(4.926 3 mg,使用前2次重结晶)和CPDTC(37.057 5 g),然后加入溶剂甲苯,密封.液氮冷冻,抽真空,通入高纯氩气,如此反复操作3次后,将反应管置于65℃油浴锅中搅拌加热4 d.反应结束后,液氮淬冷终止反应,将产物溶解在5 mL的THF 中,然后用冷的甲醇进行沉淀,抽滤得到淡黄色固体,25℃条件下真空干燥至恒重.反应方程式如图2所示.1.4嵌段共聚物PS-b-PNIPAAm的合成在室温条件下,称取大分子引发剂PS-CTA(0.50 g),引发剂AIBN(1.10 mg),第二嵌段单体NIPAAm (0.24 g),加入溶剂DMF(5 mL),密封.液氮冷冻,抽真空,通入高纯氩气,如此反复操作3次后,将反应管置于70℃油浴锅中加热搅拌2 d.反应结束后,液氮淬冷终止反应,将聚合物在蒸馏水中沉淀,抽滤得到淡黄色固体,25℃条件下真空干燥至恒重.反应方程式如图3所示.1.5测试与表征室温25℃条件下,采用TMS内标,用氘代氯仿(CDCl3)溶解大分子引发剂RAFT-PS、RAFT-PNIPAAm以及嵌段共聚物PS-b-PNIPAAm,用AVANCE 300 MHz型核磁共振光谱(1H-NMR)仪对上述反应物进行测试.室温25℃条件下,采用Viscotek 270型凝胶渗透色谱仪(GPC)测定大分子引发剂RAFT-PS、RAFTPNIPAAm以及嵌段共聚物PS-b-PNIPAAm的分子质量及其分子质量分布.其中,实验仪器以聚苯乙烯为标样,THF为淋洗液,流速为1.0 mL/min.2.1 RAFT试剂CPDTC的表征CPDTC对甲基丙烯酸类单体的RAFT聚合具有很好的可控性,是一种常用的RAFT聚合链转移剂. CPDTC通过四步反应进行合成.第1步为十二硫醇与氢化钠的亲电取代反应,生成十二硫醇钠;第2步为十二硫醇钠进一步与二硫化碳发生亲核加成反应,生成三硫代十二烷酸钠;第3步为三硫代十二烷酸钠与单质I2的耦合反应,生成三硫代十二烷酰二硫化物;最后,AIBN作为自由基引发剂与三硫代十二烷酰二硫化物发生自由基取代反应,生成CPDTC产物.1HNMR(500 MHz,CDCl3,图4):δ 0.89(t,3H,CH3CH2)、1.28(s,16H,-(CH2)8-)、1.38(m,2H,H3C-CH2-)、1.72 (m,2H,CH2CH2S)、1.85(s,6H,(CH3)2C(CN)-)和3.40 (t,2H,CH2CH2S).图4为RAFT试剂的核磁谱图,从图4表征结果可以看出成功合成了CPDTC,而且图中无杂质峰的存在,表明CPDTC纯度非常高.2.2大分子引发剂PS-CTA核磁表征图5为大分子引发剂PS-CTA的核磁谱图.从图5中可以看出,7.27×10-6处是溶剂CDCl3的质子特征峰.化学位移在7.05×10-6~6.56×10-6(g+ e+f)处有新峰的出现,这归属于苯环上邻位和对位的质子峰. 1.44×10-6~0.865×10-6(b)处的新峰对应于聚苯乙烯主链上-CH2-CH-的特征峰.因此可以认为已将聚苯乙烯嵌段接到RAFT试剂上,制备得到RAFT-PS大分子引发剂.图6为嵌段共聚物PS-b-PNIPAAm核磁谱图.对照PS-CTA的核磁图可以看出,除了苯环上质子氢的特征峰,在4.02×10-6处出现了新峰,这个峰是与酰胺基团相连的异丙基上次甲基的质子峰.并且在0.8×10-6处有一尖锐的峰出现,根据分析可知,这是异丙基基团上2个甲基的质子峰.这表明已经成功合成了嵌段共聚物PS-b-PNIPAAm.且通过特征峰面积计算得到:PS和PNIPAAm嵌段分子质量分别为24 915 g/mol和12 181 g/mol,即嵌段比约为2∶1.2.3凝胶渗透色谱(GPC)分析根据核磁分析可以确定大分子引发剂和嵌段共聚物的结构,但根据课题要求以及RAFT反应所得到的聚合物具有分子质量分布较窄的特点,使用Viscotek 270型凝胶渗透色谱仪对其进行测定.表1和图7为大分子引发剂PS-CTA和嵌段共聚物PS-b-PNIPAAm的GPC分析的具体数据和谱图.从图7中可以看出,峰的位置向左偏移,这代表分子质量增大,接上了PNIPAAm第二嵌段. PS-CTA的分子质量分布为1.135,嵌段共聚物PS-b-PNIPAAm的PDI仅为1.283,相对较窄(1.3以内).这说明已成功合成了分子质量分布较窄的嵌段共聚物PS-b-PNIPAAm.本文成功合成了三硫代十二烷酸-2-氰基异丙酯(CPDTC),并以其为RAFT试剂,AIBN为引发剂,通过RAFT聚合合成了结构明确,窄相对分子质量分布(Mw/Mn= 1.283)的PS-b-PNIPAAm嵌段共聚物.【相关文献】[1] BRAUNECKER W A,MATYJASZEWSKI K. Controlled/living radical polymerization:Features,developments,and perspectives[J]. Progress in Polymer Science,2007,32(1):93-146.[2] WANG J S,MATYJASZEWSKI K. Controlled/" living" radical polymerization. Atom transfer radical polymerization in the presence of transition -metal complexes [J]. Journalof the American Chemical Society,1995,117(20):5614-5615.[3] GEORGES M K,VEREGIN R P,KAZMAIER P M,et,al. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules,1993,26(11):2987-2988.[4] CHIEFARI J,CHONG Y K,ERCOLE F,et al. Living freeradical polymerization by reversible addition -fragmentation chain transfer:The RAFT process[J]. Macromolecules,1998,31(16):5559-5562.[5] SEIFERT D,KIPPING M,ADLER H J P,et al. A study of simple RAFT transfer agentsfor the polymerization of(Meth-)acrylates and acrylamides[C]//Macromolecular Symposia,Weinbeim:WILEY-VCH Verlag,2007:386-391.[6] YEOLE N. ThiocarbonylthioCompounds [J]. Synlett,2010 (10):1572-1573.[7] CACIOLI P,HAWTHORNE G,LASLETT R L,et al. Copolymerization of ω-unsaturated oligo(methyl methacrylate):Newmacromonomers [J]. Journal of Macromolecular Science:Part A-Chemistry,1986,23:839-852.[8]彭志平,程志毓,漆刚. RAFT合成pH和温度响应的双亲水嵌段共聚物[J].精细化工,2011,28(6):529-534. PENG Z P,CHENG Z Y,QI G. Synthesis of pH and temperature response double-hydrophilic block copolymer via RAFT[J]. Fine Chemicals,2011,28(6):529-534(in Chinese).[9] SALIAN V D,BYRNE M E. Living radical polymerization and molecular imprinting:Improving polymer morphology in imprinted polymers [J]. Macromolecular Materials and Engineering,2013,298(4):379-390.[10] FUKUDAA T. Fundamental kinetic aspects of living radical polymerization and the use of gel permeation chromatography to shed light on them [J]. Journal of Polymer Science Part A-polymer Chemistry,2004,42(19):4743-4755.[11] HADDLETON D M,JACKSON S G,BON S A F. Copper(Ⅰ)-mediated living radical polymerization under fluorous biphasic conditions[J]. Journal of the American Chemical Society,2000,122(7):1542-1543.[12] HAWKER C J,BOSMAN A W,HARTH E. New polymer synthesis by nitroxide mediated living radical polymerizations [J]. Chemical Reviews,2002,101(12):3661-3688.[13] MATYJASZEWSKI K,XIA J. Atom transfer radical polymerization[J]. Chemical Reviews,2001,101(9):2921-2990.[14] BOYER C,BULMUS V,DAVIS T P,et al. Bioapplications of RAFT polymerization[J]. Chemical Reviews,2009,109(11):5402-5436.[15] ANDERSON K L,NAZAROV W,MUSGRAVE C S A,et al. Synthesis and characterisation w of low density porous polymers by reversible addition-fragmentation chain transfer(RAFT)[J]. Journal of Radioanalytical and Nuclear Chemistry,2014,299 (2):969-975.[16] LOWE A B,MCCORMICK C L. Reversible addition-fragmentation chain transfer (RAFT)radical polymerization and the synthesis of water-soluble(co)polymers under homogeneous conditions in organic and aqueous media[J]. Progress in Polymer Science,2007,32(3):283-351.[17] CHONG Y K,MOAD G,RIZZARDO E,et al. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction[J]. Macromolecules,2007,40 (13):4446-4455.。
11.【复合材料】复合材料新技术(2)
楔形块状聚合物制备法
根据活性聚合物体系中两种单体的混合比,构 造分子内结构,使某分子链内具有从某一聚合 物组分向另一聚合物组分变化的部分,这种聚 合物称之为楔形块状共聚物。这种共聚物可 以采用原子自由基共聚(ATRP) 等方法来制备。
张彬等用原子自由基共聚法,在水分散体系中合成了 苯乙烯(St) 和甲基丙烯酸甲酯(MMA) 的梯度共聚物; 华东理工大学的王涛也通过原子转移自由基聚合以 及连续补加第二单体的方法制备了St 和MMA 的梯 度共聚物。 Gray 等通过硝基氧媒介控制自由基聚合反应 (nitroxide2mediated controlled radical polymerization) 方法制备了高分子量苯乙烯(S)P42 乙酸基苯乙烯(AS) 以及苯乙烯(S)P42羟基苯乙烯 (HS) 梯度共聚物。
FGM的研究内容
材料设计 材料制备 材料特性评价 三个部分,三者相辅相成
FGM的设计
首先根据材料的实际使用要求,进行材料内 部组成和结构的梯度分布设计。在设计时, 以知识库为基础选择可供合成的材料组成和 制备技术,然后选择表示梯度变化的分布函 数,并以材料基本物性数据库为依据进行功 能(温度、热应力等)的解析计算,最后将 最优设计方案提交材料合成部门。
制备方法举例
日本大阪市立工业研究所热塑性树脂第二研究室应用此法,已 成功开发出聚氯乙烯-聚甲基丙烯酸甲酯(PVC-PMMA) 等聚 合物功能梯度材料(膜材) 。 上利研究组发现此法还可能制造不相容性聚合物功能梯度材 料,如聚碳酸酯-聚苯乙烯混合物。 钱浩、林志勇通过聚合物共混,也得到了表面浓度呈梯度变化 的不相容型PP-EVA 梯度功能高分子材料。
图4 就是用该方法 制备的PP-talc 梯度 材料样品的数码照 片,其talc 含量由内 向外逐渐递增。
高化终极版
高化终极版Section1:常规聚合方法概念1. 自由基聚合:以自由基为活性种而引发产生的一类聚合反应的总称。
2. 自动加速效应(Trommsdorf-Norrish/auto-acceleration):自由基聚合中体系黏度随转化率提高后,链段重排受到阻碍,活性端基甚至可能被包埋,双基终止困难,自由基寿命延长,但这一转化率下,体系黏度还不足以妨碍单体扩散,链增长速率常数变动不大,从而使加速显著.分子量也同时迅速增加。
3. 溶剂化作用(solvent effect):对于高分子的溶解过程,溶剂化作用是溶剂和溶质相接触时,分子间产生相互作用力,此作用力大于溶质分子间的内聚力,从而使溶质分子分离,并溶于溶剂中。
对于离子聚合与电解质,溶剂化作用是溶剂分子通过它们与离子的相互作用,而累积在离子周围的过程。
该过程形成离子与溶剂分子的络合物,并放出大量的热。
溶剂化作用改变了溶剂和离子的结构。
4. 阳离子聚合(cationic polymerization):由阳离子引发而产生聚合的反应的总称。
阳离子活性很高,极易发生各种副反应,很难获得高分子量的聚合物。
碳阳离子易发生和碱性物质的结合、转移、异构化等副反应。
控制方法:加入酸,碱,盐,通过抗衡离子的调节来起到控制反应的效果。
5. 阴离子聚合(anionic polymerization):由阴离子引发而产生的聚合反应的总称。
凡电子给予体如碱、碱金属及其氢化物、氨基化物、金属有机化合物及其衍生物等都属亲核催化剂。
阴离子聚合反应常常是在没有链终止反应的情况下进行的。
当重新加入单体时,反应可继续进行,分子量也相应增加。
因此也称为活性聚合。
6. 溶剂化作用(solvent effect):溶剂与溶质相接触时,分子间产生相互作用力,此作用大于溶质分子间的内聚力,从而使溶质分子分离,并溶于溶剂中。
对于离子聚合,溶剂分子通过他们与离子的相互作用,而累积在离子周围的过程。
DT衰减链转移自由基聚合醋酸乙烯酯
衰减链转移自由基聚合醋酸乙烯酯摘要:在醋酸乙烯酯的普通自由基聚合体系中加入少量碘(质量分数为0.57%~0.86%),用偶氮二异丁腈作引发剂合成聚醋酸乙烯酯,对其聚合反应的动力学及反应机理进行了研究。
考察了碘质量分数对聚合反应速率、聚合物分子量及分子量分布的影响,发现随着碘浓度的增加,聚合物分子量及分子量分布得到更好的控制;对聚合过程进行了核磁跟踪,考察了聚合过程中几种化合物的变化情况,特别是初级自由基与碘生成的加合物A-I(A来自引发剂分裂后产生的自由基)及单体加合物A-Mn-I(M代表单体单元)的变化情况;对聚合物结构作了详细的1H NMR分析,结果表明,聚合过程中分子量随时间延长而逐渐增大,分子量分布随单体转化率增加而变窄,聚合终期,单体转化率达到80%左右时,所得聚合物分子量分布窄( Mw /Mn≤1.41),且含有碘端基。
该方法的自由基聚合具有活性/可控的性质。
关键词:聚醋酸乙烯酯,碘,衰减链转移聚合,活性自由基聚合,醋酸乙烯酯醋酸乙烯酯(VAc)是一种只能用自由基方法聚合的特殊单体。
合成相对分子质量分布窄的含活性端基的聚醋酸乙烯酯,需采用活性自由基聚合的方法。
目前,活性自由基聚合方法较多,如氮氧调介聚合(NMP)[1-2]、原子转移自由基聚合(ATRP)[3]、衰减链转移聚合(DT)[4-5]和可逆加成断裂链转移聚合(RAFT)[6]等。
对于醋酸乙烯酯的活性聚合,NMP 和ATRP 方法并不十分成功,源于NMP需要较高的温度,形成休眠的烃氧基胺稳定性不够,而ATRP 要求单体分子结构中有活化的C—X基团(X指苯基、羰基和腈基等),而醋酸乙烯酯中没有。
用RAFT活性聚合醋酸乙烯酯虽然比较容易实现,但RAFT中的链转移剂商品试剂较少,制备过程涉及多步有机合成,不利于推广和工业化。
用衰减链转移自由基(DT)合成窄分布的含活性端基的聚醋酸乙烯酯是其中最成功的方法之一[7-10]。
这种方法自由基源于经典引发剂的热分解,碘化物为链转移剂,其关键在于链转移剂烷基碘化物C—I键的断裂-键合过程[11]。
活性自由基聚合,EMPO
2. NMP的聚合机理 2.1 平衡的建立: persistent radical effect
R·,Y·活泼自由基,则产物有三种, 1:2:1。 R·活泼自由基,Y·persistent radical, 产物只有一种
2020/9/18
2. NMP的聚合机理 2.1 平衡的建立: persistent radical effect
N O
polystyreneCH2 CH
Polymerization Systen: Monomer: Styrene Initiator: BPO Additive: TEMPO
Conditions: Initial heating at 95oC for 3.5h, followed by heating at 123oC for 69h. Results: Narrow molecular weight polystyrene with polydispersity of 1.26. The number-average molecular weight increased linearly with with monomer conversion.
Polymerization Systen: Monomer: Styrene Initiator: BPO Additive: TEMPO
Conditions: Initial heating at 95oC for 3.5h, followed by heating at 123oC for 69h. Results: Narrow molecular weight polystyrene with polydispersity of 1.26. The number-average molecular weight increased linearly with with monomer conversion.
然而自由基聚合本身却有很多缺点
This semilogarithmic plot is very sensitive to any change of the concentration of the active propagating species. A constant [P*] is revealed by a straight line. An upward curvature indicates an increase in [P*], which occurs in case of slow initiation. On the other hand, a downward curvature suggests a decrease in [P*], which may result from termination reactions increasing the concentration of the persistent radical, or some other side reactions such as the catalytic system being poisoned or redox processes on the radical
O C Heat
O O
O C
O N O C O O N
O C O
O N
ration of the initiating species
Poorly defined nature of initiating sites
Unimolecular Initiators
Nitroxide Mediated Living radical polymerization (NMP)
This radical can initiate the polymerization CH2 S hv S C NEt 2 S Et2N C S Mn M S S C NEt 2
专业英语
第五单元Traditional methods of living polymerization are based on ionic, coordination or group transfer mechanisms.活性聚合的传统方法是基于离子,配位或基团转移机理。
Ideally, the mechanism of living polymerization involves only initiation and propagation steps.理论上活性聚合的机理只包括引发和增长反应步骤。
All chains are initiated at the commencement of polymerization and propagation continues until all monomer is consumed.在聚合反应初期所有的链都被引发,然后增长反应继续下去直到所有的单体都被消耗殆尽。
A type of novel techniques for living polymerization, known as living (possibly use “controlled”or “mediated”) radical polymerization, is developed recently. 最近开发了一种叫做活性自由基聚合的活性聚合新技术。
The first demonstration of living radical polymerization and the current definition of the processes can be attributed to Szwarc.第一个活性自由基聚合的证实及目前对这一过程的解释或定义,应该归功于Szwarc。
Up to now, several living radical polymerization processes, including atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer polymerization (RAFT), nitroxide-mediated polymerization (NMP), etc., have been reported one after another.到目前为止,一些活性自由基聚合过程,包括原子转移自由基聚合,可逆加成-断裂链转移聚合,硝基氧介导聚合等聚合过程一个接一个被报道。
n-(叔丁氧羰基)-d-焦谷氨酸乙酯用途
n-(叔丁氧羰基)-d-焦谷氨酸乙酯用途下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!N-(叔丁氧羰基)-D-焦谷氨酸乙酯的广泛应用与重要性N-(叔丁氧羰基)-D-焦谷氨酸乙酯,简称Boc-D-Jglutamate ethyl ester,是一种在化学、生物和医药领域中具有广泛应用的有机化合物。
MMA阴离子聚合的水分测定
摘要甲基丙烯酸甲酯的阴离子聚合容易在水或乙醇等质子类试剂的存在下引发链转移和链终止反应,所以对原料甲基丙烯酸甲酯单体及溶剂环己烷、甲苯、THF纯度要求很高。
而甲基丙烯酸甲酯和THF都有很强的吸水性,较难得到高纯度的原料。
本文通过对精制方法的不断改良,最终得到一系列比较简单降低水分的方法,为甲基丙烯酸甲酯的阴离子聚合的研究提供高纯度的原料。
关键词:甲基丙烯酸甲酯,溶剂,阴离子聚合,除水,库仑法水分测定仪AbstractAn chain transfer and chain termination reaction would easily take place in methyl methacrylate anionic polymerization system if have little of hydrogenous reagent ,for example,water and ethanol.So the MMA , cyclohexane, methylbenzene and THF should be high purity in the study.On the other hand,MMA and THF both have high water absorptivity,and they are both difficult to be high purity.In the essay,we finally got a series of methods to lower the moisture by reforming the refining methods and provided high purity raw material for the study of methyl methacrylate anionic polymerization.Keywords:methyl methacrylate, solvent, anionic polymerization, moisture,moisture test apparatus目录1 前言 (1)1.1丙烯酸酯类树脂的概述 (1)1.2课题意义及目的 (2)1.3文献综述 (3)2 实验原理 (8)2.1库仑法KF测定原理 (8)3 实验部分 (11)3.1实验使用原料及仪器 (11)3.2单体及溶剂的处理 (11)3.3实验仪器设备的处理 (13)3.4实验过程 (14)4 结果与讨论 (16)4.1单体及溶剂初始水分 (16)4.2单体MMA精制水分含量数据 (16)4.3溶剂精制后水分含量测定 (19)4.4最佳除水效果 (26)5 结论 (27)参考文献 (29)致谢 (31)1前言1.1丙烯酸酯类树脂的概述(甲基)丙烯酸树脂是由丙烯酸和甲基丙烯酸及其衍生物如酯类、腈类、酰胺类经聚合而得的产品总称。
原子转移自由基聚合概述
原子转移自由基聚合概述1.引言“活性”/可控自由基聚合不同于传统意义上的自由基聚合反应。
它克服了分子量及其分布不可控,难以合成嵌段聚合物等缺陷,做到了分子量可控,分子量分布较窄,聚合物结构可控等一系列要求。
这类聚合反应主要是有效降低了增长活性中心的浓度,抑制了双基终止的发生,延长了自由基的寿命和分子量的统一性;使用快引发的方式,保证不同分子链同时增长。
目前大致有以下几种不同的机理得到了较为深入地研究:基于引发-转移-终止剂(Initiator-chain transfer-terminator)的活性自由基聚合(Iniferter法)、基于氮氧稳定自由基的活性自由基聚合(Living nitroxide-mediated stable free radical polymerization-SFRP)、原子转移自由基聚合(Atom transfer radical polymerization-ATRP)、基于可逆加成碎裂链转移剂的活性自由基聚合(Living radical polymerization in the presence of reversible addition-fragmentation chain transfer-RAFT)和退化转移自由基聚合(degenerative transfer process-DT)等等。
在这些不同的实现“活性”/可控自由基聚合的方法当中,原子转移自由基聚合是目前最有希望实现工业化的一种方法。
2.原子转移自由基聚合概述原子转移自由基聚合是1995年由卡内基梅隆大学Matyjaszewski课题组提出的一种“活性”/可控自由基聚合新机理Wang, J-S; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117: 5614–5615.。
NMP与ROP相结合制备PCL-b-PSt共聚物及其性能研究
NMP与ROP相结合制备PCL-b-PSt共聚物及其性能研究李翠珍;刘建静;张琰;郎美东【摘要】Poly(ε-caprolactone)-block-polystyrene(PCL-b-PSt) was prepared by nitroxide-mediated radical polymerization of styrene(St) in the presence of PCL with terminated-nitroxide radical group(PCL-T)together with the ring-opening polymerization of ε-CL with 4-hydroxyl-2,2,6,6-tetramethylpiperidinyl-1-oxy(HTEMPO) as initiator.1H-NMR,ESR,FT-IR,GPC and TGA were employed to analyze the structure and properties of the polymers.Results show that the presence of the nitroxide radical has no effect on the ring-opening polymerization of ε-CL.Also,the ring-opening polymerization of ε-CL with Sn(Oct)2 as the catalyst does not destroy the nitroxide radical group.The well-defined PCL-b-PSt copolymers were synthesized through the polymerization of St at the mediation of PCL-T and the mechanism of polymerization of St fulfilled a typical well-controlled polymerization.The thermal stability of PCL-b-PSt copolymer is better than that of PCL homopolymer.%以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(HTEMPO)为引发剂,通过ε-己内酯(ε-CL)的开环聚合,合成末端基为氮氧自由基的聚己内酯(PCL-T)。
氮异丙基丙烯酰胺分子量
氮异丙基丙烯酰胺分子量氮异丙基丙烯酰胺(N-isopropylacrylamide,简称NIPAM)是一种重要的聚合物材料,其分子量对其性质和应用具有重要影响。
本文将围绕氮异丙基丙烯酰胺的分子量展开讨论,探究其对材料性能和应用的影响。
我们来了解一下氮异丙基丙烯酰胺的分子量。
氮异丙基丙烯酰胺的摩尔质量为113.16 g/mol。
分子量的大小与聚合物链的长度有关,一般来说,分子量越大,聚合物的链越长。
氮异丙基丙烯酰胺可以通过自由基聚合反应合成,聚合反应可以控制聚合物的分子量。
不同的分子量会导致聚合物的性质和应用发生变化。
氮异丙基丙烯酰胺具有温度敏感性质,聚合物分子在低温下呈现亲水性,高温下呈现疏水性。
这种温度敏感性使氮异丙基丙烯酰胺在生物医学领域具有广泛应用。
例如,可以利用温度敏感性聚合物制备智能药物输送系统,通过调控温度实现药物的控释。
而氮异丙基丙烯酰胺的分子量对药物输送系统的性能和效果起着重要作用。
分子量较低的氮异丙基丙烯酰胺聚合物具有较快的水溶性和溶胀性,适用于制备水凝胶。
这些水凝胶可以用于组织工程、细胞培养和生物传感等领域。
而分子量较高的氮异丙基丙烯酰胺聚合物则具有较低的水溶性和溶胀性,适用于制备温敏性纳米粒子、微胶囊和微球等载体。
这些载体可以用于药物传递、基因传递和生物成像等应用。
除了温度敏感性,氮异丙基丙烯酰胺的分子量还会影响其机械性能和稳定性。
分子量较低的氮异丙基丙烯酰胺聚合物通常具有较低的强度和韧性,而分子量较高的聚合物则具有较高的强度和韧性。
因此,在制备材料时,需要根据具体需求选择合适的分子量范围。
氮异丙基丙烯酰胺的分子量对其性质和应用具有重要影响。
分子量的大小会影响聚合物的温度敏感性、溶胀性、机械性能和稳定性等方面。
在设计和合成氮异丙基丙烯酰胺聚合物时,需要根据具体需求选择合适的分子量范围,以实现所需的材料性能和应用效果。
随着对氮异丙基丙烯酰胺的深入研究,相信其在生物医学、材料科学和化学工程等领域的应用将会得到进一步拓展和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nitroxide-Mediated Radical Polymerization from CdSeNanoparticlesKevin Sill and Todd Emrick*Polymer Science&Engineering Department,University of Massachusetts,Amherst,Massachusetts01003Received October27,2003.Revised Manuscript Received January19,2004We report the use of nitroxide-mediated controlled free radical polymerization directly from the surface of CdSe nanoparticles to prepare polymer-nanoparticle composite materials. While free radicals can quench the fluorescence of CdSe nanoparticles,nitroxide-mediated polymerization allows for the preparation of the desired polymer-nanoparticle composites while maintaining the inherent fluorescence of the nanoparticles.The low concentration of radicals inherent to this controlled free radical polymerization technique contributes to the success of this process.Nitroxide-containing ligand2was prepared for this study and used to functionalize3-4-nm CdSe nanoparticles.By this method,polystyrene and poly(styrene-r-methyl methacrylate)copolymers were grown from the nanoparticle surface.Displacement of these polymers from the surface,and subsequent analysis by gel permeation chromatog-raphy(GPC),revealed the success of this method.The effect of the polymerization conditions on dispersion and fluorescence of the nanoparticles is described.IntroductionTargets in nanotechnology include assemblies and structures in the nanometer size regime that cannot presently be accessed by top-down lithographic methods. Precise nanoscopic assemblies hold exceptional promise in a number of applications,including sensors,data storage,light-emitting diodes,single-molecule transis-tors,and substrates for biological tags and detection devices.1-6Semiconductor nanoparticles are candidate materials for all of these applications due to the unique electronic and optical properties that result from their nanometer size,and the low size distribution in which they can be produced.Cadmium selenide nanoparticles, or quantum dots,are especially promising as current synthetic methods give high-quality samples with low size distribution and narrow photoluminescence emis-sion profiles that shift predictably with size.7-9The processability,shelf life stability,and relevant applications of quantum dots depend on the nature of the ligand periphery.The extent to which this periphery can be tuned to meet the requirements of specific platforms will determine their ultimate applicability. We have previously reported the preparation of poly-olefin10as well as PEGylated11CdSe nanoparticles, where graft-from and graft-to strategies,respectively, were used to attach the polymers to the nanoparticles. It would be very useful to expand the scope of polymeric ligand coverage on CdSe nanoparticles to conventional chain-growth polymers such as polystyrene(PS)and poly(methyl methacrylate)(PMMA).However,the typi-cal methods used to prepare these polymers are not compatible with the nanoparticle itself.Anionic condi-tions are too severe to be used in the presence of the quantum dots,and radicals generated by conventional radical polymerization(e.g.,azo-bisisobutyronitrile (AIBN)initiated)degrade the nanoparticle and quench its photoluminescence.Advances in controlled radical polymerization are proving very useful for grafting-from particle surfaces. For example,Hawker and co-workers,as well as Beyou and co-workers,have demonstrated the use of nitroxide-mediated polymerization of styrenic and/or maleic an-hydride monomers from the surface of SiO2particles,12,13 while Sogah and co-workers have successfully polym-erized styrene from nitroxides anchored to silicate sheets.14Recently,Takahara and co-workers have shown the utility of a phosphonic acid-functionalized nitroxide for growth of polystyrene from magnetite nano-particles.15In the area of semiconductor nanoparticles,(1)Lacoste,T.D.;Michalet,X.;Pinaud,F.;Chemla,D.S.;Alivisatos,A.P.;Weiss,S.Proc.Natl.Acad.Sci.2000,97,9461-9466.(2)Wang,S.P.;Mamedova,N.;Kotov,N.A.;Chen,W.;Studer,J. Nano Lett.2002,2,817-822.(3)Murray,C.B.;Kagan,C.R.;Bawendi,M.G.Science1995,270, 1335-1338.(4)Mattoussi,H.;Radzilowski,L.H.;Dabbousi,B.O.;Thomas,E. L.;Bawendi,M.G.;Rubner,M.F.J.Appl.Phys.1998,83,7965-7974.(5)Myung,N.;Ding,Z.F.;Bard,A.J.Nano Lett.2002,2,1315-1319.(6)Lee,J.Y.;Thompson,R.B.;Jasnow,D.;Balazs,A.C.Phys.Rev. Lett.2002,89.(7)Lee,J.;Sundar,V.C.;Heine,J.R.;Bawendi,M.G.;Jensen,K.F.Adv.Mater.2000,12,1102-1105.(8)Peng,Z.A.;Peng,X.G.J.Am.Chem.Soc.2002,124,3343-3353.(9)Norris,D.J.;Efros,A.L.;Rosen,M.;Bawendi,M.G.Phys.Rev. B1996,53,16347-16354.(10)Skaff,H.;Ilker,M.F.;Coughlin,E.B.;Emrick,T.J.Am.Chem. Soc.2002,124,5729-5733.(11)Skaff,H.;Emrick,mun.2003,52-53.(12)Blomberg,S.;Ostberg,S.;Harth,E.;Bosman,A.W.;Van Horn,B.;Hawker,C.J.J.Polym.Sci.,Part A:Polym.Chem.2002,40,1309-1320.(13)Bartholome,C.;Beyou,E.;Bourgeat-Lami,E.;Chaumont,P.; Zydowicz,N.Macromolecules2003,ASAP Articles.(14)Weimer,M.W.;Chen,H.;Giannelis,E.P.;Sogah,D.Y.J.Am. Chem.Soc.1999,121,1615-1616.1240Chem.Mater.2004,16,1240-124310.1021/cm035077b CCC:$27.50©2004American Chemical SocietyPublished on Web03/10/2004Patten and co-workers have shown that by encapsulat-ing CdS quantum dots in a silica shell,atom transfer radical polymerization(ATRP)of methyl methacrylate is possible from the core-shell nanoparticle.16,17How-ever,it would be useful to use“unprotected”quantum dots as substrates for this grafting polymerization,as this would eliminate the extra steps required for the core-shell synthesis and provide an intimate connection of the polymer to the nanoparticle core.As a first step in this process,we chose to investigate controlled nitroxide-mediated polymerization from CdSe nanopar-ticles,as the low concentration of free radicals inherent to this method suggests the potential compatibility of this method with quantum dots.In addition,the diverse chemistries and architectures recently reported for controlled nitroxide-mediated polymerization18make this an especially attractive target.Results and DiscussionCdSe nanoparticles functionalized with phosphine oxide derivative2served as the key precursor in these graft-from polymerization studies.Ligand2was pre-pared as shown in Scheme1.2,2,6,6-Tetramethylpip-eridinyloxy(TEMPO)-modified benzyl chloride1,orig-inally reported by Hawker and co-workers,19was prepared and purified by column chromatography and then recrystallized from acetone:2-propanol:water mix-tures to give a white powder.Reaction of1with di-n-octyl phosphine oxide and NaH in THF gave the target ligand2in89%yield.This approach proved superior to our initial attempts to functionalize phosphine oxide 3,10which led to an inseparable mixture of products and residual catalyst.Tri-n-octylphosphine oxide(TOPO)-covered CdSe nano-particles4were prepared according to reported proce-dures20and then functionalized with2by ligand ex-change(Scheme2)in THF,followed by removal of THF and addition of methanol.These nitroxide functionalized nanoparticles were stored as solutions under nitrogen atmosphere at-20°C.These storage conditions pre-vented homolytic cleavage of the ligand that gives the nitroxide free radical and a benzyl radical.Free radicals lead to degradation of CdSe nanoparticles,as evidenced by blue shifts in the fluorescence spectrum.The31P NMR spectrum of2-functionalized nanoparticles showed one resonance atδ48.1ppm,corresponding to the phosphine oxide of the ligand;no TOPO phosphorus was observed.The1H NMR spectrum is in accord with the ligand structure,and no resonances for pyridine or TOPO were observed.The UV-vis and fluorescence spectra of2-functionalized CdSe nanoparticles were comparable to those of the original TOPO-covered batch, indicating an effective ligand exchange process.Both solution and bulk polymerization methods were utilized to grow polystyrene from2-functionalized nano-particles.Solution polymerization was conducted in o-xylene at125°C for48h to give an80%monomer conversion.Bulk polymerizations were performed in neat styrene solutions of nitroxide-covered nanoparticles (5-20mg/mL)by heating to125°C for about24h; monomer conversions were greater than90%.Random copolymers of styrene and methyl methacrylate were prepared in the bulk in similar fashion.The molecular weights and polydispersity indices(PDI)of the grafted polymers and copolymers grown from the nanoparticles were analyzed by GPC.This required a degradation of the nanoparticles prior to analysis,achieved by stirring(15)Matsuno,R.;Yamamoto,K.;Otsuka,H.;Takahara,A.Chem. Mater.2003,15,3-5.(16)von Werne,T.;Patten,T.E.J.Am.Chem.Soc.1999,121, 7409-7410.(17)Farmer,S.C.;Patten,T.E.Chem.Mater.2001,13,3920-3926.(18)Harth,E.;Van Horn,B.;Lee,V.Y.;Germack,D.S.;Gonzales,C.P.;Miller,R.D.;Hawker,C.J.J.Am.Chem.Soc.2002,124,8653-8660.(19)Dao,J.;Benoit,D.;Hawker,C.J.J.Polym.Sci.,Part A:Polym. Chem.1998,36,2161-2167.(20)Peng,Z.A.;Peng,X.G.J.Am.Chem.Soc.2001,123,183-184.Scheme1.Synthesis of TEMPO-FunctionalizedLigand2Scheme2.Ligand Exchange and Polymerization from Nitroxide-Functionalized CdSe Nanoparticles5Nitroxide-Mediated Radical Polymerization Chem.Mater.,Vol.16,No.7,20041241the composite material in a THF solution of N,N-dimethylaminopyridine(DMAP).Polymerizations per-formed in the bulk gave polystyrene molecular weights in the range of20-130K,while lower molecular weights were accessed by solution polymerization.Polydispersity indices for the polymers obtained ranged from1.25for lower molecular weight polymers to1.8for samples approaching130000g/mol(Table1).Loss of control in the higher molecular weight regime is expected in nitroxide-mediated polymerization in the absence of added excess TEMPO and at high monomer conver-sion.21Random copolymers of styrene and methyl meth-acrylate(MMA)were prepared by bulk polymerization methods.Incorporation of MMA was varied between10 and60%over a range of molecular weights.The graft-from method used here provides uniform dispersion of the nanoparticles in the polystyrene matrix,as shown by the TEM micrographs in Figure1. This uniform dispersion was achieved for all PS graft molecular weights studied.Interestingly,the fluores-cence spectra recorded on chloroform solutions of PS-CdSe composites showed an order of magnitude increase in intensity when compared to the nitroxide-function-alized nanoparticles(Figure2).Quantum yields relative to Rhodamine6G in ethanol ranged from3%to8%in CHCl3,a substantial increase over the average value of0.4%obtained for the nitroxide-covered particles5, though no trend in photoluminescence intensity with molecular weight was observed.In addition,no signifi-cant blue shift in the fluorescence maxima was observed in the PS-CdSe composites relative to the starting nitroxide-initiator functionalized CdSe.This illustrates the utility of the controlled free-radical method,as the use of AIBN or benzoyl peroxide to initiate polymeri-zation of styrene in the presence of CdSe nanoparticles gave uncontrolled molecular weights and polydispersi-ties and caused degradation of the nanoparticles within minutes.For example,in an experiment where1mg of AIBN or benzoyl peroxide was added to a solution of TOPO-covered CdSe nanoparticles in benzene,followed by stirring at70°C,the originally red nanoparticle solution became yellow,and then colorless,over a period of15min,suggesting complete nanoparticle degrada-tion.Obviously,no fluorescence emission or UV-band edge absorption remained following this degradation.The observed increase in fluorescence intensity is likely a cooperative phenomenon that includes the effect of thermal treatment,and the resulting polymeric ligand coverage and structure.22CdSe nanoparticles are known to anneal at temperatures in the range used in our polymerization studies.23This annealing process(21)Benoit,D.;Chaplinski,V.;Braslau,R.;Hawker,C.J.J.Am.Chem.Soc.1999,121,3904-3920.(22)A previous study by Peng and co-workers examined the effect of dendritic ligands on fluorescence intensity:Wang,Y.A.;Li,J.J.; Chen,H.Y.;Peng,X.G.J.Am.Chem.Soc.2002,124,2293-2298.(23)Mattoussi,H.;Cumming,A.W.;Murray,C.B.;Bawendi,M.G.;Ober,R.J.Chem.Phys.1996,105,9890-9896.Table1.Molecular Weights and Compositions ofPolymers Grafted from CdSe Nanoparticles afeed ratio incorporationM n PDI%styrene%MMA%styrene%MMA13400 1.2910010022600 1.3510010075500 1.34100100125900 1.7610010056800 1.468020782227500 1.447030732747400 1.4060406040108000 1.7650505644103000 2.0040604555a Molecular weight and distribution were determined by GPC.Monomer incorporation was determined by1H NMR.Styrenepolymerizations were run for24h,while copolymers were polym-erized for18h with a constant molar amount of monomer.Figure1.TEM micrographs showing(a)polystyrene-coveredCdSe nanoparticles6and(b)polystyrene-covered CdSe nano-particles6in a polystyrene matrix.Figure2.Fluorescence emission curves taken on chloroformsolutions of polystyrene-CdSe nanoparticle composites andnitroxide-covered CdSe nanoparticles.1242Chem.Mater.,Vol.16,No.7,2004Sill and Emrickreduces the number of crystal structure and surface defects,resulting in increased fluorescence intensity.To test the effect of heating at polymerization temperatures in the absence of monomer,control experiments were performed on TOPO-and nitroxide-functionalized CdSe nanoparticles.The fluorescence intensity of TOPO-covered nanoparticles was found to increase by about 100%as a result of heating in toluene at reflux(110°C)for8h.However,heating nitroxide-covered nano-particles in the absence of monomer is not practical,as particle degradation occurs at temperatures as low as 40°C.While thermal annealing accounts for a measur-able increase in fluorescence intensity,it does not account for the much larger increases that were ob-served for the prepared nanoparticle-polymer compos-ites.The chain entanglement of the polymer ligands relative to small molecule ligands(e.g.,TOPO)ef-fectively anchors the ligand headgroup(phosphine oxide)on the nanoparticle surface.The corresponding reduction in vacant surface sites brings about the observed increase in fluorescence intensity.Thus,not only is fluorescence maintained in this controlled free-radical polymerization process,but it is enhanced.This result is quite encouraging for future studies,as we look to extend these composite materials to applications where nanoparticles are confined to the interfacial boundaries of polymer materials and fluids,where the inherent fluorescent properties of the nanoparticles can be utilized.Experimental SectionGeneral Methods and Materials.Technical grade tri-n-octyl phosphine oxide and styrene were purchased from Alfa Aesar.All other reagents were purchased from Aldrich and used as supplied.THF was dried over sodium/benzophenone and distilled before use.All reactions were run under an inert atmosphere.Styrene was washed with1N NaOH,dried with MgSO4,and then distilled over CaH2prior to use.Tri-n-octyl phosphine oxide-covered CdSe nanoparticles were synthesized according to previously reported methods.20NMR spectra were obtained on a Bruker DPX300MHz spectrometer.Chemical shifts are expressed in parts per million(δ)using residual solvent protons as the internal standard.CHCl3(δ7.26for 1H,77.23for13C)was used as an internal standard for CDCl3. Gel permeation chromatography(GPC)measurements were performed in tetrahydrofuran(THF)at1.0mL/min using a Knauer K-501Pump with a K-2301refractive index detector and K-2600UV detector,and a column bank consisting of two Polymer Labs PLGel Mixed D columns and one PLGel50Åcolumn(1.5×30cm)at35°C.Molecular weights are reported relative to polystyrene standards.Fluorescence measurements were recorded on a Perkin-Elmer LS-55fluorimeter and UV-vis measurements were made on a Hitachi U-3010spectro-photometer.Fluorescence spectra were normalized to the optical density of5at the excitation wavelength(400nm). Transmission electron microscopy was performed on a JEOL 100CX microscope at66K magnification.Preparation of Nitroxide Ligand2.Di-n-octylphosphine oxide24(1.21g,4.40mmol)and NaH(0.12g,4.84mmol)were stirred in THF(18mL)at room temperature.The solution was heated to reflux and benzyl chloride119(1.50g,4.84mmol) was added.The mixture was heated to reflux with stirring and aliquots were removed for evaluation by31P NMR until the reaction reached completion(ca.16h).The mixture was allowed to cool,quenched with water,and extracted with CH2-Cl2(3×50mL).The organic layers were dried over magne-sium sulfate,filtered,and evaporated under reduced pressure. The residue was purified by flash column chromatography (SiO2,CH2Cl2followed by3%MeOH in CH2Cl2)to afford a clear oil(2.14g,3.91mmol,89%).1H NMR(300MHz,CDCl3,δ):7.18(d,J HH)2.17Hz,2H,Ar-H),7.15(d,J HH)1.79 Hz,2H,Ar-H),4.74(quart,J HH)6.53Hz,1H,Ar-C H), 3.11(d,J HH)14.54,2H,Ar-C H2-P d O),1.46(d,J HH)6.70 Hz,3H,CH-C H3),1.32(s,3H,C-CH3),1.26(m,28H,alkyl), 1.16(s,3H,C-CH3),1.00(s,3H,C-CH3),0.88(t,J HH) 6.42Hz,6H,CH2-C H3),0.58(s,3H,C-CH3).13C NMR(300 MHz,CDCl3,δ):144.77,131.33,129.45,127.65(Ar,6C);82.92 (CH3-C H,1C);53.61((CH3)2-C,2C);40.50((CH3)2-C-C H2, 2C);36.25(P(O)-C H2,1C);31.96,31.39,29.45,27.94,27.07, 23.39,21.78(alkyl C H2,14C);22.81((C H3)2-C,4C);17.36 (TEMPO CH2-C H2-CH2,1C);14.28(alkyl C H3,2C).Preparation of2-Covered Nanoparticles(5).To ap-proximately25mg of pyridine-functionalized CdSe nanopar-ticles in THF(3mL)was added nitroxide2(250mg).The solution was stirred at room temperature for16h,at which point the solution was optically clear.Anhydrous methanol(4 mL)was added,and then the solution was concentrated to ca. 3mL.To this was added anhydrous methanol(4mL).The solution was centrifuged for5min and then the supernate decanted.The nitroxide-functionalized nanoparticles were dispersed in styrene(2.5mL)and stored at-20°C.Polymer Growth from Nitroxide-Covered Nanopar-ticle5.A solution of5in styrene(0.4mL)was added to a reaction tube,purged with N2,and subjected to five freeze-pump-thaw cycles.The mixture was heated at125°C for 4-24h,depending upon the molecular weight desired.The reaction was cooled and the solid product was dissolved in THF and precipitated into methanol.The product was recovered via filtration to afford a pale red powder.General Procedure for Removal of Polymer from Nanoparticle Surface for Molecular Weight Analysis. Twenty-five milligrams of DMAP was added to15mg of CdSe-polymer product dissolved in THF(1mL)and then stirred at 50°C for4h.The solution was precipitated into methanol and then the milky solution centrifuged for10min.The supernate was decanted,and a white solid was collected and dried by purging with N2(g).Acknowledgment.The authors gratefully acknowl-edge financial support from the National Science Foun-dation(CAREER award CHE-0239486)and the Army Research Laboratory/University of Massachusetts,Poly-mer Materials Center of Excellence(DAAD19-01-2-0002 P00005).CM035077B(24)Williams,R.H.;Hamilton,L.A.J.Am.Chem.Soc.1952,74, 5418-5420.Nitroxide-Mediated Radical Polymerization Chem.Mater.,Vol.16,No.7,20041243。