2014年全国高考文科数学试题及答案-上海卷
2014年高考上海卷数学(文)试卷解析(精编版)(原卷版)
一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 . 2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6.若实数x,y 满足xy=1,则2x +22y 的最小值为______________.7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 . 10.设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .11.若2132()f x x x-=-,则满足0)(<x f 的x 取值范围是 .12. 方程sin 3cos 1xx +=在区间[0,2]π上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b += ( )(A )2 (B )1 (C )0 (D )1-17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) (A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20. (本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数a a x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得,,45.1812.38==βα求CD 的长(结果精确到0.01米)?22. (本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.23. (本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比; (3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.。
2014年上海市高考数学试卷(文科)教师版
2014 年上海市高考数学试卷(文科)一、填空题(本大题共14 题,满分 56 分)考生应在答题纸相应编的空格内直接填写结果,每个空格填对得 4 分,不然一律得零分。
1.(4 分)(2014?上海)函数 y=1﹣ 2cos2( 2x)的最小正周期是.【剖析】由二倍角的余弦公式化简,可得其周期.【解答】解: y=1﹣2cos2( 2x)=﹣[ 2cos2(2x)﹣ 1]=﹣cos4x,∴函数的最小正周期为T= =故答案为:.(分)(上海)若复数z=1+2i,此中 i 是虚数单位,则(z+)?=6.2 42014?【剖析】把复数代入表达式,利用复数代数形式的混淆运算化简求解即可.【解答】解:复数 z=1+2i,此中 i 是虚数单位,则( z+ )? ==(1+2i)( 1﹣2i) +1=1﹣4i2+1=2+4=6.故答案为: 63.(4 分)(2014?上海)设常数a∈R,函数 f( x) =| x﹣ 1|+| x2﹣ a| ,若 f( 2)=1,则 f(1)= 3.【剖析】利用f(x)=| x﹣1|+| x2﹣a| ,f(2)=1,求出a,而后求解f(1)即可.【解答】解:常数 a∈R,函数 f( x) =| x﹣ 1|+| x2﹣ a| ,若 f( 2) =1,∴1=| 2﹣ 1|+| 22﹣ a| ,∴ a=4,函数 f (x) =| x﹣1|+| x2﹣4| ,∴f(1)=| 1﹣ 1|+| 12﹣ 4| =3,故答案为: 3.4.(4 分)(2014?上海)若抛物线y2=2px 的焦点与椭圆的右焦点重合,则该抛物线的准线方程x=﹣ 2.【剖析】由题设中的条件 y2(>)的焦点与椭圆的右焦点重=2px p0合,故能够先求出椭圆的右焦点坐标,依据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又 y2(>)的焦点与椭圆右焦点重合,=2px p0故 =2 得 p=4,∴抛物线的准线方程为x=﹣ =﹣2.故答案为: x=﹣25.(4 分)(2014?上海)某校高一、高二、高三分别有学生1600 名, 1200 名,800名.为认识该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20 名学生,则高一、高二共需抽取的学生数为70.【剖析】依据分层抽样的定义,成立比率关系,即可获得结论.【解答】解:∵高一、高二、高三分别有学生1600 名, 1200 名, 800 名,∴若高三抽取 20 名学生,设共需抽取的学生数为x,则,解得 x=90,则高一、高二共需抽取的学生数为90﹣20=70,故答案为: 70.6.(4 分)(2014?上海)若实数 x, y 知足 xy=1,则 x2+2y2的最小值为 2.【剖析】由已知可得 y= ,代入要求的式子,由基本不等式可得.【解答】解:∵ xy=1,∴y=∴ x2+2y2=x2+ ≥2=2 ,当且仅当 x2=,即x=±时取等,故答案为: 27.(4 分)(2014?上海)若圆锥的侧面积是底面积的3 倍,则其母线与轴所成角的大小为arcsin(结果用反三角函数值表示)【剖析】由已知中圆锥的侧面积是底面积的 3 倍,可得圆锥的母线是圆锥底面半径的 3 倍,在轴截面中,求出母线与轴所成角的正弦值,从而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的 3 倍,∴= =3,即圆锥的母线是圆锥底面半径的 3 倍,故圆锥的轴截面以下列图所示:则sin θ=,∴θ=arcsin,故答案为: arcsin8.(4 分)(2014?上海)在长方体中割去两个小长方体后的几何体的三视图如图所示,则切割掉的两个小长方体的体积之和等于24.【剖析】由已知中的三,分判断切割前后几何体的形状,并分算出切割前后几何体的体,相减可得答案.【解答】解:由已知中的三,可知:大方体的,,高分:3,4,5,故大方体的体: 60,切去两个小方体后的几何体是一个以主底面,高 3 的柱体,其底面面4×5 2×2×2×2=12,故切去两个小方体后的几何体的体:12×3=36,故切割掉的两个小方体的体之和:60 36=24,故答案: 24分)(上海)(),9.(4f=,若 f(0)是 f (x)的最小2014?x,>, a 的取范(∞, 2].【剖析】分由 f( 0) =a,x≥2, a≤ x+ 合得出 a 的取范.【解答】解:当 x=0 , f(0)=a,由意得: a≤ x+ ,又∵ x+ ≥2,=2∴a≤ 2,故答案:(∞, 2] .10.(4 分)( 2014?上海)无等比数列 { a n} 的公比 q,若 a1=(a3+a4+⋯a n),q=.【剖析】由已知条件推出 a1,由此能求出q 的.=【解答】解:∵无等比数列 { a n} 的公比 q,a1=(a +a +⋯a)3 4n=(a1 a1q)=,∴q2+q﹣1=0,解得 q=或q=(舍).故答案为:.11.( 4 分)( 2014?上海)若 f(x)=﹣,则知足f(x)<0的x的取值范围是(0,1).【剖析】直接利用已知条件转变不等式求解即可.【解答】解: f(x) =﹣,若知足f(x)<0,即<,∴<,∵ y=是增函数,∴<的解集为:(0,1).故答案为:( 0, 1).12.( 4 分)(2014?上海)方程 sinx+cosx=1 在闭区间 [ 0,2π] 上的全部解的和等于.【剖析】由三角函数公式可得sin(x+ )= ,可知 x+ =2kπ+ ,或 x+ =2kπ+,k∈Z,联合 x∈ [ 0,2π] ,可得 x 值,乞降即可.【解答】解:∵ sinx+cosx=1,∴sinx+ cosx= ,即 sin( x+ )= ,可知 x+ =2kπ+ ,或 x+ =2kπ+,k∈ Z,又∵ x∈ [ 0,2π] ,∴x= ,或 x= ,∴+ =故答案为:.13.( 4 分)( 2014?上海)为加强安全意识,某商场拟在将来的连续10 天中随机选择 3 天进行紧迫分散操练,则选择的 3 天恰巧为连续 3 天的概率是(结果用最简分数表示).【剖析】要求在将来的连续10 天中随机选择 3 天进行紧迫分散操练,选择的3天恰巧为连续 3 天的概率,须先求在10 天中随机选择 3 天的状况,再求选择的 3 天恰巧为连续 3 天的状况,即可获得答案.【解答】解:在将来的连续10 天中随机选择 3 天共有种状况,此中选择的 3 天恰巧为连续 3 天的状况有 8 种,分别是( 1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的 3 天恰巧为连续 3 天的概率是,故答案为:.14.(4 分)(2014?上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在 C上的点 P 和 l 上的 Q 使得 + = ,则 m 的取值范围为[ 2,3].【剖析】经过曲线方程判断曲线特点,经过+ = ,说明 A 是 PQ 的中点,结合 x 的范围,求出 m 的范围即可.【解答】解:曲线 C:x=﹣,是以原点为圆心,2为半径的圆,而且x P∈[ ﹣2,0] ,对于点 A( m,0),存在 C 上的点 P 和 l 上的 Q 使得 + = ,说明A 是 PQ 的中点, Q 的横坐标 x=6,∴m=∈[ 2,3].故答案为: [ 2, 3] .二、选择题(共 4 题,满分不然一律得零分15.( 5 分)(2014?上海)设20 分)每题有且只有一个正确答案,选对得a,b∈ R,则“a+b>4”是“a>2 且 b>2”的(5 分,)A.充足非必需条件B.必需非充足条件C.充要条件D.既非充足又非必需条件【剖析】依据不等式的性,利用充足条件和必需条件的定行判断.【解答】解:当 a=5,b=0 ,足 a+b>4,但 a> 2 且 b>2 不可立,即充足性不可立,若 a>2 且 b>2,必有 a+b>4,即必需性成立,故“a+b>4”是“a>2 且 b>2”的必需不充足条件,故:B.16.( 5 分)(2014?上海)已知互异的复数b2} , a+b=()A.2B.1a, bC.0足ab≠0,会合 { a, b} ={ a2,D. 1【剖析】依据会合相等的条件,获得元素关系,即可获得.22①或②,或由①得,或∵ab≠0,∴ a≠ 0 且 b≠0,即 a=1,b=1,此会合 { 1,1} 不足条件.由②得,若 b=a2,a=b2,两式相减得 a2 b2=b a,即( a b)(a+b) =( ab),∵互异的复数 a,b,∴ a b≠ 0,即 a+b= 1,故: D.17.( 5 分)(2014?上海)如,四个 1 的小正方形排成一个大正方形,AB 是大正方形的一条, P(i i=1,2,⋯,7)是小正方形的其他点,?(i=1,2,⋯,7)的不一样的个数()A.7B.5C.3D.1【剖析】成立适合的平面直角坐系,利用坐分求出数目,由果可得答案.【解答】解:如成立平面直角坐系,A(0,0),B(0,2),P1(0,1),P2(1,0),P3(1,1),P4(1,2),P5(2,0),P6(2,1),P7(2,2),∴,,=(0,1),=(1,0),=(1,1),=(1,2),=(2,0),=(2,1),=(2,2),∴=2,=0,=2,=4,=0,=2,=4,∴? (i=1,2,⋯,7)的不一样的个数 3,故: C.18.( 5 分)(2014?上海)已知 P1(a1,b1)与 P2(a2, b2)是直常数)上两个不一样的点,对于x 和 y 的方程()A.无 k,P1,P2怎样,是无解y=kx+1(k的解的状况是B.无k,P1,P2怎样,有独一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无多解【剖析】判断直的斜率存在,通点在直上,推出a1,b1,P2,a2, b2的关系,而后求解方程的解即可.【解答】解: P1( a1,b1)与 P2( a2,b2)是直 y=kx+1(k 常数)上两个不同的点,直线 y=kx+1 的斜率存在,∴k=,即a 1≠a2,而且b1=ka1+1,b2=ka2+1,∴ a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①× b2﹣②× b1得:( a1b2﹣a2b1) x=b2﹣b1,即( a1﹣a2) x=b2﹣b1.∴方程组有独一解.应选: B.三、解答题(共 5 小题,满分 74 分)19.( 12 分)( 2014?上海)底面边长为2 的正三棱锥 P﹣ABC,其表面睁开图是三角形 P1P2P3,如图,求△ P1P2 P3的各边长及此三棱锥的体积 V.【剖析】利用侧面睁开图三点共线,判断△ P1P2P3是等边三角形,而后求出边长,利用正四周体的体积求出几何体的体积.【解答】解:依据题意可得:P1,B,P2共线,∵∠ ABP1=∠ BAP1=∠CBP2,∠ ABC=60°,∴∠ ABP1=∠BAP1=∠CBP2=60°,∴∠ P1=60°,同理∠ P2=∠P3=60°,∴△ P1P2P3是等边三角形, P﹣ ABC是正四周体,∴△ P1P2P3的边长为 4,V P﹣ABC==20.( 14 分)( 2014?上海)设常数 a≥0,函数 f( x)=.(1)若 a=4,求函数 y=f( x)的反函数 y=f﹣1(x);(2)依据 a 的不一样取值,议论函数 y=f(x)的奇偶性,并说明原因.【剖析】(1)依据反函数的定义,即可求出,(2)利用分类议论的思想,若为偶函数求出 a 的值,若为奇函数,求出 a 的值,问题得以解决.【解答】解:(1)∵ a=4,∴∴,∴,∴调动 x,y 的地点可得( 2)若 f (x)为偶函数,则,x∈(﹣∞,﹣1)∪(1,+∞).f( x) =f(﹣ x)对随意 x 均成立,∴=,整理可得a(2x﹣ 2﹣x) =0.∵ 2x﹣2﹣x不恒为 0,∴ a=0,此时 f( x)=1,x∈R,知足条件;若 f( x)为奇函数,则f(x)=﹣f (﹣ x)对随意 x 均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵ a≥ 0,∴a=1,此时 f (x) =,,知足条件;当 a>0 且 a≠1 时, f( x)为非奇非偶函数综上所述, a=0 时, f(x)是偶函数, a=1 时, f(x)是奇函数.当 a>0 且 a≠1 时, f(x)为非奇非偶函数21.( 14 分)( 2014?上海)如图,某企业要在A、 B 两地连线上的定点 C 处建筑广告牌 CD,此中 D 为顶端, AC 长 35 米, CB 长 80 米,设点 A、 B 在同一水平面上,从 A 和 B 看 D 的仰角分别为α和β.(1)设计中 CD是铅垂方向,若要求α≥2β,问 CD的长至多为多少(结果精准到 0.01 米)?(2)施工达成后, CD 与铅垂方向有误差,此刻实测得α=38.12,°β=18.45,°求CD的长(结果精准到0.01 米).【剖析】(1)设 CD 的长为 x,利用三角函数的关系式成立不等式关系即可获得结论.( 2)利用正弦定理,成立方程关系,即可获得结论.【解答】解:(1)设 CD的长为 x 米,则 tan α=, tan β=,<<∵ 0,∴tan α≥tan2 β> 0,∴ tan,即=,解得 0<≈28.28,即 CD的长至多为 28.28 米.( 2)设 DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43,°由正弦定理得,即 a=,∴ m=≈26.93,答: CD的长为 26.93 米.22.( 16 分)(2014?上海)在平面直角坐标系xOy 中,对于直线 l:ax+by+c=0 和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点 P1,P2被直线 l 分开,若曲线 C 与直线 l 没有公共点,且曲线 C 上存在点P1、P2被直线 l 分开,则称直线 l 为曲线 C 的一条分开线.(1)求证:点 A(1,2),B(﹣ 1,0)被直线 x+y﹣1=0 分开;(2)若直线 y=kx 是曲线 x2﹣4y2=1 的分开线,务实数 k 的取值范围;( 3)点 M 到点 Q(0,2)的距离与到 y 的距离之1,点 M 的迹E,求 E 的方程,并明 y 曲 E 的分开.【剖析】(1)把 A、B 两点的坐代入η=(ax1+by1+c)(ax2+by2+c),再依据η<0,得出.( 2)立可得(4k 2)x2,依据此方程无解,可得21=114k ≤0,从而求得 k 的范.(3)点 M(x, y),与条件求得曲 E 的方程 [ x2+( y 2)2] x2=1 ①.因为 y x=0,然与方程① 立无解.把 P1、P2的坐代入 x=0,由η=1×(1)= 1<0,可得 x=0 是一条分开.【解答】解:(1)把点( 1, 2)、( 1,0)分代入x+y 1 可得η=(1+2 1)( 1 1)= 4<0,∴点( 1,2)、( 1, 0)被直x+y 1=0 分开.( 2)立可得(2)x2,依据意,此方程无解,故有114k=14k2≤0,∴| k| ≥ .当| k| ≥,于直 y=kx,曲 x2 4y2=1 上的点( 1,0)和( 1,0)足η= k2<0,即点( 1,0)和( 1, 0)被 y=kx 分开.故数 k 的取范是(∞,] ∪[ ,+∞).( 3)点 M(x,y),,故曲E 的方程[ x2+(y 2)?| x| =12] x2=1 ①.随意的 y0,(0,y0)不是上述方程的解,即y 与曲 E 没有公共点.又曲 E上的点( 1, 2)、( 1,2)于 y ( x=0)足η=1×( 1) =1<0,即点( 1,2)和( 1, 2)被 y 分开,所以 y 曲 E 的分开.23.( 18 分)( 2014?上海)已知数列 { a n} 足a n≤a n+1≤3a n,n∈N*,a1=1.( 1)若 a2=2,a3=x, a4=9,求 x 的取范;( 2)若{ a n} 是等比数列,且 a m=,求正整数m的最小,以及m取最小相 { a n} 的公比;( 3)若 a1, a2,⋯a100成等差数列,求数列a1, a2,⋯a100的公差的取范.【剖析】(1)由题意可得:,,代入解出即可;( 2 )设公比为 q,由已知可得,,因为,可得.而,可得<,再利用对数的运算法例和性质即可得出.( 3)设公差为 d,由已知可得(﹣)d],3[ 1+ n2此中 2≤n≤100,即,解出即可.【解答】解;(1)由题意可得:,∴;又,∴ 3≤x≤ 27.综上可得: 3≤x≤ 6.( 2)设公比为 q,由已知可得,,又,∴.所以,∴<,∴ m=1﹣log q1000==1﹣=≈7.29.∴ m 的最小值是 8,所以 q7=,∴=.( 3)设公差为 d,由已知可得≤1+nd≤3[ 1+(n﹣1)d]即,令 n=1,得.当 2≤n≤99 时,不等式即,.∴.综上可得:公差 d 的取值范围是,.。
2014年上海高考数学文理科卷解析版
李老师作品数学(理)2014 第1页(共4页)2014年全国普通高等学校招生统一考试上海 数学试卷一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数212cos (2)y x =-的最小正周期是____________.12π 2. 若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭____________.考点:复数代数形式的乘除运算分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可 解答:解:复数z=1+2i,其中i 是虚数单位11(12)(12)612z zi i i z ⎛⎫+⋅=++-= ⎪-⎝⎭3. 若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为分析215y +=的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p ,再由抛物线的性质求出它的准线方程2 解答215y =,故它的右焦点坐标是(2,0),215y =故P=4∴抛物线的准线方程为x=-2.4. 设2,(,),(),[,).x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =,则a 的取值范围为____________.5. 若实数,x y 满足1xy =,则222x y +的最小值为____________. 分析:由已知可得y =1=得222222x y x x+=+≥。
得x =答案是6. 若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为__________(结果用反三角函数值表示)3径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.cos θ==得arccos θ=半径的3倍,是解答的关键.7. 已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是____________.∴C 与极轴的交点到极点的距离是13ρ=8. 设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q =________.分析:由已知条件推导出11111a a a a q q=---由此能求出q 的值.411111112(1)lim 111011n x a q aa a a q a a qq qq q q q →∞⎛⎫-=--=-- ⎪--⎝⎭∴+-=--==得或(舍)9. 若32()f x x x-=-,则满足()0f x <的x 的取值范围是_____________.()036621()0,1x x x x f x x -<<==得得;是增函数得x 得解集为10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_______________(结果用最简分数表示). 恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案. 解答:解:在未来的连续10天中随机选择3天共有310120C =种情况,其中选择的3天恰好为连续3天的情况有8种, 115= 11. 已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=__________.5}{}22,,a b a b=2201b a b b a b⎨⎨⎨====⎪⎪⎩⎩⎩或得:或 ∵ab ≠0,∴a ≠0且b ≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a 2,a=b 2,则两式相减得a 2-b 2=b-a , ∵互异的复数a ,b , ∴b-a ≠0,即a+b=-1, 故答案为:-1.的关键,注意要进行分类讨论. 12. 设常数a 使方程sin cos x x a =在闭区间[0,2]π上恰有三个解123,,x x x ,则123xx x ++=____________.分析:先利用两角和公式对函数解析式化简,画出函数2sin()3y x π=+的图象,直线与三角函数图象恰有三个交点,进而求得此时x 1,x 2,x 3最后相加即可.123sin 0,,2323x x x x πππ⎛⎫+==== ⎪⎝⎭12373x x x π++=13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分. 若() 4.2E ξ=,6 则小白得5分的概率至少为____________.此能求出结果.则由题意知小白得4分的概率为1-x ,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分, E (ξ)=4.2, ∴4(1-x )+5x=4.2, 解得x=0.2. 故答案为:0.2.变量的数学期望的合理运用14. 已知曲线:C x =,直线:6l x =. 若对于点(,0)A m ,存在C 上的点P和l上的Q 使得0AP AQ +=,则m 的取值范围为____________. 分析:通过曲线方程判断曲线特征,通过0AP AQ +=说明A 是PQ 的中点,结合x 的范围,求出m 的范围即可.解答:解:曲线:C x =[]2,0p x ∈-对于点A (m ,0),存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的横坐标x=6,[]62,32xpm +=∈ 故答案为:[2,3]7P 2P 5P 6P 7P 8P 4P 3P 1BA二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 设,a b ∈R ,则“4a b +>”是“2a >且2b >”的[答]( )(A) 充分条件. (B) 必要条件.16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,(1,2,,8)i P i = 是上底面上其余的八个点,则(1, 2, , 8)i AB AP i ⋅=的不同值的个数为[答]( ) (A) 1. (B) 2. (C) 4.(D) 8.计算可得答案.则A (2,0,0),B (2,0,1),P 1(1,0,1),P 2(0,0,1),P 3(2,1,1),P 4(1,1,1),P 5(0,1,1),P 6(2,2,1),P 7(1,2,1),8 P 8(0,2,1),11(1,2,,8)AB AP i ==故选择A数量积运算是解题的常用手段.17. 已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x和y 的方程组11221,1a xb y a x b y +=⎧⎨+=⎩的解的情况是[答]( )(A) 无论12,,k P P 如何,总是无解. (B) 无论12,,k P P 如何,总有唯一解. (C) 存在,,k P P ,使之恰有两解.(D) 存在,,k P P ,使之有无穷多解.111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上且斜率存在。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2014 年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5 分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0 3.(5 分)设z=+i,则|z|=()A.B.C.D.24.(5 分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5 分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π 的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5 分)执行如图的程序框图,若输入的a,b,k 分别为1,2,3,则输出的M=()A.B.C.D.10.(5 分)已知抛物线C:y2=x 的焦点为F,A(x0,y0)是C 上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5 分)设x,y 满足约束条件且z=x+ay 的最小值为7,则a=()A.﹣5 B.3 C.﹣5 或3 D.5 或﹣3 12.(5 分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a 的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4 小题,每小题5 分13.(5 分)将2 本不同的数学书和1 本语文书在书架上随机排成一行,则2 本数学书相邻的概率为.14.(5 分)甲、乙、丙三位同学被问到是否去过A,B,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5 分)设函数f(x)= ,则使得f(x)≤2 成立的x 的取值范围是.16.(5 分)如图,为测量山高MN,选择A 和另一座的山顶C 为测量观测点,从A 点测得M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12 分)已知{a n}是递增的等差数列,a2,a4 是方程x2﹣5x+6=0 的根.(1)求{a n}的通项公式;(2)求数列{ }的前n 项和.18.(12 分)从某企业生产的产品中抽取100 件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105)[105,115)[115,125)频数 6 26 38 22 8 (1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 的产品至少要占全部产品80%”的规定?19.(12 分)如图,三棱柱ABC﹣A1B1C1 中,侧面BB1C1C 为菱形,B1C 的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1 的高.20.(12 分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P 的动直线l 与圆C 交于A,B 两点,线段AB 的中点为M,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP|=|OM|时,求l 的方程及△POM 的面积.21.(12 分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a 的取值范围.请考生在第22,23,24 题中任选一题作答,如果多做,则按所做的第一题记分。
2014年上海市高考数学试卷(文科)学生版
2014 年上海市高考数学试卷(文科)一、填空 (本大 共 14 , 分 56 分)考生 在答 相 的空格内直接填写 果,每个空格填 得4 分,否 一律得零分。
1.(4 分)(2014?上海)函数 y=1 2cos 2( 2x )的最小正周期是.2.( 4 分)(2014?上海)若复数 z=1+2i ,此中 i 是虚数 位, (z+ )? = .3.(4 分)( 上海) 常数a ∈R ,函数 f ( x ) =| x 2a| ,若 f ( 2) 2014? 1|+| x=1, f (1)= .4.(4 分)(2014?上海)若抛物 y 2=2px 的焦点与的右焦点重合, 抛物 的准 方程 .5.(4 分)(2014?上海)某校高一、高二、高三分 有学生1600 名, 1200 名,800 名. 认识 校高中学生的牙 健康状况,按各年 的学生数 行分 抽 ,若高三抽取20 名学生, 高一、高二共需抽取的学生数 ..( 分)( 2014? 上海)若 数 , 足xy=1, x 2+2y 2的最小.6 4 x y7.(4 分)(2014?上海)若 的 面 是底面 的3 倍, 其母 与 所成角的大小( 果用反三角函数 表示)8.(4 分)(2014?上海)在 方体中割去两个小 方体后的几何体的三 如所示, 切割掉的两个小 方体的体 之和等于.9.(4 分)(2014?上海) f (x )=,,若 f (0)是 f (x )的最小, >, a 的取 范.10.(4 分)( 2014?上海) 无 等比数列 { a n } 的公比 q ,若 a 1=(a 3+a 4+⋯a n ),q=.11.( 4 分)( 2014?上海)若 f(x)=,足 f( x)< 0 的 x 的取范是.12.( 4 分)(2014?上海)方程 sinx+cosx=1 在区 [ 0,2π] 上的全部解的和等于.13.( 4 分)( 2014?上海)化安全意,某商在将来的10 天中随机3天行急分散演,的 3 天恰巧 3 天的概率是(果用最分数表示).14.(4 分)(2014?上海)已知曲:,直 l:x=6,若于点 A(m,C x=),存在C 上的点P 和 l上的Q使得 +=, m 的取范.二、(共 4 ,分 20 分)每有且只有一个正确答案,得 5 分,否一律得零分15.( 5 分)(2014?上海) a, b∈ R,“a+b>4”是“a>2 且 b>2”的()A.充足非必需条件B.必需非充足条件C.充要条件D.既非充足又非必需条件16.( 5分)(2014?上海)已知互异的复数a, b足ab≠0,会合 { a, b} ={ a2,b2} ,a+b=()A.2B.1C.0D. 117.( 5 分)(2014?上海)如,四个 1 的小正方形排成一个大正方形,AB 是大正方形的一条, P(i i=1,2,⋯,7)是小正方形的其他点,?(i=1,2,⋯,7)的不一样的个数()A.7B.5C.3D.118.( 5 分)(2014?上海)已知 P1(a1,b1)与 P2(a2, b2)是直 y=kx+1(k常数)上两个不一样的点,则对于x 和 y 的方程组的解的状况是()A.不论 k,P1,P2怎样,老是无解B.不论 k,P1,P2怎样,总有独一解C.存在 k,P1,P2,使之恰有两解D.存在 k,P1,P2,使之有无量多解三、解答题(共 5 小题,满分 74 分)19.( 12 分)( 2014?上海)底面边长为2 的正三棱锥 P﹣ABC,其表面睁开图是三角形 P1P2P3,如图,求△ P1P2 P3的各边长及此三棱锥的体积 V.20.( 14 分)( 2014?上海)设常数 a≥0,函数 f( x)=.(1)若 a=4,求函数 y=f( x)的反函数 y=f﹣1(x);(2)依据 a 的不一样取值,议论函数 y=f(x)的奇偶性,并说明原因.21.( 14 分)( 2014?上海)如图,某企业要在A、 B 两地连线上的定点 C 处建筑广告牌 CD,此中 D 为顶端, AC 长 35 米, CB 长 80 米,设点 A、 B 在同一水平面上,从 A 和 B 看 D 的仰角分别为α和β.(1)设计中 CD是铅垂方向,若要求α≥2β,问 CD的长至多为多少(结果精准到 0.01 米)?(2)施工达成后,CD 与铅垂方向有误差,此刻实测得α=38.12,°β=18.45,°求CD的长(结果精准到 0.01 米).22.( 16 分)(2014?上海)在平面直角坐标系 xOy 中,对于直线 l:ax+by+c=0 和点P1(x1,y1),P2( x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点 P1,P2被直 l 分开,若曲 C 与直 l 没有公共点,且曲 C 上存在点P1、P2被直 l 分开,称直 l 曲 C 的一条分开.(1)求:点 A(1,2),B( 1,0)被直 x+y 1=0 分开;(2)若直 y=kx 是曲 x2 4y2=1 的分开,求数 k 的取范;(3)点 M 到点 Q(0,2)的距离与到 y 的距离之 1,点 M 的迹E,求 E 的方程,并明 y 曲 E 的分开.23.( 18 分)( 2014?上海)已知数列 { a n} 足a n≤a n+1≤3a n,n∈N*,a1=1.( 1)若 a2=2,a3=x, a4=9,求 x 的取范;( 2)若{ a n} 是等比数列,且 a m=,求正整数m的最小,以及m取最小相 { a n} 的公比;( 3)若 a1, a2,⋯a100成等差数列,求数列a1, a2,⋯a100的公差的取范。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年全国高考文科数学试题及答案-上海卷
2014年上海市高考数学试卷(文科)考生注意:1、本试卷共4页,23道试题,满分150分.考试时间120分钟.2、本试卷分设试卷和答题纸。
试卷包括试题与答题要求。
作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分。
3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名。
一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数12z i =+,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线22y px =的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为______. 5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6. 若实数,x y 满足1xy =,则2x +22y 的最小值为______________. 7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是.10.设无穷等比数列{n a }的公比为q ,若134lim(...)n n a a a a →∞=+++,则q= .11.若2132()f x x x-=-,则满足0)(<x f 的x 取值范围是 .12.方程sin 1x x =在区间[0,2]π上的所有解的和等于 .13. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C:x =:6l x =.若对于点(,0)A m 存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件(B )必要条件(C )充分必要条件(D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b +=( )(A )2 (B )1 (C )0 (D )1- 17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余顶点,则(1,2,,7)i A B A P i ⋅=的不同值的个数为( ) (A )7 (B )5 (C )3 (D )1 18. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A) 无论12,,k P P 如何,总是无解 (B) 无论12,,k P P 如何,总有唯一解 (C) 存在12,,k P P ,使之恰有两解 (D) 存在12,,k P P ,使之有无穷多解三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -, 其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20.(本题满分14分)本题有2个小题,第1小题满分6分,第2小题满分8分。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年全国高考数学真题 文科 及答案详解
2014年普通高等学校招生全国统一考试数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-正确答案:A(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 正确答案:A(3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2正确答案:B(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1正确答案:D(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数正确答案:A(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. B.21 C. 21D. 正确答案:C(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③ 正确答案:C8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱正确答案:B9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158正确答案:D10.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,zxxk xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8正确答案:C(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3 正确答案:B(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-(B )正确答案:A第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 正确答案:2/3(14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________. 正确答案:A(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.正确答案:((16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .本文来自正确答案:150三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年高考(上海市)真题数学(文)试题及答案解析
2014 年上海市高考数学试卷(文科)分析一、填空题 (本大题满分 56 分 )本大题共有 14 题,考生一定在答题纸相应编号的空格内直接填写结果,每个空格填对得 4 分,不然一律得零分.1.函数y 1 2cos2 (2 x) 的最小正周期是.2. 若复数 z=1+2 i,此中i是虚数单位,则( z1) z=___________.z3. 设常数a R ,函数 f (x) x 1 x2 a ,若 f (2) 1,则 f (1).4. 若抛物线2的焦点与椭圆x2 y 2y =2px 1 的右焦点重合,则该抛物线的准线方程为___________.9 55.某校高一、高二、高三分别有学生1600 名、 1200 名、 800 名,为认识该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20 名学生,则高一、高二共抽取的学生数为.6.若实数 x,y 知足 xy=1, 则x2 + 2y2的最小值为 ______________.7. 若圆锥的侧面积是底面积的 3 倍,则其母线与底面角的大小为(结果用反三角函数值表示).8.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.x a, x0,9. 设f (x)1若f (0)是f ( x)的最小值,则a 的取值范围是.x, x 0,x10.设无量等比数列 { a n } 的公比为 q,若a1 lim ( a3 a4 ) ,则q= .n2 111.若f (x) x3 x 2 ,则知足 f ( x) 0 的x取值范围是.12. 方程sin x3cos x 1 在区间[0, 2 ]上的全部解的和等于.13.为加强安全意识,某商场拟在将来的连续10 天中随机选择 3 天进行紧迫分散操练,则选择的 3 天恰巧为连续 3 天的概率是(构造用最简分数表示) .14. 已知曲线C:x4 y 2,直线 l:x=6. 若对于点(m,),存在 C 上的点 P 和 l 上的点 Q 使A 0得AP AQ 0 ,则m的取值范围为.二、选择题:本大题共 4 个小题 ,每题 5 分 ,共 20 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .15. 设a,b R ,则“ a b 4 ”是“a2, 且b 2 ”的()( A )充分条件(B)必需条件( C)充分必需条件(D)既非充分又非必需条件16. 已知互异的复数a, b知足ab 0 ,会合 { a, b} ={ a2 , b2 }, 则a b = ()(A)2 (B)1 (C) 0 (D)117. 如图,四个边长为 1 的正方形排成一个大正方形,AB 是在正方形的一条边,P i(i 1,2, ,7) 是小正方形的其他各个极点,则AB AP i(i 1,2, ,7) 的不一样值的个数为()(A)7 (B)5 (C) 3 (D)118. 已知P1(a1,b1)与P2(a2, b2)是直线 y=kx+1 ( k 为常数)上两个不一样的点,则对于x 和 y 的方程组。
2014年上海市高考数学试卷(文科)答案与解析
2014年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是.T==故答案为:2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.)•3.(4分)(2014•上海)设常数a∈R,函数f(x)=|x﹣1|+|x2﹣a|,若f(2)=1,则f(1)= 3.4.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=﹣2.)的焦点与椭圆=1+=1)的焦点与椭圆+﹣5.(4分)(2014•上海)某校高一、高二、高三分别有学生1600名,1200名,800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共需抽取的学生数为70.6.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.,代入要求的式子,由基本不等式可得.2=2,即±7.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为arcsin(结果用反三角函数值表示)==,,8.(4分)(2014•上海)在长方体中割去两个小长方体后的几何体的三视图如图所示,则切割掉的两个小长方体的体积之和等于24.9.(4分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为(﹣∞,2].≥,x+210.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.(﹣q=故答案为:11.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).﹣<是增函数,12.(4分)(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.x+)=2k+x+,sinx+cosx=1sinx+cosx=,),x+,或=2k,,或x=+=故答案为:.13.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).天共有故答案为:.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].+=使得+,二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分16.(5分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=或,17.(5分)(2014•上海)如图,四个边长为1的小正方形排成一个大正方形,AB是大正方形的一条边,P i(i=1,2,…,7)是小正方形的其余顶点,则•(i=1,2,…,7)的不同值的个数为(),=,=(2,0),=(2,1),=(2,2),=2,=0,=2,=4,=0,=2=4•18.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()三、解答题(共5小题,满分74分)19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.=20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.的位置可得=﹣21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).,,,tan,,22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.)联立)联立.当时,对于直线,﹣[,23.(18分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)若{a n}是等比数列,且a m=,求正整数m的最小值,以及m取最小值时相应{a n}的公比;(3)若a1,a2,…a100成等差数列,求数列a1,a2,…a100的公差的取值范围.)由题意可得:由已知可得,可得.,可得3[1+,即)由题意可得:,∴,由已知可得,,又,.因此1000=﹣=,.,由已知可得≤,得时,不等式即.。
2014年高考文科数学上海卷
数学试卷 第1页(共4页) 数学试卷 第2页(共4页)绝密★启用前2014年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数212cos (2)y x =-的最小正周期是 .2.若复数12i z =+,其中i 是虚数单位,则1()z z z+=g .3.设常数a ∈R ,函数2()|1|||f x x x a =-+-.若(2)1f =,则(1)f = .4.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 .5.某校高一、高二、高三分别有学生1 600名、1 200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为 .6.若实数x ,y 满足1xy =,则222x y +的最小值为 .7.若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为 (结果用反三角函数值表示).8.在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于 .9.设,0,()1,0,x a x f x x x x -+⎧⎪=⎨+⎪⎩≤>若(0)f 是()f x 的最小值,则a 的取值范围为 . 10.设无穷等比数列{}n a 的公比为q .若134lim()n n a a a a →∞=+++…,则q = .11.若2132()f x x x -=-,则满足()0f x <的x 的取值范围是 . 12.方程sin 3cos 1x x +=在区间[0,2π]上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示).14.已知曲线C :24x y =--,直线l :6x =.若对于点(,0)A m ,存在C 上的点P 和l 上的点Q 使得AP AQ +=u u u r u u u r0,则m 的取值范围为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设a ,b ∈R ,则“4a b +>”是“22a b >>且”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件16.已知互异的复数a ,b 满足0ab ≠,集合22{,}{,}a b a b =,则a b +=( )A .2B .1C .0D .1-17.如图,四个边长为1的小正方形排成一个大正方形,AB 是大正方形的一条边,(1,2,,7)i P i =L 是小正方形的其余顶点,则(1,2,,7)i AB AP i =u u u r u u u rg L 的不同值的个数为 ( ) A .7 B .5 C .3D .118.已知111(,)P a b 与222(,)P a b 是直线1y k x =+(k 为常数)上两个不同的点,则关于x y 和的方程组11221,1,a x b y a x b y +=⎧⎨+=⎩的解的情况是 ( )A .无论k ,1P ,2P 如何,总是无解B .无论k ,1P ,2P 如何,总有唯一解C .存在k ,1P ,2P ,使之恰有两解D .存在k ,1P ,2P ,使之有无穷多解姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共4页) 数学试卷 第4页(共4页)三、解答题(本大题共有5小题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图.求123PP P △的各边长及此三棱锥的体积V .20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a ≥,函数2()2x x af x a +=-.(Ⅰ)若4a =,求函数()y f x =的反函数1()y f x -=;(Ⅱ)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A 、B 两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35 米,CB 长80 米.设点A 、B 在同一水平面上,从A 和B 看D 的仰角分别为α和β.(Ⅰ)设计中CD 是铅垂方向.若要求2αβ≥,问CD 的长至多为多少(结果精确到0.01 米)?(Ⅱ)施工完成后,CD 与铅垂方向有偏差.现在实测得38.12α=o ,18.45β=o ,求CD 的长(结果精确到0.01 米).22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点111(,)P x y ,222(,)P x y ,记1122()()ax by c ax by c η=++++.若0η<,则称点1P ,2P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点1P ,2P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(Ⅰ)求证:点(1,2)A ,(1,0)B -被直线10x y +-=分隔;(Ⅱ)若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;(Ⅲ)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E .求E 的方程,并证明y 轴为曲线E 的分隔线.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1133n n n a a a +≤≤,*n ∈N ,11a =. (Ⅰ)若22a =,3a x =,49a =,求x 的取值范围; (Ⅱ)若{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比;(Ⅲ)若1a ,2a ,⋅⋅⋅,100a 成等差数列,求数列1a ,2a ,⋅⋅⋅,100a 的公差的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年上海市高考数学试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数12z i =+,其中i 是虚数单位,则1()z z +z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线22y px =的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为______. 5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6. 若实数,x y 满足1xy =,则2x +22y 的最小值为______________.7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 . 9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 .10.设无穷等比数列{n a }的公比为q ,若134lim(...)n n a a a a →∞=+++,则q= . 11.若2132()f x x x -=-,则满足0)(<x f 的x 取值范围是 .12.方程sin 1x x =在区间[0,2]π上的所有解的和等于 .13. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C:x =:6l x =.若对于点(,0)A m 存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件(B )必要条件 (C )充分必要条件 (D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b +=( )(A )2 (B )1 (C )0 (D )1-17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余顶点,则(1,2,,7)i A B A P i ⋅=的不同值的个数为( ) (A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A) 无论12,,k P P 如何,总是无解 (B) 无论12,,k P P 如何,总有唯一解(C) 存在12,,k P P ,使之恰有两解(D) 存在12,,k P P ,使之有无穷多解 三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -, 其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20.(本题满分14分)本题有2个小题,第1小题满分6分,第2小题满分8分。
设常数0≥a ,函数aa x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A B 、在同一水平面上,从A 和B 看D 的仰角分别为βα和.(1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差,现在实测得,, 45.1812.38==βα求CD 的长(结果精确到0.01米)?22.(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点111222(,),(,)P x y P x y ,记1122)().ax by c ax by c η=++++(若0η<,则称点21,P P 被直线l 分隔。
若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(1) 求证:点),(),(012,1-B A 被直线01=-+y x 分隔;(2) 若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;(3) 动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分隔线.23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000ma =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.上海数学(文)参考答案一、 1. 2π 2. 6 3. 3 4. 2x =- 5.706. 1arcsin3 8.24 9. (,2]-∞ 11. (0,1) 12.73π 13. 115 14. [2,3] 二、15. B16.D 17.C 18.B19.解: 在123PP P ∆中,13PA P A =,23PC PC =,所以AC 是中位线,故1224PP AC ==. 同理,234P P =,314P P =.所以123PP P ∆是等边三角形,各边长均为4.设Q 是ABC ∆的中心,则PQ ⊥平面ABC ,所以AQ =,PQ =.从而,133ABC V S PQ ∆=⋅= 20.解: (1)因为2424x x y +=-,所以()4121x y y +=-, 得1y <-或1y >,且()241log 1y x y +=-.因此,所求反函数为()1241()log 1x f x x -+=-,()(),11,x ∈-∞-+∞.(2)当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数;当1a =时,21()21x x f x +=-,定义域为()(),00,-∞+∞,2121()()2121x x x x f x f x --++-==-=---,故函数()y f x =为奇函数; 当0a >且1a ≠时,定义域为()()22,log log ,a a -∞+∞关于原点不对称,故函数()y f x =既不是奇函数,也不是偶函数.21、[解]:(1)记CD h =.根据已知得tan tan 20αβ≥>, tan 35h α=,tan 80h β=,所以2280035180hh h ⨯≥>⎛⎫- ⎪⎝⎭,解得28.28h ≤≈.因此,CD 的长至多约为28.28米.(2)在ABD ∆中,由已知,56.57αβ+=,115AB =, 由正弦定理得()sin sin BD AB ααβ=+ ,解得85.064BD ≈. 在BCD ∆中,由余弦定理得2222cos CD BC BD BC BD β=+-⋅⋅,解得26.93CD ≈. 所以,CD 的长约为26.93米.22、[证]:(1)因为40η=-<,所以点,A B 被直线10x y +-=分隔.[解]:(2)直线y kx =与曲线2241x y -=有公共点的充要条件是方程组2241x y y kx ⎧-=⎨=⎩有解,即12k <.因为直线y kx =是曲线2241x y -=的分隔线,故它们没有公共点,即12k ≥. 当12k ≥时,对于直线y kx =,曲线2241x y -=上的点()1,0-和()1,0满足20k η=-<,即点()1,0-和()1,0被y kx =分隔.故实数k 的取值范围是11(,][,)22-∞-+∞.[证]:(3)设M 的坐标为(,)x y ,则曲线E 1x =,即22[(2)]1x y x +-⋅=. 对任意的0y ,()00,y 不是上述方程的解,即y 轴与曲线E 没有公共点.又曲线E 上的点()1,2-和()1,2对于y 轴满足0η<,即点()1,2-和()1,2被y 轴分隔. 所以y 轴为曲线E 的分隔线.23、[解]:(1)由条件得263x ≤≤且933x x ≤≤,解得36x ≤≤. 所以x 的取值范围是[3,6]x ∈.(2)设{}n a 的公比为q .由133n n a a ≤,且110n n a a q -=≠,得0n a >. 因为1133n n n a a a +≤≤,所以133q ≤≤. 从而111111()10003m m m a q q ---==≥,131000m -≥,解得8m ≥.8m =时,1[,3]3q =.所以,m 的最小值为8,8m =时,{}n a (3)设数列12100,,a a a 的公差为d . 则133n n n a a d a ≤+≤,223n n a d a -≤≤,1,2,,99n =.① 当0d >时,999821a a a a >>>>,所以102d a <≤,即02d <≤. ② 当0d =时,999821a a a a ====,符合条件. ③ 当0d <时,999821a a a a <<<<,所以9999223a d a -≤≤, 2(198)2(198)3d d d -+≤≤+,又0d <,所以20199d -≤<. 综上,12100,,a a a 的公差的取值范围为2[,2]199-.。