2018高考理科数学选填压轴题专练32题(含详细答案)

合集下载

18年理科数学高考真题

18年理科数学高考真题

18年理科数学高考真题2018年理科数学高考真题共分为选择题和解答题两部分,共计12个小题。

下面将逐一进行讲解和解答。

一、选择题部分1. 如题设函数 $f(x)=\begin{cases} 2x+1, & x<0\\ x^2-1, & x\geq 0\end{cases}$,则 $f(x)$ 的一个单调递减区间是 $()$。

解析:当 $x<0$ 时,$f'(x)=2>0$,因此 $f(x)$ 在 $(-\infty,0)$ 上单调递增;当 $x\geq 0$ 时,$f'(x)=2x\geq 0$,因此 $f(x)$ 在 $[0,+\infty)$ 上单调递增。

所以, $f(x)$ 的一个单调递减区间是 $(0,+\infty)$。

2. 若 $a,b$ 是两个不相等的实数,且 $a^2+b^2=2$,则$a^4+b^4$ 的最大值是 $()$。

解析:由均值不等式可得$a^4+b^4\geq \frac{1}{2}(a^2+b^2)^2=2$,等号成立时,要求 $a=b=1$。

故 $a^4+b^4$ 的最大值为 $2$。

3. 记 $\lim_{n\to \infty}\frac{\tan^2 n}{n^2}=A$,则$A=\underline{()}$。

解析:根据极限的性质可得 $\lim_{n\to \infty}\frac{\tan^2n}{n^2}=\lim_{n\to \infty}\left( \frac{\tan n}{n} \right)^2=1^2=1$。

因此,$A=1$。

4. 已知向量 $\overrightarrow{a}=(1,m),\overrightarrow{b}=(2,-1)$,若向量 $\overrightarrow{a}$ 与向量 $\overrightarrow{b}$ 的夹角为$60^\circ$,则实数 $m$ 的值是 $()$。

2018年高考数学(理科)真题完整版.doc

2018年高考数学(理科)真题完整版.doc

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( )A .0B .12C .1D 2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->UD .{}{}|1|2x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则a 5=( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( ) A .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=u u u u r u u u r( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( ) A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .33B .23C .32D .3 二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。

2018年高考数学压轴题数列大题含答案

2018年高考数学压轴题数列大题含答案
5.已知数列 , , 为数列 的前 项和, , ,
.
(1)求数列 的通项公式;
(2)证明 为等差数列.
(3)若数列 的通项公式为 ,令 . 为 的前 项的和,求 .
6.已知数列 满足 , .
(Ⅰ)求数列 的通项公式;
(Ⅱ)求证:对任意的 ,都有
① ;
② ( ).
7.在数列 中,若 是整数,且 ( ,且 ).
(Ⅰ)若 , ,写出 的值;
(Ⅱ)若在数列 的前2018项中,奇数的个数为 ,求 得最大值;
(Ⅲ)若数列 中, 是奇数, ,证明:对任意 , 不是4的倍数.
8.设等差数列 的公差为 ,等差数列 的公差为 ,记
,其中 表示 这 个数中最大的数
(1)若 ,求 的值,并猜想数列 的通项公式(不必证明)
(2)设 ,若不等式 对不小于2的一切自然数n都成立,求 的取值范围
⑶设数列 的前 项的和为 ,试求数列 的最大值.
11.(本小题满分16分)已知数列 的奇数项是首项为 的等差数列,偶数项是首项为 的等比数列,数列 前 项和为 ,且满足 .
(1)求数列 的通项公式;
(2)若 ,求正整数 的值;
(3)是否存在正整数 ,使得 恰好为数列 中的一项?若存在,求出所有满足条件的 值,若不存在,说明理由.
(1)求证:数列 为等比数列;
(2)数列 中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设 ,其中 为常数,且 ,
,求 .
19.(本题满分14分)在单调递增数列 中, , ,且 成等差数列, 成等比数列, .
(Ⅰ)(ⅰ)求证:数列 为等差数列;
(ⅱ)求数列 的通项公式.
(Ⅱ)设数列 的前 项和为 ,证明: , .

2018年普通高等学校招生全国统一考试押题卷 理科数学(三)解析版(含答案)

2018年普通高等学校招生全国统一考试押题卷 理科数学(三)解析版(含答案)

绝密 ★ 启用前2018年普通高等学校招生全国统一考试押题卷理 科 数 学(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}1,2,3A =,{}34xB x =>,则AB =( )A .{1,2}B .{2,3}C .{1,3}D .{1,2,3}【答案】B【解析】{}1,2,3A =,{}34xB x =>()3log 4,=+∞,{}2,3AB ∴=,选B .2.在ABC △中,“0AB BC ⋅>”是“ABC △是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】若0AB BC ⋅>,则B ∠为钝角,故ABC △为钝角三角形;若ABC △为钝角三角形,则B ∠可能为锐角,此时0AB BC ⋅<,故选A .3.已知实数a ,b 满足:122ab<<,则( )A .11a b<B .22log log a b <C>D .cos cos a b >【答案】B【解析】函数2xy =为增函数,故0b a >>.而对数函数2log y x =为增函数,所以22log log a b <,故选B . 4.已知函数()()sin f x x ωϕ=+(0ω>,π2ϕ<()y f x =y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭BC .关于直线π12x =对称 D【答案】A【解析】由题意得π22T =,πT ∴=,22T ωπ==,因为函数()y f x =象关于yy2ϕπ<,6ϕπ∴=-A .5.设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足10n n S S +<⋅的正整数n 的值为( )A .10B .11C .12D .13【答案】C【解析】∵675S S S >>,∴111657654675222a d a d a d ⨯⨯⨯+>+>+,∴70a <,670a a +>,∴()113137131302a a S a +==<,()()112126712602a a S a a +==+>,∴满足10n n S S +<⋅的正整数n 的值为12,故选C . 6.将函数πsin 6y x ⎛⎫=-⎪⎝⎭的图象上所有的点向右平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A .5πsin 212y x ⎛⎫=-⎪⎝⎭B .πsin 212x y ⎛⎫=+⎪⎝⎭ C .5πsin 212x y ⎛⎫=- ⎪⎝⎭ D .5πsin 224x y ⎛⎫=-⎪⎝⎭ 【答案】C【解析】向右平移π4个单位长度得带5πsin 12x ⎛⎫- ⎪⎝⎭,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变)得到5πsin 212x y ⎛⎫=-⎪⎝⎭,故选C . 7.某几何体的三视图如图所示,则该几何体的体积是( )ABCD【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体积为B . 8.函数()()22cos x x f x x -=-在区间[]5,5-上的图象大致为( )A .B .C .D .【答案】D【解析】因为当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <;当352x π⎛⎫∈ ⎪⎝⎭,时,()0f x >.所以选D .9.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n =,则p 的值可以是( )(参考数据:sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A .2.6B .3C .3.1D .3.14【答案】C【解析】模拟执行程序,可得:6n =,,不满足条件S p ≥,12n =,6sin303S =⨯︒=,不满足条件S p ≥,24n =,12sin15120.2588 3.1056S =⨯︒=⨯=,满足条件S p ≥,退出循环,输出n 的值为24.故 3.1p =.故选C .10.已知点()0,1A -是抛物线22x py =的准线上一点,F 为抛物线的焦点,P 为抛物线上的点,且PF m PA =,若双曲线C 中心在原点,F 是它的一个焦点,且过P 点,当m 取最小值时,双曲线C 的离心率为( ) A 2 B 3C1 D1【答案】C【解析】由于A 在抛物线准线上,故2p =,故抛物线方程为24x y =,焦点坐标为()0,1.当直线PA 和抛物线相切时,m 取得最小值,设直线PA 的方程为1y kx =-,代入抛物线方程得2440x kx -+=,判别式216160k ∆=-=,解得1k =±,不妨设1k =,由2440x x -+=,解得2x =,即()2,1P .设双曲线方程为22221y x a b -=,将P 点坐标代入得22141a b-=,即222240b a a b --=,而双曲线1c =,故221a b =+,221b a =-,所以()22221410a a a a ----=,解得1a =,故离心率为1ca ==,故选C . 11.在三棱锥S ABC -中,SB BC ⊥,SA AC ⊥,SB BC =,SA AC =,12AB SC =,且三棱锥S ABC-,则该三棱锥的外接球半径是( ) A .1 B .2C .3D .4【答案】C【解析】取SC 中点O ,则OA OB OC OS ===,即O 为三棱锥的外接球球心,设半径为r,则3r ∴=,选C . 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x x =∈R ,()2eln h x x =,有下列命题: ①()()()F x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增; ②()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;③()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是](40 -,; ④()f x 和()h x 之间存在唯一的“隔离直线其中真命题的个数有( ) A .1个 B .2个C .3个D .4个【答案】C【解析】①()F x f =x ⎛⎫∈ ⎪⎝⎭,()2120F x x x '∴=+>,()()()F x f x g x ∴=-,在x ⎛⎫∈ ⎪⎝⎭内单调递增,故①正确;②,③设()(),f x g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 成立,即有10∆≤,240k b +≤,又1kx b x≤+对一切0x <成立,则210kx bx +-≤,即20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,40k -≤≤,同理421664b k b ≤≤-,可得40b -≤≤,故②正确,③错误,④函数()f x 和()h x 的图象在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,2e e 0x kx k -+-≥,当x ∈R恒成立,则2e e y x =-,下面证明()()2e ex G x x-'=,当时,()0G x '=;当0x <<时,()'0G x <;当x >()'0G x >;当x e =时,()G x '取到极小值,极小值是0()2e e h x x ≤-,∴函数()f x 和()h x 故选C .第Ⅱ卷本卷包括必考题和选考题两部分。

2018届福建省高三高考压轴卷理科数学试题及答案

2018届福建省高三高考压轴卷理科数学试题及答案

2018年福建省高考压轴卷理科数学参照公式:样本数据x1,x2,,xn的标准差锥体体积公式s=1(x1x)2(x2x)2⋯(x n x)2V=1Shn3此中x为样本均匀数此中S为底面面积,h为高柱体体积公式球的表面积、体积公式V=Sh S4R2,V4R33此中S为底面面积,h为高此中R为球的半径一、选择题(本大题共18小题,每题5分,共50分)1、已知全集U R, 会合A 1,2,3,4,5 ,B {x R|x 2},以下图中暗影部分所表示的会合为A.{1}B.C.{1,2}D.2、以下命题正确的选项是{0,1}{0,1,2}AA.存在x0∈R,使得e x00的否认是:不存在x0∈R,使得e x00;B.存在x0∈R,使得x0210的否认是:随意∈,均有x0210RC.若x=3,则x2-2x-3=0的否命题是:若x≠3,则x2-2x-3≠0. D.若pq为假命题,则命题p与q必一真一假3、已知平面,和直线m,给出条件:①m//;②m;③m;④;⑤//.为使m,应选择下边四个选项中的()A.③⑤B.①⑤C.①④D.②⑤4、直线y=5与y1在区间0,4上截曲线ymsin xn(m,n0)所得的弦长相2等且不为零,则以下描绘正确的选项是()(A)m3,n=5(B)m3,n22(C)m3,n=5(D)m3,n225、如图5,在△ABC中,AB=3,AC=5,若O为△ABC的外心,则AOBC的值是(()A.43B.8C.62D.66、履行下边的框图,若输入的N是6,则输出p的值是()K=K+1是开始输入NK=1,P=1P=P*KK<N?否结束输出PA.180B.720C.1840D.51807、如图,设圆弧x2y21(x0,y0)与两坐标轴正半轴围成的扇形地区为M,过圆弧上一点A做该圆的切线与两坐标轴正半轴围成的yB三角形地区为N.现随机在地区N内投一点B,若设点落在1地区M内的概率为P,则P的最大值为()AA.1B.C.1O 1482D.48、为检查某校学生喜爱数学课的人数比率,采纳以下检查方法:(1)在该校中随机抽取180名学生,并编号为1,2,3,,180;2)在箱内搁置两个白球和三个红球,让抽取的180名学生疏别从箱中随机摸出一球,记着其颜色并放回;3)请以下两类学生举手:(ⅰ)摸到白球且号数为偶数的学生;(ⅱ)摸到红球且不喜爱数学课的学生.假如总合有26名学生举手,那么用概率与统计的知识预计,该校学生中喜爱数学课的人数比率大概是A.88%B.90%C.92%D.94%x2y29、已知F2、F1是双曲线a2-b2=1(a>0,b>0)的左右焦点F2对于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为A.3B.3C.2D.218、已知f(x)与g(x)都是定义在R上的函数,g(x)0,f/(x)g(x)f(x)g/(x),且f (x)a x g(x)(a0,且4,在有穷数列f(n)(n1,2,10)中,随意取前k项相加,3g(n)则前k项和大于15的概率是()16A .3B.4C.2 D.1 555二、填空题(本大题共5小题,每题4分,共20分)18、设常数a R.若x25a的二项睁开式中x7项的系数为-18,则a_______.x18、已知一个几何体是由上下两部分构成的组合体,其三视图如右图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是.18、小明在做一道数学题目时发现:若复数z1cos1isin1,z2cos2isin2,,z 3cos3isin3(此中1,2,3R),则z1z2cos(12)isin(1+2),z 2z3cos(23)isin(2+3),依据上边的结论,能够提出猜想:z·z·z=.2318、若函数flnex,则2014ke=_______________ xxk1201518、意大利有名数学家斐波那契在研究兔子生殖问题时,发现有这样一组数:1,1,2,3,5,8,18,此中从第三个数起,每一个数都等于他前而两个数的和.该数列是一个特别漂亮、和睦的数列,有好多巧妙的属性.比方:跟着数列项数的增添,前一项与后一项之比越迫近黄金切割.人们称该数列{an}为“斐波那契数列”.若把该数列{an}的每一项除以4所得的余数按相对应的顺序构成新数列{bn},在数列{bn}中第2018项的值是___3_____三、解答题:共6小题80分.解答应写出文字说明,证明过程或演算步骤.18、(此题满分18分)以下图是展望到的某地5月1日至18日的空气质量指数趋向图,空气质量指数小于180表示空气质量优秀,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月18日中的某一天抵达该市,并逗留2天(Ⅰ)求这人抵达当天空气质量优秀的概率;(Ⅱ)设X是这人逗留时期空气质量优秀的天数,求X的散布列与数学希望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)18、(本小题满分18分)已知函数f(x)2Acos2(x)A(xR,A0,||),yf(x)的部分图像如图所62示,P、Q分别为该图像的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及的值;(Ⅱ)若点R的坐标为(1,0),PRQ2,求A的值和PRQ的面积.318、(本小题满分18分)如图,在圆O:x2y24上任取一点P,过点P作x轴的垂线段PD,D为垂足.设M为线段PD的中点.P (Ⅰ)当点P在圆O上运动时,求点M的轨迹E的方程;(Ⅱ)若圆O在点P处的切线与x轴交于点N,试判断直线MN与轨迹E的地点关系.MN O D x19、(此题满分18分)以下图,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB3,BC4,作BB1AA1,分别交A1D1,AD1于点B1,P,作CC1AA1,分别交A1D1,AD1于点C1,Q,将该正方形沿BB1,折叠,使得DD1与AA1重合,构成以下图的三棱柱ABCA1B1C1.CC1(1)求证:AB平面BCC1B1;A A1B P B AA 11C QC1BP B1D D1C QC1(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为33小值.,求|BE|的最20、(本小题满分18分)设f(x)exa(x1)(e是自然对数的底数,e),且f(0).(Ⅰ)务实数a的值,并求函数f(x)的单一区间;(Ⅱ)设g(x)f(x)f(x),对随意x1,x2R(x1x2),恒有g(x2)g(x1)m成立.求x2x1实数m的取值范围;(Ⅲ)若正实数1,2知足121,x1,x2R(x1x2),试证明:f(1 x12x2)1f(x1)2f(x2);并进一步判断:当正实数1,2,,n知足12n1(nN,n2),且x1,x2,,x n是互不相等的实数时,不等式f(1 x12x2nxn)1f(x1)2f(x2)nf(xn)能否仍旧成立.21.此题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分18分.假如多做,则按所做的前两题记分.作答时,先用 2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换在直角坐标平面内,将每个点绕原点按逆时针方向旋转45的变换R所对应的矩阵为M,将每个点横、纵坐标分别变成本来的2倍的变换T所对应的矩阵为N.(Ⅰ)求矩阵M的逆矩阵M1;(Ⅱ)求曲线xy1先在变换R作用下,而后在变换T作用下获得的曲线方程.(2)(本小题满分7分)选修4—4:极坐标与参数方程在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴成立极坐标系.已x1tcos 知曲线C的极坐标方程为4cos,直线l的参数方程为y 6 (t为参数).3 tsin6(Ⅰ)分别求出曲线(Ⅱ)若点P在曲线数.C和直线C上,且l的直角坐标方程;P到直线l的距离为1,求知足这样条件的点P的个(3)(本小题满分7分) 选修4—5:不等式选讲已知a b0,且ma1.b)b(a(Ⅰ)试利用基本不等式求m的最小值t;(Ⅱ)若实数x,y,z知足x24y2z2t,求证:x 2y z 3.2018福建省高考压轴卷理科数学参照答案一、选择题(本大题共18小题,每题5分,共50分)1、【答案】B分析:由图能够获得暗影部分表示的会合为CA(A B),AB={2,3,4,5},则CA(A B)={1}选A2、【答案】C分析:命题的否认和否命题的差别:对命题的否认不过否认命题的结论,而否命题,既否认假定,又否认结论。

2018年高考数学压轴题(学生版(文)).doc

2018年高考数学压轴题(学生版(文)).doc

2018年高考数学压轴题(学生版(文))2018年高考数学30道压轴题训练1.椭圆的中心是原点O,它的短轴长为22应于焦点(,)0F c(0>c)的准线l与x轴相交于点A,2=,过点A的直线与椭圆相交于P、OF FAQ两点。

(1)求椭圆的方程及离心率;(2)若0OP OQ⋅=,求直线PQ的方程;234且当]2,0[∈x 时,|1|)(-=x x f 。

(1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。

(2) 证明)(x f 是偶函数。

(3) 试问方程01log)(4=+xx f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。

53.如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(22=-+y x。

(1) 若动点M 到点F 的距离比它到直线L的距离小1,求动点M 的轨迹E 的方程;6(2) 过点F 的直线g 交轨迹E 于G (x 1,y 1)、H (x 2,y 2(3) 过轨迹圆C 的切线,切点为A 、B ,要使四边形PACB 的面积S 最小,求点P 的坐标及S 的最小值。

8642-2-4-15-10-5510x CyXOF784.以椭圆222y ax =1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.95 已知,二次函数f(x)=ax2+bx+c及一次函数g(x)=-bx,其中a、b、c∈R,a >b>c,a+b+c=0.(Ⅰ)求证:f(x)及g(x)两函数图象相交于相异两点;(Ⅱ)设f(x)、g(x)两图象交于A、B两点,当AB线段在x轴上射影为A1B1时,试求|A1B1|的取值范围.106.已知过函数f(x)=13+2x的图象上一点B+ax(1,b)的切线的斜率为-3。

(1)求a、b的值;(2)求A的取值范围,使不等式f(x)≤A -1987对于x∈[-1,4]恒成立;(3)令()()1fxg。

2018全国三卷理科数学高中高考真题包括答案.doc

2018全国三卷理科数学高中高考真题包括答案.doc

精品文档2018 年普通高等学校招生全国统一考试理科数学一、选择题:本题共12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A x | x 1≥ 0 , B 0 ,1,2 ,则 A BA .0B.1C.1,2D.0,1,22.1i 2 iA . 3 i B. 3 i C.3i D.3i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若 sin 1,则 cos2 3A .8B.7C.7 D.8 9 9 9 955. x2 2 的展开式中 x 4 的系数为xA .10 B. 20 C. 40 D. 806.直线 x y 2 0 分别与 x 轴,y轴交于A,B两点,点P在圆x22 上,则△ABP面积的取值范围2y2是A .2,6 B.4,8 C. 2 ,3 2 D. 2 2 ,3 2 7.函数y x4 x2 2 的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设 X 为该群体的 10 位成员中使用移动支付的人数, DX 2.4 , P X 4P X 6 ,则 pA .0.7B . 0.6C . 0.4D . 0.3222. △ABC 的内角 A , B , 的对边分别为 a , b , c ,若 △ ABC 的面积为 a bc,则 C9 C 4A . πB . πC . πD . π 234610.设 A ,B ,C , D 是同一个半径为4 的球的球面上四点, △ ABC 为等边三角形且其面积为9 3 ,则三棱锥D ABC 体积的最大值为A . 12 3B . 18 3C . 24 3D . 54 311.设 F 1 ,F 2x 2 y 20,b 0 )的左,右焦点, O 是坐标原点.过 F 2 作 C 的一条渐近线的是双曲线 C : 22 1 ( aa b垂线,垂足为 P .若 PF 16 OP ,则 C 的离心率为A . 5B . 2C . 3D . 212.设 a log 0.2 0.3 , b log 2 0.3 ,则A . a b ab 0B . ab a b 0C . a b 0 abD . ab 0 a b二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018全国II卷高考压轴卷理科数学含答案解析

2018全国II卷高考压轴卷理科数学含答案解析

2018全国卷II 高考压轴卷理科数学本试卷共23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知U={y|y=log 2x ,x >1},P={y|y=,x >2},则∁U P=( ) A .[21,+∞) B .(0,21) C .(0,+∞) D .(﹣∞,0)∪(21,+∞) 2. “0a >”是“函数3()(0,)f x x ax =++∞在区间上是增函数”的 A .必要而不充分条件 B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件3. 已知函数2010sin (01)()log (1)x x f x x x π≤≤⎧=⎨>⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是( ) A .(1,2010)B .(1,2011)C .(2,2011)D .[2,2011]4. 设S n 是等差数列{a n }的前n项和,若=,则=( )A. B. C .4 D .55. 在△ABC 中,AN =41NC ,P 是直线BN 上的一点,若=m +52AC ,则实数m 的值为( ) A .﹣4 B .﹣1 C .1D .46. 在四棱锥P ﹣ABCD 中,PA ⊥底面ABCD ,底面ABCD 为正方形,PA=AB ,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .B .C .D .7.秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为3,每次输入a 的值均为4,输出s 的值为484,则输入n 的值为( )A .6B .5C .4D .38. 已知圆C :x 2+y 2=4,点P 为直线x+2y ﹣9=0上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点( )A .B .C .(2,0)D .(9,0)9. 椭圆x 2+=1(0<b <1)的左焦点为F ,上顶点为A ,右顶点为B ,若△FAB 的外接圆圆心P (m ,n )在直线y=﹣x 的左下方,则该椭圆离心率的取值范围为( )A .(,1) B .(,1) C .(0,) D .(0,)10. 在区间[﹣1,1]上任取两数s 和t ,则关于x 的方程x 2+2sx+t=0的两根都是正数的概率为( ) A .B .C .D .11. 已知12ea dx x=⎰,则()()4x y x a ++展开式中3x 的系数为( ) A .24 B . 32 C. 44 D .56 12. 已知正数x 、y 、z 满足xyzzS z y x 21,1222+==++则的最小值为( )A .3B .1)2C .4D .1)二、填空题:本题共4小题,每小题5分,共20分。

2018高考理科数学选填压轴题专练32题(含详细问题详解)

2018高考理科数学选填压轴题专练32题(含详细问题详解)

一.选择题(共26小题)1.设实数x,y 满足,则z=+的取值范围是()A.[4,] B.[,] C.[4,] D.[,]2.已知三棱锥P﹣ABC中,PA⊥平面ABC ,且,AC=2AB,PA=1,BC=3,则该三棱锥的外接球的体积等于()A .B .C .D .3.三棱锥P﹣ABC中,PA⊥平面ABC且PA=2,△ABC 是边长为的等边三角形,则该三棱锥外接球的表面积为()A .B.4π C.8π D.20π4.已知函数f(x+1)是偶函数,且x>1时,f′(x)<0恒成立,又f(4)=0,则(x+3)f(x+4)<0的解集为()A.(﹣∞,﹣2)∪(4,+∞) B.(﹣6,﹣3)∪(0,4)C.(﹣∞,﹣6)∪(4,+∞)D.(﹣6,﹣3)∪(0,+∞)5.当a>0时,函数f(x)=(x2﹣2ax)e x的图象大致是()A .B .CD .6.抛物线y2=4x的焦点为F,M为抛物线上的动点,又已知点N(﹣1,0),则的取值范围是()A.[1,2] B.[,] C.[,2] D.[1,]7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为an,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.268.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,若不等式f (﹣4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是()A .B .C .D .9.将函数的图象向左平移个单位得到y=g(x)的图象,若对满足|f(x1)﹣g(x2)|=2的x1、x2,|x1﹣x2|min=,则φ的值是()A . B .C .D .10.在平面直角坐标系xOy中,点P为椭圆C :+=1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈(,],则椭圆C的离心率的取值范围为()A.(0,] B.(0,] C.[,] D.[,]11.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为()A .B .C .D.512.若函数f(x)=2sin ()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C 两点,则(+)•=()A.﹣32 B.﹣16 C.16 D.3213.已知抛物线方程为y2=4x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴的距离为d1,P到l的距离为d2,则d1+d2的最小值为()A .B .﹣1 C.2D.2+214.已知抛物线方程为y2=8x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴距离为d1,P到l的距离为d2,则d1+d2的最小值为()A.2﹣2 B.2C.2﹣2 D.2+215.如图,扇形AOB中,OA=1,∠AOB=90°,M是OB中点,P是弧AB上的动点,N 是线段OA上的动点,则的最小值为()A.0 B.1 C .D.1﹣16.若函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,且b=lg0.2,c=20.2,则()A.c<b<a B.b<c<a C.a<b<c D.b<a<c17.双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是()A .B .C.2 D .18.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f (x),且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<e x的解集为()A.(﹣∞,e4)B.(e4,+∞)C.(﹣∞,0) D.(0,+∞)19.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<x,且f(2)=1,则不等式f(x )<x2﹣1的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)20.对任意实数a,b,定义运算“⊕”:,设f(x)=(x2﹣1)⊕(4+x),若函数y=f(x)﹣k有三个不同零点,则实数k的取值范围是()A.(﹣1,2] B.[0,1] C.[﹣1,3)D.[﹣1,1)21.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f (x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)22.定义在区间[a,b]上的连续函数y=f(x),如果∃ξ∈[a,b],使得f(b)﹣f (a)=f′(ξ)(b﹣a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f(x)=3x+2;②f(x)=x2;③f(x)=ln(x+1);④中,在区间[0,1]上“中值点”多于1个的函数是()A.①④B.①③C.②④D.②③23.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导数f′(x )>,则不等式f(x2)<的解集为()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.(﹣1,1)24.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对∀x ∈(﹣,)恒成立,则φ的取值范围是()A .B .C .D .25.在R上定义运算⊕:x⊗y=x(1﹣y)若对任意x>2,不等式(x﹣a)⊗x≤a+2都成立,则实数a的取值范围是()A.[﹣1,7] B.(﹣∞,3] C.(﹣∞,7] D.(﹣∞,﹣1]∪[7,+∞)26.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[﹣2,0]时,,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是()A .B .C .D .27.已知函数f(x)=xe x﹣ae2x(a∈R)恰有两个极值点x1,x2(x1<x2),则实数a 的取值范围为.28.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B )>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;(4)设曲线y=e x上不同两点A(x1,y1),B(x2,y2),且x1﹣x2=1,若t•φ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);以上正确命题的序号为(写出所有正确的)29.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且.若不等式对任意n∈N*恒成立,则实数λ的最大值为.30.已知点A (0,1),直线l :y=kx ﹣m 与圆O :x 2+y 2=1交于B ,C 两点,△ABC 和△OBC 的面积分别为S 1,S 2,若∠BAC=60°,且S 1=2S 2,则实数k 的值为 . 31.定义在区间[a ,b]上的连续函数y=f (x ),如果∃ξ∈[a ,b],使得f (b )﹣f (a )=f ′(ξ)(b ﹣a ),则称ξ为区间[a ,b]上的“中值点”.下列函数: ①f (x )=3x+2; ②f (x )=x 2﹣x+1; ③f (x )=ln (x+1); ④f (x )=(x ﹣)3,在区间[0,1]上“中值点”多于一个的函数序号为 .(写出所有满足条件的函数的序号)32.已知函数f (x )=x 3﹣3x ,x ∈[﹣2,2]和函数g (x )=ax ﹣1,x ∈[﹣2,2],若对于∀x 1∈[﹣2,2],总∃x 0∈[﹣2,2],使得g (x 0)=f (x 1)成立,则实数a 的取值范围 .1.解:由已知得到可行域如图:由图象得到的范围为[kOB,kOC],即[,2],所以z=+的最小值为4;(当且仅当y=2x=2时取得);当=,z 最大值为;所以z=+的取值范围是[4,];故选:C.2.解:∵三棱锥P﹣ABC中,PA⊥平面ABC ,且,AC=2AB,PA=1,BC=3,设AC=2AB=2x,∴由余弦定理得32=x2+4x2﹣2×,解得AC=2,AB=,∴AB2+BC2=AC2,∴AB⊥BC,构造长方体ABCD﹣PEFG,则三棱锥P﹣ABC的外接球就是长方体ABCD﹣PEFG的外接球,∴该三棱锥的外接球的半径R===,∴该三棱锥的外接球的体积:V==.故选:A.3.解:根据已知中底面△ABC 是边长为的正三角形,PA⊥底面ABC,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球∵△ABC 是边长为的正三角形,∴△ABC的外接圆半径r==1,球心到△ABC的外接圆圆心的距离d=1,故球的半径R==,故三棱锥P﹣ABC外接球的表面积S=4πR2=8π,故选:C.4.解:∵函数f(x+1)是偶函数,∴其图象关于y轴对称,∵f(x)的图象是由f(x+1)的图象向右平移1个单位得到的,∴f(x)的图象关于x=1对称,又∵x>1时,f′(x)<0恒成立,所以f(x)在(1,+∞)上递减,在(﹣∞,1)上递增,又f(4)=0,∴f(﹣2)=0,∴当x∈(﹣∞,﹣2)∪(4,+∞)时,f(x)<0;当x∈(﹣2,1)∪(1,4)时,f(x)>0;∴对于(x﹣1)f(x)<0,当x∈(﹣2,1)∪(4,+∞)时成立,∵(x+3)f(x+4)<0可化为(x+4﹣1)f(x+4)<0,∴由﹣2<x+4<1或x+4>4得所求的解为﹣6<x<﹣3或x>0.故选D5.解:解:由f(x)=0,解得x2﹣2ax=0,即x=0或x=2a,∵a>0,∴函数f(x)有两个零点,∴A,C不正确.设a=1,则f(x)=(x2﹣2x)ex,∴f'(x)=(x2﹣2)ex,由f'(x)=(x2﹣2)ex>0,解得x >或x <﹣.由f'(x)=(x2﹣2)ex<0,解得,﹣<x <即x=﹣是函数的一个极大值点,∴D不成立,排除D.故选B.6.解:设过点N的直线方程为y=k(x+1),代入y2=4x可得k2x2+(2k2﹣4)x+k2=0,∴由△=(2k2﹣4)2﹣4k4=0,可得k=±1,此时直线的倾斜角为45°.过M作准线的垂线,垂足为A,则|MF|=|MA|,∴=∴直线的倾斜角为45°或135°时,取得最大值,倾斜角为0°时,取得最小值1,∴的取值范围是[1,].故选:D.7.解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.8.解:∵定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,∴f(0)=0,且f′(x)=3x2+2x≥0,即函数f(x)在[0,+∞)上为增函数,∵f(x)是奇函数,∴函数f(x)在(﹣∞,0]上也是增函数,即函数f(x)在(﹣∞,+∞)上为增函数,则不等式f(﹣4t)>f(2m+mt2)等价为﹣4t>2m+mt2对任意实数t恒成立即mt2+4t+2m<0对任意实数t恒成立,若m=0,则不等式等价为4t<0,即t<0,不满足条件.,若m≠0,则要使mt2+4t+2m<0对任意实数t恒成立,则,解得m <﹣,故选:A 9.解:将函数的图象向左平移个单位得到y=g (x )=sin[2(x+φ)+]=sin (2x+2φ+)的图象,对满足|f (x1)﹣g (x2)|=2的x1、x2,|x1﹣x2|min=, 即两个函数的最大值与最小值的差为2时,|x1﹣x2|min=.不妨设 x1=,此时 x2 =±.若 x1=,x2 =+=,则g (x2)=﹣1,sin2φ=1,φ=.若 x1=,x2 =﹣=﹣,则g (x2)=﹣1,sin2φ=﹣1,φ=,不合题意,故选:B .10.解:∵OP 在y 轴上,且平行四边形中,MN ∥OP , ∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M ,N 两点关于x 轴对称,MN=OP=a , 可设M (x ,﹣),N (x,代入椭圆方程得:|x|=b ,得N (b ,),α为直线ON 的倾斜角,tan α==,cot α=,α∈(,],∴1≤cot α=≤,,∴,∴0<e=≤.∴椭圆C 的离心率的取值范围为(0,].故选:A .11.解:∵球形容器表面积的最小值为30π,∴球形容器的半径的最小值为r==,∴正四棱柱体的对角线长为,设正四棱柱体的高为h , ∴12+12+h2=30, 解得h=2.故选:B .12.解:由f (x )=2sin ()=0可得∴x=6k ﹣2,k ∈Z ∵﹣2<x <10∴x=4即A (4,0) 设B (x1,y1),C (x2,y2)∵过点A 的直线l 与函数的图象交于B 、C 两点 ∴B ,C 两点关于A 对称即x1+x2=8,y1+y2=0 则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选D13.解:如图,过点P 作PA ⊥l 于点A ,作PB ⊥y 轴于点B ,PB 的延长线交准线x=﹣1于点C , 连接PF ,根据抛物线的定义得PA+PC=PA+PF ,∵P 到y 轴的距离为d1,P 到直线l 的距离为d2, ∴d1+d2=PA+PB=(PA+PC )﹣1=(PA+PF )﹣1,根据平面几何知识,可得当P 、A 、F 三点共线时,PA+PF 有最小值, ∵F (1,0)到直线l :x ﹣y+2=0的距离为=∴PA+PF 的最小值是,由此可得d1+d2的最小值为﹣1故选:B.14.解:点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x﹣y+2=0的垂线,此时d1+d2最小,∵F(2,0),则d1+d2=﹣2=2﹣2,故选:C.15.解;分别以OA,OB为x轴,y轴建立平面直角坐标系,设P(cosα,sinα),N(t,0),则0≤t≤1,0≤α≤,M(0,),∴=(﹣cos α,﹣sinα),=(t﹣cosα,﹣sinα).∴=﹣(t﹣cosα)cosα﹣sinα(﹣sinα)=cos2α+sin2α﹣tcosα﹣sinα=1﹣sin(α+φ).其中tanφ=2t,∵0≤α≤,0≤t≤1,∴当α+φ=,t=1时,取得最小值1﹣=1﹣.故选:D.16.解:由5+4x﹣x2>0,得﹣1<x<5,又函数t=5+4x﹣x2的对称轴方程为x=2,∴复合函数f(x)=log0.2(5+4x﹣x2)的减区间为(﹣1,2),∵函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,∴,则0≤a≤1.而b=lg0.2<0,c=20.2>1,∴b<a<c.故选:D.17.解:∵双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一象限内且在l1上,∴F1(﹣c,0)F2(c,0)P(x,y),渐近线l1的直线方程为y=x,渐近线l2的直线方程为y=﹣x,∵l2∥PF2,∴,即ay=bc﹣bx,∵点P在l1上即ay=bx,∴bx=bc﹣bx即x=,∴P (,),∵l2⊥PF1,∴,即3a2=b2,∵a2+b2=c2,∴4a2=c2,即c=2a,∴离心率e==2.故选C.18.解:∵y=f(x+1)为偶函数,∴y=f(x+1)的图象关于x=0对称,∴y=f(x)的图象关于x=1对称,∴f(2)=f(0),又∵f(2)=1,∴f(0)=1;设(x∈R),则,又∵f′(x)<f(x),∴f′(x)﹣f(x)<0,∴g′(x)<0,∴y=g(x)单调递减,∵f(x)<ex,∴,即g(x)<1,又∵,∴g(x)<g(0),∴x>0,故答案为:(0,+∞).19.解:设g(x)=f(x )﹣(x2﹣1),则函数的导数g′(x)=f′(x)﹣x,∵f′(x)<x,∴g′(x)=f′(x)﹣x<0,即函数g(x)为减函数,且g(2)=f(2)﹣(×4﹣1)=1﹣1=0,即不等式f(x )<x2﹣1等价为g(x)<0,即等价为g(x)<g(2),解得x>2,故不等式的解集为{x|x>2}.故选:D.20.解:由x2﹣1﹣(4+x)=x2﹣x﹣5≥1得x2﹣x﹣6≥0,得x≥3或x≤﹣2,此时f(x)=4+x,由x2﹣1﹣(4+x)=x2﹣x﹣5<1得x2﹣x﹣6<0,得﹣2<x<3,此时f(x)=x2﹣1,即f(x)=,若函数y=f(x)﹣k有三个不同零点,即y=f(x)﹣k=0,即k=f(x)有三个不同的根,作出函数f(x)与y=k的图象如图:当k=2时,两个函数有三个交点,当k=﹣1时,两个函数有两个交点,故若函数f(x)与y=k有三个不同的交点,则﹣1<k≤2,即实数k的取值范围是(﹣1,2],故选:A21.解:设g(x)=exf(x)﹣ex,(x∈R),则g′(x)=exf(x)+exf′(x)﹣ex=ex[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵exf(x)>ex+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.22.解:根据题意,“中值点”的几何意义是在区间[a,b]上存在点,使得函数在该点的切线的斜率等于区间[a,b]的两个端点连线的斜率值.对于①,根据题意,在区间[a,b]上的任一点都是“中值点”,f′(x)=3,满足f(b)﹣f(a)=f′(x)(b﹣a),∴①正确;对于②,根据“中值点”函数的定义,抛物线在区间[a,b]只存在一个“中值点”,∴②不正确;对于③,f(x)=ln(x+1)在区间[a,b]只存在一个“中值点”,∴③不正确;对于④,∵f′(x)=3(x ﹣)2,且f(1)﹣f(0)=,1﹣0=1;∴3(x ﹣)2×1=,解得x=±∈[0,1],∴存在两个“中值点”,④正确.故选:A23.解:根据题意,设g(x)=f(x )﹣,其导数g′(x)=f′(x )﹣>0,则函数g(x)在R上为增函数,又由f(1)=1,则g(1)=f(1)﹣=,不等式f(x2)<⇒f(x2)﹣<⇒g(x2)<g(1),又由g(x)在R上为增函数,则x2<1,解可得:﹣1<x<1,即不等式的解集为(﹣1,1);故选:D.24.解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,故函数的周期为=π,∴ω=2,f(x)=2sin(2x+φ)+1.若f(x)>1对∀x ∈(﹣,)恒成立,即当x ∈(﹣,)时,sin(2x+φ)>0恒成立,故有2kπ<2•(﹣)+φ<2•+φ<2kπ+π,求得2kπ+φ<2kπ+,k∈Z,结合所给的选项,故选:D.25.解:∵x⊗y=x(1﹣y),∴(x﹣a)⊗x≤a+2转化为(x﹣a)(1﹣x)≤a+2,∴﹣x2+x+ax﹣a≤a+2,a(x﹣2)≤x2﹣x+2,∵任意x>2,不等式(x﹣a)⊗x≤a+2都成立,∴a ≤.令f(x)=,x>2,则a≤[f(x)]min,x>2而f(x)===(x﹣2)++3≥2+3=7,当且仅当x=4时,取最小值.∴a≤7.故选:C.26.解:由f(x+4)=f(x),即函数f(x)的周期为4,∵当x∈[﹣2,0]时,=2﹣2﹣x,∴若x∈[0,2],则﹣x∈[﹣2,0],∵f(x)是偶函数,∴f(﹣x)=2﹣2x=f(x),即f(x)=2﹣2x,x∈[0,2],由f(x)﹣loga(x+2)=0得f(x)=loga(x+2),作出函数f(x)的图象如图:当a>1时,要使方程f(x)﹣loga(x+2)=0恰有3个不同的实数根,则等价为函数f(x)与g(x)=loga(x+2)有3个不同的交点,则满足,即,解得:<a <故a 的取值范围是(,),故选:C.二.填空题(共6小题)27.解:函数f(x)=xex﹣ae2x可得f′(x)=ex(x+1﹣2aex),要使f(x)恰有2个极值点,则方程x+1﹣2aex=0有2个不相等的实数根,令g(x)=x+1﹣2aex,g′(x)=1﹣2aex;(i)a≤0时,g′(x)>0,g(x)在R递增,不合题意,舍,(ii)a>0时,令g′(x)=0,解得:x=ln,当x<ln时,g′(x)>0,g(x)在(﹣∞,ln)递增,且x→﹣∞时,g(x)<0,x>ln时,g′(x)<0,g(x)在(ln,+∞)递减,且x→+∞时,g(x)<0,∴g(x)max=g(ln)=ln+1﹣2a•=ln>0,∴>1,即0<a <;故答案为:(0,).28.解:对于(1),由y=x3﹣x2+1,得y′=3x2﹣2x,则,,y1=1,y2=5,则,φ(A,B)=,(1)错误;对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确;对于(3),设A(x1,y1),B(x2,y2),y′=2x,则kA﹣kB=2x1﹣2x2,==.∴φ(A,B)==,(3)正确;对于(4),由y=ex,得y′=ex,φ(A,B)==.t•φ(A,B)<1恒成立,即恒成立,t=1时该式成立,∴(4)错误.故答案为:(2)(3).29.解:∵数列{an}是各项均不为零的等差数列,Sn为其前n 项和,且.∴,∴,由a1>0,解得a1=1,=3a2,由a2>0,解得a2=3,∴公差d=a2﹣a1=2,an=1+(n﹣1)×2=2n﹣1.∵不等式对任意n∈N*恒成立,∴对任意n∈N*恒成立,∴==≥2+17=25.当且仅当2n=,即n=2时,取等号,∴实数λ的最大值为25.故答案为:25.30.解:设圆心O、点A到直线的距离分别为d,d′,则d=,d′=,根据∠BAC=60°,可得BC对的圆心角∠BOC=120°,且BC=.∴S△OBC=•OB•OC•sin∠BOC=×1×1×sin120°=,∴S1=②.∴=,=∴k=±,m=1故答案为:±.31.解:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.如图.对于①,根据题意,在区间[0,1]上的任何一点都是“中值点”,故①正确;对于②,根据“中值点”函数的定义,抛物线在区间[0,1]只存在一个“中值点”,故②不正确;对于③,f(x)=ln(x+1)在区间[0,1]只存在一个“中值点”,故③不正确;对于④,根据对称性,函数在区间[0,1]存在两个“中值点”,故④正确.故答案为:①④.32.解:∵f(x)=x3﹣3x,∴f′(x)=3(x﹣1)(x+1),当x∈[﹣2,﹣1],f′(x)≥0,x∈(﹣1,1),f′(x)<0;x∈(1,2],f′(x)>0.∴f(x)在[﹣2,﹣1]上是增函数,(﹣1,1)上递减,(1,2)递增;且f(﹣2)=﹣2,f(﹣1)=2,f(1)=﹣2,f(2)=2.∴f(x)的值域A=[﹣2,2];又∵g(x)=ax﹣1(a>0)在[﹣2,2]上是增函数,∴g(x)的值域B=[﹣2a﹣1,2a﹣1];根据题意,有A⊆B。

2018届全国统一招生高考押题卷理科数学(一)试卷(含答案)

2018届全国统一招生高考押题卷理科数学(一)试卷(含答案)

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试理 科 数 学(一)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数()i z a a =+∈R 的共轭复数为z ,满足1z =,则复数( ) A .2i +B .2i -C .1i +D .i2.集合()1=0,sin 12A θθ⎧⎫∈π⎨⎬⎩⎭<≤,14B ϕϕ⎧⎫π=<<⎨⎬⎩⎭,则集合AB =( )A .42θθ⎧⎫ππ<<⎨⎬⎩⎭B .16θθ⎧⎫π<<⎨⎬⎩⎭C .62θθ⎧⎫ππ<<⎨⎬⎩⎭D .14θθ⎧⎫π<<⎨⎬⎩⎭3.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子.为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为( ) A .14B .13C .23D .344.已知函数()()2sin f x x ωϕ=+的图象向左平移6π个单位长度后得到函数sin 22y x x =+的图象,则ϕ的可能值为( )A .0B .6π C .3π D .12π 5.在海昏侯墓中发掘出堆积如山的“汉五铢”铜钱.汉代串铜钱的丝绳或麻绳叫“缗”,后来演变为计量铜钱的单位,1000枚铜钱用缗串起来,就叫一缗.假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为( ) A .6210⨯枚B .62.0210⨯枚C .62.02510⨯枚D .62.0510⨯枚6.一个几何体的三视图如图所示,则该几何体的体积为( )正视图侧视图A .2π+B .1+πC .2+2πD .12π+7.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( ) A .1x ≤B .2x ≤C .3x ≤D .4x ≤8.已知某函数图象如图所示,则图象所对应的函数可能是( )A .2xx y =B .22xy =-C .e xy x =-D .|2|2x y x =﹣此卷只装订不密封班级 姓名 准考证号 考场号 座位号9.若双曲线C :()222210,0x y a b a b-=>>的一条渐近线被抛物线24y x =,则双曲线C 的离心率为( ) A .14B .1C .2D .410.若x 错误!未找到引用源。

理科高考数学立体几何选择填空压轴题专练

理科高考数学立体几何选择填空压轴题专练

立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。

2018年高考理科数学选填压轴题专练32题(含详细答案解析)

2018年高考理科数学选填压轴题专练32题(含详细答案解析)

一.选择题(共26小题)1.设实数x,y 满足,则z=+的取值范围是()A.[4,] B.[,] C.[4,] D.[,]2.已知三棱锥P﹣ABC中,PA⊥平面ABC ,且,AC=2AB,PA=1,BC=3,则该三棱锥的外接球的体积等于()A .B .C .D .3.三棱锥P﹣ABC中,PA⊥平面ABC且PA=2,△ABC 是边长为的等边三角形,则该三棱锥外接球的表面积为()A .B.4π C.8π D.20π4.已知函数f(x+1)是偶函数,且x>1时,f′(x)<0恒成立,又f(4)=0,则(x+3)f(x+4)<0的解集为()A.(﹣∞,﹣2)∪(4,+∞) B.(﹣6,﹣3)∪(0,4)C.(﹣∞,﹣6)∪(4,+∞)D.(﹣6,﹣3)∪(0,+∞)5.当a>0时,函数f(x)=(x2﹣2ax)e x的图象大致是()A .B . C D .6.抛物线y2=4x的焦点为F,M为抛物线上的动点,又已知点N(﹣1,0),则的取值范围是()A.[1,2] B.[,] C.[,2] D.[1,]7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.268.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,若不等式f (﹣4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是()A .B .C .D .9.将函数的图象向左平移个单位得到y=g(x)的图象,若对满足|f(x1)﹣g(x2)|=2的x1、x2,|x1﹣x2|min =,则φ的值是()A . B .C .D .10.在平面直角坐标系xOy中,点P为椭圆C :+=1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈(,],则椭圆C的离心率的取值范围为()A.(0,] B.(0,] C.[,] D.[,]11.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为()A .B .C .D.512.若函数f(x)=2sin ()(﹣2<x<10)的图象与x轴交于点A,过点A 的直线l与函数的图象交于B、C 两点,则(+)•=()A.﹣32 B.﹣16 C.16 D.3213.已知抛物线方程为y2=4x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P 到y轴的距离为d1,P到l的距离为d2,则d1+d2的最小值为()A .B .﹣1 C.2D.2+214.已知抛物线方程为y2=8x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P 到y轴距离为d1,P到l的距离为d2,则d1+d2的最小值为()A.2﹣2 B.2C.2﹣2 D.2+215.如图,扇形AOB中,OA=1,∠AOB=90°,M是OB中点,P是弧AB上的动点,N 是线段OA上的动点,则的最小值为()A.0 B.1 C .D.1﹣16.若函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,且b=lg0.2,c=20.2,则()A.c<b<a B.b<c<a C.a<b<c D.b<a<c17.双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是()A .B .C.2 D .18.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f (x),且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<e x的解集为()A.(﹣∞,e4)B.(e4,+∞)C.(﹣∞,0) D.(0,+∞)19.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<x,且f(2)=1,则不等式f(x )<x2﹣1的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)20.对任意实数a,b ,定义运算“⊕”:,设f(x)=(x2﹣1)⊕(4+x),若函数y=f(x)﹣k有三个不同零点,则实数k的取值范围是()A.(﹣1,2] B.[0,1] C.[﹣1,3)D.[﹣1,1)21.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f (x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)22.定义在区间[a,b]上的连续函数y=f(x),如果∃ξ∈[a,b],使得f(b)﹣f (a)=f′(ξ)(b﹣a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f (x)=3x+2;②f(x)=x2;③f(x)=ln(x+1);④中,在区间[0,1]上“中值点”多于1个的函数是()A.①④B.①③C.②④D.②③23.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导数f′(x )>,则不等式f(x2)<的解集为()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.(﹣1,1)24.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对∀x∈(﹣,)恒成立,则φ的取值范围是()A .B .C .D .25.在R上定义运算⊕:x⊗y=x(1﹣y)若对任意x>2,不等式(x﹣a)⊗x≤a+2都成立,则实数a的取值范围是()A.[﹣1,7] B.(﹣∞,3] C.(﹣∞,7] D.(﹣∞,﹣1]∪[7,+∞)26.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[﹣2,0]时,,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是()A .B .C .D .27.已知函数f(x)=xe x﹣ae2x(a∈R)恰有两个极值点x1,x2(x1<x2),则实数a 的取值范围为.28.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定φ(A,B)=叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B )>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;(4)设曲线y=e x上不同两点A(x1,y1),B(x2,y2),且x1﹣x2=1,若t•φ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);以上正确命题的序号为(写出所有正确的)29.已知数列{a n}是各项均不为零的等差数列,S n为其前n项和,且.若不等式对任意n∈N*恒成立,则实数λ的最大值为.30.已知点A(0,1),直线l:y=kx﹣m与圆O:x2+y2=1交于B,C两点,△ABC和△OBC的面积分别为S1,S2,若∠BAC=60°,且S1=2S2,则实数k的值为.31.定义在区间[a,b]上的连续函数y=f(x),如果∃ξ∈[a,b],使得f(b)﹣f (a)=f′(ξ)(b﹣a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f(x)=3x+2;②f(x)=x2﹣x+1;③f(x)=ln(x+1);④f(x)=(x ﹣)3,在区间[0,1]上“中值点”多于一个的函数序号为.(写出所有满足条件的函数的序号)32.已知函数f(x)=x3﹣3x,x∈[﹣2,2]和函数g(x)=ax﹣1,x∈[﹣2,2],若对于∀x1∈[﹣2,2],总∃x0∈[﹣2,2],使得g(x0)=f(x1)成立,则实数a的取值范围.1.解:由已知得到可行域如图:由图象得到的范围为[kOB,kOC],即[,2],所以z=+的最小值为4;(当且仅当y=2x=2时取得);当=,z 最大值为;所以z=+的取值范围是[4,];故选:C.2.解:∵三棱锥P﹣ABC中,PA⊥平面ABC ,且,AC=2AB,PA=1,BC=3,设AC=2AB=2x,∴由余弦定理得32=x2+4x2﹣2×,解得AC=2,AB=,∴AB2+BC2=AC2,∴AB⊥BC,构造长方体ABCD﹣PEFG,则三棱锥P﹣ABC的外接球就是长方体ABCD﹣PEFG的外接球,∴该三棱锥的外接球的半径R===,∴该三棱锥的外接球的体积:V==.故选:A.3.解:根据已知中底面△ABC 是边长为的正三角形,PA⊥底面ABC,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球∵△ABC 是边长为的正三角形,∴△ABC的外接圆半径r==1,球心到△ABC的外接圆圆心的距离d=1,故球的半径R==,故三棱锥P﹣ABC外接球的表面积S=4πR2=8π,故选:C.4.解:∵函数f(x+1)是偶函数,∴其图象关于y轴对称,∵f(x)的图象是由f(x+1)的图象向右平移1个单位得到的,∴f(x)的图象关于x=1对称,又∵x>1时,f′(x)<0恒成立,所以f(x)在(1,+∞)上递减,在(﹣∞,1)上递增,又f(4)=0,∴f(﹣2)=0,∴当x∈(﹣∞,﹣2)∪(4,+∞)时,f(x)<0;当x∈(﹣2,1)∪(1,4)时,f(x)>0;∴对于(x﹣1)f(x)<0,当x∈(﹣2,1)∪(4,+∞)时成立,∵(x+3)f(x+4)<0可化为(x+4﹣1)f(x+4)<0,∴由﹣2<x+4<1或x+4>4得所求的解为﹣6<x<﹣3或x>0.故选D5.解:解:由f(x)=0,解得x2﹣2ax=0,即x=0或x=2a,∵a>0,∴函数f(x)有两个零点,∴A,C不正确.设a=1,则f(x)=(x2﹣2x)ex,∴f'(x)=(x2﹣2)ex,由f'(x)=(x2﹣2)ex>0,解得x >或x <﹣.由f'(x)=(x2﹣2)ex<0,解得,﹣<x <即x=﹣是函数的一个极大值点,∴D不成立,排除D.故选B.6.解:设过点N的直线方程为y=k(x+1),代入y2=4x可得k2x2+(2k2﹣4)x+k2=0,∴由△=(2k2﹣4)2﹣4k4=0,可得k=±1,此时直线的倾斜角为45°.过M作准线的垂线,垂足为A,则|MF|=|MA|,∴=∴直线的倾斜角为45°或135°时,取得最大值,倾斜角为0°时,取得最小值1,∴的取值范围是[1,].故选:D.7.解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.8.解:∵定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,∴f(0)=0,且f′(x)=3x2+2x≥0,即函数f(x)在[0,+∞)上为增函数,∵f(x)是奇函数,∴函数f(x)在(﹣∞,0]上也是增函数,即函数f(x)在(﹣∞,+∞)上为增函数,则不等式f(﹣4t)>f(2m+mt2)等价为﹣4t>2m+mt2对任意实数t恒成立即mt2+4t+2m<0对任意实数t恒成立,若m=0,则不等式等价为4t<0,即t<0,不满足条件.,若m≠0,则要使mt2+4t+2m<0对任意实数t恒成立,则,解得m <﹣,故选:A 9.解:将函数的图象向左平移个单位得到y=g (x )=sin[2(x+φ)+]=sin (2x+2φ+)的图象,对满足|f (x1)﹣g (x2)|=2的x1、x2,|x1﹣x2|min=, 即两个函数的最大值与最小值的差为2时,|x1﹣x2|min=.不妨设 x1=,此时 x2 =±.若 x1=,x2 =+=,则g (x2)=﹣1,sin2φ=1,φ=.若 x1=,x2 =﹣=﹣,则g (x2)=﹣1,sin2φ=﹣1,φ=,不合题意,故选:B .10.解:∵OP 在y 轴上,且平行四边形中,MN ∥OP , ∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M ,N 两点关于x 轴对称,MN=OP=a , 可设M (x ,﹣),N (x ,),代入椭圆方程得:|x|=b ,得N (b ,),α为直线ON 的倾斜角,tanα==,cotα=,α∈(,],∴1≤cotα=≤,,∴,∴0<e=≤.∴椭圆C 的离心率的取值范围为(0,].故选:A .11.解:∵球形容器表面积的最小值为30π,∴球形容器的半径的最小值为r==,∴正四棱柱体的对角线长为,设正四棱柱体的高为h ,∴12+12+h2=30, 解得h=2.故选:B .12.解:由f (x )=2sin ()=0可得∴x=6k ﹣2,k ∈Z ∵﹣2<x <10∴x=4即A (4,0) 设B (x1,y1),C (x2,y2)∵过点A 的直线l 与函数的图象交于B 、C 两点 ∴B ,C 两点关于A 对称即x1+x2=8,y1+y2=0则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选D13.解:如图,过点P 作PA ⊥l 于点A ,作PB ⊥y 轴于点B ,PB 的延长线交准线x=﹣1于点C , 连接PF ,根据抛物线的定义得PA+PC=PA+PF ,∵P 到y 轴的距离为d1,P 到直线l 的距离为d2, ∴d1+d2=PA+PB=(PA+PC )﹣1=(PA+PF )﹣1,根据平面几何知识,可得当P、A、F三点共线时,PA+PF有最小值,∵F(1,0)到直线l:x﹣y+2=0的距离为=∴PA+PF 的最小值是,由此可得d1+d2的最小值为﹣1故选:B.14.解:点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x﹣y+2=0的垂线,此时d1+d2最小,∵F(2,0),则d1+d2=﹣2=2﹣2,故选:C.15.解;分别以OA,OB为x轴,y轴建立平面直角坐标系,设P(cosα,sinα),N(t,0),则0≤t≤1,0≤α≤,M(0,),∴=(﹣cosα,﹣sinα),=(t﹣cosα,﹣sinα).∴=﹣(t﹣cosα)cosα﹣sinα(﹣sinα)=cos2α+sin2α﹣tcosα﹣sinα=1﹣sin(α+φ).其中tanφ=2t,∵0≤α≤,0≤t≤1,∴当α+φ=,t=1时,取得最小值1﹣=1﹣.故选:D.16.解:由5+4x﹣x2>0,得﹣1<x<5,又函数t=5+4x﹣x2的对称轴方程为x=2,∴复合函数f(x)=log0.2(5+4x﹣x2)的减区间为(﹣1,2),∵函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,∴,则0≤a≤1.而b=lg0.2<0,c=20.2>1,∴b<a<c.故选:D.17.解:∵双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一象限内且在l1上,∴F1(﹣c,0)F2(c,0)P(x,y),渐近线l1的直线方程为y=x,渐近线l2的直线方程为y=﹣x,∵l2∥PF2,∴,即ay=bc﹣bx,∵点P在l1上即ay=bx,∴bx=bc﹣bx即x=,∴P (,),∵l2⊥PF1,∴,即3a2=b2,∵a2+b2=c2,∴4a2=c2,即c=2a,∴离心率e==2.故选C.18.解:∵y=f(x+1)为偶函数,∴y=f(x+1)的图象关于x=0对称,∴y=f(x)的图象关于x=1对称,∴f(2)=f(0),又∵f(2)=1,∴f(0)=1;设(x∈R),则,又∵f′(x)<f(x),∴f′(x)﹣f(x)<0,∴g′(x)<0,∴y=g(x)单调递减,∵f(x)<ex,∴,即g(x)<1,又∵,∴g(x)<g(0),∴x>0,故答案为:(0,+∞).19.解:设g(x)=f(x )﹣(x2﹣1),则函数的导数g′(x)=f′(x)﹣x,∵f′(x)<x,∴g′(x)=f′(x)﹣x<0,即函数g(x)为减函数,且g(2)=f(2)﹣(×4﹣1)=1﹣1=0,即不等式f(x )<x2﹣1等价为g(x)<0,即等价为g(x)<g(2),解得x>2,故不等式的解集为{x|x>2}.故选:D.20.解:由x2﹣1﹣(4+x)=x2﹣x﹣5≥1得x2﹣x﹣6≥0,得x≥3或x≤﹣2,此时f(x)=4+x,由x2﹣1﹣(4+x)=x2﹣x﹣5<1得x2﹣x﹣6<0,得﹣2<x<3,此时f(x)=x2﹣1,即f(x)=,若函数y=f(x)﹣k有三个不同零点,即y=f(x)﹣k=0,即k=f(x)有三个不同的根,作出函数f(x)与y=k的图象如图:当k=2时,两个函数有三个交点,当k=﹣1时,两个函数有两个交点,故若函数f(x)与y=k有三个不同的交点,则﹣1<k≤2,即实数k的取值范围是(﹣1,2],故选:A21.解:设g(x)=exf(x)﹣ex,(x∈R),则g′(x)=exf(x)+exf′(x)﹣ex=ex[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵exf(x)>ex+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.22.解:根据题意,“中值点”的几何意义是在区间[a,b]上存在点,使得函数在该点的切线的斜率等于区间[a,b]的两个端点连线的斜率值.对于①,根据题意,在区间[a,b]上的任一点都是“中值点”,f′(x)=3,满足f(b)﹣f(a)=f′(x)(b﹣a),∴①正确;对于②,根据“中值点”函数的定义,抛物线在区间[a,b]只存在一个“中值点”,∴②不正确;对于③,f(x)=ln(x+1)在区间[a,b]只存在一个“中值点”,∴③不正确;对于④,∵f′(x)=3(x ﹣)2,且f(1)﹣f(0)=,1﹣0=1;∴3(x ﹣)2×1=,解得x=±∈[0,1],∴存在两个“中值点”,④正确.故选:A23.解:根据题意,设g(x)=f(x )﹣,其导数g′(x)=f′(x )﹣>0,则函数g(x)在R上为增函数,又由f(1)=1,则g(1)=f(1)﹣=,不等式f(x2)<⇒f(x2)﹣<⇒g(x2)<g(1),又由g(x)在R上为增函数,则x2<1,解可得:﹣1<x<1,即不等式的解集为(﹣1,1);故选:D.24.解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,故函数的周期为=π,∴ω=2,f(x)=2sin(2x+φ)+1.若f(x)>1对∀x∈(﹣,)恒成立,即当x∈(﹣,)时,sin(2x+φ)>0恒成立,故有2kπ<2•(﹣)+φ<2•+φ<2kπ+π,求得2kπ+φ<2kπ+,k∈Z,结合所给的选项,故选:D.25.解:∵x⊗y=x(1﹣y),∴(x﹣a)⊗x≤a+2转化为(x﹣a)(1﹣x)≤a+2,∴﹣x2+x+ax﹣a≤a+2,a(x﹣2)≤x2﹣x+2,∵任意x>2,不等式(x﹣a)⊗x≤a+2都成立,∴a ≤.令f(x)=,x>2,则a≤[f(x)]min,x>2而f(x)===(x﹣2)++3≥2+3=7,当且仅当x=4时,取最小值.∴a≤7.故选:C.26.解:由f(x+4)=f(x),即函数f(x)的周期为4,∵当x∈[﹣2,0]时,=2﹣2﹣x,∴若x∈[0,2],则﹣x∈[﹣2,0],∵f(x)是偶函数,∴f(﹣x)=2﹣2x=f(x),即f(x)=2﹣2x,x∈[0,2],由f(x)﹣loga(x+2)=0得f(x)=loga(x+2),作出函数f(x)的图象如图:当a>1时,要使方程f(x)﹣loga(x+2)=0恰有3个不同的实数根,则等价为函数f(x)与g(x)=loga(x+2)有3个不同的交点,则满足,即,解得:<a <故a 的取值范围是(,),故选:C.二.填空题(共6小题)27.解:函数f(x)=xex﹣ae2x可得f′(x)=ex(x+1﹣2aex),要使f(x)恰有2个极值点,则方程x+1﹣2aex=0有2个不相等的实数根,令g(x)=x+1﹣2aex,g′(x)=1﹣2aex;(i)a≤0时,g′(x)>0,g(x)在R递增,不合题意,舍,(ii)a>0时,令g′(x)=0,解得:x=ln,当x<ln时,g′(x)>0,g(x)在(﹣∞,ln)递增,且x→﹣∞时,g(x)<0,x>ln时,g′(x)<0,g(x)在(ln,+∞)递减,且x→+∞时,g(x)<0,∴g(x)max=g(ln)=ln+1﹣2a•=ln>0,∴>1,即0<a <;故答案为:(0,).28.解:对于(1),由y=x3﹣x2+1,得y′=3x2﹣2x,则,,y1=1,y2=5,则,φ(A,B)=,(1)错误;对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确;对于(3),设A(x1,y1),B(x2,y2),y′=2x,则kA﹣kB=2x1﹣2x2,==.∴φ(A,B)==,(3)正确;对于(4),由y=ex,得y′=ex,φ(A,B)==.t•φ(A,B)<1恒成立,即恒成立,t=1时该式成立,∴(4)错误.故答案为:(2)(3).29.解:∵数列{an}是各项均不为零的等差数列,Sn为其前n 项和,且.∴,∴,由a1>0,解得a1=1,=3a2,由a2>0,解得a2=3,∴公差d=a2﹣a1=2,an=1+(n﹣1)×2=2n﹣1.∵不等式对任意n∈N*恒成立,∴对任意n∈N*恒成立,∴==≥2+17=25.当且仅当2n=,即n=2时,取等号,∴实数λ的最大值为25.故答案为:25.30.解:设圆心O、点A到直线的距离分别为d,d′,则d=,d′=,根据∠BAC=60°,可得BC对的圆心角∠BOC=120°,且BC=.∴S△OBC=•OB•OC•sin∠BOC=×1×1×sin120°=,∴S1=②.∴=,=∴k=±,m=1故答案为:±.31.解:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.如图.对于①,根据题意,在区间[0,1]上的任何一点都是“中值点”,故①正确;对于②,根据“中值点”函数的定义,抛物线在区间[0,1]只存在一个“中值点”,故②不正确;对于③,f(x)=ln(x+1)在区间[0,1]只存在一个“中值点”,故③不正确;对于④,根据对称性,函数在区间[0,1]存在两个“中值点”,故④正确.故答案为:①④.32.解:∵f(x)=x3﹣3x,∴f′(x)=3(x﹣1)(x+1),当x∈[﹣2,﹣1],f′(x)≥0,x∈(﹣1,1),f′(x)<0;x∈(1,2],f′(x)>0.∴f(x)在[﹣2,﹣1]上是增函数,(﹣1,1)上递减,(1,2)递增;且f(﹣2)=﹣2,f(﹣1)=2,f(1)=﹣2,f(2)=2.∴f(x)的值域A=[﹣2,2];又∵g(x)=ax﹣1(a>0)在[﹣2,2]上是增函数,∴g(x)的值域B=[﹣2a﹣1,2a﹣1];根据题意,有A⊆B。

2018高考理科数学选填压轴题专练32题(含详细标准答案)

2018高考理科数学选填压轴题专练32题(含详细标准答案)

一.选择题(共26小题)1.设实数x,y 满足,则z=+的取值范围是()A.[4,]ﻩB.[,]C.[4,] D.[,]2.已知三棱锥P﹣ABC中,PA⊥平面ABC,且,AC=2AB,PA=1,BC=3,则该三棱锥的外接球的体积等于( )A.ﻩB.ﻩC.ﻩD.3.三棱锥P﹣ABC中,PA⊥平面ABC且PA=2,△ABC 是边长为的等边三角形,则该三棱锥外接球的表面积为( )A.B.4πC.8πﻩD.20π4.已知函数f(x+1)是偶函数,且x>1时,f′(x)<0恒成立,又f(4)=0,则(x+3)f(x+4)<0的解集为( )A.(﹣∞,﹣2)∪(4,+∞) B.(﹣6,﹣3)∪(0,4) C.(﹣∞,﹣6)∪(4,+∞)ﻩD.(﹣6,﹣3)∪(0,+∞)5.当a>0时,函数f(x)=(x2﹣2ax)e x的图象大致是()A.ﻩB .CﻩD .6.抛物线y2=4x的焦点为F,M为抛物线上的动点,又已知点N(﹣1,0),则的取值范围是( )A.[1,2]B.[,]ﻩC.[,2]D.[1,]7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55ﻩB.52 C.39ﻩD.268.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,若不等式f(﹣4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是( )A .ﻩ B.C.ﻩD.9.将函数的图象向左平移个单位得到y=g(x)的图象,若对满足|f(x1)﹣g(x2)|=2的x1、x2,|x1﹣x2|min =,则φ的值是()A .ﻩ B.ﻩC.ﻩD.10.在平面直角坐标系xOy中,点P为椭圆C :+=1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈(,],则椭圆C的离心率的取值范围为( )A.(0,]ﻩB.(0,] C.[,]ﻩD.[,]11.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为()A.ﻩB.C. D.512.若函数f(x)=2sin ()(﹣2<x<10)的图象与x轴交于点A,过点A 的直线l与函数的图象交于B、C 两点,则(+)•=( )A.﹣32ﻩB.﹣16C.16 D.3213.已知抛物线方程为y2=4x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴的距离为d1,P到l的距离为d2,则d1+d2的最小值为( )A.B.﹣1C.2D.2+214.已知抛物线方程为y2=8x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴距离为d1,P到l的距离为d2,则d1+d2的最小值为()A .2﹣2 B.2ﻩC.2﹣2 D.2+215.如图,扇形AOB中,OA=1,∠AOB=90°,M是OB中点,P是弧AB上的动点,N是线段OA 上的动点,则的最小值为()A.0ﻩB.1 C.D.1﹣16.若函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,且b=lg0.2,c=20.2,则()A.c<b<aﻩB.b<c<a C.a<b<cﻩD.b<a<c17.双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是()A.ﻩB . C.2 D.18.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<e x的解集为( )A.(﹣∞,e4)ﻩB.(e4,+∞) C.(﹣∞,0)ﻩD.(0,+∞)19.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<x,且f (2)=1,则不等式f(x)<x2﹣1的解集为( )A.(﹣2,+∞) B.(0,+∞) C.(1,+∞) D.(2,+∞)20.对任意实数a,b,定义运算“⊕”:,设f(x)=(x2﹣1)⊕(4+x),若函数y=f(x)﹣k有三个不同零点,则实数k的取值范围是()。

2018年高考数学(理) 押题卷及详解答案

2018年高考数学(理) 押题卷及详解答案

2018年高考数学 预测卷及详解答案理科数学本试题卷共19页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}(,)|1,01A x y y x x ==+≤≤,集合{}(,)|2,010B x y y x x ==≤≤,则集合AB =( )A .{}1,2B .{}|01x x ≤≤C .(){}1,2D .∅【答案】C【解析】根据题意可得,12y x y x =+⎧⎨=⎩,解得12x y =⎧⎨=⎩,满足题意01x ≤≤,所以集合A B =(){}1,2.故选C .2.已知复数z 满足11i 12z z -=+,则复数z 在复平面内对应点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】设复数i z a b=+,(),a b ∈R ,则i z a b =-,因为11i 12z z -=+,所以()()211i z z -=-,所以2(1)2i a b --()1i a b =+-,所以可得2221a bb a -=-⎧⎨-=+⎩,解得5343a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以54i 33z =-,所以复数z 在复平面内对应点54,33⎛⎫- ⎪⎝⎭在第四象限上.故选D .3.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d ,公式为d =如果球的半径为13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61【答案】D【解析】根据公式d =23=,解得16V =.故选D .4.已知函数()()π17πsin cos 0326f x x x ωωω⎛⎫⎛⎫=+--> ⎪ ⎪⎝⎭⎝⎭,满足π364f ⎛⎫-= ⎪⎝⎭,则满足题意的ω的最小值为( ) A .13B .12C .1D .2【答案】C 【解析】根据题意可得,()π17ππ1πsin cos sin sin 326323f x x x x x ωωωω⎛⎫⎛⎫⎛⎫⎛⎫=+--=+++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3πsin 23x ω⎛⎫+ ⎪⎝⎭,因为π364f ⎛⎫-= ⎪⎝⎭,所以3ππ3sin 2634ω⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,2636k ωπππ⎛⎫-+=+π ⎪⎝⎭或52,6k k π+π∈Z ,解得121k ω=-+或123k -+,又0ω>,显然min 1ω=.故选C .5.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( )A .2aB 2C .26a D .2【答案】D【解析】如图所示,该几何体是正方体的内接正三棱锥,所以三棱锥的棱长为,因此此几何体的表面积)2214sin 602S =⨯⨯︒=.故选D .6.某工厂生产了一批颜色和外观都一样的跳舞机器人,从这批跳舞机器人中随机抽取了8个,其中有2个是次品,现从8个跳舞机器人中随机抽取2个分配给测验员,则测验员拿到次品的概率是( ) A .328B .128C .37D .1328【答案】D【解析】根据题意可得1126222288C C C 13C C 28P =+=.故选D . 7.如图所示,在梯形ABCD 中,∠B =π2,AB =,BC =2,点E 为AB 的中点,若向量CD 在向量BC 上的投影为12-,则CE BD ⋅=( )A .-2B .12-C .0D 【答案】A【解析】以B 为原点,BC 为x 轴,AB 为y 轴建系如图,∵AB =,BC =2,∴(A ,()0,0B ,()2,0C ,D∵点E 为AB 的中点,∴E ⎛ ⎝⎭,若向量CD 在向量BC 上的投影为12-,设向量CD 与向量BC 的夹角为θ,所以1cos 2CD θ=-,过D 作DF ⊥BC ,垂足为F ,在Rt △DFC中,()cos πFC CD-θ=,所以12CF =,所以32D ⎛ ⎝,所以CE ⎛=- ⎝⎭,32BD ⎛= ⎝,所以312CE BD ⋅=-+=-.8.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( ) A .80 B .20C .180D .166【答案】C .【解析】设等差数列{}n a 的公差为d ,因为1n n n b a a +=+,所以112n n n b a a +++=+,两式相减1n n b b +-=1212n n n n a a a a d ++++--=为常数,所以数列{}n b 也为等差数列.因为{}n a 为等差数列,且S 2=4,S 4=16,所以11224b a a S =+==,3344212b a a S S =+=-=,所以等差数列{}n b 的公差31242b b d -==,所以前n 项和公式为()1442n n n T n -=+⨯222n n =+,所以9180T =.故选C .9.2015年12月16日“第三届世界互联网大会”在中国乌镇举办.为了保护与会者的安全,将5个安保小组全部安排到指定三个区域内工作,且这三个区域每个区域至少有一个安保小组,则这样的安排的方法共有( ) A .96种 B .100种 C .124种 D .150种【答案】D【解析】∵三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,一种是按照1、1、3,另一种是1、2、2;当按照1、1、3来分时共有11335431322C C C A 60A N ==,当按照1、2、2来分时共有22135312322C C C A 90A N ==,根据分类计数原理知共有,故12150N N N =+=,选D .10.已知函数cos y x x =+,有以下命题: ①()f x 的定义域是()2π,2π2πk k +; ②()f x 的值域是R ; ③()f x 是奇函数;④()f x 的图象与直线y x =的交点中有一个点的横坐标为π2, 其中推断正确的个数是( ) A .0 B .1C .2D .3【答案】C【解析】根据题意可以得到函数的定义域为R ,值域为R ,所以①不正确,②正确;由于()cos f x x x =+,所以()cos f x x x -=-+,所以()()f x f x -≠,且()()f x f x -≠-,故此函数是非奇非偶函数,所以③不正确;当π2x =时,cos x x x +=,即()f x 的图象与直线y x =的交点中有一个点的横坐标为π2;所以④正确.故选C . 11.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF PO-的取值范围( )A.0,5⎛ ⎝⎭B.0,5⎛ ⎝⎭ C.0,5⎛ ⎝⎭ D.0,5⎛ ⎝⎭【答案】B【解析】设P ()00,x y ,则00x <<,e ==,10PF x =,2PF=0x,PO ==,则12x PF PF PO -==,因为00x <<所以20445x >,1>,所以05<<,所以1205PF PF PO -<<B . 12.已知正方体1111ABCD A BCD -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A BC D -在棱上的交点,则下列说法错误的是( )A .HF //BE B.BM =C .∠MBND .五边形FBEGH【答案】C【解析】因为面11//AD BC 面,且面1AD 与面MBN 的交线为FH ,1BC 面与面MBN 的交线为BE ,所以HF //BE ,A 正确;因为11//A F BB ,且1:1:2A F FA=,所以111:1:2MA A B =,所以112MA =,所以132B M =,在Rt △1BB M 中,BM ==所以B 正确;在Rt △1BB N 中,E 为棱1CC 的中点,所以1C为棱1NB 上的中点,所以11C N =,在Rt △1C EN 中, EN ==BN =;因为52MN ==,在△BMN中,22co s 2B M BN N M B NBM B +-∠==⋅5C 错误;因为cos MBN ∠=,所以sin MBN ∠=,所以BMN S =△12BM ⨯sin BN MBN ⨯⨯∠=得,14GE NB M N S S =△△,19MFH BMN S S =△△,所以BE S =面261144BMNGEN MFH S S S --=△△△.故选C .第Ⅱ卷本卷包括必考题和选考题两部分。

2018全国I卷高考压轴卷理科数学(含答案)

2018全国I卷高考压轴卷理科数学(含答案)

2018全国卷Ⅰ高考压轴卷理科数学本试卷共23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}z x x x x A ∈≤-+=,022,{}z k k x x B ∈==,2,则B A I 等于()A .{}10,B .{}24--,C . {}01,-D .{}02,- 2. 设,a b ∈R ,则“a b >”是“a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件3. 为得到)63sin(2π+=x y 的图象,只需把函数x y sin 2=的图象上所有的点 ( ) A 、向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B 、向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C 、向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D 、向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)4. 展开式中任取一项,则所取项是有理项的概率为( ) A .B .C .D .5. 已知函数2|21|,1()log (),1x x f x x m x +<⎧=⎨->⎩,若123()()()f x f x f x ==(1x 、2x 、3x 互不相等),且123x x x ++的取值范围为(1,8),则实数m 的值为( ). A .0B .-1C .1D .26. 如图是一个几何体的三视图,则该几何体的体积为( ) A .3.43.33 D .4337. 设函数()2ln 2f x x x x =-+,若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],a b 上的值域为()()2,2k a k b ++⎡⎤⎣⎦,则k 的取值范围是( )A .92ln 21,4+⎛⎫ ⎪⎝⎭ B .92ln 21,4+⎡⎤⎢⎥⎣⎦ C. 92ln 21,10+⎛⎤ ⎥⎝⎦ D .92ln 21,10+⎡⎤⎢⎥⎣⎦ 8. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为A .243B .363C .729D .10929. 已知抛物线2:4M y x =,圆()()222:10N x y r r -+=>.过点()1,0的直线l 交圆N 于,C D 两点,交抛物线M 于,A B 两点,且满足AC BD =的直线l 恰有三条,则r 的取值范围为( ) A .30,2r ⎛⎤∈ ⎥⎝⎦ B .(]1,2r ∈ C .()2,r ∈+∞ D .3,2r ⎡⎫∈+∞⎪⎢⎣⎭10. 函数32)2()44ln()(-+-=x x x x f 的图象可能是( )A .B .C .D .11. 若0,0,a b >>且函数32()422f x x ax bx =--+在2x =处有极值,则ab 的最大值等于A .121B .144C .72D .8012. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A. B . C .D . [)∞+,2 二、填空题:本题共4小题,每小题5分,共20分。

2018高考理科数学选填压轴题专练32题(含详细答案)

2018高考理科数学选填压轴题专练32题(含详细答案)

装 订 线一.选择题(共26小题)1.设实数x ,y满足,则z=+的取值范围是( ) A .[4,] B .[,] C .[4,]D .[,]2.已知三棱锥P ﹣ABC 中,PA ⊥平面ABC,且,AC=2AB ,PA=1,BC=3,则该三棱锥的外接球的体积等于( ) A. B .C.D .3.三棱锥P ﹣ABC 中,PA ⊥平面ABC 且PA=2,△ABC 是边长为的等边三角形,则该三棱锥外接球的表面积为( ) A.B .4πC .8πD .20π4.已知函数f (x +1)是偶函数,且x >1时,f ′(x )<0恒成立,又f (4)=0,则(x +3)f (x +4)<0的解集为( )A .(﹣∞,﹣2)∪(4,+∞)B .(﹣6,﹣3)∪(0,4)C .(﹣∞,﹣6)∪(4,+∞)D .(﹣6,﹣3)∪(0,+∞)5.当a >0时,函数f (x )=(x 2﹣2ax )e x 的图象大致是( )A.B .CD .6.抛物线y 2=4x 的焦点为F ,M 为抛物线上的动点,又已知点N (﹣1,0),则的取值范围是( ) A .[1,2] B .[,] C .[,2]D .[1,]7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( ) A .55 B .52 C .39 D .268.已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3+x 2,若不等式f (﹣4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( )A .B.C.D .9.将函数的图象向左平移个单位得到y=g (x )的图象,若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,|x 1装 订 线﹣x 2|min=,则φ的值是( ) A.B .C .D .10.在平面直角坐标系xOy 中,点P 为椭圆C:+=1(a >b >0)的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈(,],则椭圆C 的离心率的取值范围为( )A .(0,]B .(0,]C .[,]D .[,]11.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为( ) A.B .C .D .512.若函数f (x )=2sin ()(﹣2<x<10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(+)•=( ) A .﹣32B .﹣16C .16D .3213.已知抛物线方程为y 2=4x ,直线l 的方程为x ﹣y +2=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到l 的距离为d 2,则d 1+d 2的最小值为( )A .B .﹣1C .2D .2+214.已知抛物线方程为y 2=8x ,直线l 的方程为x ﹣y +2=0,在抛物线上有一动点P 到y 轴距离为d 1,P 到l 的距离为d 2,则d 1+d 2的最小值为( )A .2﹣2 B .2 C .2﹣2 D .2+215.如图,扇形AOB 中,OA=1,∠AOB=90°,M 是OB 中点,P 是弧AB 上的动点,N 是线段OA上的动点,则的最小值为( ) A .0B .1C .D .1﹣16.若函数f (x )=log 0.2(5+4x ﹣x 2)在区间(a ﹣1,a +1)上递减,且b=lg0.2,c=20.2,则( ) A .c <b <a B .b <c <a C .a <b <c D .b <a <c 17.双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2渐近线分别为l 1,l 2,位于第一象限的点P 在l 1上,若l 2⊥PF 1,l 2∥PF 2,则双曲线的离心率是( ) A .B .C .2D .18.已知定义在R 上的可导函数y=f (x )的导函数为f′(x ),满足f′(x )<f (x ),且y=f (x +1)为偶函数,f (2)=1,则不等式f (x )<e x 的解集为( )A .(﹣∞,e 4)B .(e 4,+∞)C .(﹣∞,0)D .(0,+∞)19.已知定义在R 上的可导函数f (x )的导函装 订 线数为f′(x ),满足f′(x )<x ,且f (2)=1,则不等式f (x )<x 2﹣1的解集为( ) A .(﹣2,+∞) B .(0,+∞) C .(1,+∞)D .(2,+∞)20.对任意实数a ,b,定义运算“⊕”:,设f (x )=(x 2﹣1)⊕(4+x ),若函数y=f (x )﹣k 有三个不同零点,则实数k 的取值范围是( )A .(﹣1,2]B .[0,1]C .[﹣1,3)D .[﹣1,1)21.定义在R 上的函数f (x )满足:f (x )+f′(x )>1,f (0)=4,则不等式e xf (x )>e x+3(其中e 为自然对数的底数)的解集为( ) A .(0,+∞) B .(﹣∞,0)∪(3,+∞)C .(﹣∞,0)∪(0,+∞)D .(3,+∞)22.定义在区间[a ,b ]上的连续函数y=f (x ),如果∃ξ∈[a ,b ],使得f (b )﹣f (a )=f′(ξ)(b ﹣a ),则称ξ为区间[a ,b ]上的“中值点”.下列函数:①f (x )=3x +2;②f (x )=x 2;③f (x )=ln (x +1);④中,在区间[0,1]上“中值点”多于1个的函数是( ) A .①④B .①③C .②④D .②③23.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f′(x )>,则不等式f (x 2)<的解集为( )A .(﹣∞,﹣1)B .(1,+∞)C .(﹣∞,﹣1]∪[1,+∞)D .(﹣1,1)24.已知函数f (x )=2sin (ωx +φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f (x )>1对∀x ∈(﹣,)恒成立,则φ的取值范围是( ) A . B .C .D .25.在R 上定义运算⊕:x ⊗y=x (1﹣y )若对任意x >2,不等式(x ﹣a )⊗x ≤a +2都成立,则实数a 的取值范围是( ) A .[﹣1,7] B .(﹣∞,3] C .(﹣∞,7]D .(﹣∞,﹣1]∪[7,+∞)26.设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x +4)=f (x ),且当x ∈[﹣2,0]时,,若在区间(﹣2,6]内关于x 的方程f (x )﹣log a (x +2)=0(0<a <1)恰有三个不同的实数根,则a 的取值范围是( ) A . B .C.D .27.已知函数f (x )=xe x ﹣ae 2x (a ∈R )恰有两个极值点x 1,x 2(x 1<x 2),则实数a 的取值范围为 .28.函数y=f (x )图象上不同两点A (x 1,y 1),B (x 2,y 2)处的切线的斜率分别是k A ,k B ,规定φ(A ,B )=叫曲线y=f (x )在点A装 订 线与点B 之间的“弯曲度”,给出以下命题: (1)函数y=x 3﹣x 2+1图象上两点A 、B 的横坐标分别为1,2,则φ(A ,B )>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A 、B 是抛物线,y=x 2+1上不同的两点,则φ(A ,B )≤2;(4)设曲线y=e x上不同两点A (x 1,y 1),B (x 2,y 2),且x 1﹣x 2=1,若t•φ(A ,B )<1恒成立,则实数t 的取值范围是(﹣∞,1);以上正确命题的序号为 (写出所有正确的)29.已知数列{a n }是各项均不为零的等差数列,S n 为其前n 项和,且.若不等式对任意n ∈N *恒成立,则实数λ的最大值为 .30.已知点A (0,1),直线l :y=kx ﹣m 与圆O :x 2+y 2=1交于B ,C 两点,△ABC 和△OBC 的面积分别为S 1,S 2,若∠BAC=60°,且S 1=2S 2,则实数k 的值为 .31.定义在区间[a ,b ]上的连续函数y=f (x ),如果∃ξ∈[a ,b ],使得f (b )﹣f (a )=f′(ξ)(b ﹣a ),则称ξ为区间[a ,b ]上的“中值点”.下列函数: ①f (x )=3x +2; ②f (x )=x 2﹣x +1; ③f (x )=ln (x +1); ④f (x )=(x ﹣)3,在区间[0,1]上“中值点”多于一个的函数序号为 .(写出所有满足条件的函数的序号)32.已知函数f (x )=x 3﹣3x ,x ∈[﹣2,2]和函数g (x )=ax ﹣1,x ∈[﹣2,2],若对于∀x 1∈[﹣2,2],总∃x 0∈[﹣2,2],使得g (x 0)=f (x 1)成立,则实数a 的取值范围 .1.解:由已知得到可行域如图:由图象得到的范围为[kOB ,kOC],即[,2], 所以z=+的最小值为4;(当且仅当y=2x=2时取得);当=,z 最大值为;所以z=+的取值范围是[4,]; 故选:C .2.解:∵三棱锥P ﹣ABC 中,PA ⊥平面ABC,且,AC=2AB ,PA=1,BC=3,设AC=2AB=2x ,∴由余弦定理得32=x2+4x2﹣2×,解得AC=2,AB=,∴AB2+BC2=AC2,∴AB ⊥BC ,构造长方体ABCD ﹣PEFG ,则三棱锥P ﹣ABC 的外接球就是长方体ABCD ﹣PEFG 的外接球,∴该三棱锥的外接球的半径R===,∴该三棱锥的外接球的体积: V==.故选:A .3.解:根据已知中底面△ABC 是边长为的正三角形,PA ⊥底面ABC ,可得此三棱锥外接球,即为以△ABC 为底面以PA 为高装 订 线的正三棱柱的外接球 ∵△ABC 是边长为的正三角形,∴△ABC 的外接圆半径r==1, 球心到△ABC 的外接圆圆心的距离d=1, 故球的半径R==,故三棱锥P ﹣ABC 外接球的表面积S=4πR2=8π, 故选:C .4.解:∵函数f (x+1)是偶函数,∴其图象关于y 轴对称,∵f (x )的图象是由f (x+1)的图象向右平移1个单位得到的,∴f (x )的图象关于x=1对称,又∵x >1时,f′(x )<0恒成立,所以f (x )在(1,+∞)上递减,在(﹣∞,1)上递增, 又f (4)=0,∴f (﹣2)=0,∴当x ∈(﹣∞,﹣2)∪(4,+∞)时,f (x )<0;当x ∈(﹣2,1)∪(1,4)时,f (x )>0;∴对于(x ﹣1)f (x )<0,当x ∈(﹣2,1)∪(4,+∞)时成立,∵(x+3)f (x+4)<0可化为(x+4﹣1)f (x+4)<0, ∴由﹣2<x+4<1或x+4>4得所求的解为﹣6<x <﹣3或x >0. 故选D5.解:解:由f (x )=0,解得x2﹣2ax=0,即x=0或x=2a ,∵a >0,∴函数f (x )有两个零点,∴A ,C 不正确. 设a=1,则f (x )=(x2﹣2x )ex , ∴f'(x )=(x2﹣2)ex ,由f'(x )=(x2﹣2)ex >0,解得x >或x <﹣. 由f'(x )=(x2﹣2)ex <0,解得,﹣<x <即x=﹣是函数的一个极大值点,∴D 不成立,排除D .故选B .6.解:设过点N 的直线方程为y=k (x+1),代入y2=4x 可得k2x2+(2k2﹣4)x+k2=0,∴由△=(2k2﹣4)2﹣4k4=0,可得k=±1,此时直线的倾斜角为45°.过M 作准线的垂线,垂足为A ,则|MF|=|MA|,∴=∴直线的倾斜角为45°或135°时,取得最大值,倾斜角为0°时,取得最小值1,∴的取值范围是[1,].故选:D .7.解:设从第2天开始,每天比前一天多织d 尺布, 则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d =4a1+58d=4×5+58× =52. 故选:B .8.解:∵定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x3+x2,∴f (0)=0,且f′(x )=3x2+2x ≥0,即函数f (x )在[0,+∞)上为增函数,∵f (x )是奇函数,∴函数f (x )在(﹣∞,0]上也是增函数,即函数f (x )在(﹣∞,+∞)上为增函数, 则不等式f (﹣4t )>f (2m+mt2)等价为﹣4t >2m+mt2对任意实数t 恒成立即mt2+4t+2m <0对任意实数t 恒成立, 若m=0,则不等式等价为4t <0,即t <0,不满足条件., 若m ≠0,则要使mt2+4t+2m <0对任意实数t 恒成立,则,解得m <﹣,故选:A 9.解:将函数的图象向左平移个单位得到y=g (x )=sin[2(x+φ)+]=sin (2x+2φ+)的图象,装 订 线对满足|f (x1)﹣g (x2)|=2的x1、x2,|x1﹣x2|min=, 即两个函数的最大值与最小值的差为2时,|x1﹣x2|min=.不妨设 x1=,此时 x2 =±.若x1=,x2 =+=,则g (x2)=﹣1,sin2φ=1,φ=. 若 x1=,x2 =﹣=﹣,则g (x2)=﹣1,sin2φ=﹣1,φ=,不合题意, 故选:B .10.解:∵OP 在y 轴上,且平行四边形中,MN ∥OP , ∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M ,N 两点关于x 轴对称,MN=OP=a ,可设M (x ,﹣),N (x ,), 代入椭圆方程得:|x|=b ,得N (b ,),α为直线ON 的倾斜角,tanα==,cotα=, α∈(,],∴1≤cotα=≤,,∴,∴0<e=≤.∴椭圆C 的离心率的取值范围为(0,].故选:A .11.解:∵球形容器表面积的最小值为30π, ∴球形容器的半径的最小值为r==,∴正四棱柱体的对角线长为,设正四棱柱体的高为h , ∴12+12+h2=30, 解得h=2.故选:B .12.解:由f (x )=2sin()=0可得∴x=6k ﹣2,k ∈Z ∵﹣2<x <10∴x=4即A (4,0) 设B (x1,y1),C (x2,y2)∵过点A 的直线l 与函数的图象交于B 、C 两点 ∴B ,C 两点关于A 对称即x1+x2=8,y1+y2=0 则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32 故选D13.解:如图,过点P 作PA ⊥l 于点A ,作PB ⊥y 轴于点B ,PB 的延长线交准线x=﹣1于点C ,连接PF ,根据抛物线的定义得PA+PC=PA+PF , ∵P 到y 轴的距离为d1,P 到直线l 的距离为d2, ∴d1+d2=PA+PB=(PA+PC )﹣1=(PA+PF )﹣1, 根据平面几何知识,可得当P 、A 、F 三点共线时,PA+PF 有最小值,∵F (1,0)到直线l :x ﹣y+2=0的距离为=∴PA+PF 的最小值是,由此可得d1+d2的最小值为﹣1 故选:B .14.解:点P 到准线的距离等于点P 到焦点F 的距离, 过焦点F 作直线x ﹣y+2=0的垂线,此时d1+d2最小, ∵F (2,0),则d1+d2=﹣2=2﹣2, 故选:C .15.解;分别以OA ,OB 为x 轴,y 轴建立平面直角坐标系,设P (cosα,sinα),N (t ,0),则0≤t ≤1,0≤α≤,M (0,),∴=(﹣cosα,﹣sinα),=(t ﹣cosα,﹣sinα).装 订 线∴=﹣(t ﹣cosα)cosα﹣sinα(﹣sinα)=cos2α+sin2α﹣tcosα﹣sinα=1﹣sin(α+φ). 其中tanφ=2t,∵0≤α≤,0≤t ≤1, ∴当α+φ=,t=1时,取得最小值1﹣=1﹣. 故选:D .16.解:由5+4x ﹣x2>0,得﹣1<x <5, 又函数t=5+4x ﹣x2的对称轴方程为x=2, ∴复合函数f (x )=log0.2(5+4x ﹣x2)的减区间为(﹣1,2), ∵函数f (x )=log0.2(5+4x ﹣x2)在区间(a ﹣1,a+1)上递减,∴,则0≤a ≤1.而b=lg0.2<0,c=20.2>1, ∴b <a <c . 故选:D .17.解:∵双曲线﹣=1(a >0,b >0)的左、右焦点分别为F1,F2, 渐近线分别为l1,l2,点P 在第一 象限内且在l1上, ∴F1(﹣c ,0)F2(c ,0)P (x ,y ), 渐近线l1的直线方程为y=x ,渐近线l2的直线方程为y=﹣x ,∵l2∥PF2,∴,即ay=bc ﹣bx , ∵点P 在l1上即ay=bx , ∴bx=bc ﹣bx 即x=,∴P (,),∵l2⊥PF1,∴,即3a2=b2,∵a2+b2=c2,∴4a2=c2,即c=2a ,∴离心率e==2. 故选C .18.解:∵y=f (x+1)为偶函数, ∴y=f (x+1)的图象关于x=0对称, ∴y=f (x )的图象关于x=1对称, ∴f (2)=f (0), 又∵f (2)=1, ∴f (0)=1;设(x ∈R ),则,又∵f′(x )<f (x ),∴f′(x )﹣f (x )<0, ∴g′(x )<0,∴y=g (x )单调递减, ∵f (x )<ex ,∴,即g (x )<1,又∵,∴g (x )<g (0), ∴x >0, 故答案为:(0,+∞).19.解:设g (x )=f (x )﹣(x2﹣1), 则函数的导数g′(x )=f′(x )﹣x , ∵f′(x )<x ,∴g′(x )=f′(x )﹣x <0, 即函数g (x )为减函数,且g (2)=f (2)﹣(×4﹣1)=1﹣1=0, 即不等式f (x )<x2﹣1等价为g (x )<0, 即等价为g (x )<g (2), 解得x >2,故不等式的解集为{x|x >2}. 故选:D .装 订 线20.解:由x2﹣1﹣(4+x )=x2﹣x ﹣5≥1得x2﹣x ﹣6≥0,得x ≥3或x ≤﹣2,此时f (x )=4+x ,由x2﹣1﹣(4+x )=x2﹣x ﹣5<1得x2﹣x ﹣6<0,得﹣2<x <3,此时f (x )=x2﹣1,即f (x )=,若函数y=f (x )﹣k 有三个不同零点,即y=f (x )﹣k=0,即k=f (x )有三个不同的根, 作出函数f (x )与y=k 的图象如图: 当k=2时,两个函数有三个交点, 当k=﹣1时,两个函数有两个交点,故若函数f (x )与y=k 有三个不同的交点, 则﹣1<k ≤2,即实数k 的取值范围是(﹣1,2], 故选:A21.解:设g (x )=exf (x )﹣ex ,(x ∈R ),则g′(x )=exf (x )+exf′(x )﹣ex=ex[f (x )+f′(x )﹣1],∵f (x )+f′(x )>1, ∴f (x )+f′(x )﹣1>0, ∴g′(x )>0,∴y=g (x )在定义域上单调递增, ∵exf (x )>ex+3, ∴g (x )>3,又∵g (0)═e0f (0)﹣e0=4﹣1=3, ∴g (x )>g (0), ∴x >0 故选:A .22.解:根据题意,“中值点”的几何意义是在区间[a ,b]上存在点,使得函数在该点的切线的斜率等于区间[a ,b]的两个端点连线的斜率值. 对于①,根据题意,在区间[a ,b]上的任一点都是“中值点”,f′(x )=3,满足f (b )﹣f (a )=f′(x )(b ﹣a ),∴①正确; 对于②,根据“中值点”函数的定义,抛物线在区间[a ,b]只存在一个“中值点”,∴②不正确;对于③,f (x )=ln (x+1)在区间[a ,b]只存在一个“中值点”,∴③不正确;对于④,∵f′(x )=3(x ﹣)2,且f (1)﹣f (0)=,1﹣0=1;∴3(x ﹣)2×1=,解得x=±∈[0,1], ∴存在两个“中值点”,④正确.故选:A23.解:根据题意,设g (x )=f (x )﹣,其导数g′(x )=f′(x )﹣>0,则函数g (x )在R 上为增函数,又由f (1)=1,则g (1)=f (1)﹣=,不等式f (x2)<⇒f (x2)﹣<⇒g (x2)<g (1),又由g (x )在R 上为增函数,则x2<1, 解可得:﹣1<x <1,即不等式的解集为(﹣1,1); 故选:D .24.解:函数f (x )=2sin (ωx +φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,故函数的周期为=π,∴ω=2,f (x )=2sin (2x+φ)+1.若f (x )>1对∀x ∈(﹣,)恒成立,即当x∈(﹣,)时,sin (2x+φ)>0恒成立,故有2kπ<2•(﹣)+φ<2•+φ<2kπ+π,求得2kπ+φ<2kπ+,k ∈Z ,结合所给的选项, 故选:D .25.解:∵x ⊗y=x (1﹣y ),∴(x ﹣a )⊗x ≤a+2转化为(x ﹣a )(1﹣x )≤a+2, ∴﹣x2+x+ax ﹣a ≤a+2, a (x ﹣2)≤x2﹣x+2,∵任意x >2,不等式(x ﹣a )⊗x ≤a+2都成立,∴a ≤.装 订 线令f (x )=,x >2,则a ≤[f (x )]min ,x >2而f (x )===(x ﹣2)++3≥2+3=7,当且仅当x=4时,取最小值. ∴a ≤7. 故选:C .26.解:由f (x+4)=f (x ),即函数f (x )的周期为4,∵当x ∈[﹣2,0]时,=2﹣2﹣x , ∴若x ∈[0,2],则﹣x ∈[﹣2,0], ∵f (x )是偶函数,∴f (﹣x )=2﹣2x=f (x ), 即f (x )=2﹣2x ,x ∈[0,2],由f (x )﹣loga (x+2)=0得f (x )=loga (x+2), 作出函数f (x )的图象如图:当a >1时,要使方程f (x )﹣loga (x+2)=0恰有3个不同的实数根,则等价为函数f (x )与g (x )=loga (x+2)有3个不同的交点,则满足,即,解得:<a <故a 的取值范围是(,),故选:C .二.填空题(共6小题)27.解:函数f (x )=xex ﹣ae2x 可得f′(x )=ex (x+1﹣2aex ),要使f (x )恰有2个极值点,则方程x+1﹣2aex=0有2个不相等的实数根, 令g (x )=x+1﹣2aex ,g′(x )=1﹣2aex ;(i )a ≤0时,g′(x )>0,g (x )在R 递增,不合题意,舍,(ii )a >0时,令g′(x )=0,解得:x=ln,当x <ln 时,g′(x )>0,g (x )在(﹣∞,ln )递增,且x→﹣∞时,g (x )<0,x >ln 时,g′(x )<0,g (x )在(ln ,+∞)递减,且x→+∞时,g (x )<0, ∴g (x )max=g (ln )=ln+1﹣2a•=ln>0, ∴>1,即0<a <;故答案为:(0,). 28.解:对于(1),由y=x3﹣x2+1,得y′=3x2﹣2x , 则,,y1=1,y2=5,则,φ(A ,B )=,(1)错误; 对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确; 对于(3),设A (x1,y1),B (x2,y2),y′=2x, 则kA ﹣kB=2x1﹣2x2,==.∴φ(A,B)==,(3)正确;对于(4),由y=ex ,得y′=ex ,φ(A ,B )装 订 线==.t•φ(A ,B )<1恒成立,即恒成立,t=1时该式成立,∴(4)错误.故答案为:(2)(3).29.解:∵数列{an}是各项均不为零的等差数列,Sn 为其前n 项和,且.∴,∴,由a1>0,解得a1=1,=3a2,由a2>0,解得a2=3,∴公差d=a2﹣a1=2,an=1+(n ﹣1)×2=2n ﹣1.∵不等式对任意n ∈N*恒成立,∴对任意n ∈N*恒成立,∴==≥2+17=25.当且仅当2n=,即n=2时,取等号, ∴实数λ的最大值为25. 故答案为:25.30.解:设圆心O 、点A 到直线的距离分别为d ,d′,则d=,d′=,根据∠BAC=60°,可得BC 对的圆心角∠BOC=120°,且BC=.∴S △OBC=•OB•OC•sin ∠BOC=×1×1×sin120°=,∴S1=②.∴=,=∴k=±,m=1故答案为:±.31.解:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.如图.对于①,根据题意,在区间[0,1]上的任何一点都是“中值点”,故①正确;对于②,根据“中值点”函数的定义,抛物线在区间[0,1]只存在一个“中值点”,故②不正确;对于③,f (x )=ln (x+1)在区间[0,1]只存在一个“中值点”,故③不正确;对于④,根据对称性,函数在区间[0,1]存在两个“中值点”,故④正确. 故答案为:①④.32.解:∵f (x )=x3﹣3x , ∴f′(x )=3(x ﹣1)(x+1),当x ∈[﹣2,﹣1],f′(x )≥0,x ∈(﹣1,1),f′(x )<0;x ∈(1,2],f′(x )>0. ∴f (x )在[﹣2,﹣1]上是增函数,(﹣1,1)上递减,(1,2)递增;且f (﹣2)=﹣2,f (﹣1)=2,f (1)=﹣2,f (2)=2.∴f (x )的值域A=[﹣2,2];又∵g (x )=ax ﹣1(a >0)在[﹣2,2]上是增函数, ∴g (x )的值域B=[﹣2a ﹣1,2a ﹣1]; 根据题意,有A ⊆B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校 年级 姓名装 订 线一.选择题(共26小题)1.设实数x ,y 满足,则z=+的取值范围是( )A .[4,]B .[,]C .[4,]D .[,]2.已知三棱锥P ﹣ABC 中,PA ⊥平面ABC ,且,AC=2AB ,PA=1,BC=3,则该三棱锥的外接球的体积等于( )A .B .C .D .3.三棱锥P ﹣ABC 中,PA ⊥平面ABC 且PA=2,△ABC 是边长为的等边三角形,则该三棱锥外接球的表面积为( ) A .B .4πC .8πD .20π4.已知函数f (x +1)是偶函数,且x >1时,f ′(x )<0恒成立,又f (4)=0,则(x +3)f (x +4)<0的解集为( )A .(﹣∞,﹣2)∪(4,+∞)B .(﹣6,﹣3)∪(0,4)C .(﹣∞,﹣6)∪(4,+∞)D .(﹣6,﹣3)∪(0,+∞)5.当a >0时,函数f (x )=(x 2﹣2ax )e x 的图象大致是( )A .B .CD .6.抛物线y 2=4x 的焦点为F ,M 为抛物线上的动点,又已知点N (﹣1,0),则的取值范围是( ) A .[1,2] B .[,] C .[,2]D .[1,]7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .268.已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3+x 2,若不等式f (﹣4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( )A .B .C .D .9.将函数的图象向左平移个单位得到y=g (x )的图象,若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,|x 1﹣x 2|min =,则φ的值是( )A .B .C .D .10.在平面直角坐标系xOy 中,点P 为椭圆C :+=1(a >b >0)的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈(,],则椭圆C 的离心率的取值范围为( ) A .(0,]B .(0,]C .[,] D .[,]学校 年级 姓名装 订 线11.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为( )A .B .C .D .512.若函数f (x )=2sin ()(﹣2<x <10)的图象与x 轴交于点A ,过点A的直线l 与函数的图象交于B 、C 两点,则(+)•=( )A .﹣32B .﹣16C .16D .3213.已知抛物线方程为y 2=4x ,直线l 的方程为x ﹣y +2=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到l 的距离为d 2,则d 1+d 2的最小值为( ) A .B .﹣1 C .2D .2+214.已知抛物线方程为y 2=8x ,直线l 的方程为x ﹣y +2=0,在抛物线上有一动点P 到y 轴距离为d 1,P 到l 的距离为d 2,则d 1+d 2的最小值为( ) A .2﹣2 B .2C .2﹣2 D .2+215.如图,扇形AOB 中,OA=1,∠AOB=90°,M 是OB 中点,P 是弧AB 上的动点,N 是线段OA 上的动点,则的最小值为( )A .0B .1C .D .1﹣16.若函数f (x )=log 0.2(5+4x ﹣x 2)在区间(a ﹣1,a +1)上递减,且b=lg0.2,c=20.2,则( )A .c <b <aB .b <c <aC .a <b <cD .b <a <c17.双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2渐近线分别为l 1,l 2,位于第一象限的点P 在l 1上,若l 2⊥PF 1,l 2∥PF 2,则双曲线的离心率是( ) A .B .C .2D .18.已知定义在R 上的可导函数y=f (x )的导函数为f′(x ),满足f′(x )<f (x ),且y=f (x +1)为偶函数,f (2)=1,则不等式f (x )<e x 的解集为( ) A .(﹣∞,e 4)B .(e 4,+∞) C .(﹣∞,0) D .(0,+∞)19.已知定义在R 上的可导函数f (x )的导函数为f′(x ),满足f′(x )<x ,且f (2)=1,则不等式f (x )<x 2﹣1的解集为( ) A .(﹣2,+∞) B .(0,+∞) C .(1,+∞) D .(2,+∞)学校 年级 姓名装 订 线20.对任意实数a ,b ,定义运算“⊕”:,设f (x )=(x 2﹣1)⊕(4+x ),若函数y=f (x )﹣k 有三个不同零点,则实数k 的取值范围是( )A .(﹣1,2]B .[0,1]C .[﹣1,3)D .[﹣1,1)21.定义在R 上的函数f (x )满足:f (x )+f′(x )>1,f (0)=4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为( ) A .(0,+∞) B .(﹣∞,0)∪(3,+∞)C .(﹣∞,0)∪(0,+∞)D .(3,+∞)22.定义在区间[a ,b ]上的连续函数y=f (x ),如果∃ξ∈[a ,b ],使得f (b )﹣f (a )=f′(ξ)(b ﹣a ),则称ξ为区间[a ,b ]上的“中值点”.下列函数:①f (x )=3x +2;②f (x )=x 2;③f (x )=ln (x +1);④中,在区间[0,1]上“中值点”多于1个的函数是( ) A .①④B .①③C .②④D .②③23.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f′(x )>,则不等式f (x 2)<的解集为( )A .(﹣∞,﹣1)B .(1,+∞)C .(﹣∞,﹣1]∪[1,+∞)D .(﹣1,1)24.已知函数f (x )=2sin (ωx +φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f (x )>1对∀x ∈(﹣,)恒成立,则φ的取值范围是( ) A . B .C .D .25.在R 上定义运算⊕:x ⊗y=x (1﹣y )若对任意x >2,不等式(x ﹣a )⊗x ≤a +2都成立,则实数a 的取值范围是( )A .[﹣1,7]B .(﹣∞,3]C .(﹣∞,7]D .(﹣∞,﹣1]∪[7,+∞)26.设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x +4)=f (x ),且当x ∈[﹣2,0]时,,若在区间(﹣2,6]内关于x 的方程f (x )﹣log a(x +2)=0(0<a <1)恰有三个不同的实数根,则a 的取值范围是( ) A .B .C .D .27.已知函数f (x )=xe x ﹣ae 2x (a ∈R )恰有两个极值点x 1,x 2(x 1<x 2),则实数a 的取值范围为 .28.函数y=f (x )图象上不同两点A (x 1,y 1),B (x 2,y 2)处的切线的斜率分别是k A ,k B ,规定φ(A ,B )=叫曲线y=f (x )在点A 与点B 之间的“弯曲度”,给出以下命题:(1)函数y=x 3﹣x 2+1图象上两点A 、B 的横坐标分别为1,2,则φ(A ,B )>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A 、B 是抛物线,y=x 2+1上不同的两点,则φ(A ,B )≤2;(4)设曲线y=e x 上不同两点A (x 1,y 1),B (x 2,y 2),且x 1﹣x 2=1,若t•φ(A ,B )<1恒成立,则实数t 的取值范围是(﹣∞,1); 以上正确命题的序号为 (写出所有正确的)29.已知数列{a n }是各项均不为零的等差数列,S n 为其前n 项和,且.若不等式对任意n ∈N *恒成立,则实数λ的最大值为 .学校 年级 姓名装 订 线30.已知点A (0,1),直线l :y=kx ﹣m 与圆O :x 2+y 2=1交于B ,C 两点,△ABC 和△OBC 的面积分别为S 1,S 2,若∠BAC=60°,且S 1=2S 2,则实数k 的值为 . 31.定义在区间[a ,b ]上的连续函数y=f (x ),如果∃ξ∈[a ,b ],使得f (b )﹣f (a )=f′(ξ)(b ﹣a ),则称ξ为区间[a ,b ]上的“中值点”.下列函数: ①f (x )=3x +2; ②f (x )=x 2﹣x +1; ③f (x )=ln (x +1); ④f (x )=(x ﹣)3,在区间[0,1]上“中值点”多于一个的函数序号为 .(写出所有满足条件的函数的序号)32.已知函数f (x )=x 3﹣3x ,x ∈[﹣2,2]和函数g (x )=ax ﹣1,x ∈[﹣2,2],若对于∀x 1∈[﹣2,2],总∃x 0∈[﹣2,2],使得g (x 0)=f (x 1)成立,则实数a 的取值范围 .学校 年级 姓名 装 订 线1.解:由已知得到可行域如图:由图象得到的范围为[kOB ,kOC],即[,2], 所以z=+的最小值为4;(当且仅当y=2x=2时取得);当=,z 最大值为; 所以z=+的取值范围是[4,];故选:C .2.解:∵三棱锥P ﹣ABC 中,PA ⊥平面ABC ,且,AC=2AB ,PA=1,BC=3,设AC=2AB=2x ,∴由余弦定理得32=x2+4x2﹣2×,解得AC=2,AB=,∴AB2+BC2=AC2,∴AB ⊥BC , 构造长方体ABCD ﹣PEFG ,则三棱锥P ﹣ABC 的外接球就是长方体ABCD ﹣PEFG 的外接球,∴该三棱锥的外接球的半径R===,∴该三棱锥的外接球的体积:V==.故选:A .3.解:根据已知中底面△ABC 是边长为的正三角形,PA ⊥底面ABC ,可得此三棱锥外接球,即为以△ABC 为底面以PA 为高的正三棱柱的外接球 ∵△ABC 是边长为的正三角形,∴△ABC 的外接圆半径r==1, 球心到△ABC 的外接圆圆心的距离d=1,故球的半径R==,故三棱锥P ﹣ABC 外接球的表面积S=4πR2=8π, 故选:C .4.解:∵函数f (x+1)是偶函数,∴其图象关于y 轴对称, ∵f (x )的图象是由f (x+1)的图象向右平移1个单位得到的, ∴f (x )的图象关于x=1对称,又∵x >1时,f′(x )<0恒成立,所以f (x )在(1,+∞)上递减,在(﹣∞,1)上递增, 又f (4)=0,∴f (﹣2)=0,∴当x ∈(﹣∞,﹣2)∪(4,+∞)时,f (x )<0;当x ∈(﹣2,1)∪(1,4)时,f (x )>0;∴对于(x ﹣1)f (x )<0,当x ∈(﹣2,1)∪(4,+∞)时成立,学校 年级 姓名 装 订 线∵(x+3)f (x+4)<0可化为(x+4﹣1)f (x+4)<0,∴由﹣2<x+4<1或x+4>4得所求的解为﹣6<x <﹣3或x >0. 故选D5.解:解:由f (x )=0,解得x2﹣2ax=0,即x=0或x=2a , ∵a >0,∴函数f (x )有两个零点,∴A ,C 不正确. 设a=1,则f (x )=(x2﹣2x )ex , ∴f'(x )=(x2﹣2)ex ,由f'(x )=(x2﹣2)ex >0,解得x >或x <﹣.由f'(x )=(x2﹣2)ex <0,解得,﹣<x <即x=﹣是函数的一个极大值点,∴D 不成立,排除D . 故选B .6.解:设过点N 的直线方程为y=k (x+1),代入y2=4x 可得k2x2+(2k2﹣4)x+k2=0, ∴由△=(2k2﹣4)2﹣4k4=0,可得k=±1,此时直线的倾斜角为45°. 过M 作准线的垂线,垂足为A ,则|MF|=|MA|, ∴=∴直线的倾斜角为45°或135°时,取得最大值,倾斜角为0°时,取得最小值1,∴的取值范围是[1,].故选:D .7.解:设从第2天开始,每天比前一天多织d 尺布, 则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d =4a1+58d=4×5+58× =52.故选:B .8.解:∵定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x3+x2, ∴f (0)=0,且f′(x )=3x2+2x ≥0,即函数f (x )在[0,+∞)上为增函数, ∵f (x )是奇函数,∴函数f (x )在(﹣∞,0]上也是增函数, 即函数f (x )在(﹣∞,+∞)上为增函数,则不等式f (﹣4t )>f (2m+mt2)等价为﹣4t >2m+mt2对任意实数t 恒成立 即mt2+4t+2m <0对任意实数t 恒成立,若m=0,则不等式等价为4t <0,即t <0,不满足条件., 若m ≠0,则要使mt2+4t+2m <0对任意实数t 恒成立,则,学校 年级 姓名 装 订 线解得m <﹣,故选:A 9.解:将函数的图象向左平移个单位得到y=g (x )=sin[2(x+φ)+]=sin (2x+2φ+)的图象,对满足|f (x1)﹣g (x2)|=2的x1、x2,|x1﹣x2|min=, 即两个函数的最大值与最小值的差为2时,|x1﹣x2|min=.不妨设 x1=,此时 x2 =±.若 x1=,x2 =+=,则g (x2)=﹣1,sin2φ=1,φ=.若 x1=,x2 =﹣=﹣,则g (x2)=﹣1,sin2φ=﹣1,φ=,不合题意,故选:B .10.解:∵OP 在y 轴上,且平行四边形中,MN ∥OP , ∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M ,N 两点关于x 轴对称,MN=OP=a , 可设M (x ,﹣),N (x ,), 代入椭圆方程得:|x|=b ,得N (b ,),α为直线ON 的倾斜角,tanα==,cotα=,α∈(,],∴1≤cotα=≤,,∴,∴0<e=≤.∴椭圆C 的离心率的取值范围为(0,].故选:A .11.解:∵球形容器表面积的最小值为30π,∴球形容器的半径的最小值为r==,∴正四棱柱体的对角线长为,设正四棱柱体的高为h , ∴12+12+h2=30, 解得h=2.故选:B .12.解:由f (x )=2sin ()=0可得∴x=6k ﹣2,k ∈Z ∵﹣2<x <10∴x=4即A (4,0) 设B (x1,y1),C (x2,y2)∵过点A 的直线l 与函数的图象交于B 、C 两点 ∴B ,C 两点关于A 对称即x1+x2=8,y1+y2=0 则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选D13.解:如图,过点P 作PA ⊥l 于点A ,作PB ⊥y 轴于点B ,PB 的延长线交准线x=﹣1于点C , 连接PF ,根据抛物线的定义得PA+PC=PA+PF , ∵P 到y 轴的距离为d1,P 到直线l 的距离为d2, ∴d1+d2=PA+PB=(PA+PC )﹣1=(PA+PF )﹣1,根据平面几何知识,可得当P 、A 、F 三点共线时,PA+PF 有最小值, ∵F (1,0)到直线l :x ﹣y+2=0的距离为=∴PA+PF 的最小值是,学校 年级 姓名 装 订 线由此可得d1+d2的最小值为﹣1故选:B .14.解:点P 到准线的距离等于点P 到焦点F 的距离, 过焦点F 作直线x ﹣y+2=0的垂线,此时d1+d2最小,∵F (2,0),则d1+d2=﹣2=2﹣2, 故选:C .15.解;分别以OA ,OB 为x 轴,y 轴建立平面直角坐标系,设P (cosα,sinα),N (t ,0),则0≤t ≤1,0≤α≤,M (0,),∴=(﹣cosα,﹣sinα),=(t ﹣cosα,﹣sinα).∴=﹣(t ﹣cosα)cosα﹣sinα(﹣sinα)=cos2α+sin2α﹣tcosα﹣sinα=1﹣sin(α+φ). 其中tanφ=2t ,∵0≤α≤,0≤t ≤1,∴当α+φ=,t=1时,取得最小值1﹣=1﹣.故选:D .16.解:由5+4x ﹣x2>0,得﹣1<x <5, 又函数t=5+4x ﹣x2的对称轴方程为x=2,∴复合函数f (x )=log0.2(5+4x ﹣x2)的减区间为(﹣1,2), ∵函数f (x )=log0.2(5+4x ﹣x2)在区间(a ﹣1,a+1)上递减,∴,则0≤a ≤1.而b=lg0.2<0,c=20.2>1,∴b <a <c . 故选:D .17.解:∵双曲线﹣=1(a >0,b >0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P 在第一 象限内且在l1上,∴F1(﹣c ,0)F2(c ,0)P (x ,y ),渐近线l1的直线方程为y=x ,渐近线l2的直线方程为y=﹣x , ∵l2∥PF2,∴,即ay=bc ﹣bx , ∵点P 在l1上即ay=bx ,∴bx=bc ﹣bx 即x=,∴P (,),∵l2⊥PF1,学校 年级 姓名 装 订 线∴,即3a2=b2,∵a2+b2=c2,∴4a2=c2,即c=2a ,∴离心率e==2. 故选C .18.解:∵y=f (x+1)为偶函数, ∴y=f (x+1)的图象关于x=0对称, ∴y=f (x )的图象关于x=1对称, ∴f (2)=f (0), 又∵f (2)=1, ∴f (0)=1;设(x ∈R ),则,又∵f′(x )<f (x ),∴f′(x )﹣f (x )<0, ∴g′(x )<0,∴y=g (x )单调递减, ∵f (x )<ex ,∴,即g (x )<1,又∵,∴g (x )<g (0), ∴x >0,故答案为:(0,+∞).19.解:设g (x )=f (x )﹣(x2﹣1), 则函数的导数g′(x )=f′(x )﹣x , ∵f′(x )<x ,∴g′(x )=f′(x )﹣x <0, 即函数g (x )为减函数,且g (2)=f (2)﹣(×4﹣1)=1﹣1=0,即不等式f (x )<x2﹣1等价为g (x )<0, 即等价为g (x )<g (2), 解得x >2,故不等式的解集为{x|x >2}. 故选:D . 20.解:由x2﹣1﹣(4+x )=x2﹣x ﹣5≥1得x2﹣x ﹣6≥0,得x ≥3或x ≤﹣2,此时f (x )=4+x , 由x2﹣1﹣(4+x )=x2﹣x ﹣5<1得x2﹣x ﹣6<0,得﹣2<x <3,此时f (x )=x2﹣1,即f (x )=,若函数y=f (x )﹣k 有三个不同零点,即y=f (x )﹣k=0,即k=f (x )有三个不同的根, 作出函数f (x )与y=k 的图象如图: 当k=2时,两个函数有三个交点, 当k=﹣1时,两个函数有两个交点,故若函数f (x )与y=k 有三个不同的交点, 则﹣1<k ≤2,即实数k 的取值范围是(﹣1,2], 故选:A学校 年级 姓名 装 订 线21.解:设g (x )=exf (x )﹣ex ,(x ∈R ),则g′(x )=exf (x )+exf′(x )﹣ex=ex[f (x )+f′(x )﹣1], ∵f (x )+f′(x )>1, ∴f (x )+f′(x )﹣1>0, ∴g′(x )>0,∴y=g (x )在定义域上单调递增, ∵exf (x )>ex+3, ∴g (x )>3,又∵g (0)═e0f (0)﹣e0=4﹣1=3, ∴g (x )>g (0), ∴x >0 故选:A .22.解:根据题意,“中值点”的几何意义是在区间[a ,b]上存在点,使得函数在该点的切线的斜率等于区间[a ,b]的两个端点连线的斜率值. 对于①,根据题意,在区间[a ,b]上的任一点都是“中值点”,f′(x )=3, 满足f (b )﹣f (a )=f′(x )(b ﹣a ),∴①正确;对于②,根据“中值点”函数的定义,抛物线在区间[a ,b]只存在一个“中值点”,∴②不正确; 对于③,f (x )=ln (x+1)在区间[a ,b]只存在一个“中值点”,∴③不正确;对于④,∵f′(x )=3(x ﹣)2,且f (1)﹣f (0)=,1﹣0=1; ∴3(x ﹣)2×1=,解得x=±∈[0,1], ∴存在两个“中值点”,④正确.故选:A23.解:根据题意,设g (x )=f (x )﹣,其导数g′(x )=f′(x )﹣>0, 则函数g (x )在R 上为增函数,又由f (1)=1,则g (1)=f (1)﹣=,不等式f (x2)<⇒f (x2)﹣<⇒g (x2)<g (1),又由g (x )在R 上为增函数,则x2<1, 解可得:﹣1<x <1,即不等式的解集为(﹣1,1); 故选:D .24.解:函数f (x )=2sin (ωx +φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π, 故函数的周期为=π,∴ω=2,f (x )=2sin (2x+φ)+1.若f (x )>1对∀x ∈(﹣,)恒成立,即当x ∈(﹣,)时,sin (2x+φ)>0恒成立,故有2kπ<2•(﹣)+φ<2•+φ<2kπ+π,求得2kπ+φ<2kπ+,k ∈Z ,结合所给的选项, 故选:D .25.解:∵x ⊗y=x (1﹣y ),∴(x ﹣a )⊗x ≤a+2转化为(x ﹣a )(1﹣x )≤a+2, ∴﹣x2+x+ax ﹣a ≤a+2, a (x ﹣2)≤x2﹣x+2,∵任意x >2,不等式(x ﹣a )⊗x ≤a+2都成立,学校 年级 姓名 装 订 线∴a ≤.令f (x )=,x >2,则a ≤[f (x )]min ,x >2而f (x )===(x ﹣2)++3≥2+3=7,当且仅当x=4时,取最小值. ∴a ≤7. 故选:C .26.解:由f (x+4)=f (x ),即函数f (x )的周期为4,∵当x ∈[﹣2,0]时,=2﹣2﹣x , ∴若x ∈[0,2],则﹣x ∈[﹣2,0], ∵f (x )是偶函数,∴f (﹣x )=2﹣2x=f (x ), 即f (x )=2﹣2x ,x ∈[0,2],由f (x )﹣loga (x+2)=0得f (x )=loga (x+2), 作出函数f (x )的图象如图:当a >1时,要使方程f (x )﹣loga (x+2)=0恰有3个不同的实数根, 则等价为函数f (x )与g (x )=loga (x+2)有3个不同的交点,则满足,即,解得:<a <故a 的取值范围是(,),故选:C .二.填空题(共6小题)27.解:函数f (x )=xex ﹣ae2x 可得f′(x )=ex (x+1﹣2aex ),要使f (x )恰有2个极值点, 则方程x+1﹣2aex=0有2个不相等的实数根, 令g (x )=x+1﹣2aex ,g′(x )=1﹣2aex ;(i )a ≤0时,g′(x )>0,g (x )在R 递增,不合题意,舍, (ii )a >0时,令g′(x )=0,解得:x=ln ,当x <ln 时,g′(x )>0,g (x )在(﹣∞,ln )递增,且x→﹣∞时,g (x )<0,x >ln时,g′(x )<0,g (x )在(ln,+∞)递减,且x→+∞时,g (x )<0,∴g (x )max=g (ln )=ln+1﹣2a•=ln>0,∴>1,即0<a <;故答案为:(0,). 28.解:对于(1),由y=x3﹣x2+1,得y′=3x2﹣2x , 则,,学校 年级 姓名装 订 线y1=1,y2=5,则,φ(A ,B )=,(1)错误;对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确;对于(3),设A (x1,y1),B (x2,y2),y′=2x , 则kA ﹣kB=2x1﹣2x2,==.∴φ(A ,B )==,(3)正确;对于(4),由y=ex ,得y′=ex ,φ(A ,B )==.t•φ(A ,B )<1恒成立,即恒成立,t=1时该式成立,∴(4)错误. 故答案为:(2)(3).29.解:∵数列{an}是各项均不为零的等差数列,Sn 为其前n 项和,且.∴,∴,由a1>0,解得a1=1,=3a2,由a2>0,解得a2=3,∴公差d=a2﹣a1=2,an=1+(n ﹣1)×2=2n ﹣1.∵不等式对任意n ∈N*恒成立, ∴对任意n ∈N*恒成立,∴==≥2+17=25.当且仅当2n=,即n=2时,取等号,∴实数λ的最大值为25. 故答案为:25.30.解:设圆心O 、点A 到直线的距离分别为d ,d′,则d=,d ′=,根据∠BAC=60°,可得BC 对的圆心角∠BOC=120°,且BC=.∴S △OBC=•OB•OC•sin ∠BOC=×1×1×sin120°=,∴S1=②.∴=,=∴k=±,m=1故答案为:±.31.解:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.如图.对于①,根据题意,在区间[0,1]上的任何一点都是“中值点”,故①正确;对于②,根据“中值点”函数的定义,抛物线在区间[0,1]只存在一个“中值点”,故②不正确; 对于③,f (x )=ln (x+1)在区间[0,1]只存在一个“中值点”,故③不正确; 对于④,根据对称性,函数在区间[0,1]存在两个“中值点”,故④正确.学校 年级 姓名 装 订 线故答案为:①④.32.解:∵f (x )=x3﹣3x , ∴f′(x )=3(x ﹣1)(x+1),当x ∈[﹣2,﹣1],f′(x )≥0,x ∈(﹣1,1),f′(x )<0;x ∈(1,2],f′(x )>0. ∴f (x )在[﹣2,﹣1]上是增函数,(﹣1,1)上递减,(1,2)递增; 且f (﹣2)=﹣2,f (﹣1)=2,f (1)=﹣2,f (2)=2. ∴f (x )的值域A=[﹣2,2];又∵g (x )=ax ﹣1(a >0)在[﹣2,2]上是增函数, ∴g (x )的值域B=[﹣2a ﹣1,2a ﹣1]; 根据题意,有A ⊆B。

相关文档
最新文档