5、二次根式
北师大版数学八年级上册7《二次根式》教学设计4
北师大版数学八年级上册7《二次根式》教学设计4一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容,本章主要让学生了解二次根式的概念、性质和运算方法。
通过本章的学习,学生能理解二次根式的实际意义,掌握二次根式的基本性质和运算规律,为后续学习更高深的数学知识打下基础。
二. 学情分析学生在七年级时已经学习了实数和分数,对数的运算有一定的基础。
但是,对于二次根式这一概念,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生对于抽象的数学概念,有时难以理解其内涵,需要教师通过具体例子和生活中的实际问题来进行引导。
三. 教学目标1.了解二次根式的概念和性质。
2.掌握二次根式的运算方法。
3.能运用二次根式解决实际问题。
四. 教学重难点1.二次根式的概念和性质。
2.二次根式的运算方法。
3.二次根式在实际问题中的应用。
五. 教学方法采用讲授法、案例分析法、问题驱动法、小组讨论法等,结合多媒体教学,引导学生通过观察、思考、讨论、实践等方式,掌握二次根式的概念、性质和运算方法。
六. 教学准备1.教材、教案、课件。
2.相关的生活实例和练习题。
3.多媒体教学设备。
七. 教学过程1. 导入(5分钟)教师通过引入实际问题,如“一个物体从地面上抛出,上升到最高点后再落下,求物体上升的最大高度。
”让学生思考如何用数学方法来解决这个问题。
2. 呈现(10分钟)教师通过讲解和展示课件,介绍二次根式的概念和性质,如“二次根式是一个形如√a的数学表达式,其中a是一个非负实数。
”并通过实例来引导学生理解二次根式的实际意义。
3. 操练(10分钟)教师给出一些二次根式的运算题目,如“计算√8 + √2”,让学生独立完成,然后进行讲解和解析。
4. 巩固(10分钟)教师通过一些练习题,让学生运用二次根式的运算方法,如“计算(√2 + √3)^2”,并引导学生理解二次根式的运算规律。
5. 拓展(10分钟)教师引导学生思考二次根式在实际问题中的应用,如“一个物体从地面上抛出,上升到最高点后再落下,求物体上升的最大高度。
二次根式及其运算
第5课 二次根式及其运算
基础自测
4.(2013·常德)计算 4.(2013·常德)计算 2×
2×8+38+-327-的2结7的果结为果(为B(
)
)
A.-1
B.1
C.4-3 3
D.7
A.-1
B.1
C.4-3 3
D.7
解析 本题考查的是实数的运算,在进行实数运算
首
页
时,和有理数运算一样,要从高级到低级,即先算
第5课 二次根式及其运算
基础自测
3.(2013·泰州)下列计算正确的是
()
A.4 3-3 3=1
B. 2+ 3= 5
首
C.2 12= 2
D.3+2 2=5 2
页
解析 根据二次根式的化简及同类二次根式的
合并,分别进行各选项的判断即可.
第5课 二次根式及其运算
基础自测
3.(2013·泰州)下列计算正确的是
2.二次根式的性质:
(1)( a)2=_a_(_a_≥__0_)_.
首 页
(2)
a2=|a|=
a(a>0) ; 0(a=0) ;
-a(a<0) .
(3) ab=__a_·____b(_a_≥__0_,__b_≥_.0) (4) ab=____ba_(_a_≥__0_,_b_>_0_)__.
第5课 二次根式及其运算
(5)巧用倒数.
第5课 二次根式及其运算
基础自测
1.(2013·鞍山)要使式子 2-x有意义,则 x 的取值
范围是
(D )
A.x>0
B.x≥-2
首
C.x≥2
D.x≤2
页
解析 根据被开方数大于等于0列式计算即可得解.
2022秋八年级数学上册 第5章 二次根式5.1 二次根式1二次根式及其性质授课课件湘教版
感悟新知
要点精析:
知2-讲
(1)如果一个式子含有多个二次根式,那么它有意义的条件
是:各个二次根式中根式又含有分式,那么它有意
义的条件是:二次根式中的被开方数(式)是非负散,分式
的分母不等于0.
(3)如果一个式子含有零指数幂或负整散指数幂,那么它有
谢谢观赏
You made my day!
之间存在如下关系:v2=gR,其中重力加速度常数 g=9.8 m/s2.若已知地球半径R,则第一宇宙速度 是多少?
感悟新知
知1-导
我们已经知道:每一个正实数a有且只有两个平方
根,一个记作 a ,称为a的算术平方根;另一个是 a- .
感悟新知
结论
知1-讲
我们把形如 a 的式子叫作二次根式,根号下的
①
13;②
-3;③-
3
x2+1;④ 8;⑤
132;⑥ x2-2.
A.2 B.3 C.4 D.5
感悟新知
知识点 2 二次根式的“双重”非负性(a≥0, a 0 )
(1)式子 a 只有在条件a≥0时才叫二次根式.即a≥0是 a 知2-导
为二次根式的前提条件.式子 就 2不是二次根式,但式 子 ( 2却) 2 又是二次根式.
数叫作被开方数.
感悟新知
1.定义:形如 a (a≥0)的式子叫作二次根式;
知1-讲
其中“ ”称为二次根号,a称为被开方数(式).
要点精析:(1)二次根式的定义是从代数式的结构形式上界
定的,必须含有二次根号“ ”;
“ ”的根指数为2,即 2 ,“2”一般省略不写.
(2)被开方数a可以是一个数,也可以是一个含有字母的式
第5讲 二次根式(解析版)
第5讲 二次根式一、考点知识梳理【考点1 二次根式的概念和性质】 1.平方根、算术平方根若x 2=a ,则x 叫a 的平方根.当a≥0时,a 是a 的算术平方根.正数b 的平方根记作± b.a 是一个非负数,只有非负数才有平方根. 2.立方根及性质若x 3=a ,则x 叫a 的立方根.求一个数的立方根的运算叫开立方;任一实数a 的立方根记作3a ;3a 3=a ,(3a)3=a ,3-a =-3a . 3.二次根式的概念(1)形如a(a≥0)的式子叫二次根式,而a 为二次根式的条件是a≥0; (2)满足下列两个条件的二次根式叫最简二次根式: ①被开方数的因数是整数,因式是整式; ②被开方数中不含有开得尽方的因数或因式. 4.二次根式的性质 (1)ab =a·b(a≥0,b≥0);a b =ab(a≥0,b >0); (2)(a)2=a(a≥0); (3)a 2=|a|=⎩⎪⎨⎪⎧ a (a≥0)-a (a <0).【考点2 二次根式的运算】 二次根式的运算(1)二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并; (2)二次根式的乘法:a·b =ab(a≥0,b≥0); (3)二次根式的除法:ba =ba(a≥0,b >0); (4)二次根式的估值:二次根式的估算,一般采用“夹逼法”确定其值所在范围.具体地说,先对二次根式平方,找出与平方后所得的数相邻的两个能开得尽方的整数,对其进行开方,即可确定这个二次根式在哪两个整数之间;(5)在二次根式的运算中,实数的运算性质和法则同样适用.二次根式的混合运算顺序是:先算乘除,后算加减,有括号时,先算括号内的(或先去括号). 二、考点分析【考点1 二次根式的概念和性质】 【解题技巧】1.判断二次根式有意义的条件: (1)二次根式的概念.形如(a ≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.2.二次根式的基本性质:①≥0; a ≥0(双重非负性).②a = (a ≥0)(任何一个非负数都可以写成一个数的平方的形式).③=a (a ≥0)(算术平方根的意义)【例1】(2019 甘肃中考)使得式子有意义的x 的取值范围是( )A .x ≥4B .x >4C .x ≤4D .x <4【答案】D .【分析】直接利用二次根式有意义的条件分析得出答案. 【解答】解:使得式子有意义,则:4﹣x >0,解得:x <4,即x 的取值范围是:x <4. 故选:D .【一领三通1-1】(2019•广西)若二次根式有意义,则x 的取值范围是 .【答案】x ≥﹣4;【分析】根据被开数x +4≥0即可求解; 【解答】解:x +4≥0, ∴x ≥﹣4; 故答案为x ≥﹣4;【一领三通1-2】(2019•广州)代数式有意义时,x 应满足的条件是 .【答案】x >8.【分析】直接利用分式、二次根式的定义求出x 的取值范围. 【解答】解:代数式有意义时,x ﹣8>0, 解得:x >8.()2a ()2a故答案为:x>8.【一领三通1-3】(2019 台湾中考)若=2,=3,则a+b之值为何?()A.13B.17C.24D.40【答案】B.【分析】根据二次根式的定义求出a、b的值,代入求解即可.【解答】解:∵==2,∴a=11,∵==3,∴b=6,∴a+b=11+6=17.故选:B.【一领三通1-4】(2016河北中考)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【答案】B.【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【一领三通1-5】(2019 山东济南中考模拟)如图,表示7的点在数轴上表示时,在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【分析】(1)根据平方根的定义和绝对值的性质分别填空即可;(2)主要考查数轴,根据数轴上的点利用平方法,估算7的大致范围,然后结合数轴上点的位置和大小即可得到7的位置.【解答】(1)7是一个正数,它的绝对值大于2;②它的绝对值小于3;③2.5的平方是6.25;故选A【考点2 二次根式的运算】【解题技巧】1.二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.2.化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.二次根式运算的结果可以是数或整式,也可以是最简二次根式,如果二次根式的运算结果不是最简二次根式,必须化为最简二次根式.【例2】(2019 江苏南京中考)计算﹣的结果是.【答案】0.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【一领三通2-1】计算÷的结果是.【答案】3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【一领三通2-2】(2019 山西中考)下列二次根式是最简二次根式的是()A.B.C.D.【答案】D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.【一领三通2-3】(2019 天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D.【分析】由于25<33<36,于是<<,从而有5<<6.【解答】解:∵25<33<36,∴<<,∴5<<6.故选:D.【一领三通2-4】(2019•青岛)计算:﹣()0=2+1.【答案】2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【一领三通2-5】(2019•广州中考模拟)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A B 2 C D【答案】C【分析】利割补法求阴影部分的面积.【解答】阴影部分的面积5,新正方形的边长为 5.故选:C三、【达标测试】(一)选择题1.(2019 云南中考)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【答案】B.【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.2.(2019 重庆中考)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C.【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.3.(2019•兰州)计算:﹣=()A.B.2C.3D.4【答案】A.【分析】先化简二次根式,再合并同类二次根式即可得.【解答】解:﹣=2﹣=,故选:A.4.(2019 山东青岛中考模拟)若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是()A.4x+2B.﹣4x﹣2C.﹣2D.2【答案】A.【分析】根据x的取值﹣4≤x≤3以及二次根式的性质,化简绝对值即可得到结果.【解答】解:∵|x﹣3|+=7,∴|x﹣3|+|x+4|=7,∴﹣4≤x≤3,∴2|x+4|﹣=2(x+4)﹣|2x﹣6|=2(x+4)﹣(6﹣2x)=4x+2,故选:A.5.(2019 河北衡水中考模拟)化简﹣a的结果是()A.﹣2a B.﹣2a C.0D.2a【答案】A.【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:﹣a=﹣a﹣a2•=﹣a+a=0.故选:C.6.(2019 河北沧州中考模拟)若(a+)2与|b﹣1|互为相反数,则的值为()A.B.+1C.﹣1D.1﹣【答案】C.【分析】根据互为相反数的两个数等于0得出(a+)2+|b﹣1|=0,推出a+=0,b﹣1=0,求出a=﹣,b=1,代入求出即可.【解答】解:∵(a+)2与|b﹣1|互为相反数,∴(a+)2+|b﹣1|=0,∴a+=0,b﹣1=0,∴a=﹣,b=1,∴===﹣1,故选:C.7.(2019 山东青岛中考模拟)已知a为实数,则代数式的最小值为()A.0B.3C.D.9【答案】B.【分析】把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.【解答】解:∵原式===∴当(a﹣3)2=0,即a=3时代数式的值最小,为即3故选:B.8.(2019 辽宁盘锦中考模拟)方程,当y=2时,m的取值范围是()A.350B.C.O D.m≤2【答案】C.【分析】根据两个非负数的和为0,必须都为0,得出4x﹣8=0,x﹣y﹣m=0,求出xy的值,代入即可求出m的值.【解答】解:∵方程,∴4x﹣8=0,x﹣y﹣m=0,x=2,m=y﹣2,∵y=2,∴m=0,故选:C.(二)填空题1.(2019 天津中考)计算(+1)(﹣1)的结果等于.【答案】2.【分析】利用平方差公式计算.【解答】解:原式=3﹣1 =2. 故答案为2.2.(2019 上海中考)如果一个正方形的面积是3,那么它的边长是 . 【答案】【分析】根据算术平方根的定义解答. 【解答】解:∵正方形的面积是3, ∴它的边长是.故答案为:3.(2019•长春)计算:3﹣= .【答案】2.【分析】直接合并同类二次根式即可求解. 【解答】解:原式=2.故答案为:2.4.(2019 山东枣庄中考模拟)函数y ,自变量x 的取值范围是 . 【答案】x≥-12且x≠1【分析】二次根式的被开方数为非负数,分式的分母不为0. 【解答】根据题意得⎩⎨⎧≠-≥+01012x x ∴x≥-12且x≠1.故答案是:x≥-12且x≠15. (2019 湖南长沙中考模拟)已知a 、b 为两个连续整数,且a <7<b ,则b a += . 【答案】5.【分析】利用估算求二次根式的范围. 【解答】因为2<7<3, 所以a=2,b=3, ∴a+b=2+3=5. 故答案是:56.(2019 上海中考模拟)方程31x 2=-的根是 . 【答案】x=5【分析】求根式中的被开方数中的未知数.乘法法则,乘法公式适合于二次根式. 【解答】两边平方,得2x -1=9. ∴2x=10 ∴x=5.经检验x=5是方程2x+1=3的根. 故答案是:x=57.(2019 上海中考模拟)化简:=-321 .【答案】2+ 3 【分析】化简1a+b形式通常乘以a -b,利用平方差公式(a+b)(a -b)=a -b. 【解答】原式=12-3=1×(2+3)(2-3)( 2+3) =2+322-(3)2 = 2+ 3.故答案是:2+ 38. (2019 河北沧州中考模拟)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:. 【答案】(1)﹣(2).【分析】(1)分式的分子和分母都乘以﹣,即可求出答案;把2看出5﹣3,根据平方差公式分解因式,最后进进约分即可. (2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.【解答】解:(1).(2)原式==. (三)解答题1.(2019 河北石家庄中考模拟)如图,实数a 、b 在数轴上的位置,化简222()a b a b -【分析】a 2=|a|=⎩⎨⎧<-≥).0(),0(a a a a 【解答】∵-1<a<0,0<b<1∴a -b<0.∴原式=|a|-|b|-|a -b|=-a -b+a -b=-2b.2.(2019 河北唐山中考模拟)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a . 【分析】结果的分母应不含根号.先化简,再代入求值,化简时把分子、分母进行因式分解.【解答】当a=2-2时,原式=a(a+3)(a+2)2·a+2a+3-2a+2=a -1a+2=2-2-22-2+2 =2-42=1-2 2. 3. (2019 辽宁沈阳中考模拟)计算:cos45°·(-21)-2-(22-3)0+|-32|+121 【分析】先把三角函数,负指数、零指数、绝对值及分子分母中的根号等进行化简.a -p =1a p (a≠0,p 为正整数), 1a -b 化简为1a -b =a+b (a -b)(a+b)=a+b a -b. 【解答】原式=22×4-1+32+12-1=22-1+42+2+1=7 2.4.(2019 山东淄博中考模拟)(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y =﹣+4,求的值.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a +3+2a ﹣15=0,解得:a =4,a +3=2a ﹣15,解得:a =18, 答:a 的值为4或18;(2)满足二次根式与有意义,则,解得:x =9,∴y =4,∴=+=5. 5.(2019 湖南长沙中考模拟)阅读材料:小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:.该如何化简呢?思考后,他发现3+2=1+2+()2=(1+)2.于是==1+.善于思考的小明继续深入探索;当a+b=(m+n)2时(其中a,b,m,n均为正整数),则a+b=m2+2mn+2n2.此时,a=m2+2n2,b=2mn,于是,=m+n.请你仿照小明的方法探索并解决下列何题:(1)设a,b,m,n均为正整数且=m+n,用含m,n的式子分别表示a,b时,结果a=,b=;(2)利用(1)中的结论,选择一组正整数填空:=+;(3)化简:.【分析】(1)利用已知直接去括号进而得出a,b的值;(2)取m=2,n=1,计算a和b的值,利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.【解答】解:(1)由题意得:a+b=(m+n)2,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn;故答案为:m2+3n2;2mn;(2)取m=2,n=1,则a=m2+3n2=7,b=2mn=4,7+4=(2+)2;故答案为:;(3)==+1.6.(2019 河北衡水中考模拟)已知a、b、c为△ABC的三边长,化简:+.【分析】直接利用三角形三边关系得出a+b﹣c>0,b﹣c﹣a<0,进而化简得出答案.【解答】解:∵a、b、c为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴原式=a+b﹣c﹣(b﹣c﹣a)=2a.7.(2019 河北石家庄中考模拟)已知|2018﹣m|+=m,求m﹣20182的值.【分析】直接利用二次根式有意义的条件分别分析得出答案.【解答】解:∵m﹣2019≥0,∴m≥2019,∴2018﹣m≤0,∴原方程可化为:m﹣2018+=m,∴=2018,∴m﹣2019=20182,∴m﹣20182=2019.8.(2019 河北石家庄中考模拟)在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.。
二次根式经典总结
1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=. 3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (b a b a>≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式:a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题. 11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.形如)0a(,a≥的式子,叫做二次根式(1)二次根式a中,被开方数必须是非负数。
提高版5.二次根式性质和运算复习专题(教师版)
课题:二次根式的性质和运算专题个性化教学辅导教案 组长签名:________学生姓名年 级 初二 学 科 数学 上课时间 年 月 日教师姓名课 题二次根式的性质和运算专题教学目标1、理解二次根式的概念,了解被开方数是非负数的理由.2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.3、了解最简二次根式的概念和性质,能运用二次根式的有关性质进行化简.4、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;5、会利用运算律和运算法则进行二次根式的混合运算.教学过程 教师活动学生活动1.把多项式x 2﹣8x +16分解因式,结果正确的是( ) A .(x ﹣4)2B .(x ﹣8)2C .(x +4)(x ﹣4)D .(x +8)(x ﹣8)【考点】54:因式分解﹣运用公式法. 【解答】解:x 2﹣8x +16=(x ﹣4)2. 故选:A .2.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A .240x−20﹣120x=4 B .240x+20﹣120x=4 C .120x﹣240x−20=4D .120x﹣240x+20=4【考点】B 6:由实际问题抽象出分式方程.【解答】解:设他上月买了x 本笔记本,则这次买了(x +20)本, 根据题意得:120x﹣240x+20=4.故选D .3.约分:①5ab20a 2b = ,②x 2−9x 2−6x+9= . 【考点】66:约分.【解答】解:①5ab20a 2b = 14a ; ②x 2−9x 2−6x+9 = (x+3)(x−3)(x−3)2=x+3x−3.4.已知x ﹣y =﹣1,xy =3,求x 3y ﹣2x 2y 2+xy 3的值.【考点】55:提公因式法与公式法的综合运用. 【解答】解:原式=xy (x 2﹣2xy +y 2) =xy (x ﹣y )2,把x ﹣y =﹣1,xy =3代入得:原式=3.5.先化简,再求值:x 2+2x+1x 3−x÷(1+1x),其中x =3.【考点】6D :分式的化简求值. 【解答】解:原式=(x+1)2x(x+1)(x−1)•xx+1 =1x−1 当x =3时, 原式=216.解方程:1x−2+3=1−x2−x .【考点】B 3:解分式方程.【解答】解:两边乘x ﹣2得到,1+3(x ﹣2)=x ﹣1, 1+3x ﹣6=x ﹣1, x =2,∵x =2时,x ﹣2=0,∴x =2是分式方程的增根,原方程无解.问题1二次根式的性质1.若√2x −1+√1−2x +1在实数范围内有意义,则x 满足的条件是( ) A .x ≥12 B .x ≤12 C .x =12 D .x ≠12 【考点】72:二次根式有意义的条件. 【解答】解:由题意可知:{2x −1≥01−2x ≥0解得:x =12 ,故选(C )【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.问题2二次根式的运算法则2.已知(4+√7)•a =b ,若b 是整数,则a 的值可能是( ) A .√7 B .4+√7C .8﹣2√7D .2﹣√7【考点】76:分母有理化.【解答】解:因为(4+√7)•a =b ,b 是整数, 可得:a =8﹣2√7, 故选C【点评】此题考查分母有理化问题,关键是根据分母有理化的法则进行解答.3.计算:√8÷√2+(2﹣√2014)0﹣(﹣1)2014+|√2﹣2|+(﹣12)﹣2.【考点】79:二次根式的混合运算;6E :零指数幂;6F :负整数指数幂. 【解答】解:原式=√8÷2+1﹣1+2﹣√2+4 =2+1﹣1+2﹣√2+4 =8﹣√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.问题1 二次根式的性质对应知识点:(1)二次根式的概念;(2)二次根式的性质问题2 二次根式的运算对应知识点: (1)分母有理化;(2)二次根式的混合运算;【基础知识重温】(一)二次根式概念和性质(1)概念:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.(2)二次根式的性质① 非负性:a a ()≥0是一个非负数. ②()()a aa 20=≥.③ a a a a a a 200==≥-<⎧⎨⎩||()()(二)二次根式的乘除法运算法则 (1)乘法法则:(a ≥0,b ≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘. (2)除法法则:b a ba =(a≥0,b >0),即两个二次根式相除,根指数不变,把被开方数相除.(3)最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.(4)同类二次根式的概念几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.(5)二次根式的加减法二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.【精准突破1】二次根式的性质【例题精讲】【例题1-1】要使二次根式√2x +6在实数范围内有意义,则实数x 的取值范围在数轴上表示正确的是( ) A . B . C .D .【考点】72:二次根式有意义的条件;C 4:在数轴上表示不等式的解集. 【解答】解:由题意得,2x +6≥0, 解得,x ≥﹣3, 故选:C .【例题1-2】己知x ,y 为实数,且y =12+√6x −1+√1−6x ,则x •y 的值为( )A .3B .13C .16D .112【考点】72:二次根式有意义的条件. 【解答】解:∵y =12+√6x −1+√1−6x ,∴6x ﹣1=0,解得:x =16,则y =12, 故xy =16×12=112.故选:D .【例题1-3】实数a ,b 在数轴上对应点的位置如图所示,化简|a |+√(a −b)2的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b【考点】73:二次根式的性质与化简;29:实数与数轴. 【解答】解:由图可知:a <0,a ﹣b <0,则|a |+√(a −b)2 =﹣a ﹣(a ﹣b ) =﹣2a +b . 故选:A .【精准突破2】二次根式的运算法则【例题精讲】【例题2-1】下列化简错误的是( ) A .√1625=45B .√1916=134C .√2764=38√3D .﹣√715=﹣65√5【考点】73:二次根式的性质与化简. 【解答】解:A 、√1625=45,故原题计算正确; B 、√1916=√2516=54,故原题计算错误; C 、√2764=3√38,故原题计算正确; D 、﹣√715=﹣√365=﹣65√5,故原题计算正确; 故选:B .【例题2-2】下列二次根式中,与√2之积为有理数的是( ) A .√18 B .√34 C .√12 D .﹣√27【考点】76:分母有理化.【解答】解:A 、√18=3√2,3√2×√2=6,符合题意; B 、原式=√32,√32×√2=√62,不符合题意; C 、原式=2√3,2√3×√2=2√6,不符合题意; D 、原式=﹣3√3,﹣3√3×√2=﹣3√6,不符合题意, 故选A【例题2-3】若最简二次根式√a +23b−1与√4b −a 是同类二次根式,则(a ﹣2b )2017= .【考点】77:同类二次根式;74:最简二次根式.【解答】解:由题意可知:{3b −1=2a +2=4b −a,解得:{a =1b =1,∴(a﹣2b)2017=(﹣1)2017=﹣1,故答案为:﹣1.+√48)÷2√3.【例题2-4】化简:(3√12﹣2√13【考点】79:二次根式的混合运算.+4√3)÷2√3【解答】解:原式=(6√3﹣2√33=28√3÷2√33.=143【巩固一】二次根式的性质1.下列各式中一定是二次根式的是()A.√x+2B.√x C.√x2+2D.√a2b【考点】71:二次根式的定义.【解答】解:(A)当x+2<0时,原式无意义,故A不一定是二次根式;(B)当x<0时,原式无意义,故B不一定是二次根式;(C)∵x2≥0,∴x2+1≥1,故C一定是二次根式;<0时,原式无意义,故D不一定是二次根式,(D)当a2b故选(C)2.若代数式√x+1有意义,则实数x的取值范围是()(x−2)2A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠2【考点】72:二次根式有意义的条件.【解答】解:由题意得,x+1≥0且(x﹣2)2≠0,解得x≥﹣1且x≠2.故选D.3.若√(2a+4)2=2a+4,则a的取值范围为()A .a ≥2B .a ≤2C .a ≥﹣2D .a ≤﹣2 【考点】73:二次根式的性质与化简. 【解答】解:∵√(2a +4)2=|2a +4|=2a +4, ∴2a +4≥0, ∴a ≥﹣2 故选(C )4.当1<P <2时,代数式√(1−p)2+(√2−p )2的值为 . 【考点】73:二次根式的性质与化简. 【解答】解:∵1<P <2, ∴1﹣p <0,2﹣p >0,∴√(1−p)2+(√2−p )2=p ﹣1+2﹣p =1, 故答案为:1.【巩固二】二次根式的运算法则1. 计算√24﹣9√23的结果是( ) A .√6 B .﹣√6C .﹣43√6 D .43√6【考点】78:二次根式的加减法.【解答】解:√24﹣9√23=2√6﹣9×√63=2√6﹣3√6=﹣√6.故选:B .2.等式√x +1•√x −1=√x 2−1成立的条件是( )A .x ≥1B .x ≥﹣1C .﹣1≤x ≤1D .x ≥1或x ≥﹣1 【考点】75:二次根式的乘除法.【解答】解:∵√x +1•√x −1=√x 2−1成立, ∴x +1≥0,x ﹣1≥0. 解得:x ≥1. 故选:A .3.下列二次根式,不能与√12合并的是 (填写序号即可).①√48; ②−√125; ③√113; ④√32; ⑤√18.【考点】77:同类二次根式.【解答】解:√12=2√3,①√48=4√3,②﹣√125=﹣5√5;③√113=2√33,④√32,⑤√18=3√2. 不能与√12合并的是﹣√125和√18.故答案为:②⑤.4.计算:(1)3√223×(−18√15)÷12√25. (2)√12+√27+14√48−15√13.(3)(2√5﹣√2)0+|2﹣√5|+(﹣1)2017﹣13×√45.【考点】75:二次根式的乘除法;78:二次根式的加减法.79:二次根式的混合运算;6E :零指数幂.【解答】(1)解:原式=3√83×(﹣18√15)×2√52=﹣3×18×2×√83×15×52 =﹣34√100=﹣34×10 =﹣152.(2)解:原式=2√3+3√3+14×4√3﹣15×√33 =2√3+3√3+√3﹣5√3=√3.(3)解:原式=1+√5﹣2﹣1﹣√5【查漏补缺】1.使代数式1√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【考点】72:二次根式有意义的条件.【解答】解:由题意,得x +3>0且4﹣3x ≥0,解得﹣3<x ≤43,整数有﹣2,﹣1,0,1,故选:B.2.若3,m,5为三角形三边,化简:√(2−m)2﹣√(m−8)2得()A.﹣10B.﹣2m+6C.﹣2m﹣6D.2m﹣10【考点】73:二次根式的性质与化简;K6:三角形三边关系.【解答】解:由三角形三边关系可知:2<m<8∴2﹣m<0,m﹣8<0∴原式=﹣(2﹣m)+(m﹣8)=﹣2+m+m﹣8=2m﹣10故选(D)【举一反三】1.若最简二次根式√2x+y−53x−10和√x−3y+11是同类二次根式.(1)求x、y的值.(2)求√x2+y2的值.【考点】77:同类二次根式.【解答】解:(1)由题意得,3x﹣10=2,2x+y﹣5=x﹣3y+11,解得x=4,y=3;(2)当x=4,y=3时,√x2+y2=√42+32=5.2.计算:2y √xy5﹙﹣32√x3y﹚÷(13√yx).【考点】75:二次根式的乘除法.(2)2y √xy5﹙﹣32√x3y﹚÷(13√yx)=﹣2y ×32×3√xy5×x3y×xy=﹣9y√x5y5=﹣9x2y√xy.【方法总结】1.二次乘法法则可以推广到多个二次根式相乘的运算: ≥0,≥0,…..≥0).2.在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意, a ≥0,b >0,因为b 在分母上,故b 不能为0.3.运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.1.下列式子为最简二次根式的是( )A .√x5 B .√8 C .√3x 2y D .√x 2−9 【考点】74:最简二次根式.【解答】解:A 、被开方数含分母,故A 不符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含能开得尽方的因数或因式,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意; 故选:D .2.已知y =√4−x +√x −4+3,则yx 的值为( ) A .43 B .﹣43 C .34 D .﹣34 【考点】72:二次根式有意义的条件.【解答】解:由题意得,4﹣x ≥0,x ﹣4≥0,解得x =4,则y =3,则y x =34,故选:C .3.下列变形正确的是( )A .√(−4)(−9)=√−4×√−9B .√1614=√16×√14=4×12=2 C .√(a +b)2=|a +b | D .√252−242=25﹣24=1【考点】75:二次根式的乘除法;73:二次根式的性质与化简.【解答】解:A 、√(−4)(−9)=√4×√9,故A 选项错误;B 、√1614=√65×√14=√65×12=√652,故B 选项错误;C 、√(a +b)2=|a +b |,故C 选项正确;D 、√252−242=√(25+24)(25−24)=7,故D 选项错误.故选:C .4.实数a ,b 在数轴上的位置如图所示,则化简√(a −1)2﹣√(a −b)2+b 的结果是( )A .1B .b +1C .2aD .1﹣2a【考点】73:二次根式的性质与化简;29:实数与数轴.【解答】解:由数轴可得:a ﹣1<0,a ﹣b <0,则原式=1﹣a +a ﹣b +b =1.故选:A .5.计算:(1)4√12÷(﹣√6)×13√12. (2)√48﹣2×√274+(12)﹣1+(π﹣2017)0.【考点】75:二次根式的乘除法.79:二次根式的混合运算;6E :零指数幂;6F :负整数指数幂.(1)解:原式=﹣2√2÷√6×2√33 =﹣2√3×2√33 =﹣43. (2)解:原式=4√3﹣2×3√32+2+1=√3+3.【第1,2天】当周完成一.选择题1.下列各式中①√3;②√−5; ③√a 2; ④√x −1(x ≥1); ⑤√83; ⑥√x 2+2x +1一定是二次根式的有( )个.A .3B .4C .5D .6 【考点】71:二次根式的定义.【解答】解:①√3符合二次根式的定义,故正确.②√−5无意义,故错误.③√a 2中的a 2≥0,符合二次根式的定义,故正确.④√x −1(x ≥1)中的x ﹣1≥0,符合二次根式的定义,故正确.⑤√83是开3次方,故错误.⑥√x 2+2x +1中的x 2+2x +1=(x +1)2≥0,符合二次根式的定义,故正确. 故选:B .2.实数a 、b 在数轴上的对应点如图,化简√a 2﹣√b 2+√(a −b)2的结果是( )A .2a ﹣2bB .0C .﹣2aD .2b【考点】73:二次根式的性质与化简;29:实数与数轴.【解答】解:由数轴可得:∵﹣1<a <0,0<b <1,∴a ﹣b <0,∴√a 2﹣√b 2+√(a −b)2=﹣a ﹣b ﹣(a ﹣b )=﹣2a .故选:C .3.计算2√12×√34÷√3的结果是( ) A .√32 B .√34 C .√3 D .2√3【考点】75:二次根式的乘除法.【解答】解:原式=12√36÷√3 =3÷√3 =√3 故选(C )4.下列各式中计算正确的是( )A .3√2﹣√2=2√2B .2+√2=2√2C .√12−√102=√6−√5 D .√2+√3=√5 【考点】78:二次根式的加减法.【解答】解:3√2﹣√2=2√2,A 正确;2与√2不能合并,B 错误;√12−√102=2√3−√102=√3−√102,C 错误;√2与√3不是同类二次根式,不能合并,D 错误,故选:A .5.若y =√x −12+√12−x ﹣6,则xy = .【考点】72:二次根式有意义的条件.【解答】解:由题意可知:{x −12≥012−x ≥0,解得:x =12,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣36.计算:(2√3﹣√6)2+(√54+2√6)÷√3.【考点】79:二次根式的混合运算.【解答】解:原式=12﹣12√2+6+√54÷3+2√6÷3=18﹣12√2+3√2+2√2=18﹣7√2.7.一个直角三角形的两边m、n恰好满足等式m﹣√2n−12+√12−2n=8,求第三条边上的高的长度.【考点】7B:二次根式的应用.【解答】解:∵m﹣√2n−12+√12−2n=8,∴2n﹣12=0,∴n=6,m=8,则①当m、n为直角三角形时,第三条边长为√62+82=10,所以第三条边上的高的长度为:6×8=4.8;10②当m为斜边、n为直角边时,所以第三条边上的高的长度为:6.答:第三条边上的高的长度为4.8或6.【第7天】(同时放在下一讲的复习检查)1.式子√a+1有意义,则实数a的取值范围是()a−2A.a≥﹣1B.a≠2C.a≥﹣1且a≠2D.a>2【考点】72:二次根式有意义的条件.【解答】解:式子√a+1有意义,a−2则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.2.计算:(5√48﹣6√27+4√15)÷√3﹣4√5.【考点】79:二次根式的混合运算.【解答】解:原式=5√48÷3﹣6√27÷3+4√15÷3﹣4√5=20﹣18+4√5﹣4√5=2.【第15天】(同时放在下下讲的复习检查)1.计算3√45÷√15×23√223.【考点】75:二次根式的乘除法.【解答】解:原式=3×3√5÷√55×23×√83 =9√5÷√55×23×2√63=45×4√69 =20√6.2.计算:√48﹣6√13+(√3+2)(√3﹣2) 【考点】79:二次根式的混合运算.【解答】解:原式=4√3﹣2√3+3﹣4 =2√3﹣1.【第28天】(同时放在下下下一讲的复习检查)1.下列各等式成立的是( )A .4√5×2√5=8√5B .5√3×4√2=20√5C .4√3×3√2=7√5D .5√3×4√2=20√6【考点】75:二次根式的乘除法.【解答】解:A 、4√5×2√5=8×5=40,故选项错误;B 、5√3×4√2=20√3×2=20√6,故选项错误;C 、4√3×3√2=12√3×2=12√6,故选项错误;D 、5√3×4√2=20√3×2=20√6,故选项正确.故选D .2.计算:(2√32﹣√12)×(12√8+√23)﹣(√3﹣2)2.【考点】79:二次根式的混合运算.【解答】解:原式=(√6﹣√22)(√2+√63)﹣(3﹣4√3+4)=2√3+2﹣1﹣√3﹣7+4√33﹣6.=17√33教学反思。
二次根式和一元二次方程知识点整理
二次根式二、知识要点1、二次根式的概念a ≥0)的式子叫做二次根式。
注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0,2、取值范围(1)、二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
(2)、二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤03、二次根式a ≥0)的非负性a ≥0)表示a a ≥00(a≥0)。
注意:a ≥0)表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a ≥0)的算术平方根是非负数,即2(a ≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用0=,则a=0,b=020b =,则a=0,b=020b =,则a=0,b=0。
4、二次根式2的性质:2a =(a ≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
注意:二次根式的性质公式2a =(a ≥0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a ≥0,则2a =,如:22=,212=。
5、二次根式的性质(0)(0)a aaa a≥⎧==⎨-<⎩描述为:一个数的平方的算术平方根等于这个数的绝对值。
注意:(1)、化简一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即(0)a a a==≥;若a是负数,则等于a的相反数-a,即1.414 1.7322.236≈≈;;;2、a的取值范围可以是任意实数,即不论a3a,再根据绝对值的意义来进行化简。
6、2与1、不同点:22表示一个正数a的算术平方根的平a的平方的算术平方根;在2中a可以是正实数,0,负实数。
但220≥0≥。
因而它的运算的结果是有差别的,2a=(a≥0)(0)(0)a aaa a≥⎧==⎨-<⎩2、相同点:当被开方数都是非负数,即a≥0时,2a<0时,2无意义,而a=-。
北师大版数学八年级上册7《二次根式》教案5
北师大版数学八年级上册7《二次根式》教案5一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容。
本节内容是在学生已经掌握了有理数的乘除法、平方根的基础上进行的。
二次根式是数学中的基本概念,它在几何、物理等领域有广泛的应用。
本节课的主要内容是二次根式的定义、性质和运算规则,旨在培养学生的逻辑思维能力和数学运算能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对平方根的概念和运算有一定的了解。
但二次根式相对于平方根来说,其概念和运算更为复杂,需要学生进行一定的抽象和推理。
因此,在教学过程中,需要关注学生的学习情况,引导学生理解二次根式的本质,掌握其运算规则。
三. 教学目标1.理解二次根式的定义和性质。
2.掌握二次根式的运算规则。
3.能够运用二次根式解决实际问题。
四. 教学重难点1.二次根式的定义和性质。
2.二次根式的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过案例分析,让学生了解二次根式的应用;通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.PPT课件。
2.相关案例材料。
3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如计算物体体积、求解方程等,引导学生思考这些实例与二次根式的关系。
2.呈现(10分钟)介绍二次根式的定义和性质,通过PPT展示相关公式和定理。
让学生初步了解二次根式的基础知识。
3.操练(10分钟)让学生进行一些简单的二次根式运算,如化简、求值等。
教师在这个过程中要注意引导学生掌握运算规则,并及时解答学生的问题。
4.巩固(10分钟)让学生运用二次根式解决一些实际问题,如计算物体体积、求解方程等。
教师在这个过程中要注意引导学生将所学知识运用到实际问题中,提高学生的解决问题的能力。
5.拓展(10分钟)让学生探讨二次根式在实际生活中的应用,如物理、化学等领域。
教师在这个过程中要注意引导学生思考和探索,培养学生的创新能力。
北师大版数学八年级上册7《二次根式》说课稿3
北师大版数学八年级上册7《二次根式》说课稿3一. 教材分析北师大版数学八年级上册7《二次根式》是初中数学的重要内容,它既是对实数系统的完善,也是进一步学习代数、几何等知识的基础。
本节课主要介绍二次根式的概念、性质和运算。
通过学习,学生能够理解二次根式的实际意义,掌握二次根式的基本性质,提高解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了实数的基本概念,具有一定的代数基础。
他们对实数的认识有助于理解二次根式。
然而,学生对二次根式的理解可能仍停留在表面,对其内在联系和应用可能不够深入。
因此,在教学过程中,需要关注学生的认知水平,引导学生深入理解二次根式。
三. 说教学目标1.知识与技能:学生能够理解二次根式的概念,掌握二次根式的性质,学会进行二次根式的运算。
2.过程与方法:通过观察、思考、交流,学生能够发现二次根式的性质,提高分析问题和解决问题的能力。
3.情感态度与价值观:学生能够体验数学与实际生活的联系,培养学习数学的兴趣和自信心。
四. 说教学重难点1.重点:二次根式的概念、性质和运算。
2.难点:二次根式的性质的发现和证明,二次根式在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作学习、探究发现的教学方法,引导学生主动参与,培养学生的思维能力和创新能力。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过实际问题引入二次根式的概念,激发学生的兴趣。
2.新课导入:介绍二次根式的概念,引导学生探究二次根式的性质。
3.例题讲解:通过典型例题,讲解二次根式的运算方法。
4.实践环节:学生自主探究,发现二次根式的性质。
5.应用拓展:结合实际问题,引导学生运用二次根式解决实际问题。
6.总结:对本节课的内容进行总结,强调二次根式的概念、性质和运算。
7.作业布置:布置巩固二次根式的练习题,提高学生的应用能力。
七. 说板书设计板书设计要清晰、简洁,能够突出二次根式的关键信息。
北师大版八年级数学上册:2.7《二次根式》教学设计3
北师大版八年级数学上册:2.7《二次根式》教学设计3一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节内容主要介绍二次根式的概念、性质和运算。
二次根式是中学数学中的重要内容,它在解决实际问题和其他学科中有着广泛的应用。
通过学习二次根式,学生能够更好地理解和掌握数学中的根式概念,提高解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。
但学生对二次根式这一概念可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对二次根式的运算规则和性质理解不够深入,需要在教学过程中进行引导和讲解。
三. 教学目标1.理解二次根式的概念和性质;2.掌握二次根式的运算规则;3.能够应用二次根式解决实际问题;4.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.二次根式的概念和性质;2.二次根式的运算规则;3.二次根式在实际问题中的应用。
五. 教学方法采用问题驱动法和案例教学法,通过实例和练习引导学生理解二次根式的概念和性质,通过讲解和练习让学生掌握二次根式的运算规则,通过实际问题让学生应用二次根式解决问题。
六. 教学准备1.PPT课件;2.相关例题和练习题;3.教学黑板和粉笔。
七. 教学过程1.导入(5分钟)通过PPT展示一些实际问题,如计算物体体积、求解方程等,引导学生思考如何利用二次根式解决这些问题。
让学生认识到二次根式在实际问题中的重要性。
2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT展示相关定义和性质,让学生理解二次根式的基本特点。
同时,给出一些例子,让学生加深对二次根式的认识。
3.操练(10分钟)让学生进行二次根式的运算练习,如化简、求值等。
教师引导学生运用二次根式的性质和运算规则,解答练习题。
在此过程中,教师应及时解答学生的疑问,并进行讲解和指导。
4.巩固(10分钟)让学生运用二次根式解决实际问题,如计算物体体积、求解方程等。
新人教版八年级下册数学知识点归纳
新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。
2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。
(完整word)二次根式的运算
二次根式的运算编稿:庄永春审稿:邵剑英责编:张杨一、目标认知1。
学习目标(1)理解二次根式的乘法法则和积的算术平方根的性质及二次根式的除法法则和商的算术平方根的性质,并能利用它们进行计算和化简;(2)了解最简二次根式的概念,能运用二次根式的有关性质进行化简;(3)理解同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;(4)会利用运算律和运算法则进行二次根式的混合运算。
2.重点(1)理解,及利用它们进行计算和化简;(2)理解,及利用它们进行计算和化简;(3)最简二次根式的运用;(4)合并同类二次根式;(5)二次根式的混合运算.3。
难点(1)发现规律,归纳出二次根式的乘除法则;(2)会判定一个二次根式是否是最简二次根式,及二次根式的化简.二、知识要点梳理知识点一:二次根式的乘法法则:,即两个二次根式相乘,根指数不变,只把被开方数相乘。
要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数)(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能写成的形式,则应化简,如.知识点二、积的算术平方根的性质,即积的算术平方根等于积中各因式的算术平方根的积。
要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.知识点三、二次根式的除法法则:,即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,其中,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号。
湘教版八年级上册数学精品教学课件 第5章 二次根式 第1课时 二次根式的加减运算
第5章 二次根式
5.3 二次根式的加法和减法
第1课时 二次根式的加减运算
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 理解和掌握二次根式加减的运算法则及能正确地 对二次根式进行加减运算;(重点、难点)
2. 通过实例分析,从中正确地掌握二次根式加减运 算的基本步骤.
问题3 有八只小白兔,每只身上都标有一个最简二次根 式,你能根据被开方数的特征将这些小白兔分到四个不 同的栅栏里吗?
能力提升: 6. 已知 a,b 都是有理数,现定义新运算:a*b= a 3 b,求 (2*3) - (27*32) 的值. 解:∵a*b = a 3 b , ∴ (2*3) - (27*32)
= 2 3 3 27 3 32
= 2 3 3 3 3 12 2
= 11 2.
课堂小结
例5 下图是某土楼的平面剖面图,它是由两个相同圆 心的圆构成. 已知大圆和小圆的面积分别为 763.02 m2 和 150.72 m2,求圆环的宽度 d (π 取 3.14). 解:设大圆和小圆的半径分别为 R,r,
面积分别为 S1,S2,由 S1 = πR2,
S2 = πr2,可得 R
S1,r π
二次根 式的加
减
法则 注意
一般地,二次根式的加减 时,可以先将二次根式化成最 简二次根式,再将被开方数相 同的二次根式进行合并.
运算原理 运算律仍然适用
运算顺序
与实数的运 算顺序一样
S2 . π
d
则 d R r S1 S2
ππ
763.02 150.72
3.14
3.14
243 48
9 34 3
第一章数与式第5课二次根式及其运算课件
(3)计算:-
4 1 × 15 45 5 2
解:原式=-
4 1 × × 45×15 5 2 =- 4 × 1×15× 3 =-6 3 . 5 2
探究提高
1.二次根式化简,依据 ab = a b(a≥0,b≥0), ·
a = a (a≥0,b>0),前者将被开方数变形为有m2 b b (m为正整数)因式,后者分子、分母同时乘一个适当的
基础自测
1.(2011· 泉州)(-2)2的算术平方根是( A )
A. 2
B.±2 -22 = -2=2.
2.(2011· 广安)下列运算正确的是( C ) A.-(-x+1)=x+1 B. 9 - 5 = 4 C. 3-2=2- 3 D.(a-b)2=a2-b2 解析:因为 3 <2, 3 -2<0,所以= 3-2-( 3 -2) =- 3 +2=2- 3 .
(2)已知a、b、c是△ABC的三边长,试化简:
a+b+c2+
a-b-c2+ b-c-a2 + c-a-b2 .
解:原式=|a+b+c|+|a-b-c|+|b-c-a|+|c-a-b| =(a+b+c)+(b+c-a)+(c+a-b)+(a+b-c)
=2a+2b+2c.
探究提高
1.对于二次根式,它有意义的条件是被开方数非负.
题型三
二次根式混合运算
【例3】 计算: (1)(3 2 -1)(1+3 2 )-(2 2 -1)2; (2)( 10 -3)2010·( 10 +3)2010. 解题示范——规范步骤,该得的分,一分不丢! 解:(1)原式=(3 2 )2-1-[(2 2 )2-4 2 +1] =18-1-8+4 2 -1 [2分] =8+4 2 (2)原式=[( 10 -3)( [4分]
二次根式经典总结
1.二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式;(2)是一个重要的非负数,即;≥0。
2.重要公式:(1),(2);注意使用。
3.积的算术平方根:,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则:.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小。
6.商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7.二次根式的除法法则:(1);(2);(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8.常用分母有理化因式:,, ,它们也叫互为有理化因式。
9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式。
10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题。
11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.形如的式子,叫做二次根式(1)二次根式中,被开方数必须是非负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、小结:本堂课你掌握了那些知识?都基本会了吗? 四、当堂检测 1、估算 27 2 的值( ) B.在 2 到 3 之间 D.在 4 到 5 之间
A.在 1 到 2 之间 C.在 3 到 4 之间 2、 2 的倒数是( ) 3、最简二次根式应满足的条件: (1)被开方数中不含有能开得尽 的因数或因式; (2)根号内不含分母; (3)分母上没有根号 4、同类二次根式:几个二次根式化成最简二次根式以后,如果被 开方数相同,这几个二次根式就叫做同类二次根式. 5、二次根式的乘法、除法公式: (1) a b= ab a 0,b 0) (2) ( A. 2 B. 2 C.
x 1 有意义, x 的取值范围是( x
1 C. 8 D. 27 2 4、若 | a 1| 8 b 0 ,则 a b x+3 5.函数 y 中,自变量 x 的取值范围是________ x+5 a 3 5 ( a 2),其中 a 3 3 6、先化简,再求值: 2a 4 a 2
A. a2 1 B.
7、如图,实数 a 、 b 在数轴上的位置,化简
a 2 b 2 (a b) 2
)
B. x 0
C. x 1且x 0
D. x ≥ -1且x 0
1 20 的运算结果应在( ) . 2 A、6 到 7 之间 B、7 到 8 之间 C、8 到 9 之间 D、 到 10 之间 9
永宁中学九年级数学(下)导学案
备课组长: 教研组长: 教科室:
课题 四、 二次根式及其运算 第 1 课时 共 1 课时
学习目标:1、通过自主学习、合作探究,掌握二次根式的相关概念; 2、会进行二次根式的运算。 一、自主学习——【知识梳理】 1、二次根式: 定义:_________________________________叫做二次根式. 2、二次根式的化简:
2 2 D. 2 2 3、下列根式中属最简二次根式的是( )
a a = (a 0,b 0) b b
6、二次根式运算注意事项: (1)二次根式相加减,先把各根式化 为最简二次根式,再合并同类二次根式,防止:① 该化简的没化 简;② 不该合并的合并;③ 化简不正确;④ 合并出错. (2)二次根 式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一 定写成最简二次根式或整式. 二、合作探究、学以致用 1、要使式子 A. x 1 2、估计 32
3、 若实数 x, y 满足 x 2 ( y 3)2 0 , xy 的值是 则 4、 先化简, 再求值: 2 1 ) (a 2 1) , 其中 a 3 3 . (
a 1 a 1
8、已知 m=
.
2011 ,求 m5-2m4-2011m3 的值。 2012-1