2018届高三数学(理科)二轮复习讲义一回扣教材纠错例析4.数列Word版含解析
2018届高三数学(理)高考总复习教师用书:第五章 数 列 Word版含答案
第五章⎪⎪⎪数 列第一节数列的概念与简单表示法1.数列的有关概念 概念 含义数列 按照一定顺序排列的一列数 数列的项 数列中的每一个数 数列的通项 数列{a n }的第n 项a n通项公式 数列{a n }的第n 项a n 与n 之间的关系能用公式a n =f (n )表示,这个公式叫做数列的通项公式前n 项和数列{a n }中,S n =a 1+a 2+…+a n 叫做数列的前n 项和列表法 列表格表示n 与a n 的对应关系 图象法 把点(n ,a n )画在平面直角坐标系中 公式法通项公式 把数列的通项使用公式表示的方法递推公式使用初始值a 1和a n +1=f (a n )或a 1,a 2和a n +1=f (a n ,a n -1)等表示数列的方法n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为1,3,7,15,则数列{a n }的一个通项公式为________.答案:a n =2n -1(n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材习题改编)已知函数f (x )=x -1x ,设a n =f (n )(n ∈N *),则{a n }是________数列(填“递增”或“递减”).答案:递增1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征; ④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.如“题组练透”第2(2)题.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =2n 2-3n ;(2)S n =3n +b .解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.[由题悟法]已知S n 求a n 的 3个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)] =(-1)n +1·(2n -1), 又a 1也适合此式, 所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1] =2·3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n 1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立.∴a n =1n (n ∈N *). 角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式,∴a n =n 2+n2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1(n ∈N *).[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n }的通项公式. (1)a 1=1,a n +1=a n +2n ; (2)a 1=12,a n =n -1n +1a n -1(n ≥2).解:(1)由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+2+1=1-2n1-2=2n -1.(2)因为a n =n -1n +1a n -1(n ≥2),所以当n ≥2时,a n a n -1=n -1n +1,所以a na n -1=n -1n +1,a n -1a n -2=n -2n ,…,a 3a 2=24,a 2a 1=13,以上n -1个式子相乘得a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·…·24·13,即a n a 1=1n +1×1n ×2×1,所以a n =1n (n +1). 当n =1时,a 1=11×2=12,也与已知a 1=12相符,所以数列{a n }的通项公式为a n =1n (n +1).一抓基础,多练小题做到眼疾手快1.数列1,23,35,47,59,…的一个通项公式a n =( )A .n 2n +1B .n2n -1 C .n 2n -3D .n2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n 2n -1.2.已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式为选项C .3.若a 1=12,a n =4a n -1+1(n ≥2),当a n >100时,n 的最小值为( )A .3B .4C .5D .6解析:选C 由a 1=12,a n =4a n -1+1(n ≥2)得,a 2=4a 1+1=4×12+1=3,a 3=4a 2+1=4×3+1=13,a 4=4a 3+1=4×13+1=53,a 5=4a 4+1=4×53+1=213>100.4.(2016·肇庆三模)已知数列{a n }满足a 1=1,a n -a n -1=n (n ≥2),则数列{a n }的通项公式a n =________.解析:由a n -a n -1=n 得a 2-a 1=2, a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n , 上面(n -1)个式子相加得 a n =1+2+3+…+n =12n (n +1).又n =1时也满足此式, 所以a n =12n (n +1).答案:12n (n +1)5.(2017·南昌模拟)数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为________.解析:∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1. 答案:-1二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A .(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2017·福建福州八中质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2017=( )A .1B .0C .2 017D .-2 017解析:选A ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 017=a 1=1.3.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( ) A .2n B .2n -1 C .2nD .2n -1解析:选C 当n =1时,a 1=S 1=2(a 1-1),可得a 1=2,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1,∴数列{a n }为等比数列,公比为2,首项为2,所以a n =2n .4.设曲线f (x )=x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·x 3·x 4·…·x 2 017=( )A .2 0162 017B .12 017 C .2 0172 018D .12 018解析:选D 由f (x )=x n +1得f ′(x )=(n +1)x n ,切线方程为y -1=(n +1)(x -1),令y =0得x n =n n +1,故x 1·x 2·x 3·x 4·…·x 2 017=12×23×…×2 0172 018=12 018.5.(2017·衡水中学检测)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第____________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0. 解得n =10或n =52(舍去).答案:107.已知数列{a n }满足a 1=1,a n =a 2n -1-1(n >1),则a 2 017=________,|a n +a n +1|=________(n >1).解析:由a 1=1,a n =a 2n -1-1(n >1),得a 2=a 21-1=12-1=0,a 3=a 22-1=02-1=-1, a 4=a 23-1=(-1)2-1=0,a 5=a 24-1=02-1=-1,由此可猜想当n >1,n 为奇数时a n =-1,n 为偶数时a n =0, ∴a 2 017=-1,|a n +a n +1|=1. 答案:-1 18.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2017·甘肃诊断性考试)已知数列{a n }满足a 1=8999,a n +1=10a n +1. (1)证明数列⎩⎨⎧⎭⎬⎫a n +19是等比数列,并求数列{a n }的通项公式;(2)数列{b n }满足b n =lg ⎝⎛⎭⎫a n +19,T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,求证:T n <12. 证明:(1)由a n +1=10a n +1,得a n +1+19=10a n +109=10⎝⎛⎭⎫a n +19,即a n +1+19a n +19=10. 所以数列⎩⎨⎧⎭⎬⎫a n +19是等比数列,其中首项为a 1+19=100,公比为10,所以a n +19=100×10n -1=10n +1,即a n =10n +1-19.(2)由(1)知b n =lg ⎝⎛⎭⎫a n +19=lg 10n +1=n +1, 即1b n b n +1=1(n +1)(n +2)=1n +1-1n +2. 所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2<12.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(教材习题改编)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________ 答案:-15-n3.(教材习题改编)已知等差数列5,427,347,…,则前n 项和S n =________.答案:114(75n -5n 2)1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B .⎝⎛⎭⎫-∞,-83 C .⎝⎛⎭⎫-3,-83 D .⎣⎡⎭⎫-3,-83 答案:D2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于________.解析:设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12.答案:12考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2016·郑州二检)已知{a n }为等差数列,公差为1,且a 5是a 3与a 11的等比中项,S n是{a n }的前n 项和,则S 12的值为______.解析:由题意得,a 25=a 3a 11,即(a 1+4)2=(a 1+2)(a 1+10),a 1=-1,∴S 12=12×(-1)+12×112×1=54.答案:542.(2017·西安质检)公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n=a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:113.(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.答案:204.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1, 公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.答案:-72[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想.考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领]已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求a n 的表达式.解:(1)证明:∵a n =S n -S n -1(n ≥2), 又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0,n ≥2. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n.由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.[由题悟法]等差数列的判定与证明方法[即时应用]已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n ,∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1,又b n =1a n,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1.考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9D .6解析:选D 由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6.2.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,a 8=1,S 16=0,当S n 取最大值时n 的值为( )A .7B .8C .9D .10解析:选B 法一:由⎩⎪⎨⎪⎧a 8=a 1+7d =1,S 16=16a 1+16×152d =0,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =-n 2+16n =-(n -8)2+64,则当n =8时,S n 取得最大值.法二:因为{a n }是等差数列,所以S 16=8(a 1+a 16)=8(a 8+a 9)=0,则a 9=-a 8=-1,即数列{a n }的前8项是正数,从第9项开始是负数,所以(S n )max =S 8,选项B 正确.[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S9=( )A .1B .-1C .2D .12解析:选A S 11S 9=11(a 1+a 11)29(a 1+a 9)2=11a 69a 5=119×911=1.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324,∴18n =324,∴n =18.答案:183.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:200一抓基础,多练小题做到眼疾手快1.(2017·桂林调研)等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A .14B .12C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14,故选A .2.等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27解析:选B 法一:∵S 9=9(a 1+a 9)2=9a 5=9×6=54.故选B .法二:由a 5=6,得a 1+4d =6,∴S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B .3.(2017·陕西质量监测)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .∵a k +1·a k <0, ∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *, ∴k =23.4.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.答案:65.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.答案:S 5二保高考,全练题型做到高考达标1.(2017·太原一模)在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12解析:选B 由题知,a 2+a 4=2a 3=2, 又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.2.数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10B .15C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1, 当n =1时,a 1=S 1=5,符合上式, ∴a n =4n +1,a p -a q =4(p -q )=20.3.(2017·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A .114B .32C .72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2017·沈阳教学质量监测)设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0成立的最大的自然数n 是( )A .9B .10C .11D .12解析:选A 由题可得{a n }的公差d =3-74-2=-2,a 1=9,所以a n =-2n +11,则{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=2a 52·9>0,S 10=a 5+a 62·10=0,S 11=2a 62·11<0,故选A .5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d=k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910,a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10.答案:107.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________.解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m-1=5,即2a 1+2m -1=5, 所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0,解得正整数m 的值为5. 答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.(2017·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2016·安庆二模)已知数列{a n }是各项均不为零的等差数列,S n 为其前n 项和,且a n=S 2n -1(n ∈N *).若不等式λa n ≤n +8n对任意n ∈N *恒成立,则实数λ的最大值为________.解析:a n =S 2n -1⇒a n =(2n -1)(a 1+a 2n -1)2=(2n -1)a n ⇒a 2n =(2n -1)a n ⇒a n =2n-1,n ∈N *.λa n ≤n +8n 就是λ≤(n +8)(2n -1)n ⇒λ≤2n -8n +15,f (n )=2n -8n +15在n ≥1时单调递增,其最小值为f (1)=9,所以λ≤9,故实数λ的最大值为9.答案:92.已知数列{a n}满足,a n+1+a n=4n-3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n.解:(1)法一:∵数列{a n}是等差数列,∴a n=a1+(n-1)d,a n+1=a1+nd.由a n+1+a n=4n-3,得(a1+nd)+[a1+(n-1)d]=4n-3,∴2dn+(2a1-d)=4n-3,即2d=4,2a1-d=-3,解得d=2,a1=-12.法二:在等差数列{a n}中,由a n+1+a n=4n-3,得a n+2+a n+1=4(n+1)-3=4n+1,∴2d=a n+2-a n=(a n+2+a n+1)-(a n+1+a n)=4n+1-(4n-3)=4,∴d=2.又∵a1+a2=2a1+d=2a1+2=4×1-3=1,∴a1=-12.(2)由题意,①当n为奇数时,S n=a1+a2+a3+…+a n=a1+(a2+a3)+(a4+a5)+…+(a n-1+a n)=2+4[2+4+…+(n-1)]-3×n-1 2=2n2-3n+52.②当n为偶数时,S n=a1+a2+a3+…+a n =(a1+a2)+(a3+a4)+…+(a n-1+a n)=1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k .[小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列 答案:B2.等比数列{a n }中,a 3=12,a 4=18,则a 6=________.解析:法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,∴a 6=a 1q 5=163×⎝⎛⎭⎫325=812.法二:由等比数列性质知,a 23=a 2a 4, ∴a 2=a 23a 4=12218=8,又a 24=a 2a 6,∴a 6=a 24a 2=1828=812.答案:8123.(教材习题改编)在等比数列{a n }中,已知a 1=-1,a 4=64,则公比q =________,S 4=________.答案:-4 511.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2017·武汉调研)若等比数列{a n }的各项均为正数,a 1+2a 2=3,a 23=4a 2a 6,则a 4=( )A .38B .245 C .316D .916解析:选C 由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =3,(a 1q 2)2=4a 1q ·a 1q 5,解得⎩⎨⎧a 1=32,q =12,所以a 4=a 1q 3=32×⎝⎛⎭⎫123=316.2.(2015·全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析:∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴2(1-2n )1-2=126,∴n =6.答案:6[由题悟法]解决等比数列有关问题的2种常用思想方程 的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解[即时应用]1.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13B .-13C .19D .-19解析:选C 设等比数列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9,∴⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9,解得⎩⎪⎨⎪⎧q 2=9,a 1=19.2.(2017·洛阳统考)设等比数列{a n }的前n 项和为S n ,若a 1+8a 4=0,则S 4S 3=( )A .-53B .157C .56D .1514解析:选C 在等比数列{a n }中,因为a 1+8a 4=0,所以q =-12,所以S 4S 3=a 1(1-q 4)1-q a 1(1-q 3)1-q=1-⎝⎛⎭⎫-1241-⎝⎛⎭⎫-123=151698=56. 3.(2015·安徽高考)已知数列{}a n 是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{}a n 的前n 项和等于________.解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{}a n 为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴S n =1-2n 1-2=2n -1.答案:2n -1考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国丙卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ⎝⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用]设数列{}a n 的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). ∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1,∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n2(2a n +1-a n )=12, ∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2017·湖南师大附中月考)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:设数列{a n }的公比为q , 由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,即1+q 2=5, 所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. 答案:17[由题悟法]等比数列的性质可以分为3类[即时应用]1.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .5B .9C .log 345D .10解析:选D 由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.2.(2017·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n-1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以3n -6=36,即n =14.答案:14一抓基础,多练小题做到眼疾手快1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,选D .2.在正项等比数列{a n }中,a 1=1,前n 项和为S n ,且-a 3,a 2,a 4成等差数列,则S 7的值为( )A .125B .126C .127D .128解析:选C 设{a n }的公比为q ,则2a 2=a 4-a 3,又a 1=1,∴2q =q 3-q 2,解得q =2或q =-1,∵a n >0,∴q >0,∴q =2,∴S 7=1-271-2=127.3.(2016·石家庄质检)已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1 B .2n C .2n -1D .2n -2解析:选A 依题意,a n +1=S n +1-S n =2a n +1-4-(2a n -4),则a n +1=2a n ,令n =1,则S 1=2a 1-4,即a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4×2n -1=2n +1,故选A .4.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, ∴a 2=2,∴q 2=a 4a 2=4,∴a 6=a 4q 2=32.答案:325.在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 解析:∵a 5-a 1=15,a 4-a 2=6.∴⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1)两式相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, ∴q =2或q =12,当q =2时,a 1=1; 当q =12时,a 1=-16(舍去).∴a 3=1×22=4. 答案:4二保高考,全练题型做到高考达标1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:选C a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100.2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18B .-18C .578D .558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,。
2018届二轮复习数列讲义
2018届高三二轮复习讲义--------数列分值:10-17分题型:题型不固定,一般2-3个小题或一个小题1个解答题或一个解答题; 难度:低、中、高都有,以中低档为主;考查内容:如果是小题,等差、等比数列都有考查,对于解答题,主要考查等差、等比数列的基本运算判断与证明、数列求和。
第一讲 等差数列与等比数列高考体验1、(2016年理科全国卷Ⅰ)已知等差数列{}n a 前9项的和为27,8a 10=,100a =( ) A.100 B. 99 C. 98 D. 972、(2015年全国卷Ⅰ)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 和。
若844S S =,则10a =( ) A.172 B. 192C.10D.123、(2014年全国卷Ⅱ)等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S 等于( ) A.(1)2n n + B.(1)n n + C.(1)n n - D.(1)2n n -4、(2015年全国Ⅱ卷)已知等比数列{}n a 满足13541,4(1)4a a a a ==-,则( ) A.2 B. 1 C. 12 D .185.(2016江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若10S ,3a a 5221=-=+,则a 9的值是 .高考感悟:考查角度:(1)等差、等比数列的性质(2)等差、等比数列的基本量运算;(3)等差、等比数列的证明。
例题讲解热点一:等差、等比数列的基本运算例1:(1)在各项均为正数的等比数列{}n a 中,若28641,2,a a a a ==+则6a 的值为(2)(2010年辽宁卷)设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a = 。
(3)(2016理科全国卷Ⅰ)设等比数列{}n a 满足132410,5a a a a +=+=,则12n a a a 的最大值为热点训练(1)(2016年吉林白山二模)在等差数列{}n a 中,6329,3a a a ==则1a =( ) A.1 B. 2 C.1- D.2-(2)(2016年青岛一模)等比数列{}n a 中,36a =,前三项和为318S =,则公比q 的值为( ) A.1 B.12- C.1或12- D. 1-或12-(3)(2011年全国卷)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A .8B .7C .6D .5(4)(2012年全国卷)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =热点二:等差、等比数列的性质例2(1) (2011年重庆卷)在等差数列{}n a 中3710a a +=,则2468a a a a +++=__________(2) (2010年福建卷) 设等差数列{}n a 的前n 项和为n S .若111a =-,466a a +=-,则当n S 取最小值时,n 等于( )A.6B.7C.8D.9(3)设等比数列{}n a 的前n 和为n S ,若243,15,S S ==则6S =(1)(2012年全国卷)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A.7 B.5 C.-5 D.-7(2)(2013年全国卷1)设等差数列{}n a 的前n 项和为n S ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A .3B.4C.5D.6(3)设n S 是等比数列{}n a 的前n 项和,若423,S S =则64S S =( ) A.2 B.73 C.310D.1或2 (4)(2014年辽宁卷)设等差数列的公差为d ,若数列{}12na a 为递减数列,则( )A.0d >B.0d <C.10a d >D. 10a d <热点三:等差、等比数列的判断与证明例3:(1)(2017年全国卷Ⅰ)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.(2)(2014年全国卷Ⅰ)已知数列{}n a 的前n 项和为11,1,0,1n n n n n S a a a a S λ+=≠=-(其中λ为常数) (1) 证明:2n n a a λ+-=(2) 是否存在λ,使得{}n a 为等差数列?并说明理由。
2018高考数学理二轮专题复习课件 专题四 数列4.1.2 精品
(2)由 anan+1=3n,得 an-1an=3n-1(n≥2),所以aann+-11=3(n≥2),
则数列{an}的所有奇数项和偶数项均构成以 3 为公比的等比数 列,又 a1=1,a1a2=3,所以 a2=3,所以 S2 015=1×11--331 008+
3×1-31 1-3
007=31
008-2.
5.nn+11n+2=12nn1+1-n+11n+2
6.
1= n+ n+k=1k(
n+k-
n)
8.n·n!=(n+1)!-n!
[专题回访]
1.若数列{an}是等差数列,且 a1+a8+a15=π,则 tan(a4+ a12)=( )
A. 3
B.- 3
3 C. 3
D.-
[答案] (1)A (2)A
[方法规律] 数列与不等式、函数等问题主要利用函数、不
等式的解题思路来加以解决.
4专能提升 1.(热点一)已知数列{an}的前 n 项和 Sn=n2+6n+7,则数列 {an}的通项公式为________.
解析:当 n=1 时,a1=1+6+7=14;当 n≥2 时,an=Sn -Sn-1=n2+6n+7-[(n-1)2+6(n-1)+7]=2n+5,所以数列{an} 的通项公式为 an=12n4,+n5=,1n≥2 .
A.212 B.29
C.28 D.26
[自主解答] (1)由 a1,a3,a13 成等比数列可得(1+2d)2=1
+12d,得 d=2,故 an=2n-1,Sn=n2,因此2Sann++136=22nn2++126= nn2++18=n+12-n+21n+1+9=n+1+n+9 1-2.
由
基
本
不
2018年高考数学考前回扣教材4 数列
回扣4 数 列1.牢记概念与公式 等差数列、等比数列2.活用定理与结论(1)等差、等比数列{a n }的常用性质(2)判断等差数列的常用方法 ①定义法:a n +1-a n =d (常数) (n ∈N *)⇔{a n }是等差数列. ②通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. ③中项公式法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. ④前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. (3)判断等比数列的三种常用方法①定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.②通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. ③中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和.(2)形如{a n·b n}(其中{a n}为等差数列,{b n}为等比数列)的数列,利用错位相减法求和.(3)通项公式形如a n=c(an+b1)(an+b2)(其中a,b1,b2,c为常数)用裂项相消法求和.(4)通项公式形如a n=(-1)n·n或a n=a·(-1)n(其中a为常数,n∈N*)等正负项交叉的数列求和一般用并项法.并项时应注意分n为奇数、偶数两种情况讨论.(5)分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法,其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列.(6)并项求和法:先将某些项放在一起求和,然后再求S n.1.已知数列的前n项和求a n,易忽视n=1的情形,直接用S n-S n-1表示.事实上,当n=1时,a1=S1;当n≥2时,a n=S n-S n-1.2.易混淆几何平均数与等比中项,正数a,b的等比中项是±ab.3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n}与{b n}的前n项和分别为S n和T n,已知S nT n=n+12n+3,求a nb n时,无法正确赋值求解.4.易忽视等比数列中公比q≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.5.运用等比数列的前n项和公式时,易忘记分类讨论.一定分q=1和q≠1两种情况进行讨论.6.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项.7.裂项相消法求和时,分裂前后的值要相等,如1n(n+2)≠1n-1n+2,而是1n(n+2)=12⎝⎛⎭⎫1n-1n+2.8.通项中含有(-1)n的数列求和时,要把结果写成分n为奇数和n为偶数两种情况的分段形式.1.已知数列{a n}的前n项和为S n,若S n=2a n-4(n∈N*),则a n等于()A.2n+1B.2nC.2n-1D.2n-2答案 A解析a n+1=S n+1-S n=2a n+1-4-(2a n-4)⇒a n+1=2a n,再令n=1,∴S1=2a1-4⇒a1=4,∴数列{a n}是以4为首项,2为公比的等比数列,∴a n=4·2n-1=2n+1,故选A.2.已知数列{a n}满足a n+2=a n+1-a n,且a1=2,a2=3,S n为数列{a n}的前n项和,则S2 016的值为( ) A.0 B.2 C.5 D.6 答案 A解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2 016=6·336,∴S 2 016=336S 6=0,故选A.3.已知等差数列{a n }的前n 项和为S n ,若a 5=14-a 6,则S 10等于( ) A.35 B.70 C.28 D.14 答案 B解析 a 5=14-a 6⇒a 5+a 6=14, S 10=10(a 1+a 10)2=10(a 5+a 6)2=70.故选B.4.已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则使S n +63a n 取得最小值时n 的值为( )A.7B.7或8C.172 D.8答案 D解析 a 2=4,S 10=110⇒a 1+d =4,10a 1+45d =110⇒a 1=2,d =2,因此S n +63a n =2n +n (n -1)+632n =n 2+632n +12,又n ∈N *,所以当n =8时,S n +63a n 取得最小值.5.等比数列{a n }中,a 3a 5=64,则a 4等于( ) A.8 B.-8 C.8或-8 D.16 答案 C解析 由等比数列的性质知,a 3a 5=a 24, 所以a 24=64,所以a 4=8或a 4=-8.6.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=52,且a 2+a 4=54,则S na n 等于( )A.4n -1 B.4n -1 C.2n -1 D.2n -1答案 D解析 设等比数列{a n }的公比为q ,则⎩⎨⎧a 1(1+q 2)=52,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=2,q =12,∴S n a n =a 1(1-q n )1-q a 1q n -1=2×(1-12n )1-122×(12)n -1=2n-1.故选D. 7.设函数f (x )=x a +ax 的导函数f ′(x )=2x +2,则数列{1f (n )}的前9项和是( )A.2936B.3144C.3655D.4366 答案 C解析 由题意得函数f (x )=x a +ax 的导函数f ′(x )=2x +2,即ax a -1+a =2x +2,所以a =2,即f (x )=x 2+2x ,1f (n )=1n (n +2)=12(1n -1n +2),所以S n =12(1-13+12-14+13-15+…+1n -1n +2)=12(1+12-1n +1-1n +2).则S 9=12(1+12-110-111)=3655,故选C.8.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则2S n +16a n +3(n ∈N *)的最小值为( )A.4B.3C.23-2D.92答案 A解析 据题意由a 1,a 3,a 13成等比数列可得(1+2d )2=1+12d ,解得d =2,故a n =2n -1,S n =n 2,因此2S n +16a n +3=2n 2+162n +2=n 2+8n +1=(n +1)2-2(n +1)+9n +1=(n +1)+9n +1-2,据基本不等式知2S n +16a n +3=(n +1)+9n +1-2≥2(n +1)×9n +1-2=4,当n =2时取得最小值4.9.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于________. 答案 4解析 由等比数列的性质有a 1a 8=a 2a 7=a 3a 6=a 4a 5,所以T 8=lg a 1+lg a 2+…+lg a 8=lg(a 1a 2…a 8)=lg(a 4a 5)4=lg(10)4=4.10.已知数列{a n }满足a n +1=a n +2n 且a 1=2,则数列{a n }的通项公式a n =__________. 答案 n 2-n +2 解析 a n +1=a n +2n ,∴a n +1-a n =2n ,采用累加法可得∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1, =2(n -1)+2(n -2)+…+2+2=n 2-n +2.11.若数列{a n }满足a n =3a n -1+2(n ≥2,n ∈N *),a 1=1,则数列{a n }的通项公式为a n =____________. 答案 2×3n -1-1解析 设a n +λ=3(a n -1+λ),化简得a n =3a n -1+2λ, ∵a n =3a n -1+2,∴λ=1, ∴a n +1=3(a n -1+1), ∵a 1=1,∴a 1+1=2,∴数列{a n +1}是以2为首项,3为公比的等比数列, ∴a n +1=2×3n -1, ∴a n =2×3n -1-1.12.数列113,219,3127,4181,51243,…的前n 项之和等于________________.答案n (n +1)2+12[1-(13)n ] 解析 由数列各项可知通项公式为a n =n +13n ,由分组求和公式结合等差数列、等比数列求和公式可知前n 项和为S n =n (n +1)2+12[1-(13)n ]. 13.设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,且λ≠-1),且a 1,2a 2,a 3+3为等差数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和.解 (1)方法一 ∵a n +1=λS n +1(n ∈N *), ∴a n =λS n -1+1(n ≥2).∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0, 又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,以λ+1为公比的等比数列, ∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n =2n -1,b n =1+3(n -1)=3n -2. 方法二 ∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)+1=λ2+2λ+1. ∴4(λ+1)=1+λ2+2λ+1+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n +1=S n +1 (n ∈N *), ∴a n =S n -1+1(n ≥2),∴a n +1-a n =a n ,即a n +1=2a n (n ≥2),又a 1=1,a 2=2, ∴数列{a n }为以1为首项,以2为公比的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2. (2)设数列{a n b n }的前n 项和为T n , a n b n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1.①∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n .②①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n .整理得T n =(3n -5)·2n +5.14.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2 (n ∈N *),(1)求证:数列{a n }是等差数列;(2)设b n =1S n,T n =b 1+b 2+…+b n ,若λ≤T n 对于任意n ∈N *恒成立,求实数λ的取值范围.(1)证明 ∵S n =a n (a n +1)2 (n ∈N *),①∴S n -1=a n -1(a n -1+1)2(n ≥2).②①-②得:a n =a 2n +a n -a 2n -1-a n -12(n ≥2),整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1), ∵数列{a n }的各项均为正数,∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2).当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列. (2)解 由(1)得S n =n 2+n2,∴b n =2n 2+n =2n (n +1)=2(1n -1n +1),∴T n =2[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2(1-1n +1)=2nn +1,∵T n =21+1n ,∴T n 单调递增,∴T n ≥T 1=1,∴λ≤1.故λ的取值范围为(-∞,1].。
2018届高三数学(理人教版)二轮复习高考大题专攻练: 4 Word版含解析
高考大题专攻练4.数列(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.数列{a n}的前n项和记为S n,a1=t,点(a n+1,S n)在直线y=x-1上,n∈N*. 世纪金榜导学号92494440(1)当实数t为何值时,数列{a n}是等比数列?并求数列{a n}的通项公式.(2)若f(x)=[x]([x]表示不超过x的最大整数),在(1)的结论下,令b n=f(log3a n)+1,c n=a n+,求{c n}的前n项和T n.【解析】(1)由题意得S n=a n+1-1,所以S n-1=a n-1,两式相减得a n=a n+1-a n,即a n+1=3a n,所以当n≥2时,数列{a n}是等比数列,要使n≥1时,数列{a n}是等比数列,则只需要=3,因为a1=a2-1,所以a2=2a1+2,所以=3,解得t=2,所以实数t=2时,数列{a n}是等比数列,a n=2·3n-1.(2)因为b n=f(log3a n)+1=[log3(2×3n-1)]+1,因为3n-1<2×3n-1<3n,所以n-1<log3(2×3n-1)<n,所以b n=n-1+1=n,所以c n=a n+=2×3n-1+=2×3n-1+,因为{a n}的前n项和为=3n-1,的前n项和为(1-+-+…+-)==-,所以T n=3n-1+-=3n--.2.已知等比数列{a n}满足a n+1+a n=9·2n-1,n∈N*.(1)求数列{a n}的通项公式.(2)设b n=na n,数列{b n}的前n项和为S n,若不等式S n>ka n-1对一切n ∈N*恒成立,求实数k的取值范围.【解析】(1)设等比数列{a n}的公比为q,因为a n+1+a n=9·2n-1,所以a2+a1=9,a3+a2=18,所以q===2.又2a1+a1=9,所以a1=3,所以a n=3·2n-1,n∈N*.(2)b n=na n=3n·2n-1,所以S n=3×1×20+3×2×21+…+3(n-1)×2n-2+3n×2n-1,所以S n=1×20+2×21+…+(n-1)×2n-2+n×2n-1,所以S n=1×21+2×22+…+(n-1)×2n-1+n×2n,所以-S n=1+21+22+…+2n-1-n×2n=-n×2n=(1-n)2n-1,所以S n=3(n-1)2n+3,因为S n>ka n-1对一切n∈N*恒成立,所以k<==2(n-1)+,令f(n)=2(n-1)+,则f(n+1)-f(n)=2n+-=2+-=2-=>0,故f(n)随着n的增大而增大,所以f(x)min=f(1)=,所以实数k的取值范围是.关闭Word文档返回原板块。
2018届高三数学二轮复习:数列专题及其答案名师制作优质教学资料
2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d .(2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1q n -1.(4)等比数列前n 项和公式: S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2).(7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m q n -m .(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
【高考数学】2018届高三数学(理)二轮复习课件:专题四 数列4.2(高频考点汇总PPT课件)
◎ 变式训练 1.已知等差数列{an}的前 n 项和为 Sn,且 a1=1,S3=a5.令 bn=(-1)n-1an, 则数列{bn}的前 2n 项和 T2n 为( A.-n C.n 解析: ) B.-2n D.2n 设等差数列{an}的公差为 d,由 S3=a5,得 3a2=a5,∴3(1+d)=1
4×3 S4=4a1+ 2 d=24 ∴ S =7a +7×6d=63 1 2 7
⇒an=2n+1.
(2)∵bn=2an+an=22n+1+(2n+1)=2×4n+(2n+1), ∴Tn=2×(4+42+…+4n)+(3+5+…+2n+1) 41-4n n3+2n+1 =2× + 2 1-4 8 n =3(4 -1)+n2+2n.
答案:
2n n+1
3. (2017· 合肥市第一次教学质量检测)已知等差数列{an}的前 n 项和为 Sn, 且 满足 S4=24,S7=63. (1)求数列{an}的通项公式; (2)若 bn=2an+an,求数列{bn}的前 n 项和 Tn. 解析: (1)∵{an}为等差数列,
a1=3 ⇒ d=2
题型二
与数列求和有关的综合问题
已知数列{an}和{bn}满足 a1a2a3…an=( 2)bn(n∈N*).若{an}为等比数 列,且 a1=2,b3=6+b2. (1)求 an 与 bn; 1 1 (2)设 cn=a -b (n∈N*).记数列{cn}的前 n 项和为 Sn. n n ①求 Sn; ②求正整数 k,使得对任意 n∈N*均有 Sk≥Sn.
高考·题型突破
题型一
数列求和
(2017· 山东卷)已知{an}是各项均为正数的等比数列, 且 a1+a2=6, a1a2 =a3. (1)求数列{an}的通项公式; (2){bn}为各项非零的等差数列,其前 n 项和为 Sn.已知 S2n+1=bnbn+1,求数列
2018届高考数学(理)二轮复习讲义:指导2 回扣溯源,查缺补漏,考前提醒
专题研读解决“会而不对,对而不全”问题是决定高考成败的关键,高考数学考试中出现错误的原因很多,其中错解类型主要有:知识性错误,审题或忽视隐含条件错误,运算错误,数学思想、方法运用错误,逻辑性错误,忽视等价性变形错误等.下面我们分几个主要专题对易错的知识点和典型问题进行剖析,为你提个醒,力争做到“会而对,对而全”.溯源回扣一集合与常用逻辑用语1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y =lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.[回扣问题1]集合A={x|x+y=1},B={(x,y)|x-y=1},则A∩B=________.2.遇到A∩B=∅时,你是否注意到“极端”情况:A=∅或B=∅;同样在应用条件A∪B=B⇔A∩B=A⇔A⊆B时,不要忽略A=∅的情况.[回扣问题2]设集合A={x|x2-5x+6=0},B={x|mx-1=0},若A∩B=B,则实数m组成的集合是____________.3.注重数形结合在集合问题中的应用,列举法常借助Venn图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[回扣问题3]已知全集I=R,集合A={x|y=1-x},集合B={x|0≤x≤2},则(∁I A)∪B等于()A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)4.“否命题”是对原命题“若p,则q”既否定其条件,又否定其结论;而“命题p的否定”即:非p,只是否命题p的结论.[回扣问题4]已知实数a,b,若|a|+|b|=0,则a=b.该命题的否命题是________,命题的否定是________.5.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .[回扣问题5] (2017·天津卷)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.含有量词的命题的否定,不仅是把结论否定,而且要改写量词,全称量词变为存在量词,存在量词变为全称量词.[回扣问题6] 命题p :∀x ∈R ,e x -x -1>0,则綈p 是________.7.存在性或恒成立问题求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[回扣问题7] 若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是________.溯源回扣二 函数与导数1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏.[回扣问题1] 函数f (x )=ln x x -1+x 12的定义域为( ) A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)2.求解与函数、不等式有关的问题(如求值域、单调区间、判断奇偶性、解不等式等),要注意定义域优先的原则.[回扣问题2] (2017·全国Ⅱ卷改编)函数f (x )=ln(x 2-2x -8)的单调增区间是________.3.定义域必须关于原点对称是函数具有奇偶性的必要条件,为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称.函数y =f (x )为奇函数,但不一定有f (0)=0成立.[回扣问题3] 函数f (x )=ln (1-x 2)|x -2|-2的奇偶性是________. 4.理清函数奇偶性的性质.(1)f(x)是偶函数⇔f(-x)=f(x)=f(|x|);(2)f(x)是奇函数⇔f(-x)=-f(x);(3)定义域含0的奇函数满足f(0)=0.[回扣问题4]若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x的取值范围是________.5.记准函数周期性的几个结论:由周期函数的定义“函数f(x)满足f(x)=f(a+x)(a>0),则f(x)是周期为a的周期函数”得:(1)函数f(x)满足-f(x)=f(a+x),则f(x)是周期T=2a的周期函数;(2)若f(x+a)=1f(x)(a≠0)成立,则T=2a;(3)若f(x+a)=-1f(x)(a≠0)恒成立,则T=2a;(4)若f(x+a)=f(x-a)(a≠0)成立,则T=2a.[回扣问题5]对于函数f(x)定义域内任意的x,都有f(x+2)=-1f(x),若当2<x≤3时,f(x)=x,则f(2 017)=________.6.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“和”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.[回扣问题6]函数f(x)=x3-3x的单调增区间是________.7.图象变换的几个注意点.(1)混淆平移变换的方向与单位长度.(2)区别翻折变换:f(x)→|f(x)|与f(x)→f(|x|).(3)两个函数图象的对称.①函数y=f(x)与y=-f(-x)的图象关于原点成中心对称.②函数y=f(x)与y=f(-x)的图象关于直线x=0(y轴)对称;函数y=f(x)与函数y =-f(x)的图象关于直线y=0(x轴)对称.[回扣问题7](2016·全国Ⅲ卷)函数y=sin x-3cos x的图象可由函数y=2sin x 的图象至少向右平移________个单位长度得到.8.不能准确理解基本初等函数的定义和性质.如函数y=a x(a>0,a≠1)的单调性忽视字母a的取值讨论,忽视a x>0;对数函数y=log a x(a>0,a≠1)忽视真数与底数的限制条件.[回扣问题8]函数f(x)=log4(7+6x-x2)的单调增区间为________.9.分段函数的图象,一定要准确看清楚分界点的函数值.[回扣问题9]已知函数f(x)=是R上的增函数,则实数k的取值范围是________.10.易混淆函数的零点和函数图象与x轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.[回扣问题10]函数f(x)=|x-2|-ln x在定义域内的零点个数为()A.1B.2C.3D.411.混淆y=f(x)在某点x0处的切线与y=f(x)过某点x0的切线,导致求解失误. [回扣问题11](2017·天津卷)已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为________.12.利用导数判断函数的单调性:设函数y=f(x)在某个区间内可导,如果f′(x)>0,那么f(x)在该区间内为增函数;如果f′(x)<0,那么f(x)在该区间内为减函数;如果在某个区间内恒有f′(x)=0,那么f(x)在该区间内为常函数.注意如果已知f(x)为减函数求参数取值范围,那么不等式f′(x)≤0恒成立,但要验证f′(x)是否恒等于0,增函数亦如此.[回扣问题12]若函数f(x)=ax3-x2+x-5在R上是增函数,则a的取值范围是________.13.对于可导函数y=f(x),错以为f′(x0)=0是函数y=f(x)在x=x0处有极值的充分条件.[回扣问题13]若函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a+b=________.溯源回扣三三角函数与平面向量1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置决定.[回扣问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________.2.求y =A sin(ωx +φ)的单调区间时,要注意ω,A 的符号.若ω<0时,应先利用诱导公式将x 的系数转化为正数后再求解;在书写单调区间时,不能弧度和角度混用,需加2k π时,不要忘掉k ∈Z ,所求区间一般为闭区间.[回扣问题2] 函数y =sin ⎝⎛⎭⎪⎫-2x +π3的递减区间是________. 3.在三角函数求值中,忽视隐含条件的制约导致增解.[回扣问题3] 已知cos α=17,sin(α+β)=5314,0<α<π2,0<β<π2,则cos β=________.4.已知三角形两边及一边对角,利用正弦定理解三角形时,注意解的个数讨论,可能有一解、两解或无解.在△ABC 中,A >B ⇔sin A >sin B .[回扣问题4] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且a =1,c = 3.若C =π3,则角A =________.5.设两个非零向量a ,b ,其夹角为θ,当θ为锐角时,a ·b >0,且a ,b 不同向;故a ·b >0是θ为锐角的必要不充分条件;当θ为钝角时,a ·b <0,且a ,b 不反向,故a ·b <0是θ为钝角的必要不充分条件.[回扣问题5] 已知向量a =(2,1),b =(λ,1),λ∈R ,设a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是____________.6.切忌混淆三角形“四心”,注意不同的向量表示形式.[回扣问题6] 若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA→|,则△ABC 的形状为________.溯源回扣四 数列与不等式1.已知数列的前n项和S n求a n,易忽视n=1的情形,直接用S n-S n-1表示.事实上,当n=1时,a1=S1;当n≥2时,a n=S n-S n-1.[回扣问题1]已知数列{a n}对任意的n∈N*都满足a1+2a2+22a3+…+2n-1a n=8-5n,则数列{a n}的通项公式为________.2.等差数列中不能熟练利用数列的性质转化已知条件,并灵活整体代换进行基本运算.如等差数列{a n}与{b n}的前n项和分别为S n和T n,已知S nT n=n+12n+3,求a nb n时,无法正确赋值求解.[回扣问题2]等差数列{a n},{b n}的前n项和分别为S n,T n,且S nT n=3n-12n+3,则a8b8=________.3.运用等比数列的前n项和公式时,易忘记分类讨论.一定分q=1和q≠1两种情况进行讨论.[回扣问题3]设等比数列{a n}的前n项和为S n,若S3+S6=S9,则公比q=________.4.利用等差数列定义求解问题时,易忽视a n-a n-1=d(常数)中,n≥2,n∈N*的限制,类似地,在等比数列中,b n+1b n=q(常数且q≠0),忽视n∈N*的条件限制.[回扣问题4](2015·安徽卷改编)已知数列{a n}中,a1=a2=1,a n+1=a n+12(n≥2),则数列{a n}的前9项和等于________.5.解形如一元二次不等式ax2+bx+c>0时,易忽视系数a的讨论导致漏解或错解,要注意分a>0,a<0进行讨论.[回扣问题5]若不等式x2+x-1<m2x2-mx对x∈R恒成立,则实数m的取值范围是________.6.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f(x)=x2+2+1x2+2的最值,就不能利用基本不等式求解最值.[回扣问题6]已知a>0,b>0,a+b=1,则y=1a+4b的最小值是________.7.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y-2 x+2是指已知区域内的点(x,y)与点(-2,2)连线的斜率,而(x-1)2+(y-1)2是指已知区域内的点(x,y)到点(1,1)的距离的平方等.[回扣问题7](2016·江苏卷)已知实数x,y满足则x2+y2的取值范围是________.8.对于通项公式中含有(-1)n的一类数列,在求S n时,切莫忘记讨论n的奇偶性;遇到已知a n+1-a n-1=d或a n+1a n-1=q(n≥2),求{a n}的通项公式,要注意分n的奇偶性讨论.[回扣问题8](2015·山东卷改编)若a n=2n-1,且b n=(-1)n-14na n a n+1,则数列{b n}的前n项和T n=________.9.求解不等式、函数的定义域、值域时,其结果一定要用集合或区间表示,另外一元二次不等式的解集表示形式受到二次项系数符号的影响.溯源回扣五立体几何1.由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主.[回扣问题1] 在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C.④和③D.④和②2.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面积之和,不能漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数13. [回扣问题2] (2017·郑州质检)某几何体的三视图如图所示,其中侧视图为半圆,则该几何体的体积V =________.3.不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l ,m ⊥l ,易误得出m ⊥β的结论,这是因为忽视面面垂直的性质定理中m ⊂α的限制条件.[回扣问题3] 已知m ,n 是不同的直线,α,β,γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α或n ⊥β.②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n .③若m 不垂直于α,则m 不可能垂直于α内的无数条直线.④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β.⑤若m ,n 为异面直线,则存在平面α过m 且使n ⊥α.其中正确的命题序号是________.4.忽视三视图的实、虚线,导致几何体的形状结构理解错误.[回扣问题4] 如图,一个简单凸多面体的三视图的外轮廓是三个边长为1的正方形,则此多面体的体积为____________.5.空间向量求角时易忽视向量的夹角与所求角之间的关系,如求解二面角时,忽视法向量的方向,误以为两个法向量的夹角就是所求的二面角,导致出错.[回扣问题5] 如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.6.注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系.[回扣问题6] (2017·广州模拟)如图①,在平面四边形ABCD 中,已知∠A =45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD⊥平面BDC(如图②),设点E,F分别为棱AC,AD的中点.(1)求证:DC⊥平面ABC;(2)设CD=a,求三棱锥A-BFE的体积.溯源回扣六平面解析几何1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.[回扣问题1]直线x cos θ+3y-2=0的倾斜角的范围是________.2.易忽视直线方程的几种形式的限制条件,如根据直线在两坐标轴上的截距相等设方程时,忽视截距为0的情况.[回扣问题2]已知直线过点P(1,5),且在两坐标轴上的截距相等,则此直线的方程为________.3.求两条平行线之间的距离时,易忽视两直线x,y的系数相等的条件,而直接代入公式d=|C1-C2|A2+B2,导致错误.[回扣问题3]直线3x+4y+5=0与6x+8y-7=0的距离为________.4.两圆的位置关系可根据圆心距与半径的关系判定,在两圆相切的关系中,误认为相切为两圆外切,忽视相内切的情形;求圆的切线方程时,易忽视斜率不存在的情形.[回扣问题4](1)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为________.(2)双曲线x2a2-y2b2=1(a>0,b>0)的左焦点为F1,顶点为A1,A2,P是双曲线右支上任意一点,则分别以线段PF 1,A 1A 2为直径的两圆的位置关系为________.5.易混淆椭圆的标准方程与双曲线的标准方程,尤其是方程中a ,b ,c 三者之间的关系,导致计算错误.[回扣问题5] (2015·广东卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 29-y 216=1C.x 216-y 29=1D.x 23-y 24=16.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.[问题回扣6] 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2外切,则动圆圆心M 的轨迹方程为________.7.由圆锥曲线方程讨论几何性质时,易忽视讨论焦点所在的坐标轴导致漏解.[回扣问题7] 已知椭圆x 24+y 2m =1的离心率等于32,则m =________.8. 直线与圆锥曲线相交的必要条件是它们构成的方程组有实数解,消元后得到的方程中要注意:二次项的系数是否为零,判别式Δ≥0的限制.尤其是在应用根与系数的关系解决问题时,必须先有“判别式Δ≥0”;在求交点、弦长、中点、斜率、对称或存在性问题都应在“Δ>0”下进行.[回扣问题8] (2017·西安调研)已知椭圆W :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,过右焦点和短轴一个端点的直线的斜率为-1,O 为坐标原点.(1)求椭圆W的方程;(2)设斜率为k的直线l与W相交于A,B两点,记△AOB面积的最大值为S k,证明:S1=S2.溯源回扣七概率与统计1.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.[回扣问题1] 从某校高三年级随机抽取一个班,对该班50名学生的高校招生检验表中视力情况进行统计,其结果的频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为________.2.在独立性检验中,K 2=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )(其中n =a +b +c +d )所给出的检验随机变量K 2的观测值k ,并且k 的值越大,说明“X 与Y 有关系”成立的可能性越大,可以利用数据来确定“X 与Y 有关系”的可信程度.[回扣问题2] 为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:则至少有).附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )3.应用互斥事件的概率加法公式,一定要注意确定各事件是否彼此互斥,并且注意对立事件是互斥事件的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.[回扣问题3] 抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B为出现2点,已知P (A )=12,P (B )=16,求出现奇数点或2点的概率之和为________.4.二项式(a +b )n 与(b +a )n 的展开式相同,但通项公式不同,对应项也不相同,在遇到类似问题时,要注意区分.还要注意二项式系数与项的系数的区别与联系,同时明确二项式系数最大项与展开式系数最大项的不同.[回扣问题4] 设⎝⎛⎭⎪⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则A ∶B =________.5.要注意概率P (A |B )与P (AB )的区别(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).[回扣问题5] 设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.6.正态密度曲线具有对称性,注意X ~N (μ,σ2)时,P (X ≥μ)=0.5的灵活应用.[回扣问题6] 已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于( )A.0.6B.0.4C.0.3D.0.27.混淆直线方程y =ax +b 与回归直线y ^=b ^x +a ^系数的含义,导致回归分析中致误.[回扣问题7] (2017·西安调研)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y-b x ,据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元8.几何概型的概率计算中,几何“测度”确定不准而导致计算错误.[回扣问题8] 在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.9.易忘判定随机变量是否服从二项分布,盲目使用二项分布的数学期望和方差公式计算致误.[回扣问题9]现有4人去旅游,旅游地点有A,B两个地方可以选择.但4人都不知道去哪里玩,于是决定通过掷一枚质地均匀的骰子去决定自己去哪里玩,掷出能被3整除的数时去A地,掷出其他的则去B地.(1)求这4个人中恰好有1个人去A地的概率;(2)用X,Y分别表示这4个人中去A,B两地的人数,记ξ=X·Y.求随机变量ξ的分布列与数学期望E(ξ).溯源回扣八复数、程序框图、推理与证明1.复数z为纯虚数的充要条件是a=0且b≠0(z=a+b i(a,b∈R)).还要注意巧妙运用参数问题和合理消参的技巧.[回扣问题1] 设i 是虚数单位,复数z =1+a i 2+i为纯虚数,则实数a =________. 2.复平面内,复数z =a +b i(a ,b ∈R )对应的点为Z (a ,b ),不是Z (a ,b i);当且仅当O 为坐标原点时,向量OZ→与点Z 对应的复数相同. [回扣问题2] (2016·北京卷改编)设a ∈R ,若复数z =(1+i)(a +i)在复平面内对应的点位于虚轴上,则a =________.3.类比推理易盲目机械类比,不要被表面的假象(某一点表面相似)迷惑,应从本质上类比.[回扣问题3] 图①有面积关系:S △P A ′B ′S △P AB =P A ′·PB ′P A ·PB,则图②有体积关系:________.4.反证法证明命题进行假设时,应将结论进行否定,特别注意“至少”“至多”的否定要全面.[回扣问题4] 用反证法证明命题:“已知a ,b ∈N ,若ab 可被5整除,则a ,b 中至少有一个能被5整除”时,反设正确的是( )A.a ,b 都不能被5整除B.a ,b 都能被5整除C.a ,b 中有一个不能被5整除D.a ,b 中有一个能被5整除5.控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时,易混淆两变量的变化次序,且容易错误判定循环体结束的条件.[回扣问题5] (2017·全国Ⅲ卷)执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.26.用数学归纳法证明时,易盲目认为n0的起始取值n0=1,另外注意证明传递性时,必须用n=k成立的归纳假设.[回扣问题6]设数列{a n}的前n项和为S n,且方程x2-a n x-a n=0有一根为S n -1(n∈N*).(1)求a1,a2;(2)猜想数列{S n}的通项公式,并给出证明.。
2018年高三年级数学二轮复习-数列专题及答案解析
2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1qn -1.(4)等比数列前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m qn -m.(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
2018年高三数学(理科)二轮复习完整版
专题限时集训 (一)A
基础演练
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
1.设 U= {1 , 2, 3, 4, 5} , A= {1 , 5} , B={2 , 4} ,则 B∩ (?UA)= ( )
A . {2 , 3, 4}
B . { 2}
C. {2 , 4}
专题限时集训 (一 )B
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
基础演练
1.已知全集 U= R ,A= { x|x≤ 0} ,B= { x|x≥ 1} ,则集合 ?U(A∪ B) =( )
A . { x|x≥ 0}
B . { x|x≤ 1}
C. { x|0≤ x≤ 1}
A .充分不必要条件 B .必要不充分条件
C .充要条件 D .既不充分也不必要条件
4.已知集合 M = { x|- 2≤ x<2} ,N={ x|y= log 2(x- 1)} ,则 M ∩ N= ( )
A . { x|- 2≤ x<0}
B . { x|- 1< x<0}
C. { x|1<x<2}
形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度 适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法. 二、时间安排:
1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段, 月 30 日。
时间为 3 月 10—— 4
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为
7.试卷讲评随意,对答案式的讲评。对答案式的讲评是影响讲评课效益的大敌。评讲的较好 做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、 失分点、模糊点,剖析根源,彻底矫正。 四、在第二轮复习过程中,我们安排如下: 1. 继续抓好集体备课。 每周一次的集体备课必须抓落实, 发挥集体智慧的力量研究数学高考 的动向,学习与研究《考试大纲》 ,注意哪些内容降低要求,哪些内容成为新的高考热点,每 周一次研究课。 2.安排好复习内容。 3.精选试题,命题审核。 4.测试评讲,滚动训练。 5.精讲精练:以中等题为主。
【金版教程】2018届高三数学二轮复习 完整版Word版
8 9 合计
[14,16) [16,18) 200Fra bibliotek4 4
(1)从该校高一年级学生中随机选取一名学生,试估计这名学生该 月参加社团活动的时间少于 14 小时的概率; (2)求统计表中的 x 的值和频率分布直方图中的 b 的值; (3)假设同一组中的每个数据可用该组区间的中点值代替,试估计 样本中的 200 名学生该月活动时间的平均数在第几组(只需写出结论). [审题导引] 观察 计算不少于14 得数据 审表格 ――→ ――→ 求概率 ―→ 审图形 找数据 ――→ 小时学生数 计算b 审图表 ――→ 得出结论 [规范解题] (1)根据频数分布表可知,200 名学生参加社团活动的时间不少于 14 小时的学生人数为 4+4=8,所以样本中学生参加社团活动的时间 8 24 少于 14 小时的频率是 1-200=25,用频率估计概率可得所求概率大 24 约为25. (2)依据频率分布直方图可知 x=200×0.085×2=34. 50 200 依据频数分布表和频率分布直方图可知 b= 2 =0.125. (3)估计样本中的 200 名学生活动时间的平均数在第 4 组.
→ 1 即|AD|=2 [答案] D
1 → → → → 2 2= |AB| +2AB· AC+|AC| 2 36=3.故选 D.
审结论逆向推 结论是解题的最终目标。解决问题的思维,很多情形下都是在目 标意识下启动和定向的,审视结论要探究已知条件和结论间的联系和 转化规律,善于从结论中捕捉解题信息,确定解题方向. 例2 已知数列{an}中,a1=1,an+1=2an+2n. an (1)设 bn= n-1,证明:数列{bn}是等差数列; 2 (2)求数列{an}的通项公式. [审题导引]
专题一 集合、常用逻辑用语、函数与导数、不等式 第一讲 集合、常用逻辑用语(选择、填空题型) 命题全解密 MINGTIQUANJIEMI 1.命题点 集合间的关系、集合的基本运算;四种命题之间的
2018年高考数学(理)二轮复习 精品课件:回扣5 数 列
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
解析
答案
4.已知数列{an}满足 3an1 9 3an (n∈N*)且 a2+a4+a6=9,则
log 1 (a5 a7 a9 ) 等于
3
1 A.- B.3 C.-3 3 解析 由已知 3an1 9 3an =3an 2 ,
考前回扣
回扣5
数
列
基础回归 易错提醒
回归训练
Ⅰ
基础回归
1.牢记概念与公式 等差数列、等比数列
等差数列 通项公式 an=a1+(n-1)d na1+an Sn= 2 等比数列 an=a1qn-1 (q≠0) a11-qn a1-anq (1)q≠1,Sn= = ; 1-q 1-q
前 n 项和
(3)判断等比数列的常用方法
①定义法
an+1 =q (q 是不为 0 的常数,n∈N*)⇔{an}是等比数列. an
②通项公式法
an=cqn (c,q均是不为0的常数,n∈N*)⇔{an}是等比数列.
③中项公式法
* a2 = a · a ( a · a · a ≠ 0 , n ∈ N )⇔{an}是等比数列. n+1 n n+2 n n+1 n+2
Ⅱ
易错提醒
1.已知数列的前 n项和求an,易忽视n=1的情形,直接用Sn-Sn-1表示.
事实上,当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1.
2.易混淆几何平均数与等比中项,正数 a,b 的等比中项是± ab. 3.等差数列中不能熟练利用数列的性质转化已知条件, 灵活整体代换进行 Sn 基本运算.如等差数列{an}与{bn}的前 n 项和分别为 Sn 和 Tn,已知 = Tn n+1 an ,求 时,无法正确赋值求解. bn 2n+3
2018届高中数学高考二轮复习数列教案含答案(全国通用)
教学过程一、考纲解读1.高考对于本节的考查方式:(1)选择填空重点考查等差、等比数列的性质;(2)解答题中重点考查通项公式、求和(重视求和的错位相减法、裂项相消法)(3)递推数列也是考察的重点,只局限于最基本的形式2. 数列在历年高考高考试题中占有重要的地位,近几年更是有所加强.一般情况下都是一至两个考查性质的客观题和一个考察能力的解答题。
文科以等差数列的基础知识、基本解法为主,理科注重概念的理解和运用。
分值在22分左右二、复习预习(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.(3)数列求和,求通项.与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.错位相减法、裂项相消法三、知识讲解考点1 数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.考点2 等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.考点3 综合问题(1)求数列通项累加法,累乘法,构造法,数学归纳法(2)数列求和裂项相消法,错位相减法, 数学归纳法(3)与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.放缩法四、例题精析例1 [2014全国大纲] 等比数列{}n a 中,42a =,55a =,则数列{lg }n a 的前8项和等于( ) (A)6 (B)5 (C)4 (D)3【规范解答】选(C ).(求解对照)由已知有在等比数列{}n a 中,42a =,55a =, 则63728154a a a a a a a a ⋅=⋅=⋅=⋅=10所以410lg )lg(lg lg lg 4821821==⋅⋅⋅=+⋅⋅⋅++a a a a a a 。
2018届高考数学二轮复习教材回扣课件
6.准确记忆指数函数与对数函数的基本性质 (1)定点:y=ax (a>0,且a≠1)恒过(0,1)点; y=logax(a>0,且a≠1)恒过(1,0)点. (2)单调性:当a>1时,y=ax在R上单调递增;y=logax在(0,
+∞)上单调递增;
当0<a<1时,y=ax在R上单调递减;yBiblioteka logax在(0,+∞)上 单调递减.
﹁
p(x).
3.复合命题的真假判断 p q p∨q p∧q 真 真 真 假 真 假 假 假
﹁
p
真 真 真 假 假 真 假 假
假 假 真 真
4.充分必要条件与集合的对应关系 从逻辑观点看 p是q的充分条件(p⇒q) p是q的必要条件(q⇒p) p是q的充分不必要条件(p⇒q,q⇒ / p) p是q的必要不充分条件(q⇒p,p⇒ / q) p是q的充要条件(p⇔q) 从集合观点看 A⊆B A⊇B A B A B A=B
意x(定义域关于原点对称),都有f(-x)=-f(x)成立,则f(x)为奇 函数(都有f(-x)=f(x)成立,则f(x)为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数 f(x) , 如 果 对 于 定 义 域 内 的 任 意 一 个 x 的 值 , 若 f(x + T) =
7.函数与方程
(1)零点定义:x0为函数f(x)的零点⇔f(x0)=0⇔(x0,0)为f(x)的图 象与x轴的交点. (2)确定函数零点的三种常用方法 ①解方程判定法:解方程f(x)=0;
②零点定理法:根据连续函数 y = f(x) 满足 f(a)f(b)<0 ,判断函
(2)伸缩变换 0<ω<1,伸 y=f(x)― ― ― ― ― ― ― ― →y=f(ωx), ω>1,缩 0<A<1,缩 y=f(x)― ― ― ― ― ― ― ― ― →y=Af(x). A>1,伸
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、回扣教材,纠错例析
4.数列
[要点回扣]
1.a n 与S n 的关系式
已知前n 项和S n =a 1+a 2+a 3+…+a n ,则a n =⎩⎪⎨⎪⎧
S 1,n =1S n -S n -1,n ≥2.由S n 求a n 时,易忽略n =1的情况.
[对点专练1] 已知数列{a n }的前n 项和S n =n 2+1,则a n =________.
[答案] ⎩⎨⎧ 2,n =1,2n -1,n ≥2
2.等差数列的有关概念
(1)等差数列的判断方法:定义法a n +1-a n =d (d 为常数,n ∈N *)或a n +1-a n =a n -a n -1(n ≥2).
(2)等差数列的通项:a n =a 1+(n -1)d (n ∈N *)或a n =a m +(n -m )d .(n ,m ∈N *)
(3)等差数列的前n 项和:S n =n (a 1+a n )2
,S n =na 1+n (n -1)2d . [对点专练2] 等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0.则公差d 等于________.
[答案] -2
3.等差数列的性质
(1)当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)·d =dn +a 1-d 是关于n 的一次函数,且斜率为公差d ;前n 项和S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 是关于n 的二次函数且常数项为0.
(2)若公差d >0,则为递增等差数列;若公差d <0,则为递减等差数列;若公差d =0,则为常数列.
(3)当m +n =p +q 时,则有a m +a n =a p +a q ,特别地,当m +n =2p 时,则有a m +a n =2a p .
(4)S n ,S 2n -S n ,S 3n -S 2n 成等差数列.
[对点专练3] 已知等差数列{a n }的前n 项和为S n ,且S 10=12,S 20=17,则S 30为( )
A .15
B .20
C .25
D .30
[答案] A
4.等比数列的有关概念
(1)等比数列的判断方法:定义法a n +1a n
=q (q 为常数,n ∈N *),其中q ≠0,a n ≠0或a n +1a n
=a n a n -1(n ≥2).如一个等比数列{a n }共有2n +1项,奇数项之积为100,偶数项之积为120,则a n +1=56.
(2)等比数列的通项:a n =a 1q n -1或a n =a m q n -m .
(3)等比数列的前n 项和:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q
. (4)等比中项:若a ,A ,b 成等比数列,那么A 叫做a 与b 的等
比中项.值得注意的是,不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个,即为±ab.如已知两个数a,b(a≠b)的等差中项为A,等比中项为B,则A与B的大小关系为A>B.
[对点专练4]在等比数列{a
n
}中,若a1=1,a5=16,则a3=________.
[答案] 4
5.等比数列的性质
当m+n=p+q时,则有a m·a n=a p·a q,特别地,当m+n=2p时,则有a m·a n=a2p.
[对点专练5]各项均为正数的等比数列{a
n
}中,若a5·a6=9,则log3a1+log3a2+…+log3a10=________.
[答案]10
6.数列求和
数列求和时要明确项数、通项,并注意根据通项的特点选取合适的方法.数列求和的方法有公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等.
[对点专练6]数列{a
n }满足a n+a n+1=
1
2(n∈N,n≥1),若a2=1,
S n是{a n}的前n项和,则S21的值为________.
[答案]9
2
[易错盘点]
易错点1忽视数列首项致误
【例1】已知数列{a n}对任意n∈N*都满足a1+2a2+22a3+…+2n-1a n=8-5n,则数列{a n}的通项公式为________.
[错解] ∵a 1+2a 2+22a 3+…+2n -1a n =8-5n ,
∴a 1+2a 2+22a 3+…+2n -2a n -1=8-5(n -1),
两式相减,得2n -1a n =-5,
∴a n =-52n -1. [错因分析] 当n =1时,由题中条件可得a 1=3,而代入错解中所得的通项公式可得a 1=-5,显然是错误的.其原因是:两式相减时,所适用的条件是n ≥2,并不包含n =1的情况.只有所求的通项公式对n =1时也成立,才可以这样写,否则要分开写.
[正解] 当n ≥2时,由于a 1+2a 2+22a 3+…+2n -1a n =8-5n , 那么a 1+2a 2+22a 3+…+2n -1a n -1=8-5(n -1),
两式对应相减可得2n -1a n =8-5n -[8-5(n -1)]=-5,
所以a n =-52n -1. 而当n =1时,a 1=3≠-521-1=-5, 所以数列{a n }的通项公式为
a n =⎩⎪⎨⎪⎧ 3,n =1,-52n -1,n ≥2.
本题实质上已知数列{a n }的前n 项和S n ,求通项a n 与S n 的关系中,a n =S n -S n -1,成立的条件是n ≥2,求出的a n 中不一定包括a 1,而a 1应由a 1=S 1求出,然后再检验a 1是否在a n 中,这是一个典型的易错点.
[对点专练1]
(1)数列{a n }的前n 项和为S n (n ∈N *),2S n -na n =n ,若S 20=-360,则a 2=________.
(2)已知数列{a n }的前n 项之和为S n =n 2+n +1,则数列{a n }的通项公式为________.
[解析] (1)∵2S n -na n =n ,①
∴当n ≥2时,2S n -1-(n -1)a n -1=n -1,②
∴①-②得:(2-n )a n +(n -1)a n -1=1,③
(1-n )a n +1+na n =1,④
由③-④得,(2-2n )a n =(1-n )(a n -1+a n +1),
又∵n ≥2,∴1-n ≠0.∴2a n =a n -1+a n +1(n ≥2),
∴数列{a n }为等差数列,设其公差为d ,当n =1时,2S 1-a 1=1,∴a 1=1,
∴S 20=20+20×192d =-360,∴d =-2.
∴a 2=1-2=-1.
(2)当n =1时,a 1=S 1=3;
当n ≥2时,a n =n 2+n +1-(n -1)2-(n -1)-1=2n ,
∴a n =⎩⎨⎧ 3,n =1,2n ,n ≥2.
[答案] (1)-1 (2)a n =⎩⎨⎧ 3,n =1,2n ,n ≥2
易错点2 忽视等比数列公比的条件致误
【例2】 各项均为实数的等比数列{a n }的前n 项和为S n ,若S 10=10,S 30=70,则S 40等于( )
A .150
B .-200
C .150或-200
D .400或-50
[错解] 记b 1=S 10,b 2=S 20-S 10,b 3=S 30-S 20,b 4=S 40-S 30,b 1,b 2,b 3,b 4是公比为r 的等比数列.∴b 1+b 2+b 3=10+10r +10r 2=S 30
=70,即r 2+r -6=0,得r =2或r =-3.故S 40=10(1-r 4)1-r
,代入得S 40=150或-200.选C.
[错因分析] 数列S 10,S 20-S 10,S 30-S 20,S 40-S 30的公比q 10>0.忽略了此隐含条件,就产生了增解-200.
[正解] 记b 1=S 10,b 2=S 20-S 10,b 3=S 30-S 20,b 4=S 40-S 30,b 1,b 2,b 3,b 4是公比为r =q 10>0的等比数列.
∴b 1+b 2+b 3=10+10r +10r 2=S 30=70,
∴r 2+r -6=0,。