高级氧化技术

合集下载

高级氧化技术名词解释

高级氧化技术名词解释

高级氧化技术名词解释高级氧化技术是指可使煤在一定的条件下充分氧化,形成合格炉渣并脱硫、脱硝的技术。

高级氧化技术原理:通过高压氧气与煤炭的高温还原反应,煤中的有机物在常温常压下直接变为可燃气体,从而达到完全燃烧,这是解决煤炭燃烧污染环境的有效途径。

但目前普遍采用的高级氧化工艺存在能耗高、运行成本高、反应温度难控制、副产物对空气污染严重等问题。

因此研究一种新型高级氧化技术具有十分重要的意义。

目前,国内外高级氧化主要分为两类,即高压气流催化高级氧化和热载体加速的高级氧化技术。

我们发现,加速的高级氧化技术正逐渐成为今后新型高级氧化技术的主流。

高级氧化技术具有明显的节能、低温氧化及环保等特点,已成为当今世界高级氧化的研究热点。

目前,在国内外高级氧化研究中,主要研究的对象为烟煤、褐煤及无烟煤。

对焦煤、贫煤、瘦煤、贫瘦煤等炼焦煤由于不能进行高温干馏,其高级氧化技术还处于实验室阶段。

1、气流床加压高温干馏气流床加压高温干馏是一种近年来兴起的一种高级氧化技术。

该技术以大流量气体作为加热介质,在高温、高压下,烟煤、褐煤等固体或液体的煤料,在气流中加压,可在一定时间内将其氧化。

这种方式属于强化氧化,加热速度快,氧化产物易控制。

因此它也是近年来我国各煤炭科研单位开展最多的一种高级氧化方式。

2、高温干馏煤气利用湿法高温干馏煤气得到的混合气中的大部分可燃成分,均被高温干馏加热至350 ℃以上,部分固定碳得到高温干馏分解,使煤气中二氧化碳含量提高,减少了废气排放,同时有效降低煤气输送系统的阻力。

这项技术技术工艺简单,投资小,运行费用低,便于操作,比较适合于中国广大农村煤气化站点的使用。

3、空气/富氧高级氧化技术该技术的原理是:将氮气引入气流中,氮气迅速吸收煤气中的二氧化碳,达到脱碳效果,同时由于氧气不足,煤气中的一氧化碳和氢气等不完全燃烧产物在催化剂作用下被氧化,生成二氧化碳、水、氨和硫化氢等副产物。

该技术的关键在于催化剂的选择和煤气中残余煤气量的控制。

高级氧化技术

高级氧化技术

1.高级氧化技术的定义:利用强氧化性的自由基来降解有机污染物的技术,泛指反应过程有大量羟基自由基参与的化学氧化技术。

其基础在于运用催化剂、辐射,有时还与氧化剂结合,在反应中产生活性极强的自由基(一般为羟基自由基,·OH),再通过自由基与污染物之间的加合、取代、电子转移等使污染物全部或接近全部矿质化。

·OH反应是高级氧化反应的根本特点2.高级氧化方法及其作用机理是通过不同途径产生·OH自由基的过程。

·OH自由基一旦形成,会诱发一系列的自由基链反应,攻击水体中的各种有机污染物,直至降解为二氧化碳、水和其它矿物盐。

可以说高级氧化技术是以产生·OH自由基为标志3.高级氧化技术有什么特点?1)反应过程中产生大量氢氧自由基·OH2)反应速度快3)适用范围广,·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染4)可诱发链反应5)可作为生物处理过程的预处理手段,使难以通过生物降解的有机物可生化性提高,从而有利于生物法的进一步降解;6)操作简单,易于控制和管理4.·OH自由基的优点1)选择性小,反应速度快;2)氧化能力强;3)处理效率高;5)氧化彻底5.高级氧化技术分为哪几类?1)化学氧化法:臭氧氧化/Fenton氧化/高铁氧化2)电化学氧化法3)湿式氧化法:湿式空气氧化法/湿式空气催化氧化法4)超临界水氧化法 5)光催化氧化法6)超声波氧化法7)过硫酸盐氧化法6.自由基与污染物反应的四种主要方式:氢抽提反应、加成反应、电子转移、(氧化分解)。

自由基反应的三个阶段:链的引发、链的传递、链的终止自由基反应具有无选择性,反应迅速的特点。

7. 产生羟基自由基的途径:Fe2+/H2O2、 UV/H2O2、 H2O2/O3、 UV/O3、UV/H2O2/O3、光催化氧化(TiO2光催化氧化反应机理:产生空穴和电子对),对有机物降解速率由快到慢依次为UV-Fenton、 Fenton、 O3/US、O3、O3/UV、UV/H2O2、UV。

高级氧化技术

高级氧化技术

高级氧化技术(AdvancedOxidationProcesses)定义为可产生大量的•OH自由基过程,利用高活性自由基进攻大分子有机物并与之反应,从而破坏油剂分子结构达到氧化去除有机物的目的,实现高效的氧化处理。

Fenton法处理含有羟基有机化合物的废水时存在明显的选择性。

羟基取代基类型、羟基数量、羟基取代位置、主链链长及主链的饱和度对Fenton法处理效果均存在不同程度的影响。

实验结果表明:一元酚羟基对Fenton反应有着促进作用,而一元醇羟基对其有强烈的抑制作用;当碳原子数相同而羟基数不同时,随羟基数量的增加其对Fenton反应的影响逐渐下降;饱和一元醇主链碳原子个数越多,则其对Fenton反应的抑制作用越明显;主链的不饱和度对Fenton反应的影响也是不同的,脂肪族不饱和羟基化合物的Fenton法处理效果很差,而对苯环类羟基化合物有着很好的氧化处理效果;链长与醇羟基个数都不同时,随主链的增长和羟基数量的增加,其对Fenton反应的抑制作用随之下降,表现出良好的氧化降解效果。

不同体系中的羟基自由基产生量可用来直接判断底物对芬顿试剂的抑制效应及抑制程度。

脉冲式加温对室温下芬顿试剂的氧化效果有着促进作用,且加热频率越大,效果越明显。

催化氧化(芬顿氧化)反应在高浓度废水处理中的应用Fenton试剂具有很强的氧化性,而且其氧化性没有选择性,能适应各种废水的处理。

1处理氰化物氰化物是剧毒性的物质,在废水的排放中都要严格控制氰化物的含量。

2处理酚类酚类物质有较高的毒性,对人体有致癌作用,属于难降解的工业有机废水。

,使废水的毒性降低,可生化性提高。

3处理染料废水有高效低耗、无二次污染的优势。

4处理染料中间体或染料助剂废水染料中间体废水中常含有大量的蒽醌、萘、苯的各种取代基衍生物,具有COD高、色度高等特点,是目前较难处理的工业废水之一。

5处理农药(草甘膦)废水农药废水是一种难治理的有机化工废水,具有COD高、毒性大、难生物降解等特点。

工艺方法——高级氧化技术

工艺方法——高级氧化技术

工艺方法——高级氧化技术工艺简介高级氧化工艺(Advanced Oxidation Processes,简称AOPS)是20世纪80年代开始形成的处理有毒污染物技术,它的特点是通过反应产生羟基自由基(·OH),该自由基具有极强的氧化性,通过自由基反应能够将有机污染物有效的分解,甚至彻底的转化为无害的无机物,如二氧化碳和水等。

1、Fenton氧化法过氧化氢与催化剂Fe2+构成的氧化技术体系称为Fenton试剂。

它是100多年前由H.J.H.Fenton发明的一种不需要高温和高压而且工艺简单的化学氧化水处理技术。

近年来研究表明,Fenton的氧化机理是由于在酸性条件下过氧化氢被催化分解所产生的反应活性很高的羟基自由基所致。

在Fe2+催化剂作用下,H2O2能产生两种活泼的氢氧自由基,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。

其一般历程为:Fenton氧化法一般在pH为2-5的条件进行,该方法优点是过氧化氢分解速度快,因而氧化速率也较高。

但此方法也存在许多问题,由于该系统Fe2+浓度大,处理后的水可能带有颜色;Fe2+与过氧化氢反应降低了过氧化氢的利用率及其pH限制,因而在一定程度上影响了该方法的推广应用。

近年来,有人研究把紫外光(UV),氧气等引入Fenton试剂,增强了Fenton试剂的氧化能力,节约了过氧化氢的用量。

由于过氧化氢的分解机理与Fenton试剂极其相似,均产生·OH,因此将各种改进了的Fenton试剂称为类Fenton试剂。

主要有H2O2+UV系统、H2O2+UV+Fe2+系统、引入氧气的Fenton系统。

Fenton试剂及类Fenton试剂在废水处理中的应用可分为两个方面:一是单独作为一种处理方法氧化有机废水;二是与其他方法联用,如与混凝沉降法、活性炭法等联用,可取得良好的效果。

Fenton法的催化剂难以分离和重复使用,反应pH低,会生成大量含铁污泥,出水中含有大量Fe2+会造成二次污染,增加了后续处理的难度和成本。

12种高级氧化技术

12种高级氧化技术

12种高级氧化技术
1、臭氧氧化法:利用臭氧(O3)进行氧化反应,处理工艺污染
物的有效性很高。

2、脱溴的氧化法:工艺污水中的挥发性有机物通过添加脱溴剂,形成
有机酸,然后利用活性氧氧化反应来去除。

3、活性炭吸附氧化法:利用活性炭对污染物吸附后,再用氧化剂氧化
来达到净化目的。

4、臭氧-活性炭联合处理:采用活性炭和臭氧联合处理,可以有效去
除水中有机污染物。

5、光催化氧化法:利用可见光引起的光催化反应去除水中有机污染物。

6、水热氧化法:利用水热反应氧化,对于微量的有机物有很好的处理
效果。

7、气相自由基氧化法:利用空气中的自由基氧化剂作用于有机物,从
而去除水中的有机成分。

8、激光氧化法:利用激光的能量使水中的有机物氧化反应而分解掉。

9、高压氧气技术:有机物被高压氧气作用,使其分解,从而达到处理
污染物的目的。

10、电化学氧化法:利用微弱电流作用于污染物,使其发生氧化反应
而被氧化分解。

11、超高温氧化:利用高温的气态氧化反应,有效处理污染物,是一
种快速的技术。

12、臭氧/过氧化氢混合处理:利用臭氧和过氧化氢的混合反应,可以
有效去除水中的有机污染物。

(完整)高级氧化技术

(完整)高级氧化技术

高级氧化技术高级氧化技术(AOPs)是基于羟基自由基(·OH)的特殊化学性质,化学活性高且氧化无选择性,可以促进有毒有害生物难有机物的氧化分解,最终矿化,达到污染物的无害化处置的氧化技术。

其高氧化还原电位相对于常见的氧化剂,如表1-1所示[1]。

高级氧化技术主要是基于一系列产生羟基自由基的物化过程。

Fenton(1894)发现Fe2+和H202发生化学反应产生·OH,·OH通过电子转移等途径可使水中的有机污染物矿化为二氧化碳和水[2]。

Weiss(1935)得到了臭氧(03)在水体中可与氢氧根离子(OH-)反应生成羟基自由基(·OH )[3],随后,Taube和Bray(l945)在实验中发现H2O2在水溶液中会离解成HO2-离子,诱发产生羟基自由基[4]。

利用物理的方法,例如超声辐射(Ultrasonic Irradiation)、水力设备(阀、小孔(orifice)和文氏管(venturi)等)、电子束辐射(Electron Beam,EB)等,诱发产生羟基自由基(·OH)[5,6]。

还有超临界水氧化(Supercritical Water Oxidation,SWO)、湿式氧化(Wet Air Oxidation,WAO)或催化湿式氧化(Catalytic Wet Air Oxidation,CWAO)等[7]。

20世纪70年代,Fujishima和Honda等发现光催化可产生·OH,从而揭开了光催化高级氧化技术研究的新领域[8]。

最近,混合型高级氧化技术(Hybrid Advanced Oxidation Ploeesses,HAOPs)成为研究的热点,其结合各种高级氧化技术的优点,弥补不足之处,成为高效的面向实际工程应用发展的新型高级氧化技术。

主要形式如下:超声/ H2O2 (或03)、03/ H2O2、超声光化学氧化(Sono- photochemical Oxidation)、光Fenton技术、催化高级氧化或结合生物氧化工艺、耦合氧化工艺,如SONIWO(SonoChemical Degradation followed by Wet Air Oxidation)等[9]。

高级氧化技术

高级氧化技术

05
高级氧化技术的发展趋势 与展望
技术创新与改进
高效催化剂的研发
通过改进催化剂的活性、选择性和稳定性,提高高级氧化技术的 处理效率。
反应条件的优化
深入研究反应机理,探索最佳的反应温度、压力、pH值等条件, 降低能耗和资源消耗。
新型反应器的设计
设计新型的反应器结构,实现高效混合、传热和传质,提高反应速 率和去除效率。
02
高级氧化技术的原理
电化学氧化法
原理
利用电化学反应产生强氧化剂,如羟 基自由基(·OH),对有机物进行氧 化分解。
应用
电化学氧化法常用于处理含有难降解 有机物的废水,如印染废水、制药废 水等。
优势
电化学氧化法具有处理效率高、操作 简单、无二次污染等优点。
挑战
电化学氧化法需要消耗电能,运行成 本较高,且对电极材料和反应条件要 求较高。
推动其在工业和市政领域的应用和推广。
THANKS
感谢观看
高级氧化技术的实际应用
工业废水处理
工业废水处理
难降解有机物处理
高级氧化技术能够有效地处理工业废水中 的有毒有害物质,如重金属、有机污染物 等,降低其对环境的影响。
高级氧化技术能够将难降解有机物氧化成 低毒或无毒的小分子物质,降低其对生态 系统的危害。
含油废水处理
酸碱废水处理
高级氧化技术能够有效地处理含油废水, 去除其中的油类物质,提高废水的可生化 性。
高级氧化技术能够调节废水的酸碱度,使 其达到排放标准,减少对水体的酸碱污染 。
有机废气处理
有机废气处理
高级氧化技术能够有效地处理有机废气 ,如苯、甲苯、二甲苯等,降低其对大
气环境的影响。
恶臭气体处理

工艺方法——高级氧化技术

工艺方法——高级氧化技术

工艺方法——高级氧化技术工艺简介高级氧化技术(Advanced Oxidation Process,简称AOPs),利用反应体系中产生的活性极强的羟基自由基(·OH)来进攻有机污染物分子,最终将有机污染物氧化为CO2和H2O以及其他无毒的小分子酸,是绿色环保、高效的废水处理技术。

目前,高级氧化技术主要有化学氧化、光化学氧化、光催化氧化、湿式催化氧化等。

由于AOPs 具有氧化性强、操作条件易于控制的优点,近年来引起越来越多的关注。

一、化学氧化法该法是用化学氧化剂将液态或气态的无机物或有机物转化成微毒物、无毒物,或将其转化成易分离形态。

水处理领域中常用的氧化剂为臭氧、过氧化氢、高锰酸钾等。

在苯酚废水处理工艺中,臭氧和过氧化氢的应用最为常见。

目前世界上已经有许多国家使用臭氧消毒,特别是欧洲在自来水厂水处理中多采用臭氧。

在臭氧氧化系统中加入固体催化剂,如具有较大表面积的活性炭等,臭氧、活性炭同时使用,起到催化作用,并可以吸附臭氧氧化后的小分子产物,两者联合增加溶液中的OH-,具有协同效果从而产生更多的羟基自由基。

过氧化氢是一种强氧化剂,在碱性溶液中氧化反应很快,不会给反应溶液带来杂质离子,因此被很好地应用于多种有机或无机污染物的处理。

过氧化氢用于去除工业废水中的COD已经有很长时间,虽然使用化学氧化法处理废水的价格比普通的物理和生物方法高,但这种方法具有其他处理方法不可替代的作用,比如有毒有害或不可生物降解废水的预消化、高浓度/低流量废水的预处理等。

单独使用过氧化氢降解高浓度的稳定型难降解化合物的效果并不好,可以通过使用过渡金属的盐类进行改进,最常见的方法是利用铁盐来激活,即芬顿试剂法。

可溶性亚铁盐和过氧化氢按一定的比例混合所组成的芬顿试剂,能氧化许多有机分子,且系统不需高温高压。

试剂中的Fe2+能引发并促进过氧化氢的分解,从而产生羟基自由基。

一些有毒有害物质如苯酚、氯酚、氯苯和硝基酚等也能被芬顿试剂和类芬顿试剂所氧化。

什么是高级氧化技术--有什么特点

什么是高级氧化技术--有什么特点

什么是高级氧化技术?有什么特点?
高级氧化技术是指任何以产生羟基自由基OH·为目的的过程的工艺技术,简称AOP(advanced oxidation process),或称AOT。

羟基自由基OH·的产生是利用H₂O₂、O₃等在一定的条件下,加入氧化剂、催化剂,或借助紫外线、超声波、电解等的作用而产生的。

例如法国科学家Fenton提出的以铁盐为催化剂,在H₂O₂存在下,能产生OH·;或用电解法,以铁为阳极,在阴极得到H₂O₂,利用Fenton试剂可得到OH·。

新近利用金刚石为阳极,使水在阳极氧化直接产生OH·。

OH·是活性中间体、强氧化剂,其氧化能力仅次于氟,其标准氧化还原电极电位(25℃)如下:
目前比较好的高级氧化技术有:H₂O₂/Fe²+(Fenton试剂
法);UV/TiO₂/H₂O₂(过氧化氢与多相光催化结合);UV/TiO₂/O₂(多相光催化氧化);UV/H₂O₂(过氧化氢加紫外线)等。

高级氧化技术的特点有:
①由于OH·具有极强的氧化性,因此,几乎能与废水中大部分有机物起反应,使其断裂为小分子,或者彻底氧化为CO₂、H₂O、O₂、无机盐等。

一般都不会产生新的污染。

尤其处理废水中难降解的有机污染物可优先选用。

②OH·反应速率快,与废水有机污染物作用非常迅速,去除效果好、速度快。

③对废水有机污染物的破坏程度能达到完全或接近完全。

对多种有机污染物可以达到十分有效去除。

④可以实行自动控制,操作性强。

高级氧化技术已在废水和循环水处理中成功应用。

污水处理技术中的高级氧化技术方法你知道几种

污水处理技术中的高级氧化技术方法你知道几种

污水处理技术中的高级氧化技术方法你知道几种高级氧化技术(Advanced Oxidation Processes,AOPs)是一种用于处理难降解有机污染物的先进水处理技术。

它在水处理过程中通过氧化反应来去除有机污染物,并降低水体中有毒物质的浓度。

以下是几种常见的高级氧化技术方法:1. 臭氧氧化法(Ozone Oxidation):臭氧被广泛应用于水处理过程中,可以有效去除有机物、微生物和色度等污染物。

臭氧氧化采用氧化反应,生成具有较高氧化能力的活性氧物种,如超氧自由基(O2-)、羟基自由基(·OH)等,从而有效降解有机污染物。

2. Fenton反应(Fenton Reaction):Fenton反应是一种通过加入过氧化氢和铁盐催化剂来产生高度活性羟基自由基(·OH)的氧化方法。

在Fenton反应中,过氧化氢和铁盐在适宜的条件下反应,产生大量的羟基自由基,进一步降解有机污染物。

3. 光催化氧化(Photocatalytic Oxidation):光催化氧化是利用半导体催化剂吸收光能进行氧化反应的技术。

常用的光催化剂有二氧化钛(TiO2)、锌氧化物(ZnO)等。

当光催化剂吸收光能后,激发电子从价带跃迁至导带,并在催化剂表面发生氧化还原反应,生成高度活性的羟基自由基和超氧自由基等。

这些活性物种可以降解或转化有机污染物。

4. 过氧化氢氧化法(Hydrogen Peroxide Oxidation):过氧化氢是一种氧化性较强的物质,在高级氧化技术中广泛应用。

过氧化氢氧化法通过加入适量的过氧化氢来氧化有机污染物,产生氢氧自由基(·OH)等活性物种,进而降解污染物。

5. 电化学氧化法(Electrochemical Oxidation):电化学氧化法采用电化学反应来将有机污染物氧化为无害的产物。

主要有两种方式:电化学氧化还原(Electrochemical Redox)和电解(Electrolysis)。

高级氧化技术

高级氧化技术

高级氧化技术高级氧化技术又称深度氧化技术,其基础在于运用电、光辐照、催化剂,有时还与氧化剂结合,在反应中产生活性极强的自由基(如HO•),再通过自由基与有机化合物之间的加合、取代、电子转移、断键等,使水体中的大分子难降解有机物氧化降解成低毒或无毒的小分子物质,甚至直接降解成为CO2和H2O,接近完全矿化目前的高级氧化技术主要包括化学氧化法、电化学氧化法、湿式氧化法、超临界水氧化法和光催化氧化法等。

1、化学氧化技术化学氧化技术常用于生物处理的前处理。

一般是在催化剂作用下,用化学氧化剂去处理有机废水以提高其可生化性,或直接氧化降解废水中有机物使之稳定化。

1.1 Fenton 试剂氧化法该技术起源于19世纪90年代中期,由法国科学家H. J. Fenton提出,在酸性条件下,H2O2在Fe2+离子的催化作用下可有效的将酒石酸氧化,并应用于苹果酸的氧化。

长期以来,人们默认的Fenton主要原理是利用亚铁离子作为过氧化氢的催化剂,反应产生羟基自由基式为:Fe2++ H2O2 ——Fe3++OH-+•OH,且反应大都在酸性条件下进行。

在化学氧化法中,Fenton法在处理一些难降解有机物(如苯酚类、苯胺类)方面显示出一定的优越性。

随着人们对Fenton法研究的深入,近年来又把紫外光(UV)、草酸盐等引入Fenton 法中,使Fenton法的氧化能力大大增强。

用UV + Fenton法对氯酚混合液进行了处理,在1h内TOC去除率达到83.2%。

Fenton法氧化能力强、反应条件温和、设备也较为简单,适用范围比较广,但存在处理费用高、工艺条件复杂、过程不易控制等缺点,使得该法尚难被推广应用。

1.2 臭氧氧化法臭氧氧化体系具有较高的氧化还原电位,能够氧化废水中的大部分有机污染物,被广泛应用于工业废水处理中。

臭氧能氧化水中许多有机物,但臭氧与有机物的反应是有选择性的,而且不能将有机物彻底分解为CO2和H2O,臭氧氧化后的产物往往为羧酸类有机物。

高级氧化技术

高级氧化技术
4
1.1 高级氧化技术特点
◆ 反应过程产生大量活性极高的羟基自由基(·OH); ◆ 反应速度快,多数有机物在此过程中的氧化速率常数可达
106~109L/(mol·s);
◆ 适用范围广,较高的氧化电位使得 ·OH 几乎可将所有有机物氧化
直至矿化,不会产生二次污染;
◆ 可诱发链式反应,由于 ·OH 的电子亲和能为569.3kJ,可将饱和
19
臭氧氧化技术在应用中存在的问题
◆ 低浓度臭氧处理有机物时不能将其完全氧化为二氧化碳和水,而
是生成一系列的中间产物,如醛、羧酸等;
◆ 臭氧溶解度低,限制了臭氧在水处理中的应用; ◆ 臭氧极不稳定,重量浓度为1%已下单额臭氧在常温常压的空气
中的半衰期为16小时,水中臭氧浓度为3mg/L时,半衰期仅30分钟 左右;
6
1.2 高级氧化技术发展历史
1894
1948
Fenton
Fe2+与H2O2混合后可 以产生·OH自由基
1935
Taube、Bray
Weiss
O3在水溶液中可与OH反应生成 ·OH自由基
H2O2在水溶液中可离解 成HO2-,可诱发产 生 ·OH自由基,随后O3 和H2O2复合的高级氧化 技术被发现
必须现制现用 设备复杂,操作及维修麻烦 水质水量变化时,调节投加
量困难
13 8
注:
臭氧杀菌影响因素
臭氧浓度、水温、 pH值、水的浊度等
实际应用
自来水消毒时臭氧 投加量一般为13mg/l,接触时间 不小于5min
选择性
例如:臭氧对于滤过 性病毒的灭活作用非 常有效。但青霉素之 类的菌种对臭氧就具 有一定的抗性
26
4、臭氧与其他常规水处理单元结合

高级氧化

高级氧化

电化学氧化法
电化学氧化法主要是通过电极作用产生·O2-、 H2O2、·OH等活性基团来氧化降解有机物。
优点是处理效率高、操作简便易于控制、 条件温和,不需要另加催化剂;有析氧、 析氢副反应、能耗大缺点。
The total organic carbon measurements indicate an efficie 94% respectively for photo-Fenton and electro-Fenton processes after 480 min of treatment. Calculating the cost has shown that the electro-Fenton process is much more interesting than the photo-Fenton process. (Aida Kesraoui Abdessalem,2010)
Fenton法存在问题 Fenton法存在问题
所用试剂量大,处理废水时间较长; 反应要求在较低pH范围进行; Fe2+加入可能会增大废水中COD含量而造成 二次污染; H202价格昂贵,单独使用成本太高;同时 也是自由基淬灭剂,大量存在也可成为已 产生的OH自由基的抑制剂,降低Fenton氧 化的动力学速率。
Ayouba,2011)
The optimum dose of Fenton reagent (Fe2+/H2O2) was 10 mg/L Fe2+ and 60 mg/L H2O2 for an initial MeS concentration range of 0–80 mg/L. The Fenton process was effective under pH 3. The degradation of MeS at optimum dose of Fenton reagent was more than 95% for MeS of 0–40 mg/L and the degradation time was less than 30 min. The degradation kinetics of MeS was modelled by

(完整)高级氧化技术

(完整)高级氧化技术

高级氧化技术高级氧化技术(AOPs是基于羟基自由基(• OH)的特殊化学性质,化学活性高且氧化无选择性,可以促进有毒有害生物难有机物的氧化分解,最终矿化,达到污染物的无害化处置的氧化技术。

其高氧化还原电位相对于常见的氧化剂,如表1-1所示[1]。

高级氧化技术主要是基于一系列产生羟基自由基的物化过程。

Fenton(1894)发现Fe2■和H2O2发生化学反应产生• OH, • OH通过电子转移等途径可使水中的有机污染物矿化为二氧化碳和水[2]。

Weiss(1935)得到了臭氧(03)在水体中可与氢氧根离子(OH-)反应生成羟基自由基(• 0H )[3],随后,Taube和Bray(l945)在实验中发现H2O2在水溶液中会离解成H02-离子,诱发产生羟基自由基[4]。

利用物理的方法,例如超声辐射(Ultraso nic Irradiation)、水力设备(阀、小孔(orifice)和文氏管(venturi)等)、电子束辐射(Electron Beam , EB)等,诱发产生羟基自由基(• OH)[5,6]。

还有超临界水氧化(Supercritical Water Oxidation , SWO)、湿式氧化(Wet Air Oxidation , WAO)或催化湿式氧化(Catalytic Wet Air Oxidation , CWAO)等⑺。

20世纪70年代,Fujishima和Honda等发现光催化可产生•OH,从而揭开了光催化高级氧化技术研究的新领域[8]。

最近,混合型高级氧化技术(Hybrid Advaneed Oxidation Ploeesses, HAOPs)成为研究的热点,其结合各种高级氧化技术的优点,弥补不足之处,成为高效的面向实际工程应用发展的新型高级氧化技术。

主要形式如下:超声/ H2O2 (或03)、03/ H2O2、超声光化学氧化(So no-photochemical Oxidatio n)、光Fen to n 技术、催化高级氧化或结合生物氧化工艺、耦合氧化工艺,女口SONIWO(So no Chemical Degradation followed byWet Air Oxidation)等[9]。

高级氧化技术(精)

高级氧化技术(精)

返回
间接氧化是通过阳极在高电势下产生的羟基等自由基 与污染物分子作用,这种自由基是具有高度活性的强氧 化剂C(也可以是催化剂),通过对有机物产生脱氢、 亲电子和电子转移作用,形成活化的有机自由基,产生 连锁自由基反应,使有机物迅速完全降解,故也称为电 化学燃烧。间接氧化在一定程度上既发挥了阳极直接 氧化的作用,又利用了产生的氧化剂,使处理效率显著 提高。
d、多孔材料电极 此种电极提高电沉积效率的方法是通过提高电极比表 面积。其包括:多孔固定床电极 、碳纤维电极 、网 状玻碳电极 。 2、电极材料的种类 (1)金属电极 金属电极是指以金属作为电极反应界面的裸露。电极, 除碱金属和碱土金属外,大多数金属作为电化学电极 均有很多研究报道,特别是氢电极反应。 返回
五、典型电催化反应的机理
1、氢析反应与分子氢的氧化 氢析出反应是非常重要的电极反应,不仅因为水电解制 备氢是获取这种洁净能源的有效途径,而且它是水溶液 中其他阴极过程的伴随反应。其反应机理可表示为:
2H3O 2e H2 2H2O(酸性溶液中)
2H2O 2e H2 2OH (碱性溶液中)
H 2 2Pt 2Pt H _ Pt H Pt H e
返回
2、氧的电还原 氧还原反应是金属-空气电池和燃料电池中的正极反 应,其动力学和机理一直是电化学中的重要研究课题。 在水溶液中,氧还原可按两种途径进行: (1)直接的4电子途径:
O2 2H2O 4e 4OH (碱性溶液,E 0.401V )
O2 4H 4e 2H2O(酸性溶液,E 1.229V )
返回



(2)2电子途径(或称“过氧化物途径”) O2 2H2O 2e HO2 OH (E 0.065V )

高级氧化技术名词解释

高级氧化技术名词解释

高级氧化技术名词解释原指用空气和氧的混合物(氧化剂)来处理废水,后又将其改进为指用空气、臭氧、光和微生物等介质作为氧化剂来处理废水。

是指氧化剂与废水中的还原性物质在高温下发生氧化还原反应,从而破坏废水中有毒有害物质的化学反应。

该法具有反应条件温和,能耗少,成本低廉等优点。

缺点是易产生臭氧、光化学烟雾,对环境有一定影响。

故这类废水通常采用的氧化方法主要是微生物氧化法和臭氧氧化法。

(1)水解-好氧处理法当废水中有机物的可生化降解性差时,将其投加于微生物的生长繁殖过程中,可使大部分有机物转变为易生化降解的物质,从而提高废水的可生化性。

(2)厌氧-好氧生物处理法废水中有机物浓度高、可生化降解性差时,先将废水进行厌氧预处理,使废水中的可生化降解有机物数量大大减少,然后将高浓度的废水进入好氧生物处理系统,在好氧菌的作用下将有机物彻底氧化分解。

高级氧化技术常用于处理含有有机污染物质的废水。

如用COD法处理造纸废水。

在有机物和氧的作用下,废水中的有机物首先被氧化分解,产生酸性气体并逸出,这时,被氧化的有机物质在分解中逐渐形成水和二氧化碳,氧化反应则不断进行下去。

反应式如下:是一种特殊的化学氧化方法。

在催化剂的作用下,加速有机物的氧化。

其反应式如下:(3)活性污泥法活性污泥法(activated sludge,简称A法)是近几十年发展起来的一种高效的污水处理技术,在国外已得到广泛应用。

它由曝气池、沉淀池、污泥回流系统等组成,以供氧和硝化为主,具有出水水质好,占地面积小,维护管理简单,操作方便等优点。

适用范围:适用于处理有机物浓度高、污水负荷大的城市生活污水,在石油、化工、冶金等部门也得到了广泛应用。

2)好氧生物处理法好氧生物处理法(OOC)主要用于处理低浓度、高色度、难生化降解的有机废水。

该方法具有处理效率高、成本低等优点,缺点是运行费用高、二次污染严重、产生消化污泥等问题。

主要应用于城市污水、医院污水和石化、纺织印染等高浓度工业废水。

高级氧化技术

高级氧化技术

高级氧化技术高级氧化技术是一种废水处理方法,其最显著的特点是以羟基自由基为主要氧化剂与有机物发生反应,反应中生成的有机自由基可以继续参加·HO的链式反应,或者通过生成有机过氧化自由基后,进一步发生氧化分解反应直至降解为最终产物CO2和H2O, 从而达到氧化分解有机物的目的。

技术介绍目前废水处理最常用的生物法对可生化性差、相对分子质量从几千到几万的物质处理较困难,而化学氧化法可将其直接矿化或通过氧化提高污染物的可生化性,同时还对环境类激素等微量有害化学物质的处理方面有很大的优势。

然而O3、H2O2和Cl2等氧化剂的氧化能力不强且有选择性等缺点难以满足要求。

1987年Gaze等人提出了高级氧化法(Advanced Oxidation processible, 简称AOPs),它克服了普通氧化法存在的问题,并以其独特的优点越来越引起重视。

Gaze等人将水处理过程中以羟基自由基为主要氧化剂的氧化过程称为AOPs过程,用于水处理则称为AOP法。

典型的均相AOPs过程有O3/UV, O3/H2O2, UV/H2O2, H2O2/Fe2+(Fenton试剂)等,在高pH值情况下的臭氧处理也可以被认为是一种AOPs过程,另外某些光催化氧化也是AOP过程。

与其他传统的水处理方法相比,高级氧化法具有以下特点:产生大量非常活泼的羟基自由基·HO其氧化能力(2.80v)仅次于氟(2.87),它作为反应的中间产物,可诱发后面的链反应,羟基自由基与不同有机物质的反应速率常数相差很小,当水中存在多种污染物时,不会出现一种物质得到降解而另一种物质基本不变的情况;·HO无法选择地直接与废水中的污染物反应将其降解为二氧化碳、水和无害物,不会产生二次污染;普通化学氧化法由于氧化能力差,反应有选择性等原因,往往不能直接达到完全去除有机物降低TOC和COD的目的,而高级氧化法则基本不存在这个问题,氧化过程中的中间产物均可以继续同羟基自由基反应,直至最后完全被氧化成二氧化碳和水,从而达到了彻底去除TOC、COD的目的;由于它是一种物理化学过程,很容易加以控制,以满足处理需要,甚至可以降低10-9级的污染物;同普通的化学氧化法相比,高级氧化法的反应速度很快,一般反应速率常数大于109mol-1Ls-1, 能在很短时间内达到处理要求;既可作为单独处理,又可与其他处理过程相匹配,如作为生化处理的预处理,可降低处理成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高级氧化技术Advanced Oxidation Process摘要:随着我国国民经济的快速发展,高浓度的有机废水对我国宝贵的水资源造成了威胁。

高级氧化法(Advanced Oxidation Process,简称AOPs)可将其直接矿化或通过氧化提高污染物的可生化性,同时还在环境类激素等微量有害化学物质的处理方面具有很大的优势,具有很好的应用前景。

关键词:高级氧化技术;臭氧氧化;湿式氧化;污水处理Abstract: With the rapid dev elopment of our country’s national economy, the high-concentration organic wastewater has been threatening precious water resources in our country. However, a new technology called Advanced Oxidation Process (short for AOPs) is able to improve the biodegradability of the wastewater through mineralizing or oxidizing it. Additionally, it has the advantage over handling environmental hormone mimic and the other micro harmful chemicals. So that, AOPs has a very good application prospect.Key words: Advanced Oxidation Process, Ozone Oxidation, Wet Oxidation, Wastewater Treatment.一、高级氧化的概述目前废水处理最常用的生物法对可生化性差、相对分子质量从几千到几万的物质处理较困难,而化学氧化法可将其直接矿化或通过氧化提高污染物的可生化性,同时还对环境类激素等微量有害化学物质的处理方面有很大的优势。

然而O3、H2O2和Cl2等氧化剂的氧化能力不强且有选择性等缺点难以满足要求。

1987年Gaze等人提出了高级氧化法(Advanced Oxidation processible, 简称AOPs),它克服了普通氧化法存在的问题,并以其独特的优点越来越引起重视。

1.高级氧化的过程Glaze等人将水处理过程中以羟基自由基为主要氧化剂的氧化过程称为AOPs过程,用于水处理则称为AOP法。

典型的均相AOPs过程有O3/UV, O3/H2O2, UV/H2O2, H2O2/Fe2+(Fenton试剂)等,在高pH值情况下的臭氧处理也可以被认为是一种AOPs过程,另外某些光催化氧化也是AOP过程。

2.高级氧化的特点近几十年来,国内外在难降解持久性有机污染废水处理方面开展了较多的研究,高级氧化法以其巨大的潜力以及独特的优势在过去二十多年中脱颖而出,与其它传统水处理方法相比,高级氧化法具有以下特点:(1)产生大量非常活泼的HO•自由基,其氧化能力(2.80V)仅次于氟(2.87V),HO•自由基是反应的中间产物,可诱发后面的链反应,HO•自由基的电子亲合能为569.3KJ,可将饱和烃中的H拉出来,形成有机物的自身氧化,从而使有机物得以降解,这是各类氧化剂单独使用都不能做到的;(2)反应速度快,多数有机物与羟基自由基的氧化速率常数可达106~109M-1S-1;(3)HO•自由基无选择直接与废水中的自由基反应将其降解为二氧化碳、水和无机盐,不会产生二次污染;(4)由于它是一种物理-化学处理过程,反应条件温和,通常对温度和压力无要求,很容易加以控制,以满足处理需要,甚至可以降解10-9级的污染物;(5)它既可作为单独处理,又可以与其它处理过程相匹配,如作为生化处理的前、后处理,可降低处理成本;(6)操作简单,易于设备化管理。

3.高级氧化的分类化学氧化技术化学氧化技术是各种高级氧化技术的基础,它是使用化学氧化剂将污染物氧化成微毒、无害的物质或转化成易处理的形态,常用的化学氧化剂包括:H2O、O3、CLO2、K2MnO和K2FeO4 等。

化学氧化技术主要用于水处理领域,在有机废水治理中也得到一定应用。

1)催化氧化技术催化氧化技术是在各种氧化技术中有选择性地引入催化剂,提高氧化速率,缓和反应条件,特别适于处理难降解和高浓度有机污染物。

著名的Fenton 技术就是催化技术成功应用的一个典范。

催化氧化技术在气态污染物处理方面主要有机动车尾气净化、SO2/NOx 废气催化净化、有机废气催化燃烧等,在液态污染物处理上主要有催化湿式氧化技术、催化超临界水氧化技术等。

2)湿式氧化技术湿式氧化技术是指在高温高压下,以空气中的氧为氧化剂,在液相中将有机污染物氧化为二氧化碳和水等无机物或小分子有机物的化学过程,包括均相湿式催化氧和非均相湿式催化氧。

湿式氧化技术应用范围广,处理效率高,几乎可无选择性地氧化各类高浓度有机废水,特别是毒性大、常规方法难降解的废水,因而,在废水处理方面得到广泛应用与发展。

目前主要领域有造纸废水、氰化物废水、农药等工业废水。

3)超临界水氧化技术超临界水氧化技术是指在谁的超临界状态下,将废水中的有机污染物去除的方法。

它是湿式空气氧化技术的强化和改进,同样是以水为液相主体,以空气中的氧为氧化剂,于高温高压下反应。

超临界水是有机物和氧的良好溶剂,有机物在富氧超临界水中进行均相氧化,其反应速度很快,在400~600℃下,几秒钟就能将有机物的结构破坏,反应完全、彻底,使有机碳、氢完全转化为二氧化碳和水[1]。

4)电化学氧化技术电化学氧化技术去除有机污染物是电氧化与化学氧化技术的结合。

包括直接电化学转化(即通过阳极氧化使有机污染物和部分无机污染物转化为无害物质,阴极还原去除水中的重金属离子)和间接电化学转化(即通过电化学反应产生的氧化还原剂使污染物转化为无害物质)。

电化学氧化技术主要集中在处理具有生物毒性的难降解芳香族化合物方面。

5)光催化氧化技术光催化氧化技术是利用半导体光催化剂,包括TiO2、ZnO、CdS、WO3、SnO、Fe2O3 等,受到光照后,形成电子-空穴对,在水中能产生氧化能力极强的氢氧根,从而将污染物氧化降解。

利用紫外光辐射强化氧化处理,加速污染物的氧化降解。

是一些难发生的反应顺利进行,大大提高了氧化降解速率[2]。

6)超声波氧化技术超声波氧化技术的基本原理是水体中的微气核在超声波场作用下发生震荡、生长、崩溃、闭合过程,该过程是集中声场能量并迅速释放,在空化气泡崩溃的极短时间内,空花旗袍及周围的极小空间内出现热点,产生高温和超高压引发产生氧化能力极强的氢氧根,直接或间接作用于有机污染物,使其降解,因而是极高级氧化、超临界氧化、直接热分解于一体的高级氧化处理技术。

7)微波氧化处理技术微波氧化处理技术是利用能强烈吸收微波的/敏化剂把微波能传递给那些不直接明显吸收微波的有机物质,从而诱发化学反应,是这些有机物被氧化降解。

微波氧化技术也是国内外学者研究难降解有机物处理的热点技术之一。

如王金成利用微波技术,研究了活性艳蓝KN-R溶液脱色的可行性,效果良好。

二、臭氧氧化臭氧由于其在水中有较高的氧化还原电位,常用来进行消毒、除臭、除味、脱色等,在饮用水处理中有着广泛的应用[3]。

1、臭氧氧化的优点:①氧化能力强,对除臭、脱色、杀菌、去除有机物都有明显的效果②处理后废水中的臭氧易分解,不产生二次污染③制备臭氧的空气和电不必储存和运输,操作管理也较方便④处理过程中一般不产生污泥2、臭氧氧化的缺点:①臭氧的发生成本高,而利用率偏低,使臭氧处理的费用高②臭氧与有机物的反应选择性较强,在低剂量和段时间内臭氧不可能完全狂化污染物,且分解生成的中间产物会阻止臭氧的进一步氧化③不能有效的去除氨氮,对水中有机氯化物无氧化效果3、臭氧氧化的影响因素1)pH值①臭氧本身的氧化能力与pH值有关。

HO.自由基;臭氧在水中的分解速度随着pH值得提高而加快。

②污水中有机物或无机物的物理化学性质与pH有密切关系。

③臭氧吸收率与pH值有一定的关系。

碱性条件下的污染物的去除率高于酸性条件。

④pH值在整个臭氧氧化过程中的变化,主要是在中性或碱性条件下,pH 值会随着氧化过程而呈下降趋势。

其原因是有机物氧化呈小分子有机酸或醛之类物质,使溶液的pH值下降。

2)臭氧投加量在污染物浓度一定时,通常情况下随着臭氧投加量的增加污染物去除率加大。

3)有机物浓度被处理水溶液中有机物的浓度较高时,它们与臭氧反映的化学势很高,一旦与臭氧接触便可发生化学反应。

主要受臭氧的传质速率控制的影响。

4)搅拌速度提高搅拌速度能使气液混合均匀,减小液膜阻力,增大气液比表面积,强化气液传质效果,有助于气液的接触和反应。

但当搅拌强度增大到一定程度后,其对气体的分散效果和对有机物的去除效果的作用将趋于平缓。

5)接触反应柱高度通过扩散年装置在水中的深度以及气泡大小反映出来的,主要影响臭氧的吸收率。

6)溶液温度提高反应溶液温度降使反应的活化能降低,有利于提高化学反应速率,但是,随温度的升高,臭氧的分解速度加快,溶解度降低,从而降低了液相中臭氧的浓度,减缓了化学反应速度。

减缓了目标有机污染物的降解速率。

7)接触时间通臭氧时间越长,处理效果越好。

但从经济角度考虑应选一个最佳处理时间。

石油类(20min)、酚和氰化物(10min)、硫化物(25min)。

8)气态O3的投加方式O3的投加方式通常在混合反应器中进行,混合反应器的作用有二:(1)促进气、水扩散混合;(2)使气、水充分接触,迅速反应。

设计混合反应器时要考虑臭氧分子在水中的扩散速度与污染物的反应速度,搅拌速度。

4、臭氧氧化的基本原理O3的是一种强氧化剂,在溶液中它可以喝有机物以两种途径进行反应:①臭氧分子与有机物的直接反应②部分臭氧分子分解后产生的自由基和有机物的间接反应臭氧是一种亲电试剂。

水中臭氧的变化很复杂,人们一般认为水中的臭氧有三种去向:单纯物理上的逸出、臭氧与水中溶质的氧化反应和臭氧的分解反应。

臭氧直接与水中某些杂质的氧化反应速度相当慢。

在臭氧的脱色和除臭过程中,其主要作用的往往不是臭氧的直接氧化反应。

5.臭氧氧化的应用1)氧化无机物①可将水中可溶性铁、锰离子氧化为三价铁、四价锰生成沉淀而去除;②氨氮被臭氧缓慢地氧化为NO3,然后经过生物硝化和代谢同化得以去除;③存在溴化物的情况下,氨可以经臭氧氧化降解为N2,同时BR被臭氧迅速氧化为HOBr,然后再与氨反应形成N2和Br, Br 再被臭氧氧化,直到将氨全部去除;④氰化物经臭氧氧化后形成氰酸盐,后者在酸性或碱性条件下都可水解转化为氮化物;⑤无机硫化物易氧化生成胆汁硫,并进一步氧化为SO和SO2)氧化有机物臭氧能氧化许多有机物,如蛋白质、氨基酸、有机胺、链型不饱和化合物、芳香族、木质素、腐殖质等。

相关文档
最新文档