2.3.2绝对值与相反数练习题
2.3.2绝对值与相反数:相反数(7大题型提分练)七年级数学上册同步精品课堂「含答案」
2.3.2 绝对值与相反数:相反数求一个数的相反数1.的相反数是( )A B .C D .2.|3|--的相反数是( )A .3-B .3C .13D .13-3.a b c +-的相反数是( )A .a b c--+B .a b c-+C .a b c-++D .a b c---4.填空:(13)--是 的相反数;()20-+是 的相反数.5.已知a 是5-的相反数,b 比最小的正整数大4,c 是相反数等于它本身的数,则32a b c ++的值是 .题型二 相反数的有关辨析6.下列说法中,正确的是( )A .()3--与3-互为相反数B .相反数等于它本身的数有无数个C .有理数a 一定比a -大D .a -的相反数就是a7.下面说法正确的有( )①符号相反的数互为相反数;②()3.8--的相反数是3.8;③一个数和它的相反数不可能相等;④正数与负数互为相反数.A .0个B .1个C .2个D .3个8.下列说法正确的有( )(1)有理数的绝对值一定比0大;(2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等;(4)互为相反数的两个数的绝对值相等.A .1个B .2个C .3个D .4个9.下列判断正确的是( )A .若|a|=|b|,则a=b B .若|a|=|b|,则a= -b C .若a=b ,则|a|=|b|D .若a=-b ,则|a|= -|b|10.下列说法:①若a 、b 互为相反数,则a +b =0;②若a +b =0,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-;④若1ab=-,则a 、b 互为相反数.其中正确的结论是( ).A .②③④B .①②③C .①②④D .①②题型三 绝对值与相反数11.若15a -=-,则a 的值为( )A .5±B .15±C .15D .15-12.若26x -=-,则x =.13.若43y y +=-,则y 的值是.题型四 数轴与相反数14.在数轴上表示下列各数:5-,2,0,112-,4.5,0.5,3-,(1)--,并将它们的相反数用“<”符号连接起来.15.在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-16.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上分别用A ,B 两点表示a -,b -;(2)若数b 与b -表示的点相距20个单位长度,则b 与b -表示的数分别是什么?(3)在(2)的条件下,若数a 表示的点与数b 的相反数表示的点相距5个单位长度,则a 与a -表示的数是多少?17.如图,图中数轴的单位长度为1,请回答下列问题:(1)如果点A ,B 表示的数是互为相反数,那么点C 表示的数是_______,在此基础上,在数轴上与点C 的距离是3个单位长度的点表示的数是__________(2)如果点D ,B 表示的数是互为相反数,那么点E 表示的数是_______(3)在第(1)问的基础上解答:若点P 从点A 出发,以每秒1个单位长度的速度向点B 的方向匀速运动;同时,点Q 从点B 出发,以每秒2个单位长度的速度向点A 的方向匀速运动.则两个点相遇时点P 所表示的数是多少?题型五 多重符号的化简18.下列化简,正确的是( )A .()1010éù---=-ëûB .()33--=-C .()55-+=D .()88éù--+=-ëû19.若2x -=,则()x ---éùëû的值为 .20.化简下列各数:①()8--= ;②()0.75-+= ;③35éùæö---=ç÷êúèøëû ;④()3.8-+-=éùëû .21.(1)(5)++= ;(2)()12--= ;(3)()3.2éù--+ëû= ;(4)()3.2éù---ëû= ;(5)()27éù-+-=ëû;(6)23ìüéùæö-+-+=íýç÷êúèøëûîþ.题型六 相反数的判定22.下列各组数中,互为相反数的是( )A .()3.2--与 3.2-B .2.3与2.31C .()4.9-+-éùëû与4.9D .()1-+与()1+-23.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .()7--与7C .115--与65æö--ç÷èøD .1100æö--ç÷èø与0.01+-24.下列各对数:“①()4--与()4++;②-53æö-÷çøè与-35æö+÷çøè;③-112æö+÷çøè与+112æö-÷çøè;④()1éù-+-ëû与()1éù-++ëû”中,互为相反数的有( )A .1对B .2对C .3对D .4对题型七 相反数的性质25.已知有理数a 表示数5,b 与c 互为相反数,则233a b c --的值为 .26.如果代数式35x +与2x 的值互为相反数,则x 的值为 .27.若5a -与1-互为相反数,那么=a .28.两个有理数互为相反数,则它们的积( )A .符号为正B .符号为负C .一定不小于0D .一定不大于029.若a 与b 互为相反数,则22520202023224a b ab+=( )A .2020-B .2-C .1D .230.a 为有理数.定义符号“※”:当a >﹣2时,※a=﹣a ;当a <﹣2时,※a=a ;当a=﹣2时,※a=0.根据这种定义.则※[﹣4+※(2﹣3)]的值为( )A .3B .﹣3C .5D .﹣531.用“Þ”与“Ü”表示一种法则:()a b b Þ=-,()a b a Ü=-,如(23)3Þ=-,则()()()()202320242022202120481024512256ÞÜÞÜÞÜÞ=éùéùëûëû .32.求方程32(02)x a a +-=<<的所有解的和.1.C【分析】本题考查了相反数.直接根据相反数的定义作答即可.【详解】解:.故选:C 2.B【分析】根据“只有符号不同的两个数叫做互为相反数”以及去绝对值解答.【详解】解:3||3-= ,33\--=-的相反数是3.故选: B .【点睛】本题考查了相反数以及绝对值,掌握相反数的定义是关键.3.A【分析】本题考查了相反数的定义及去括号法则,解题的关键是熟记定义.根据相反数的定义,即可得到答案.【详解】解:a b c +-的相反数是:()a b c a b c -+-=--+;故选择:A .4.13-20【分析】本题考查相反数的定义,解题的关键是掌握求相反数的方法.【详解】解:(13)--是13-的相反数;()20-+是20的相反数.故答案为:13-,20.5.25【分析】根据()55a =--=,最小的正整数是1,相反数等于它本身的数是0,进行求解即可.【详解】解:∵a 是5-的相反数,∴5a =,∵最小的正整数是1,且b 比最小的正整数大4,∴145b =+=,∵相反数等于它本身的数是0,∴0c =,∴323525025a b c ++=´+´+=.故答案为:25.【点睛】本题主要考查了相反数的定义,代数式求值,解题的关键是熟记相关结论,准确计算.6.D【分析】本题主要考查相反数,根据相反数的意义逐项分析即可得出答案.【详解】解:A. ()33,33--=-=,所以,()3--与3-相等,故选项A 说法错误,不符合题意;B. 相反数等于它本身的数有1个,是0,故选项B 说法错误,不符合题意;C.当0a =时,a a =-,故选项C 说法错误,不符合题意;D. a -的相反数就是a ,说法正确,故选项D 符合题意.故选:D .7.A【分析】根据“只有符号相反的数互为相反数”可对5个选项进行一一分析进而得出答案即可.【详解】解:①只有符号相反的数互为相反数,故此选项错误;②()3.8 3.8--=,3.8的相反数是 3.8-;故此选项错误;③0的相反数等于0,故此选项错误;④正数与负数不一定互为相反数,故此选项错误;故正确的有0个,故选:A .【点睛】本题考查的是相反数的概念,掌握“只有符号相反的数互为相反数”是解题关键.8.A【详解】分析: 根据0的绝对值为0,互为相反数的绝对值相等,即可解答.详解: (1)有理数的绝对值一定比0大,错误,例如,0的绝对值为0;(2)有理数的相反数一定比0小,错误,例如,0的相反数为0;(3)如果两个数的绝对值相等,那么这两个数相等或和相反数,故错误;(4)互为相反数的两个数的绝对值相等,正确.正确的有1个.故选A.点睛: 本题考查了绝对值,相反数,解决本题的关键是熟记绝对值的性质,相反数的性质.9.C【分析】根据相反数、绝对值的意义判断即可.【详解】解:A. 若|a|=|b|,则a=±b,不符合题意;B. 若|a|=|b|,则a=±b,不符合题意;C. 若a=b,则|a|=|b|,正确符合题意;D. 若a=-b,则|a|= |-b|,不符合题意;故选:C.【点睛】本题考查了相反数、绝对值的意义,用到的知识点:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,它们互为相反数.10.C【详解】试题分析:根据相反数的定义逐一分析即可得出答案.解:∵互为相反数的两个数的和为0,又∵a、b互为相反数,∴a+b=0,反之也成立,故①、②正确;∵0的相反数是0,∴若a=b=0时,ab无意义,故③错误;∵ab=−1,∴a=−b,∴a、b互为相反数,故④正确;正确的有①②④.故选C.11.B【分析】本题主要考查绝对值,先把原式化为15a=,从而可求出15a=±.【详解】解:∵15a-=-,∴15a =,∴15a =±,故选:B .12.3或3-【分析】本题考查了绝对值的意义,正确熟练掌握知识点是解题的关键.直接取绝对值即可.【详解】解:26x -=-26x =3x =∴3x =或3-.故答案为:3或3-.13.0.5-##12-【分析】本题考查了绝对值、解一元一次方程,熟练掌握绝对值的定义是解此题的关键;根据绝对值的定义化为两个一元一次方程,解方程即可解答.【详解】Q 43y y +=-,\43y y +=-或()43y y +=--,解得:y 不存在或0.5y =-故答案为:0.5-14.数轴见解析,14.53210.50152-<-<-<-<-<<<【分析】本题主要考查了在数轴上表示有理数,利用数轴比较有理数的大小,将题目中的数据标在数轴上,根据数轴左边的数总是小于右边的数将各数用大于号连接起来,正确表示出各数是解题的关键.【详解】解:在数轴上表示如下:各数的相反数分别为:5,112,0,0.5-,1-,2-,3-, 4.5-,它们的相反数用“<”符号连接为:14.53210.50152-<-<-<-<-<<<.15.数轴见解析,1443 1.50325-<-<-<<-<【分析】本题主要考查了用数轴上点表示有理数,相反数的定义,根据数轴比较有理数的大小,解题的关键是熟练掌握数轴上点的特点.先根据相反数的定义,求出各个数的相反数,然后将各个数表示在数轴上,再比较大小即可.【详解】解:3的相反数是3-,1.5-的相反数是1.5,132-的相反数是132,45-的相反数是45-,0的相反数是0,4-的相反数是4,在数轴上表示如下:比较原数的大小为:1443 1.50325-<-<-<<-<.16.(1)见解析(2)b 表示的数是10-,b -表示的数是10(3)a 表示的数是5,a -表示的数是5-【分析】(1)根据题意作图即可;(2)互为相反数的两个数到原点的距离相等,据此求出b 表示的点到原点的距离为20210¸=,结合数轴即可作答;(3)结合(1)的图形,可得a b <-,先求出a 表示的点到原点的距离为1055-=,问题随之得解.【详解】(1)如图,(2)数b 与其相反数相距20个单位长度,则b 表示的点到原点的距离为20210¸=,∴结合数轴,b 表示的数是10-,即b -表示的数是10;(3)如图,即有a b <-,∵b -表示的点到原点的距离为10,而数a 表示的点与数b 的相反数表示的点相距5个单位长度,∴a 表示的点到原点的距离为1055-=,∴a 表示的数是5,a -表示的数是5-.【点睛】本题考查的是相反数的定义等知识,熟知以上知识是解答此题的关键.17.(1)-1;-4或2;(2)72-;(3)-1【分析】(1)由AB 的长度结合点A ,B 表示的数是互为相反数,即可得出点A ,B 表示的数,由2AC =且点C 在点A 的右边可得出点C 表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点C 的距离是3个单位长度的点表示的数;(2)由BD 的长度结合点D ,B 表示的数是互为相反数,即可得出点D 表示的数,由1DE =且点E 在点D 的右边可得出点E 表示的数;(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,由点P ,Q 相遇可得出关于t 的一元一次方程,解之即可得出t 的值,再将其代入(23)t -+中即可得出两个点相遇时点P 所表示的数.【详解】解:(1)=6AB Q ,且点A ,B 表示的数是互为相反数,\点A 表示的数为3-,点B 表示的数为3,\点C 表示的数为321-+=-.134--=-Q ,132-+=,\在数轴上与点C 的距离是3个单位长度的点表示的数是4-或2.故答案为:1-;4-或2.(2)9BD =Q ,且点D ,B 表示的数是互为相反数,\点D 表示的数为92-,\点E 表示的数为97122-+=-.故答案为:72-.(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,323t t -=-+Q ,2t \=,31t \-=-.答:两个点相遇时点P 所表示的数是1-.【点睛】本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段AB 的长度结合点A ,B 表示的数互为相反数,找出点A 表示的数;(2)由线段BD 的长度结合点D ,B 表示的数互为相反数,找出点D 表示的数;(3)找准等量关系,正确列出一元一次方程.18.A【分析】本题考查了相反数,掌握一个数的前面加上负号就是这个数的相反数成为解题的关键.根据相反数的定义逐层去括号,然后判断即可解答.【详解】解;A 、()[]101010éù---=-=-ëû,故A 选项正确,符合题意;B 、()33--=,故B 选项错误,不符合题意;C 、()55-+=,故C 选项错误,不符合题意;D 、()[]888éù--+=--=ëû,故D 选项错误,不符合题意.故选:A .19.2【分析】本题考查了多重符号的化简,求代数式的值,根据多重符号的化简方法把()x ---éùëû后可得结果.【详解】解:∵2x -=,∴()2x x éù---=-=ëû.故答案为:2.20.①8;②0.75-;③35-;④3.8【分析】利用化简多重符号的方法即可求解.【详解】解:①()88--=;②()0.750.75-+=-;③3355éùæö---=-ç÷êúèøëû;④()3.8 3.8-+-=éùëû.【点睛】本题考查了相反数的意义,熟练掌握化简多重符号的方法是解题的关键.21. 5 12 3.2 3.2- 27 23【分析】本题主要考查了正负号的化简,熟练掌握相反数的定义,是解决问题的关键.根据正数的相反数是负数,负数的相反数是正数,逐步化简正负号,即得(方法不唯一).【详解】解:(1)()55++=;(2)()121212--=+=;(3)()()3.2 3.2 3.2éù--+=++=ëû;(4)()()3.2 3.2 3.2éù---=+-=-ëû;(5)()()27272727éù-+-=--=+=ëû;(6)22223333ìüéùéùæöæöæö-+-+=--+=++=íýç÷ç÷ç÷êúêúèøèøèøëûëûîþ.故答案为:(1)5;(2)12;(3)3.2;(4) 3.2-;(5)27;(6)23.22.A【分析】先对各项进行化简,再根据相反数的定义进行逐一判断即可.【详解】解:A 、∵()3.2--=3.2,3.2与-3.2是相反数,∴()3.2--与 3.2-互为相反数.故A 选项正确;B 、2.3与2.31不是相反数,故B 选项错误;C 、因为()4.9-+-éùëû=4.9,4.9与4.9不相反数,故C 选项错误;D 、因为()1-+=-1,()1+- =-1,所以()1-+与()1+-不是相反数,故D 选项不正确;故选A.【点睛】本题主要考查了相反数的定义和符号的化简,掌握相反数的定义是解题的关键.23.C【分析】先化简多重符号和绝对值,再根据相反数的定义进行求解即可.【详解】解:A 、()77-+=-与()77+-=-不互为相反数,不符合题意;B 、()77--=与7不互为相反数,不符合题意;C 、111155--=-与6655æö--=ç÷èø互为相反数,符合题意;D 、110.01100100æö--==ç÷èø与0.010.01+-=不互为相反数,不符合题意;故选C .【点睛】本题主要考查了相反数的定义,化简多重符号和绝对值,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.24.B【分析】分别化简多重符号,进而根据相反数的定义,即可求解.【详解】解①()44--=与()44++=,相等,不合题意;②-5533æö-=÷çøè与-3553æö+=-÷çøè,互为相反数,符合题意,;③-111122æö+=-÷çøè与+111122æö-=-÷çøè,相等,不合题意;④()11éù-+-=ëû与()11éù-++=-ëû,互为相反数,符合题意,∴互为相反数的有②④,共2对故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.25.10【分析】本题考查了相反数的定义,求代数式的值,先根据b 与c 互为相反数求出0b c +=,然后代入233a b c --计算即可.【详解】解:∵b 与c 互为相反数,∴0b c +=,∴233a b c--()23a b c =-+253010=´-´=.故答案为:10.26.1-【分析】本题考查相反数与一元一次方程.根据相反数的定义“如果两个数互为相反数,那么它们的和为0”进行计算即可.【详解】解:∵35x +与2x 的值互为相反数,∴3520x x ++=,解得=1x -.故答案为:1-.27.4或6【分析】本题考查绝对值和相反数的定义,互为相反数的两个数和为0,根据相反数的定义得到510a --=,解绝对值方程即可.【详解】解:∵5a -与1-互为相反数,∴510a --=即51a -=解得:4a =或6a =,故答案为:4或6.28.D【分析】任何数都有相反数,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数0,据此作答.【详解】解:只有符号不同的两个数互为相反数,0的相反数是0,所以,一个有理数和它的相反数的积一定是负数或0,即一定不大于0.故选:D .【点睛】本题考查了相反数的意义,注意要把0考虑进去.29.B【分析】本题考查相反数,代数式求值,根据a 与b 互为相反数,可以得到a b =-,然后代入整理后的式子计算即可.【详解】解:∵a 与b 互为相反数,∴0a b +=.∴a b =-,∴()2222222202225202520230234048202420242024b b a b b ab b b -==++=---,故选B .30.B【分析】直接利用已知当a >-2时,※a=-a ;当a <-2时,※a=a ;当a=-2时,※a=0,分别化简得出答案.【详解】解:※[-4+※(2-3)]=※(-4+※-1)=※(-4+1)=-3.故选B.【点睛】此题主要考查了相反数,正确理解题意是解题关键.31.2024-【分析】本题考查了有理数的混合运算,根据题中的新定义化简原式,计算即可得到结果.【详解】解:()a b b Þ=-Q ,()a b a Ü=-,()()()()202320242022202120481024512256éùéù\ÞÜÞÜÞÜÞëûëû,()()2023202420222021éù=-ÞÜÞëû,()20232024éù=--Þëû,()20232024=Þ,2024=-.32.12-【分析】本题考查的是绝对值的性质及一元一次方程的解法,先根据绝对值的性质求出3x +的值,再求出x 的值,再求和即可解答.【详解】解:32(02)x a a +-=<<Q ,32x a \+-=±,32x a +=±,\()32x a +=±±,()23x a =±±-,1x a \=-或5x a =--或1x a =--或5x a =-,32(02)x a a \+-=<<所有解的和为:()()()151512a a a a -+--+--+-=-.故答案为:12-.。
北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题
北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题一、选择题1.-2的绝对值为( )A .-12 B.12 C .-2 D .22.计算|-3|的结果是( )A .3 B.13C .-3D .±33.如图,数轴上有A ,B ,C ,D 四个点,其中表示的数的绝对值等于2的点是( )A .点AB .点BC .点CD .点D 4.-12的绝对值的相反数是( )A.12 B .-12C .2D .-2 5.下列判断:①负数没有绝对值;②绝对值最小的有理数是0;③任何数的绝对值都是非负数;④互为相反数的两个数的绝对值相等,其中正确的有( ) A .1个 B .2个 C .3个 D .4个 6.任何一个有理数的绝对值一定( ) A .大于0 B .小于0 C .小于或等于0 D .大于或等于0 7.在有理数中,绝对值等于它本身的数有( )A .一个B .两个C .三个D .无数个 8.比较大小:-2________-3.14( )A .>B .=C .<D .无法判断 9.在-3,-1,0,1这四个数中,最小的数是( )A .-3B .-1C .0D .1 10.如果a 与1互为相反数,那么|a|=( )A .2B .-2C .1D .-1 11.下列各式中正确的是( )A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .-|-89|>-91012.下列说法正确的是( )A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|,则a 与b 相等D .若一个数小于它的绝对值,则这个数为负数 13.a ,b 两数在数轴上的对应点的位置如图,下列各式正确的是( )A .b >aB .-a <bC .|a|>|b|D .b <-a <a <-b14.如图,数轴上的单位长度为1,有三个点A ,B ,C.若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .-2B .0C .1D .415.已知a ,b 是不为0的有理数,且|a|=-a ,|b|=b ,|a|>|b|,那么用数轴上的点来表示a ,b 时,正确的是( )A B C D二、填空题16.-5的绝对值是_____;-|-2.5|=_____;绝对值是6的数是_____. 17.计算:|4|+|0|-|-4|=_____.18.(1)①正数:|+5|=_____,|12|=12;②负数:|-7|=_____,|-15|=_____;③零:|0|=_____;(2)根据(1)中的规律发现:当a 是正数时,|a|>0;当a 是负数时,|a|>0;当a 为任意有理数时,|a|一定是一个非负数.19.用“>”或“<”填空:(1)-7_____-6.5;(2)-3_____-4. 20.若|a|=12,则a =_____.21.绝对值小于6的整数有11个,它们分别是_____;绝对值大于3且小于6的整数是_____ 22.若有理数m ,n 满足|m -2|+|2 019-n|=0,则m +n =_____.23.有理数a ,b 在数轴上的位置如图所示,且|a|=2,|b|=3,则a =_____,b =_____.24.如图,四个有理数在数轴上的对应点分别是M ,N ,P ,Q.若点M ,Q 表示的有理数互为相反数,则图中表示绝对值最小的数的点是_____.三、解答题25.求下列各数的绝对值: (1)+813;(2)-7.2; (3)0; (4)-813.26.张师傅要从6个圆形机器零件中选取2个最接近标准的零件拿去试用.经过检验,比规定直径长的记为正数,比规定直径短的记为负数,记录如下(单位:毫米):+0.3,-0.1,-0.2,-0.3,+0.4,+0.3.你认为张师傅会拿走哪两个零件?请你用绝对值的知识加以解释.27.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离.例1:已知|x|=2,求x 的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x 的值为-2或2. 例2:已知|x -1|=2,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x 的值为3或-1. 仿照材料中的解法,求下列各式中x 的值. (1)|x|=3; (2)|x -(-2)|=4. 参考答案北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题一、选择题1.-2的绝对值为(D)A .-12 B.12C .-2D .22.计算|-3|的结果是(A)A .3 B.13C .-3D .±33.如图,数轴上有A ,B ,C ,D 四个点,其中表示的数的绝对值等于2的点是(A)A .点AB .点BC .点CD .点D 4.-12的绝对值的相反数是(B)A.12 B .-12C .2D .-2 5.下列判断:①负数没有绝对值;②绝对值最小的有理数是0;③任何数的绝对值都是非负数;④互为相反数的两个数的绝对值相等,其中正确的有(C) A .1个 B .2个 C .3个 D .4个 6.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .小于或等于0 D .大于或等于0 7.在有理数中,绝对值等于它本身的数有(D)A .一个B .两个C .三个D .无数个 8.比较大小:-2________-3.14(A)A .>B .=C .<D .无法判断 9.在-3,-1,0,1这四个数中,最小的数是(A)A .-3B .-1C .0D .1 10.如果a 与1互为相反数,那么|a|=(C)A .2B .-2C .1D .-1 11.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .-|-89|>-91012.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|,则a 与b 相等D .若一个数小于它的绝对值,则这个数为负数13.a ,b 两数在数轴上的对应点的位置如图,下列各式正确的是(D)A .b >aB .-a <bC .|a|>|b|D .b <-a <a <-b14.如图,数轴上的单位长度为1,有三个点A ,B ,C.若点A ,B 表示的数互为相反数,则图中点C 对应的数是(C)A .-2B .0C .1D .415.已知a ,b 是不为0的有理数,且|a|=-a ,|b|=b ,|a|>|b|,那么用数轴上的点来表示a ,b 时,正确的是(C)A B C D16.-5的绝对值是5;-|-2.5|=-2.5;绝对值是6的数是±6. 17.计算:|4|+|0|-|-4|=0.18.(1)①正数:|+5|=5,|12|=12;②负数:|-7|=7,|-15|=15;③零:|0|=0; (2)根据(1)中的规律发现:当a 是正数时,|a|>0;当a 是负数时,|a|>0;当a 为任意有理数时,|a|一定是一个非负数.19.用“>”或“<”填空:(1)-7<-6.5;(2)-3>-4. 20.若|a|=12,则a =±12.21.绝对值小于6的整数有11个,它们分别是±5,±4,±3,±2,±1,0;绝对值大于3且小于6的整数是±5,±4.22.若有理数m ,n 满足|m -2|+|2 019-n|=0,则m +n =2_021.23.有理数a ,b 在数轴上的位置如图所示,且|a|=2,|b|=3,则a =±2,b =3.24.如图,四个有理数在数轴上的对应点分别是M ,N ,P ,Q.若点M ,Q 表示的有理数互为相反数,则图中表示绝对值最小的数的点是N .三、解答题25.求下列各数的绝对值: (1)+813;解:|+813|=813.解:|-7.2|=7.2. (3)0; 解:|0|=0. (4)-813.解:|-813|=813.26.张师傅要从6个圆形机器零件中选取2个最接近标准的零件拿去试用.经过检验,比规定直径长的记为正数,比规定直径短的记为负数,记录如下(单位:毫米):+0.3,-0.1,-0.2,-0.3,+0.4,+0.3.你认为张师傅会拿走哪两个零件?请你用绝对值的知识加以解释.解:利用数据的绝对值的大小来判断零件的质量,绝对值越小说明越接近规定标准. 因为|+0.4|>|+0.3|=|-0.3|>|-0.2|>|-0.1|, 所以张师傅会拿走记录为-0.1和-0.2的两个零件.27.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x的值为-2或2.例2:已知|x-1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x的值为3或-1. 仿照材料中的解法,求下列各式中x的值.(1)|x|=3;(2)|x-(-2)|=4.解:(1)在数轴上与原点距离为3的点表示的数为-3或3,所以x的值为3或-3.(2)在数轴上与-2对应的点的距离为4的点表示的数为2或-6,所以x的值为2或-6.。
绝对值与相反数练习题
绝对值与相反数练习题绝对值与相反数练习题数学是一门让人既爱又恨的学科。
有时候,我们可以轻松地解决问题,但有时候也会被一些概念和计算困扰。
其中,绝对值和相反数是我们在数学中经常遇到的概念之一。
本文将通过一些练习题来帮助我们更好地理解和应用绝对值和相反数。
练习题一:计算绝对值1. |-5| = ?2. |8| = ?3. |-3| = ?4. |0| = ?5. |-10| = ?解答:1. |-5| = 52. |8| = 83. |-3| = 34. |0| = 05. |-10| = 10练习题二:判断绝对值大小1. 比较 |-7| 和 |5| 的大小。
2. 比较 |-2| 和 |-9| 的大小。
3. 比较 |-4| 和 |-4| 的大小。
5. 比较 |-6| 和 |6| 的大小。
解答:1. |-7| = 7,|5| = 5,7 > 5。
2. |-2| = 2,|-9| = 9,2 < 9。
3. |-4| = 4,|-4| = 4,4 = 4。
4. |1| = 1,|-1| = 1,1 = 1。
5. |-6| = 6,|6| = 6,6 = 6。
练习题三:计算相反数1. 相反数是什么意思?2. 5的相反数是多少?3. -8的相反数是多少?4. 0的相反数是多少?5. -15的相反数是多少?解答:1. 相反数指的是一个数与它的相反数相加等于0。
2. 5的相反数是-5。
3. -8的相反数是8。
4. 0的相反数是0。
5. -15的相反数是15。
练习题四:综合运用绝对值和相反数1. 计算 |-6| + |4| 的值。
3. 计算 |-2| + |-7| 的值。
4. 计算 |-5| - |2| 的值。
5. 计算 |-10| + |-10| 的值。
解答:1. |-6| = 6,|4| = 4,6 + 4 = 10。
2. |-9| = 9,|-3| = 3,9 - 3 = 6。
3. |-2| = 2,|-7| = 7,2 + 7 = 9。
相反数和绝对值试题
相反数和绝对值试题相反数和绝对值是数学中常见的概念,对于初学者来说,理解和掌握这两个概念是非常重要的。
本文将通过一系列试题来帮助读者加深对相反数和绝对值的理解,并且提供详细的解答过程。
一、相反数试题1. 某数的相反数是-25,求这个数。
解答:设这个数为x,根据相反数的定义,有x的相反数为-x。
题干已经给出了-x的值为-25,所以可以得到方程-x=-25。
将方程两边同时乘以-1,得到x=25。
所以这个数为25。
2. 两个数的相反数之和是10,这两个数分别是多少?解答:设这两个数分别为x和y,根据相反数之和的定义,有x的相反数与y的相反数之和为10,即-x-y=10。
将方程两边同时乘以-1,得到x+y=-10。
所以这两个数分别为-5和-5。
3. 一个数的相反数是其本身的一半,求这个数。
解答:设这个数为x,根据相反数的定义,有x的相反数为-x。
题干已经给出了-x的值为原数的一半,即-x=0.5x。
将方程两边同时乘以-2,得到2x=-x,即3x=0。
解这个一元一次方程可以得到x=0。
所以这个数为0。
二、绝对值试题1. 某个数的绝对值为15,求这个数。
解答:设这个数为x,根据绝对值的定义,有当x>0时,|x|=x;当x<0时,|x|=-x。
题干已经给出了|x|的值为15,根据正负号的不同,可以得到方程组:当x>0时,x=15;当x<0时,-x=15。
解这个方程组可以得到x=15或x=-15。
所以这个数为15或-15。
2. 一个数的绝对值是其相反数的两倍,求这个数。
解答:设这个数为x,根据绝对值和相反数的定义,有|x|=2|-x|。
题干已经给出了|x|的值为-2x,根据正负号的不同,可以得到方程组:当x>0时,-2x=2x;当x<0时,-2x=-2x。
解这个方程组可以得到x=0。
所以这个数为0。
3. 一个数的绝对值是其相反数与6之差的两倍,求这个数。
解答:设这个数为x,根据绝对值和相反数的定义,有|x|=2|-x-6|。
_ 2020—2021学年七年级数学上册 2.2--2.3 数轴、相反数、绝对值 同步练习
2.2数轴、相反数、绝对值同步练习一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.下列数轴表示正确的是()A.B.C.D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣34.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣25.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣16.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣58.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.616.﹣3的相反数是()A.3B.C.﹣3D.﹣17.的相反数是()A.﹣2017B.2017C.D.18.若m是﹣6的相反数,则m的值是.19.﹣8的相反数是.如果﹣a=2,则a=.20.已知m﹣2的相反数是5,那么m3的值等于.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣22.|﹣2|等于()A.2B.﹣2C.D.0 23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3 24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3 26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a 27.当x<1时,化简:|x﹣1|=.28.若|x﹣2|=2,则x﹣1=.29.如果|x﹣3|=5,那么x=.30.如果b与5互为相反数,则|b+2|=.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.32.已知a是2的相反数,计算|a﹣2|的值.33.已知|a﹣1|=2,求﹣3+|1+a|值.2.2数轴、相反数、绝对值同步练习参考答案与试题解析一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.2.下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.4.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【解答】解:点P表示的数是﹣2+4=2.故选:C.5.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.6.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【解答】解:AB=4﹣(﹣6)=10.故选:D.7.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣5【解答】解:∵点O是线段AB的中点,∴AO=BO,∵AB=20,∴AO=BO=AB=10,根据距离公式|0﹣a|=10,∴a=﹣10,故选:C.8.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是﹣2.【解答】解:设点C表示的数为x,则AC=x﹣(﹣10)=x+10,BC=4﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+10﹣(4﹣x)=2.解得:x=﹣2.故答案为:﹣2.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是6.【解答】解:表示数﹣5和表示数﹣11的两点之间的距离是:|(﹣5)﹣(﹣11)|=6,故答案为:6.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是2,﹣6.【解答】解:数轴上点A表示的数为﹣2,距离点A4个单位长度的点有两个,它们分别是﹣2+4=2,﹣2﹣4=﹣6,故答案为:2,﹣6.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为1或9.【解答】解:∵点A表示﹣3,AC=4,∴C表示的数是﹣3+4=1或﹣3﹣4=﹣7,即x=1或x=﹣7,∵A,B所表示的数分别是﹣3、+7,点M是AB的中点,∴M表示的数是(﹣3+7)÷2=2,∴CM=|1﹣2|=1或CM=|﹣7﹣2|=9,故答案为:1或9.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:﹣20;点B表示的数是:100.(2)A,B两点间的距离是120个单位,线段AB中点表示的数是40.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.【解答】解:(1)∵点A在原点左侧且距原点20个单位,∴点A表示的数是﹣20,∵点B在原点右侧且距原点100个单位,∴点B表示的数是100,故答案为:﹣20;100.(2)∵点A表示的数是﹣20,点B表示的数是100,∴A、B两点间的距离为100﹣(﹣20)=120,线段AB中点表示的数是100﹣120÷2=40,故答案为:120;40.(3)设两只蚂蚁经过x秒相遇,4x+6x=120,解得:x=12,﹣20+4x=28,∴点C表示的数是28.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.【解答】解:(1)点B向右移动5个单位长度后,点B表示的数为1;三个点所表示的数中最小的数是是点A,为﹣1.(2)点D到A,C两点的距离相等;故点D为AC的中点.D表示的数为:0.5.(3)当点E在A、B时,EA=2EB,从图上可以看出点E为﹣3,∴点E表示的数为﹣3;当点E在点B的左侧时,根据题意可知点B是AE的中点,∴点E表示的数是﹣7.综上:点E表示的数为﹣3或﹣7.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.6【解答】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.16.﹣3的相反数是()A.3B.C.﹣3D.﹣【解答】解:∵互为相反数的两个数相加等于0,∴﹣3的相反数是3.故选:A.17.的相反数是()A.﹣2017B.2017C.D.【解答】解:﹣的相反数为,故选:D.18.若m是﹣6的相反数,则m的值是6.【解答】解:∵m是﹣6的相反数,∴m=6.故答案为:6.19.﹣8的相反数是8.如果﹣a=2,则a=﹣2.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.20.已知m﹣2的相反数是5,那么m3的值等于﹣27.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,∴m3=(﹣3)3=﹣27.故答案为:﹣27.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣【解答】解:﹣9的绝对值是9,故选:A.22.|﹣2|等于()A.2B.﹣2C.D.0【解答】解:|﹣2|等于2,故选:A.23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3【解答】解:∵2<a<3,∴a﹣3<0,2﹣a<0,∴原式=3﹣a+a﹣2=1.故选:B.24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.【解答】解:|﹣|=,的相反数是﹣.故选:B.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a【解答】解:任何数的绝对值都是非负数,所以|a|≥0.故选:A.27.当x<1时,化简:|x﹣1|=1﹣x.【解答】解:∵x<1,∴x﹣1<0,∴原式=﹣(x﹣1)=1﹣x.28.若|x﹣2|=2,则x﹣1=3或﹣1.【解答】解:∵|x﹣2|=2,∴x﹣2=+2,或x﹣2=﹣2,∴x=4或x=0,当x=4时,x﹣1=4﹣1=3,当x=0时,x﹣1=0﹣1=﹣1.故答案为:3或﹣1.29.如果|x﹣3|=5,那么x=8或﹣2.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.30.如果b与5互为相反数,则|b+2|=3.【解答】解:∵b与5互为相反数,∴b=﹣5,∴|b+2|=|﹣5+2|=|﹣3|=3.故答案为:3.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.32.已知a是2的相反数,计算|a﹣2|的值.【解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.33.已知|a﹣1|=2,求﹣3+|1+a|值.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3。
数的相反数与绝对值练习题
数的相反数与绝对值练习题1. 将以下数的相反数写出来:a) 12b) -7c) 0d) -3.52. 将以下数的绝对值写出来:a) -9b) 5c) -2.3d) 03. 计算下列数的相反数:a) 相反数为-15的数是多少?b) 相反数为8的数是多少?c) 相反数为0的数是多少?4. 计算下列数的绝对值:a) 绝对值为-10的数是多少?b) 绝对值为19的数是多少?c) 绝对值为0的数是多少?5. 求下列数的相反数和绝对值:a) 数的相反数为-6,求这个数的绝对值。
b) 数的绝对值为13,求这个数的相反数。
c) 数的相反数和绝对值均为7,求这个数。
6. 给定a和b为任意实数,证明以下结论:a) 一个数与它的相反数相加等于0。
b) 一个数与它的相反数相乘等于-1。
c) 一个数与它的绝对值相加等于两倍的绝对值。
7. 解方程:a) 找出一个数,使得它与它的相反数的和等于5。
b) 找出一个数,使得它与它的相反数的积等于-12。
8. 应用题:a) 一辆汽车在向东行驶了100公里后,又向西行驶了40公里,求汽车相对出发点的最终位置与距离。
b) 一个温度计在上午记录了18摄氏度的温度,下午记录了-5摄氏度的温度,请问一天中温度的变化幅度是多少摄氏度?9. 思考题:a) 相反数与绝对值之间有什么关系?b) 相反数和绝对值在数学中有哪些应用?通过以上的练习题,我们可以更好地理解数的相反数与绝对值的概念,并学会运用它们进行计算和解决实际问题。
希望通过这些练习,你能够对这两个概念有更深入的理解,提升自己的数学能力。
绝对值与相反数知识点以及专项训练(含答案解析)
绝对值与相反数知识点以及专项训练知识点1:相反数的概念1. 定义:两个数相加和等于0,那么这两个数就互为相反数。
比如:a +b =0,a 、b 互为相反数。
换句话说:如果两个数只有符号不同,那么称其中的一个数为另一个数的相反数.特别地,0的相反数是0.举例:5的相反数是-5;-3的相反数是3; 2. 互为相反数的两个数在数轴上的位置关系:互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).知识点2:简单的多重符号的化简(只涉及到正、负号)多重符号的化简我们只需要看这个数前面有多少个“负号”。
① 如果有奇数个负号,那么化简后的结果:只需要在这个数的前面加一个负号即可;举例:-[-(-5)]=-5 ; -{-[-(+3)]}=-3.② 如果有偶数个负号,那么化简后的结果:就是这个数。
举例:+[-(-9)]=9 ; -{-[-(-10)]}=10.知识点3:绝对值1. 定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
比如:5的绝对值是5;-3的绝对值是3;0的绝对值是0. 记作: |5|=5; |-3|=3; |0|=0. 2. 绝对值的代数意义:如何去掉绝对值: 判断该数是非正数还是非负数;非负数的绝对值是它本身;|a |=a ↔a ≥0 非正数的绝对值是它本身的相反数;|a |=−a ↔a ≤0若是代数式则需要进行分类讨论判断正、负数。
3. 绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. 4. 绝对值的性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.(0)||0(0)(0)aa a a a a >⎧⎪==⎨⎪-<⎩知识点4:含有绝对值的多重符号的化简含有绝对值的多重符号的化简,我们只需要看绝对值前面有多少个“负号”。
相反数与绝对值练习题
相反数与绝对值练习题1. 概述相反数和绝对值是基础的数学概念,对于学生来说,理解和掌握相反数和绝对值的概念非常重要。
本文将提供一些相反数和绝对值的练习题,帮助学生巩固和加深对这些概念的理解。
2. 相反数练习题2.1 计算相反数(a) -4的相反数是多少?(b) 12的相反数是多少?(c) -9的相反数是多少?(d) -1的相反数是多少?(e) 0的相反数是多少?2.2 确定相反数的特点(a) 如果一个数的相反数是5,那么这个数是多少?(b) 如果一个数的相反数是自身,那么这个数是多少?(d) 如果一个数的相反数是正数,那么这个数是正数还是负数?(e) 如果一个数的相反数是0,那么这个数是多少?3. 绝对值练习题3.1 计算绝对值(a) |-6| 等于多少?(b) |13| 等于多少?(c) |-8| 等于多少?(d) |0| 等于多少?(e) |-15| 等于多少?3.2 确定绝对值的特点(a) 如果一个数的绝对值是10,那么这个数是10还是-10?(b) 如果一个数的绝对值是0,那么这个数是多少?(c) 如果一个数的绝对值是正数,那么这个数是正数还是负数?(e) 如果一个数的绝对值是7,那么这个数可能是多少?4. 混合练习题4.1 求相反数和绝对值(a) 求-9的相反数和绝对值分别是多少?(b) 求15的相反数和绝对值分别是多少?(c) 求-3的相反数和绝对值分别是多少?(d) 求0的相反数和绝对值分别是多少?(e) 求20的相反数和绝对值分别是多少?4.2 混合运算(a) 计算 |-8| - |-20| = ?(b) 计算 |15| + |-10| = ?(c) 计算 -|12| + |-5| = ?(d) 计算 |-7| + (-|4|) = ?(e) 计算 -(-|3|) - |-6| = ?5. 总结通过这些练习题,学生可以巩固和加深对相反数和绝对值的理解。
相反数是指与给定数的和为0的数,而绝对值是指一个数到0的距离。
相反数和绝对值经典练习题
相反数和绝对值练习题一、填空题1.如a= +2.5,则-a =________。
如果-a= -4,则a=__________。
2.如果 a,b 互为相反数,那么2a+2b = 61a+61b=_______.)(b a +π= 。
3.―(―2)=_________;________ 与―[―(―8)]互为相反数.4. 如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b= 。
5.a -b 的相反数是 。
6.如果a 和b 是符号相反的两个数,在数轴上a 所对应的点和b 所对应的点相距6个单位长度,如果a=-2,则b 的值为 。
7.在数轴上与表示3的点的距离等于4的点表示的数是_______。
8.若一个数的绝对值是它的相反数,则这个数是_______。
9.若a ,b 互为相反数,则|a|-|b|=______。
10.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;11.若,0>a 则____=a ;若,0<a 则____=a ;若,0=a 则____=a ;12.若a 为整数,|a|<1.999,则a 可能的取值为_______。
13.若,5-=x 则_____=x ;若)(5--=x ;则_____=x ;若0>x ,则______=x x;若0<x ,则______=x x。
14.,11a a -=-则a 的取值范围是 。
15.210--x 的最小值为 。
16.若01312=-+-y x ,则=+y x 。
17.如果a =b ,那么a 与b 的关系是 。
18.绝对值等于它本身的有理数是 ,绝对值等于它的相反数的数是 。
19.│x │=│-3│,则x= ,若│a-1│=5,则a= 。
20.12的相反数与-7的绝对值的和是 。
21.下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值一定是正数22.下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
2.3 绝对值与相反数练习(1)
2.3.3 绝对值与相反数考点浏览☆考点给一个数,求它的相反数,此类题在考试中出现较多.例化简下列各数前面的双重符号.(1)-(+3);(2)+(-1.5);(3)+(+5);(4)-(-12).【解析】(1)-(+3)=-3;(2)+(-1.5)=-1.5;(3)+(+5)=+5=5;(4)-•(-12)=12.说明有理数前面双重符合化简规律是:同号得“+”;异号得“-”.在线检测1.________不同的两个数称互为相反数,零的相反数为________.2.互为相反数在数轴上表示的点到_________的距离相等.3.-112相反数是_____;-2是____的相反数;______与110互为相反数.4.数轴上,若A、B表示互为相反数,A在B的右侧,并且这两点的距离为8,则这两点所表示的数分别是_______和_______.5.化简下列各数前面的符号.(1)-(+2)=_______;(2)+(-3)=________;(3)-(-13)=________;(4)+(+12)=________.6.判断题.(1)-5是相反数.()(2)-12与+2互为相反数.()(3)34与-34互为相反数.()(4)-14的相反数是4.()7.下列各对数中,互为相反数的是()A.+(-8)和-8 B.-(-8)和+8C.-(-8)和+(+8) D.+8和+(-8)8.下列说法正确的是()A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数是互为相反数 D.任何一个有理数都有它的相反数9.在数轴上表示下列各数及它们的相反数:212,-3,0,-1.5.10.化简下列各数:(1)-(-100);(2)-(-534);(3)+(+38);(4)+(-2.8);(5)-(-7);(6)-(+12).。
相反数和绝对值练习题
相反数和绝对值练习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】2013级初一代数练习题(三) 1、若x =—x ,则x 一定是( ) A 、正数 B 、负数 C 、非正数 D 、非负数2、下列说法正确的是( )A 、一个数的绝对值的相反数一定不是负数B 、一个数的绝对值的相反数是负数C 、一个数的绝对值一定是正数D 、一个数的绝对值的一定是非负数 3、下列结论正确的是( )A 、a 一定是正数B 、—c 一定是负数C 、—a -一定是正数D 、—a 一定是非正数4、如果a +b =0,则a 与b 的大小关系是( )A 、a=b=0B 、a 与b 不相等C 、a 与b 互为相反数D 、a 、b 异号 5、下列说法不正确的是( )A 、如果a 的绝对值比它本身大,则a 一定是负数B 、如果两个数不等,则它们的绝对值也必不相等C 、两个负有理数,绝对值大的离原点远D 、两个负有理数,大的离原点近6、如果a =5,b =2,试求3a+2b 的值7、已知2a -+4b -=0,求2a+3b 的值8、绝对值不大于6的非正整数有 。
9、若a<0,b<0,且a <b ,那么a 、b 的大小关系是 。
10、若b<a<0,则-a b ,a -b ,11、如果a >0,那么( ) A 、a 为任意有理数 B 、a 一定不等于0C 、a 必为正数D 、a 必为负数12、下列各式的结论,正确的是( )A 、若m =n ,则m=nB 、若m>n ,则m >nC 、若m >n ,则m>nD 、若m<n<0,则m >n13、若有理数a 、b 在数轴的对应位置如) b a 0A 、b >—aB 、a >—bC 、b >aD 、a >b14、已知a 、b 为有理数,且a<0,b>0,a >b ,试比较a 、b 、—a 、—b 的大小,并用“<”连接。
完整版绝对值与相反数的练习题.doc
绝对值与相反数的练习题一、选择题1.绝对值等于其相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零2.若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数3、绝对值最小的有理数的倒数是()A. 1 B、-1 C、0 D、不存在4、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个5、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数6、│a│= -a, a一定是()A、正数B、负数C、非正数D、非负数7、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数8、-│a│= -3.2,则a是()A、3.2B、-3.2 C 3.2或-3.2 D、以上都不对9、|x-1|+|x-2|+|x-3|的最小值为( )A、1B、2C、3D、410、若a、b互为相反数,c、d互为倒数,且m的绝对值为2,求为()A、1B、-1C、2D、-2二,填空题1.绝对值最小的数是_____.2.若b<0且a=|b|,则a与b的关系是______.3.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).4.如果|a|>a,那么a是_____.5.如果-|a|=|a|,那么a=_____.6.已知|a|+|b|+|c|=0,则a=_____,b=_____,c=_____.7.一个正数增大时,它的绝对值_____,一个负数增大时,它的绝对值_____.(填增大或减小)8、绝对值等于它本身的有理数是_____,绝对值等于它的相反数的数是_____.9、│x│=│-8│,则x=_____,若│a│=9,则a=_____三.解答题1.如果|a|=4,|b|=3,且a>b,求a,b的值.2、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;3、若︳2x-1︳与︳3y-4︳互为相反数,求y-x的值4、│a-2│+│b-3│+│c-4│=0,则a+2b+3c的值四、去掉下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________; (3)已知x>y>0,则|x+y|=________________; (4)若a>b>0,则|-a-b|=__________________.五、比较-(-a)和-|a|的大小关系。
绝对值与相反数【九大题型】 2023—2024学年浙教版数学七年级上册
专题1.2 绝对值与相反数【九大题型】【知识点1 相反数的概念及表示方法】相反数的概念:只有符号不同的两个数叫做互为相反数.(符号不同,数字相同)相反数的表示方法:一般地,a和-a互为相反数,这里的a表示任意一个数可以是正数、负数也可以是零,特别地,一个数的相反数等于它本身这个数是零.【题型1 相反数的概念及表示】【例1】(2021秋•安阳县月考)下列各对数中,互为相反数的有()+(+1)与﹣1,(﹣1)与+(﹣1),﹣(﹣2)与+(﹣2),﹣()与+(),+[﹣(+1)]与﹣[+(﹣1)],﹣(+2)与﹣(﹣2).A.6对B.5对C.4对D.3对【变式1-1】(2021秋•义马市期中)下列各组数中:①﹣0.5与1.5;②与;③a与﹣(﹣a);④a﹣2b与﹣a+2b;互为相反数的有()A.1组B.2组C.3组D.4组【变式1-2】(2021秋•武冈市期中)﹣a+b+c的相反数是()A.a+b+c B.﹣a﹣b﹣c C.﹣a+b+c D.a﹣b﹣cB.【变式1-3】(2021秋•安阳县月考)若﹣{﹣[﹣(﹣x)]}=﹣4,则x的相反数是.【知识点2 相反数的性质】若a与b互为相反数,那么a+b=0.【题型2 相反数的性质运用】(2021秋•宁远县期末)若a与b互为相反数,则代数式2021a+2021b﹣5=.【例2】【变式2-1】(2022秋•凉州区期末)若4a﹣9与3a﹣5互为相反数,则a的值为.【变式2-2】(2021秋•江州区期中)已知x+2y与x+4互为相反数,则x+y的值为()A.﹣4 B.﹣1 C.﹣2 D.2【变式2-3】(2022秋•路北区期末)已知a+2b+3c=m,a+3b+4c=m,则b和c的关系为()A.互为相反数B.互为倒数C.相等D.无法确定【知识点3 绝对值的定义】一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作.【题型3 绝对值的定义】【例3】(2021秋•谷城县期中)一个数的绝对值是,那么这个数为;若|﹣5|=|﹣a|,则a=.【变式3-1】(2021秋•鲤城区校级月考)已知a=﹣4,|a|=|b|,则b的值为()A.+4 B.±4 C.0 D.﹣4【变式3-2】(2021秋•洛江区期末)已知,a,b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是()A.B.C.D.【变式3-3】(2021秋•东坡区期末)下列各式的结论成立的是()A.若|m|=|n|,则m=n B.若|m|>|n|,则m>nC.若m>n,则|m|>|n| D.若m<n<0,则|m|>|n|【知识点4 绝对值的性质】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【题型4 由绝对值的性质化简】【例4】(2021秋•长沙县期末)化简:|π﹣3.15|+π=.【变式4-1】(2021秋•蔡甸区期末)若x的绝对值小于1,则化简|x﹣1|+|x+1|得.【变式4-2】(2021秋•青羊区校级月考)若x≤0,化简|2+|x﹣2||的结果为.【变式4-3】(2022秋•阜宁县月考)当1<x<5时,化简|x﹣1|﹣|5﹣x|+|x﹣6|=.【知识点5 绝对值的非负性】根据绝对值的非负性“若几个非负数的和为0,则每一个非负数必为0”,即若,则=0且=0.【题型5 绝对值的非负性】【例5】(2021秋•顺德区月考)若|=0,则x=,y=.【变式5-1】(2022春•东台市期中)|x﹣2|+9有最小值为.【变式5-2】(2022•东坡区校级模拟)下列各式x、x2、、x2+2、|x+2|中,值一定是正数的有()A.1个B.2个C.3个D.4个【变式5-3】(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数,则a+b的值为()A .3B .﹣3C .0D .3或﹣3【知识点6 绝对值的几何意义】 ①表示数轴上表示a 的点到原点的距离。
相反数和绝对值经典练习题
相反数和绝对值练习题一、填空题1. 如a = +2.5,那么,-a = 如果-a= -4,则a= 2. 如果 a,b 互为相反数,那么2a+2b = 61a+61b= )(b a +π=3. ―(―2)= ; 与―[―(―8)]互为相反数. 4. 如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b= .5. a - b 的相反数是 .6. 如果 a 和 b 是符号相反的两个数,在数轴上a 所对应的数和 b 所对应的点相距6个单位长度,如果a=-2,则b 的值为 .7. 在数轴上与表示3的点的距离等于4的点表示的数是_______.8. 若一个数的绝对值是它的相反数,则这个数是_______.9. 若a ,b 互为相反数,则|a|-|b|=______.10.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;11. 若,0>a 则____=a ;若,0<a 则____=a ;若,0=a 则____=a ;12. 若a 为整数,|a|<1.999,则a 可能的取值为_______.13. 若,5-=x 则_____=x ;若,5--=x 则_____=x ;若0>x ,则______=x x;若0<x ,则______=x x。
14. ,11a a -=-则a 的取值范围是 15. 210--x 的最小值为16. 若04312=-+-y x ,则=+y x17. 如果a=b,那么a与b的关系是18. 绝对值等于它本身的有理数是,绝对值等于它的相反数的数是19. │x│=│-3│,则x= ,若│a│=5,则a=20. 12的相反数与-7的绝对值的和是21. 下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数22. 下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
相反数与绝对值之练习题计算相反数和求绝对值
相反数与绝对值之练习题计算相反数和求绝对值相反数与绝对值之练习题:计算相反数和求绝对值在数学中,相反数指的是具有相同绝对值但符号相反的两个数。
绝对值指的是一个数与零的距离,无论该数是正数还是负数,最终的结果都是非负数。
熟练掌握计算相反数和求绝对值的方法对于解决数学问题和实际生活中的计算非常重要。
本文将为您提供一系列练习题,帮助您巩固和提高计算相反数和求绝对值的能力。
1. 练习计算相反数:(1) -5 的相反数是多少?(2) 28 的相反数是多少?(3) -100 的相反数是多少?(4) 0 的相反数是多少?解答:(1) -5 的相反数是 5。
(2) 28 的相反数是 -28。
(3) -100 的相反数是 100。
(4) 0 的相反数仍然是 0。
2. 练习求绝对值:(1) |7| 的值是多少?(2) |-2| 的值是多少?(3) |0| 的值是多少?(4) |-15| 的值是多少?解答:(1) |7| 的值是 7。
(2) |-2| 的值是 2。
(3) |0| 的值是 0。
(4) |-15| 的值是 15。
3. 练习综合运用:(1) 计算 -10 和它的相反数之和的绝对值。
(2) 计算 14 和它的相反数之差的绝对值。
(3) 若一个数与它的相反数之和的绝对值等于 16,求这个数的值。
解答:(1) -10 和它的相反数是 10,两者之和为 0。
0 的绝对值为 0。
(2) 14 和它的相反数是 -14,两者之差为 28。
28 的绝对值为 28。
(3) 假设这个数为 x,根据题意可得 |x + (-x)| = 16,化简得 |0| = 16,显然不成立。
因此,这个题目中不存在满足条件的数。
通过以上练习题,我们巩固了计算相反数和求绝对值的基本方法。
相反数的计算只需将数值的符号取反,而绝对值则是去掉数值的符号,保留非负值。
这些概念在解决实际问题中经常出现,比如计算温度的变化、求距离等等。
因此,熟练掌握相反数和绝对值的计算方法对于提升数学能力和解决实际问题非常有帮助。
相反数绝对值练习题
相反数绝对值练习题1. 问题描述给定一个整数x,求它的相反数y,并计算y的绝对值。
2. 解题思路要求一个整数的相反数,只需要将该整数取反,即将整数前面的正负号改变。
计算一个数的绝对值,只需要将该数取绝对值。
3. 算法实现首先,我们可以定义一个函数opposite_absolute(x),用于计算相反数和绝对值。
def opposite_absolute(x):opposite =-xabsolute = abs(opposite)return absolute算法实现很简单,需要注意的是,Python中可以直接使用-和abs()函数来计算相反数和绝对值。
4. 示例结果接下来,我们可以通过几个示例来验证算法的正确性。
示例1:x =10result = opposite_absolute(x)print('输入:', x)print('输出:', result)输出:输入: 10输出: 10示例2:x =-5result = opposite_absolute(x)print('输入:', x)print('输出:', result)输出:输入: -5输出: 5示例3:x =0result = opposite_absolute(x)print('输入:', x)print('输出:', result)输出:输入: 0输出: 05. 总结本文介绍了如何计算一个整数的相反数和绝对值,并给出了相应的算法实现和示例结果。
相反数可以通过改变整数的正负号得到,而绝对值可以直接使用Python的abs()函数计算。
在实际应用中,可以根据需要将相反数和绝对值用于各种数学计算和逻辑判断中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反数与绝对值
班级____姓名____________ 学号________
【基础过关】
一、选择题
1.a的相反数是( )
(A)-a (B)1
a
(C)-
1
a
(D)a-1
2.一个数的相反数小于原数,这个数是( )
(A)正数 (B)负数 (C)零 (D)正分数
3.一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是
( )
(A)-2 (B)2 (C)5
2
(D)-
5
2
4.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为1
2
单位长,则这个数是( )
(A)1
2
或-
1
2
(B)
1
4
或-
1
4
(C)
1
2
或-
1
4
(D)-
1
2
或
1
4
5.已知a≠b,a=-5,|a|=|b|,则b等于( )
(A)+5 (B)-5 (C)0 (D)+5或-5
6.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( ) (A)-m (B)m (C)±m (D)2m
7.一个数等于它的相反数的绝对值,则这个数是( )
(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数
8.-10
3
,π,-3.3的绝对值的大小关系是( )
(A)
10
3
->|π|>|-3.3|; (B)
10
3
->|-3.3|>|π|;
(C)|π|>
10
3
->|-3.3|; (D)
10
3
->|π|>|-3.3|
二、判断题
1.任何一个有理数的绝对值是正数;()
2.若两个数不相等,则这两个数的绝对值也不相等;()
3.如果一个数的绝对值等于它们的相反数,这个数一定是数;()
4.绝对值不相等的两个数一定不相等;()
5.若|a|>|b|时,则a>b; ()
6.当a为有理数时,|a|≥a;()
三、填空题
1.一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;
2.(1)-(+3)(2)-(-3)(3)-[-(+7)] (4)-{-[-(-7)]}
3.10
3的相反数是________,
11
32
⎛⎫
-
⎪
⎝⎭的相反数是_______,(a-2)的相反数是______;
4.一个有理数在数轴上对应的点为A,将A点向左移动3个单位长度,再向左移动2个单位长度,
得到点B,点B所对应的数和点A对应的数的绝对值相等,求点 A的对应的数是什么?
【拓展提升】
1.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )
(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+4
2.若|a|>-a,则( )
(A)a>0 (B)a<0 (C)a<-1 (D)1<a
3.若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;
4.下列各数的绝对值符号:
(1)若x<0,则|x|=________________;
(2)若a<1,则|a-1|=_______________;
(3)已知x>y>0,则|x+y|=________________;
(4)若a>b>0,则|-a-b|=__________________.
5.一个数比它的绝对值小10,这个数是________________;
6.一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;
7.在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;
8.若|x|=-x,且x=1
x,则x=_________________。
9. 若|a+3|+|b+2|=0,求a,b的值。
10.(1)若m>0,|m|=7,求m;
(2)若-m>0,|m|=7,求m; (3)若|m|=7,求m。