八年级数学反比例函数4
反比例函数知识点及举例
反比例函数知识梳理知识点l. 反比例函数的概念重点:掌握反比例函数的概念 难点:理解反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成xk y =或y=kx -1(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。
反比例函数的概念需注意以下几点:(1)k 是常数,且k 不为零;(2)x k中分母x 的指数为1,如22y x=不是反比例函数。
(3)自变量x 的取值范围是0x ≠一切实数.(4)自变量y 的取值范围是0y ≠一切实数。
知识点2. 反比例函数的图象及性质重点:掌握反比例函数的图象及性质 难点:反比例函数的图象及性质的运用反比例函数xky =的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是0x ≠,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x 和y 的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势。
反比例函数的性质xky =)0k (≠的变形形式为k xy =(常数)所以: (1)其图象的位置是:当0k >时,x 、y 同号,图象在第一、三象限; 当0k <时,x 、y 异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数xky =的图象上,则点(-m,-n )也在此图象上,故反比例函数的图象关于原点对称。
(3)当0k >时,在每个象限内,y 随x 的增大而减小; 当0k <时,在每个象限内,y 随x 的增大而增大; 知识点3. 反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定 难点:由条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式xky =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入xky =中即可求出k 的值,从而确定反比例函数的关系式。
数学中的反比例函数
数学中的反比例函数反比例函数在数学中是一类特殊的函数,其数学表达式为y = k/x,其中k是常数,x和y是函数的自变量和因变量。
1. 反比例函数的定义和性质反比例函数是指当x和y满足y = k/x时,函数y与x成反比例关系。
其中k是常数,反比例函数的定义域为除0以外的所有实数。
反比例函数的一些重要性质如下:- 当x趋近于正无穷大或负无穷大时,y趋近于0,这也是反比例函数的特点之一。
- 当x>0时,y>0;当x<0时,y<0。
反比例函数的值域也是除0以外的所有实数。
- 反比例函数的图像是通过原点的双曲线,其中无穷远点(即x和y 无穷大的点)对称。
2. 反比例函数的图像和变化趋势反比例函数的图像通常是一个双曲线,其形状取决于常数k的值。
当k>0时,双曲线开口朝上;当k<0时,双曲线开口朝下。
反比例函数的变化趋势可以通过观察其图像得到。
当x增大时,y会减小,反之亦然。
同时,当x趋近于0时,y趋近于无穷大。
3. 反比例函数的应用举例反比例函数在实际生活中有很多应用。
以下是一些常见的应用举例。
- 电阻和电流的关系:欧姆定律中,电流与电阻成反比例关系。
当电阻增大时,电流减小;反之亦然。
- 速度和时间的关系:在匀速运动中,速度和时间成反比例关系。
当时间增加时,速度减小;反之亦然。
- 工作人员数量和完成任务所需时间的关系:在一项任务中,完成任务所需时间与工作人员数量成反比例关系。
当工作人员数量增加时,完成任务所需时间减小。
4. 反比例函数的求解方法求解反比例函数的关键是求解常数k的值。
一种常见的方法是利用给定的数据点,通过代入x和y的值,得到k的值。
举例说明,假设有一组数据点(2, 6)和(4, 3),我们可以代入x和y的值,得到以下方程:6 = k/23 = k/4通过求解这个方程组,可以得到k的值为12。
于是反比例函数的数学表达式为y = 12/x。
5. 反比例函数与其他函数的比较反比例函数与直线函数、指数函数和多项式函数等其他函数有着不同的特点和性质。
八年级数学上第十八章 正比例函数和反比例函数
八年级数学上第十八章正比例函数和反比例函数18.1 函数(1)一、知识点分析1.变量与常量在问题研究的过程中,可以取不同数值的量叫做变量;在问题研究的过程中,保持数值不变的量叫做常量(或常数)2.函数的定义(1)在某个变化过程中有两个变量,设为x和y,如果在变量x的允许取值范围内,变量y 随着x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量,y叫做因变量。
(2)一般地,设在一个变化过程中有两个变量x和y,如果对于变量x允许取值范围内的每一个值,变量y都有唯一值与它对应,我们称y是x的函数,其中:x是自变量,y是因变量.函数的表示:y; f(x); y=f(x); y=g(x)3.函数解析式表达两个变量之间依赖关系的数学式子称为函数解析式在表示函数时,如果要把y表示成x的函数,其实就是用含x的代数式表示y。
例如:y=3x+5 即y=f(x)的形式注意:y2=x ,︱y︱=x (x 0) 和x=a (a是常数)不是函数y=x2,y=︱x︱和y=a(a是常数)是函数4.常值函数:形如y=a(a是常数)的函数叫常值函数(或常量函数)5.函数的定义域与函数值(1)函数的自变量允许取值的范围,叫做这个函数的定义域自变量的取值范围:①使含自变量的代数式有意义.②,使函数在实际情况下有意义.函数自变量的范围一般从三个方面考虑:①表达式是整式,自变量可取全体实数;②函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负数.(2)函数值:如果变量y是变量x的函数,那么对于x在定义域内取定的一个值a,变量y 的对应值叫做当x=a时的函数值6.函数和方程的区别和联系(1)函数研究的是某变化过程中的两个变量之间的关系;方程研究的是解的情况(2)y=f(x)形式的函数解析式是方程;但是方程不一定是函数解析式;f(x)形式的函数是代数式形式表示的函数,但不是方程。
初中数学:反比例函数的概念,真简单
初中数学:反比例函数的概念,真简单反比例函数是数学中一个基本的函数类型,它的特点是当自变量增大时,函数值减小;当自变量减小时,函数值增大。
下面,我们将会深入探讨反比例函数的概念以及它的相关知识点。
一、反比例函数的定义反比例函数,简称反比函数,指的是若一函数 y 与另一函数 x 成反比例关系,即 y = k/x(k为常数),则称 y 为 x 的反比函数。
其中,k 为反比例函数的比例系数,通常用正数表示。
二、反比例函数的图像特点反比例函数的图像呈现出 x 轴的非零实数的全体是定义域,y 轴的非零实数的全体是值域的形态,其图像是一个对称于第二象限和第四象限的双曲线。
三、反比例函数的性质1. 反比函数的定义域为 R - {0},值域也是 R - {0}。
2. 当 x > 0 时,反比例函数单调递减;当 x < 0 时,反比例函数单调递增。
3. 反比例函数在原点处不存在定义,但是可以趋近于无穷大或无穷小。
4. 当 x 的值增加,k 不变时 y 的值逐渐减小,表现出反比例函数的反比例关系。
四、反比例函数的应用反比例函数是数学中非常重要的函数类型,具有广泛的应用。
下面我们列举一些实际中应用反比例函数的例子:1. 银行利率:银行将存款金额与利息之间的关系建立为反比例关系,可以使用反比例函数来描述。
2. 太阳能电池板:当太阳光照射到电池板上时,电压和电流成反比例关系,可以使用反比例函数来描述。
3. 计算机处理速度:计算机的处理速度与处理任务的复杂程度呈反比例关系。
4. 等比例速度问题:有时需要研究物体在不同速度下的行驶时间,这时可以使用反比例函数来描述。
以上是反比例函数的定义、图像特点、性质及应用的详细介绍。
相信通过对反比例函数的学习,我们可以更好地理解数学中的基本概念。
数学复习:反比例函数
数学复习:反比例函数反比例函数从代数定义上来说非常简单,即ky x=或xy k =,从函数的图像上来看就是分布在不同像限的两条曲线,简称双曲线.随着近几年各地中考的各种变式题型出现,对反比例函数“数形结合”的数学思想考查越来愈多.每一次的命题设计,其背后都有隐藏的二级定理和二级结论.数学的学习,总是在思考中归纳总结从而得出结论,站在结论的平台向上展望,看清命题者的命题逻辑,很多问题将会大大简化.本专题从反比例函数的本质入手,通过寻找反比例函数的不变特性来进行分析,力争化繁为简,并能在平常的训练中找到思考和结论的平衡点.第一讲 反比例函数的本质系数m 与面积关系在之前对正比例函数和反比例函数的理解中,似乎只有k xy=和k xy =,翻译成语言文字就是,当自变量扩大m 倍,则因变量也随即扩大m 倍,此为正比例函数;同理当自变量扩大m 倍,而因变量随即缩小m1,则为反比例函数.函数是一个连续的曲线,不是只分析单一定点,所以引入比例系数m 对研究函数大有帮助,正比例函数由于过于单调的形式和结论,所以没有成为命题重难点,那么反比例函数呢?【例1】如图,反比例函数)0(>=k xky 的图像与矩形OABC 的AB 、BC 边分别交于点M 、N ,延长MN 分别交坐标轴于点D 、E .(1)如图11-1-5,若2:1:=AB AM ,则=CB CN : ; (2)如图11-1-6,若4:1:=AB AM ,则=CB CN : ; (3)如图11-1-7,若n AB AM :1:=,则=CB CN : ;直线MN 与AC 的位置关系是 ,EN 与MD 的大小关系 .图11-1-5 图11-1-6 图11-1-7【例2】(2020•九龙坡月考)如图11-1-8,ABC Rt △的顶点A 和斜边中点D 在反比例函数(00)k y k x x =≠>,的图像上,若5k =,则ABC △的面积为( ) A.B.C .4 D .5xxx图11-1-8【例3】(2020•朝阳二模)如图11-1-11,在平面直角坐标系中,直线6y x =-+分别与x 轴、y 轴交于点A 、B ,与函数(00)k y k x x =>>,的图像交于点C 、D .若12CD AB =,则k 的值为( )A .9B .8C .427D .6图11-1-11思考 前面分析了一条直线与反比例函数图像交于一个像限的情况,那么一条直线与反比例函数图像交于两个像限会有怎样的几何性质呢? 【例4】(1)如图11-1-17,反比例函数)00(>>=x k xky ,的图像与直线DE 交于点M 、N ,y MA ⊥轴于点A ,x NC ⊥轴于点C ,请探究直线MN 与AC 的位置关系,线段EN 与MD 的大小关系. (2)如图11-1-18,反比例函数)0(>=k xky 的图像与直线EF 交于点M 、N ,y MA ⊥轴于点A ,x MC ⊥轴于点C ,y ND ⊥轴于点D ,x NB ⊥轴于点B ,请探究直线MN 与线段AB 、线段CD 的位置关系,以及线段ME 与FN 的大小关系.图11-1-17 图11-1-18【例5】如图11-1-19,一次函数b ax y +=的图像与x 轴,y 轴交于A 、B 两点,与反比例函数xky =的图像相交于C 、D 两点,分别过C 、D 两点作y 轴,x 轴的垂线,垂足为E 、F ,连接CF 、DE .有下列四个结论:①DEF CEF S S △△=;②FOE AOB ∽△△;③CDF DCE ≌△△;④BD AC =.其中正确的结论x是 .(把你认为正确结论的序号都填上)图11-1-19【例6】(1)如图11-1-26,BC AB =,AOB △的面积为3,则k 的值为 . (2)如图11-1-27,点A ,C 在双曲线xky =上运动,x AB ⊥轴,BC AC =. ①在运动过程中,ABC △的面积是不是定值?答: ; ②若32=k ,且ABC △是正三角形,则点A 的坐标为 .图11-1-26 图11-1-27【例7】(1)如图11-1-30, OABC 中,︒=∠60B ,3=OA ,双曲线经过点C 和AB 中点D ,则该双曲线的解析式为 .(2)如图11-1-31,正AOB △的边长为5,双曲线xky =经过点C 、D ,且OB CD ⊥,则k 的值为 .图11-1-30 图11-1-31【例8】如图11-1-34,反比例函数16(0)y x x=>的图像经过Rt △BOC 斜边上的中点A ,与边BC 交于点D ,连接AD ,则ADB △的面积为( ) A .12B .16C .20D .24图11-1-34【例9】(2020·威海中考)如图11-1-36,点)1(,m P ,点)2(n Q ,-都在反比例函数xy 4=的图像上.过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则( )图11-1-36 A .3:2:21=S S B .1:1:21=S S C .3:4:21=S S D .3:5:21=S S【例10】(2020•龙华二模)如图11-1-38,已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,与双曲线(0)ky x x=>交于C 、D 两点,且AOC ADO ∠=∠,则k 的值为 .图11-1-38【例11】如图11-1-40,矩形OABC 的边2OA =,4OC =,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数(0)ky x x=>的图像与边BC 交于点F .当四边形AOFE 的面积最大时,FC 的长度为( ) A .8.0B .1C .6.1D .8.1图11-1-40【例12】如图11-1-41,A 、B 是函数x y 6=上两点,P 为一动点,作y PB //轴,x PA //轴,下列说法:①BOP AOP ≌△△;②BOP AOP S S △△=;③若OB OA =,则OP 平分AOB ∠;④若2=BOP S △,则4=ABP S △,正确有 .(填序号)图11-1-41【例13】如图11-1-45,点)31(,A 为双曲线x ky =上的一点,连接AO 并延长与双曲线在第三像限交于点B ,M 为y 轴正半轴上一点,连接MA 并延长与双曲线交于点N ,连接BM 、BN ,已知MBN △的面积为233,则点N 的坐标为 .图11-1-45【例14】如图11-1-47所示,PAB Rt △的直角顶点)43(,P 在函数(0)ky x x=>的图像上,顶点A 、B 在函数(00)ty x t k x=><<,的图像上,//PA y 轴,连接OP ,OA ,记OPA △的面积为OPA S △,PAB △的 面积为PAB S △,设OPA PAB w S S =-△△. ①求k 的值以及w 关于t 的表达式;②若用max w 和min w 分别表示函数w 的最大值和最小值,令max 2T w a a =+-,其中a 为实数,求min T .图11-1-47【例15】如图11-1-49,已知平面直角坐标系中A 点坐标为)40(,,以OA 为一边在第一像限作平行四边形OABC ,对角线AC 、OB 相交于点E ,OA AB 2=.若反比例函数x ky =的图像恰好经过点C 和点E ,则k的值为 .图11-1-49【同步训练】1.如图11-1-52,双曲线xky =与过原点的直线l 交于点A 、B ,点M 在双曲线上,直线AM 、BM 分别交y 轴于点P 、Q . 若设PM m AM ⋅=,QM n BM ⋅=,则=-n m .图11-1-522.如图11-1-53,在矩形OABC 中,)01(,A ,)20(,C ,双曲线)20(<<=k xky 分别交AB 、BC 于点E 、F ,连接OE 、OF 、EF ,BEF OEF S S △△2=,则k 的值为 .图11-1-53 图11-1-543.如图11-1-54,在平面直角坐标系xOy 中,OAB △的顶点A 在x 轴的正半轴上,AC BC 2=,点B 、C 在反比例函数)0(>=x xky 的图像上.若OBC △的面积等于12,则k 的值为 . 4.如图11-1-55,1P 、2P 是反比例函数xy 4=的图像上任意两点,过点1P 作y 轴的平行线,过点2P 作x 轴的平行线,两线相交于点N .若点)(n m N ,恰好在另一个反比例函数)00(>>=x k xky ,的图像上,且221=⋅NP NP ,则=k .图11-1-55 图11-1-565.(2020•江阴一模)如图11-1-56,在AOB ∆中,OC 平分AOB ∠,43OA OB =,反比例函数(0)ky k x=<图像经过点A 、C 两点,点B 在x 轴上,若AOB ∆的面积为7,则k 的值为( ) A .4-B .3-C .215-D .73-6.(2019•莲湖期末)如图11-1-57,双曲线k y x =经过Rt BOC △斜边上的点A ,且满足12AO AB =,与BC 交于点D ,4BOD S =△,则k 的值为( ) A . 19B .1C .2D .8图11-1-577.(2019•武侯模拟)双曲线x k y =1和)0(32>=k xky 在第一像限的图像如图11-1-58所示,过2y 上的任意一点A 作x 轴的平行线交1y 于B ,交y 轴于C ,过A 作x 轴的垂线交1y 于D ,交x 轴于E ,连结BD ,CE ,则有下列结论:①CE BD //; ②k S ABOD 2=四边形;③5:4:=BDEC ABD S S 四边形△;④DE CB =; 图11-1-58 ⑤2:1:=BOD ABD S S △△.其中正确的有 (填番号).8.(2019•杭州一模)一次函数b ax y +=的图像分别与x 轴、y 轴交于点M ,N ,与反比例函数xky =的图像相交于点A ,B .过点A 分别作x AC ⊥轴,y AE ⊥轴,垂足分别为C ,E ,过点B 分别作x BF ⊥轴,y BD ⊥轴,垂足分别为F ,D ,AC 与BD 交于点K ,连接CD .对于下述结论: ①CFBK AEDK S S 四边形四边形=;②BM AN =;③CD AB //; 不论点A ,B 在反比例函数xky =的图像的同一分支上 (如图11-1-59),还是点A ,B 分别在反比例函数xky =的图像的不同分支上(如图11-1-60),都正确的是( ) 图11-1-59 图11-1-60 A .①② B .①③ C .②③ D .①②③9.(2020•长春期末)如图11-1-61,在平面直角坐标系中,四边形ABCD 的顶点A 、B 在函数)0(>=x xmy 的图像上,顶点C 、D 在函数)0(>=x xny 的图像上,其中n m <<0,对角线y BD //轴,且AC BD ⊥于点P .已知点B 的横坐标为4. (1)当4=m ,20=n 时,①点B 的坐标为 ,点D 的坐标为 ,BD 的长为 . ②若点P 的纵坐标为2,求四边形ABCD 的面积. ③若点P 是BD 的中点,请说明四边形ABCD 是菱形.(2)当四边形ABCD 为正方形时,直接写出m 、n 之间的数量关系. 图11-1-61第二节 反比例函数的面积关系特殊到一般的转化上一讲提到了以原点为顶点的三角形面积转化,如果不过原点呢?答案还是要找准特殊的模特三角形,然后进行面积的转化.【例1】如图11-2-1,在平面直角坐标系中,A 是第一像限内一点,过A 作//AC y 轴交反比例函数(0)ky x x =>的图像于B 点,E 是y 轴上一点,AE 交反比例函数的图像于点D ,若B 是AC 的中点,:3:2DE AD =,且BDE △的面积为94,则k 的值为( ) A .7 B .215 C .8 D .217图11-2-1【例2】如图11-2-3,点A 、B 是反比例函数(0)ky k x=≠图像上的两点,延长线段AB 交y 轴于点C ,且点B 为线段AC 中点,过点A 作AD x ⊥轴于点D ,点E 为线段OD 的三等分点,且OE DE <.连接AE 、BE ,若7ABE S =△,则k 的值为( ) A .12-B .10-C .9-D .6-图11-2-3【例3】(2021·成都嘉祥)如图11-2-6,在直角坐标系中,已知)40(,A 、)42(,B ,C 为x 轴正半轴上一点,且OB 平分ABC ∠,过B 的反比例函数xky =交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记BDF △的面积为1S ,OEF △的面积为2S ,则=21S S .图11-2-6前篇所有的面积和比值问题都来自辅助矩形和辅助比例系数m ,但不是每一个题目都是来自矩形的变x形,最近几年以平行四边形和反比例交点和面积问题也开始频繁出现,平行四边形和菱形上的两点与反比例函数相交,到底隐藏了多少秘密呢?【例4】(2017•南通)如图11-2-11,四边形OABC 是平行四边形,点C 在x 轴上,反比例函数(0)ky x x=>的图像经过点(512)A ,,且与边BC 交于点D .若AB BD =,则点D 的坐标为 .图11-2-11【例5】(2020•孝南二模)如图11-2-15,在平面直角坐标系中,O 为坐标原点,OC 在x 轴正半轴上,四边形OABC 为平行四边形,反比例函数k y x =的图像经过点A ,与BC 交于点D ,若154ABC S =△,2CD BD =,则k = .图11-2-15【例6】(2020•沙坪坝月考)如图11-2-18,平行四边形OABC 的顶点A 在x 轴的正半轴上,点D 在对角线2:3OB y x =上,且满足OD =(00)ky k x x==>>,的图像经过C 、D 两点.已知平行四边形OABC 的面积是203,则点B 的坐标为 .图11-2-18【例7】(2020•两江模拟)如图,双曲线(0)ky x x=>经过平行四边形OABC 的顶点A ,交边BC 于点D ,交对角线AC 于点E ,连接OE .若2BD CD =且OAE △的面积为163,则k 的值为( ) A.B .12C .10D.图平移问题小试牛刀【例8】(2020•西藏)如图,在平面直角坐标系中,直线y x =与反比例函数4(0)y x x=>的图像交于点A ,将直线y x =沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图像于点C .若2OA BC =,则b 的值为( )A .1B .2C .3D .4【例9】(2018•锦江区模拟)已知如图, 直线23y x =分别与双曲线(0,0)my m x x=>>、双曲线(0,0)n y n x x =>>交于点A ,点B ,且23BA OA =,将直线23y x =向左平移 6 个单位长度后, 与双曲线ny x=交于点C ,若4ABC S ∆=,则mn 的值为 .【同步训练】1.(2018•九龙坡区校级期末)如图,Rt ABC ∆中,30B ∠=︒,90ACB ∠=︒,点A 、C 在双曲线(0)ky k x=≠的图像上,//AB x 轴,AC 交x 轴于点F ,满足23AF CF =,10AC =,BC 交双曲线于点E ,连接AE ,则ACE ∆的面积为( )A .BCD .2.(2020•碑林区校级三模)如图,在平面直角坐标系中,O 为坐标原点,OC 在x 轴正半轴上,四边形OABC 为平行四边形,反比例函数ky x=的图像经过点A 与边BC 相交于点D ,若15ABC S ∆=,2CD BD =,则k = .3.(2020•苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点(3,2)D 在对角线OB 上,反比例函数(0,0)k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为()A .8(4,)3B .9(2,3)C .10(5,)3D .24(5,16)54.(2020•相城区期末)如图,Rt OAB ∆中,90OAB ∠=︒,6OB =,反比例函数(0)ky k x=≠的图像经过点B ,将Rt OAB ∆沿着x 轴向右平移6个单位,得到Rt CDE ∆,反比例函数图像恰好经过CE 的中点F ,则k 的值为( )A B .C .D .5.(2020•宁波模拟)如图,点A ,B 是反比例函数6(0)y x x=>图像上的两点,延长线段AB 交x 轴于点C ,且点B 为线段AC 中点,过点A 作AD y ⊥轴于点D ,点E 为线段OD 上的点,且2DE OE =.连结AE ,BE ,则ABE ∆的面积为 .第三讲反比例函数隐藏的等角等边关系在反比例函数的背景下,隐藏了比值关系,我们在前两节已经给到了探讨和证明,那么反比例函数还有哪些矩形圈不住的性质呢?或者说不以比值系数m 相关的等量关系呢?下面我们来探讨一些等角和等边的性质.【例1】(2020•武汉模拟)如图,在平面直角坐标系中,(1,0)A ,(0,2)B -,将线段AB 平移得到线段CD ,当13AE AC =时,点C 、D 同时落在反比例函数(0)ky k x=<的图像上,则k 的值为 .【例2】(2018•十堰中考)如图1,直线x y -=与反比例函数xky =的图像交于A ,B 两点,过点B 作x BD //轴,交y 轴于点D ,直线AD 交反比例函数xky =的图像于另一点C ,求CB CA 的值.图1【例3】(2019•长沙)如图,函数(ky k x=为常数,0)k >的图像与过原点的O 的直线相交于A ,B 两点,点M 是第一像限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①ODM ∆与OCA ∆的面积相等;②若BM AM ⊥于点M ,则30MBA ∠=︒;③若M 点的横坐标为1,OAM ∆为等边三角形,则2k =+;④若25MF MB =,则2MD MA =.其中正确的结论的序号是 .(只填序号)x【例4】(2018•武汉模拟)如图,直线112y x =-+分别交x 轴、y 轴于A 、B 两点,将线段AB 绕点M 旋转180︒得到线段CD ,双曲线(0)ky k x=>恰好经过C 、D 、M 三点,则k 的值为( )A .43B .1C .98D .89【例5】已知双曲线x y 4=与直线x y 41=交于A 、B 两点(点A 在点B 的左侧).如图,点P 是第一像限内双曲线上一动点,AP BC ⊥于C ,交x 轴于F ,PA 交y 轴于E ,则2224EF BF AE +的值是_________.【例6】如图1,AB OA =,双曲线经过点C 、D 、E ,求证:AE AC AD ⋅=2.图1【同步训练】1.如图,点A ,B 在双曲线xky =上,AB 经过原点O ,过点A 作x AC //∥轴,连接BC 并延长,交双曲线于点D .①求证:CD AD =; ②求BD AD :的值.2.如图所示,平行四边形ABCD 的顶点A 、B 位于反比例函数xky =第一像限的图像上,点C 、D 分别位于x 轴正半轴和y 轴正半轴上. 证明:21∠=∠,43∠=∠.3.如图所示,已知四边形ABCD 是平行四边形,AB BC 2=,A 、B 两点的坐标分别是)01(,-和)20(,,C 、xxD 两点在反比例函数xky =长的图像上,则=k .4.如图所示,点A 在反比例函数)0(1>=x x k y 的图像上,点B 在反比例函数)0(2<=x xky 的图像上,124k k =,且直线AB 经过坐标原点,点C 在y 轴的正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F .若3=AE AC ,则=CFBF.5.如图1,已知平行四边形ABCD ,A 、B 在反比例函数xky =上,C 、D 分别在x 轴、y 轴正半轴,且反比例图像经过平行四边形对角线的交点E ,已知平行四边形ABCD 面积为6,则=k .图1xxx6.(2020•宁德二模)如图,点A,B,C在反比例函数4yx=-的图像上,且直线AB经过原点,点C在第二像限上,连接AC并延长交x轴于点D,连接BD,若BOD∆的面积为9,则ACCD=.第四节 反比例函数的特殊等量关系和叠罗汉模型 一、平方关系二、乘积关系三、多个三角形矩形问题【例1】如图1,OAC ∆和BAD ∆都是等腰直角三角形,90ACO ADB ∠=∠=︒,反比例函数8y x=在第一像限的图像经过点B ,则OAC ∆与BAD ∆的面积之差为( ) A .1B .2C .3D .4图1【例2】如图1,在第一像限内,动点P 在反比例函数ky x=的图像上,以P 为顶点的等腰OPQ ∆,两腰OP 、PQ 分别交反比例函数my x=的图像于A 、B 两点,作PC OQ ⊥于点C ,BE PC ⊥于点E ,AD OQ ⊥于点D ,则以下说选正确的个数为( )个①AO PQ 为定值;②若4k m =,则A 为OP 中点;③2PEB k mS ∆-=;④222OA PB PQ +=;图1A .4B .3C .2D .1【例3】如图47所示,直线b x y +-=交y 轴于点B ,与双曲线)0(<=x xky 交于点A .若622=-OB OA ,则=k .图47【例4】如图49所示,点A 、B 为直线x y =上的两点,过A 、B 两点分别作y 轴的平行线交双曲线)0(1>=x xy 于点C 、D .若AC BD 2=,则224OD OC -的值为 .图49【例5】如图51所示,直线52-=x y 分别交x 轴、y 轴于点A 、B ,点M 是反比例函数)0(>=x xky 的图像上位于直线上方的一点,x MC //轴交AB 于点C ,MC MD ⊥交AB 于点D .已知5=⋅BD AC ,则k 的值为 .图51【例6】(2020•鄂州)如图53,点A 1,A 2,A 3…在反比例函数y =(x >0)的图像上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1OA 1=∠B 2B 1A 2=∠B 3B 2A 3=…,直线y =x 与双曲线y =交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是( )图53A .(2,0)B .(0,)C .(0,)D .(0,2)【例7】如图54,在y 轴的正半轴上,自O 点开始依次间隔相等的距离取点1A ,2A ,3A ,4A ,⋯,n A ,分别过这些点作y 轴的垂线,与反比例函数2(0)y x x=-<的图像相交于点1P ,2P ,3P ,4P ,⋯,n P ,作2111P B A P ⊥,3222P B A P ⊥,4333P B A P ⊥,⋯,111n n n n P B A P ---⊥,垂足分别为1B ,2B ,3B ,4B ,⋯,1n B -,连接12P P ,23P P ,34P P ,⋯,1n n P P -,得到一组Rt △112PB P ,Rt △223P B P ,Rt △334P B P ,⋯,Rt △11n n n P B P --,它们的面积分别记为1S ,2S ,3S ,⋯,1n S -,则12S S += ,1231n S S S S -+++⋯+= .图54【例8】(2015•贵港)如图55,已知点1A ,2A ,⋯,n A 均在直线1y x =-上,点1B ,2B ,⋯,n B 均在双曲线1y x =-上,并且满足:11A B x ⊥轴,12B A y ⊥轴,22A B x ⊥轴,23B A y ⊥轴,⋯,n n A B x ⊥轴,1n n B A y +⊥轴,⋯,记点n A 的横坐标为(n a n 为正整数).若11a =-,则2015a = .图55【例9】如图56所示,等腰三角形△11OA B ,△122B A B ,△233B A B ,⋯,△1(n n n B A B n -为正整数)的一直角边在x 轴上,双曲线ky x=经过所有三角形的斜边中点1C ,2C ,3C ,⋯,n C ,已知斜边1OA =点n A 的坐标为 .图56【同步训练】1.(2019秋•龙岗区校级期中)如图,BOD ∆是等腰直角三角形,过点B 作AB OB ⊥交反比例函数(0)ky x x=>于点A ,过点A 作AC BD ⊥于点C ,若3BOD ABC S S ∆∆-=,则k 的值为 .2.(2020•海门市二模)如图,在平面直角坐标系xOy 中,已知点(,)P a a ,过点P 作OP 的垂线交(0)ky x x=>的图像于点Q .若2212OP PQ -=,则k 的值为( )A .12B .9C .6D .33.(2018•越秀区二模)如图, 点A ,B 为直线y x =上的两点, 过A ,B 两点分别作y 轴的平行线交双曲线2(0)y x x=>于C ,D 两点 . 若3BD AC =,则229OC OD -的值为( )A . 16B . 27C . 32D . 484.(2017•十堰)如图, 直线6y =-分别交x 轴,y 轴于A ,B ,M 是反比例函数(0)ky x x=>的图像上位于直线上方的一点,//MC x 轴交AB 于C ,MD MC ⊥交AB 于D ,43AC BD =k 的值为( )A .3-B .4-C .5-D .6-5.(2013秋•洞头县期中)如图,△11POA 、△212P A A 、△323P A A 、⋯、△10099100P A A 是等腰直角三角形,点1P 、2P 、3P 、⋯、100P 在反比例函数4y x=的图像上,斜边1OA 、12A A 、23A A 、⋯、99100A A 都在x 轴上,则点100A 的坐标是 .6.如图,已知反比例函数1y x =的图像,当x 取1,2,3,n ⋯时,对应在反比例图像上的点分别为1M 、2M 、3n M M ⋯,则11222311P M M P M M Pn Mn MnSSS--++⋯= .7.(2015•威海一模)如图,在平面直角坐标系中,已知直线:1l y x =--,双曲线1y x=,在直线l 上取点1A ,过点1A 作x 轴的垂线交双曲线于点1B ,过点1B 作y 轴的垂线交直线l 于点2A ,过点2A 作x 轴的垂线交双曲线于点2B ,过点2B 作y 轴的垂线交直线l 于点3A ⋯,这样依次得到直线l 上的点1A ,2A ,3A ,4A ,⋯,n A ,⋯若点1A 的横坐标为2,则点2015A 的坐标为 .8.(2019•淄博)如图,△11OA B ,△122A A B ,△233A A B ,⋯是分别以1A ,2A ,3A ,⋯为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点11(C x ,1)y ,22(C x ,2)y ,33(C x ,3)y ,⋯均在反比例函数4(0)y x x=>的图像上.则1210y y y ++⋯+的值为( )A .B .6C ..达标训练1.如图所示,矩形ABCO 的顶点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,反比例函数)0(≠=x xky 的图像分别与BC 、BA 的延长线交于E 、F 两点,连接AC . 证明:(1)EF AC //;(2)FH GE =.2.如图所示,平行四边形ABCD 的顶点A 、B 位于反比例函数xky =第一像限的图像上,点C 、D 分别位于y 轴负半轴和x 轴负半轴上,AD 交y 轴于点H ,BC 交x 轴于点G . 证明:(1)21∠=∠,43∠=∠;(2)四边形CDHG 是菱形.3.如图所示,A 、B 为反比例函数xky =第一像限图像上任意两点,连接OA 并延长交反比例函数图像另一支于点C ,连接BC 交x 轴于点G 、交y 轴于点F ,连接AB 并向两侧延长分别交x 轴于点E 、交y 轴于点D .证明:21∠=∠,43∠=∠.4.如图所示,□ABCD 的顶点A 、B 的坐标分别是)01(,-A 、)20(-,B ,顶点C 、D 在双曲线xky =上,边AD 交y 轴于点E ,且四边形BCDE 的面积是ABE △的面积的5倍,则=k .5.如图所示,矩形ABCD 的顶点C 、D 在反比例函数)00(>>=x k xky ,的图像上,顶点A 在y 轴上,顶点B 在x 轴上,连接OD .若︒=∠60ODC ,则=ADAB.6.如图,函数1(0)y x x =>和3(0)y x x=>的图像分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x轴,交1l 于点B ,PAB ∆的面积为( )A .12B .23 C .13D .347.(2020•崇川一模)如图,直线y kx b =+与曲线3(0)y x x=>相交于A 、B 两点,交x 轴于点C ,若2AB BC =,则AOB ∆的面积是( ) A .3B .4C .6D .8yxAC BE D O y xBADCO8.(2019•双峰一模)如图,ABCD 的顶点A 、B 的坐标分别是(1,0)A -,(0,3)B -,顶点C 、D 在双曲线ky x=上, 边AD 交y 轴于点E ,且ABCD 的面积是ABE ∆面积的 8 倍, 则k = .8题图 9题图9.(2019•如东期末)如图,AOB ∆的顶点B 在x 轴上,点C 在AB 边上且2AC BC =,若点A 和点C 都在双曲线(0)ky x x=>上,AOC ∆的面积为4,则k 的值为 .10.(2017•孝义二模)如图,点A 是反比例函数(0)k y x x =>的图像上一点,OA 与反比例函数1(0)y x x=>的图像交于点C ,点B 在y 轴的正半轴上,且AB OA =,若ABC ∆的面积为6,则k 的值为 .11.(2017•慈溪模拟)如图,在平面直角坐标系中,O 为坐标原点,平行四边形ABOC 的对角线交于点M ,双曲线(0)ky x x=<经过点B 、M .若平行四边形ABOC 的面积为12,则k = .12.(2016•青羊月考)如图,已知点(4,3)P -是双曲线11(0k y k x=<,0)x <上一点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线221(0||)k y k k x=<<于E 、F 两点.记PEF OEF S S S ∆∆=-,则S 的取值范围是 .13.(2020•雨花期中)如图,在平面直角坐标系中,Rt AOB ∆的边OA 在y 轴上,OB 在x 轴上,反比例函数(0)ky k x=≠与斜边AB 交于点C 、D ,连接OD ,若:1:2AC CD =,14OBD S ∆=,则k 的值为 .14.(2020•常熟期末)如图,在平面直角坐标系中,ABO ∆的边AB 平行于y 轴,反比例函数(0)ky x x=>的图像经过OA 中点C 和点B ,且OAB ∆的面积为6,则k = .x15.(2020•随州中考)如图,直线AB 与双曲线(0)ky k x =>在第一像限内交于A 、B 两点,与x 轴交于点C ,点B 为线段AC 的中点,连接OA ,若AOC ∆的面积为3,则k 的值为 .16.(2020•平湖二模)如图,已知OAB ∆中,AB OB ⊥,以O 为原点,以BO 所在直线为x 轴建立坐标系.反比例函数的图像分别交AO ,AB 于点C ,D ,已知32OC AC =,ACD ∆的面积为169,则该反比例函数的解析式为 .17.如图所示,双曲线)0(4>=x xy 与直线EF 交于点A 、B ,且BF AB AE ==,线段AO 、BO 分别与双曲线)0(2>=x xy 交于点C 、D ,则: (1)AB 与CD 的位置关系是;(2)四边形ABDC 的面积为 .18.如图所示,在平面直角坐标系xOy 中,梯形ABCO 的底边AO 在x 轴上,AO BC //,AO AB ⊥,过点C 的反比例函数)0(>=x x k y 的图像交OB 于点D ,且21=DB OD .若16=OBC S △,k 的值是__________.19.如图所示,在平面直角坐标系xOy 中,点A 、B 在反比例函数)0(4>=x xy 的图像上,延长AB 交x 轴于点C ,且21=AB BC ,连接OA 交反比例函数)0(1>=x xy 的图像于点D ,则=ABD S △ .19题图 20题图20.(2019•鼓楼期末)如图,A 、B 是反比例函数ky x=图像上的两点,过点A 作AC y ⊥轴,垂足为C ,交OB 于点D ,且D 为OB 的中点,若ABO ∆的面积为4,则k 的值为 .21.(2017•长春模拟)如图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在第一像限,点C 在线段AB 上,点D 在AB 的右侧,OAB ∆和BCD ∆都是等腰直角三角形,90OAB BCD ∠=∠=︒,若函数6(0)y x x=>的图像经过点D ,则OAB ∆与BCD ∆的面积之差为( )A .12B .6C .3D .222.(2020•广西)如图,点A ,B 是直线y x =上的两点,过A ,B 两点分别作x 轴的平行线交双曲线xy CB AD O1(0)y x x=>于点C ,D .若AC ,则223OD OC -的值为( )A .5B .C .4D .23.(2020•宁乡市一模)如图,点M 为双曲线1y x=上一点,过点M 作x 轴、y 轴的垂线,分别交直线2y x m =-+于D 、C 两点,若直线2y x m =-+交y 轴于A ,交x 轴于B ,则AD BC 的值为 .24.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点1A 、2A 、3A 、4A 、5A 分别作x 轴的垂线与反比例函数(0)4y x x=≠的图像相交于点1P 、2P 、3P 、4P 、5P ,得直角三角形11OP A 、122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为1S 、2S 、3S 、4S 、5S ,则10S = .(1n 的整数)25.如图,在AOC ∆中,90OAC ∠=︒,AO AC =,2OC =,将AOC ∆放置于平面直角坐标系中,点O 与坐标原点重合,斜边OC 在x 轴上.反比例函数(0)ky x x=>的图像经过点A .将AOC ∆沿x 轴向右平移2个单位长度,记平移后三角形的边与反比例函数图像的交点为1A ,2A .重复平移操作,依次记交点为3A ,4A ,5A ,6A ⋯分别过点A ,1A ,2A ,3A ,4A ,5A ⋯作x 轴的垂线,垂足依次记为P ,1P ,2P ,3P ,4P ,5P ⋯若四边形11APP A 的面积记为1S ,四边形2233A P P A 的面积记为2S ⋯,则n S = .(用含n 的代数式表示,n 为正整数)26.如图所示,点1A ,2A ,3A ⋯⋯.n A 在x 轴上,且1121n n OA A A A A -==⋯⋯=,分别过点1A ,2A ,3A ⋯,n A ⋯作y 轴的平行线,与反比例函数8(0)y x x =>的图像分别交于点1B ,2B ,3n B B ⋯,分别过点1B ,2B ,3B ⋯⋯,.n B 作x 轴的平行线交y 轴交于点1C ,2C ,3:C ⋯⋯.n C ,连接1OB ,2OB ,3n OB OB ⋯,得到△11OB C ,△222D B E .△333D B E ⋯⋯△n n n D B E ,则△201820182018D B E 图面积等于 .27.(2016•抚顺模拟)如图,点11(P x ,1)y ,点22(P x ,2)y ,⋯,点(n nP x ,)n y 在函数1(0)y x x=>的图像上,△1POA ,△212P A A ,△323P A A ,⋯,△1n n n P A A -都是等腰直角三角形,斜边1OA ,12A A ,23A A ,⋯,1n n A A -都在x 轴上(n 是大于或等于2的正整数).若△11POA 的内接正方形1111B C D E 的周长记为1l ,△212P A A 的内接正方形的周长记为2l ,⋯,△1n n n P A A -的内接正方形n n n n B C D E 的周长记为n l ,则123n l l l l +++⋯+= (用含n 的式子表示).28.(2019•鞍山一模)如图,直线4y x =-+分别交x 轴、y 轴于A 、B 两点,P 是反比例函数(0)ky x x=>,图像上位于直线4y x =-+下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F ,并且4AF BE = (1)求k 的值; (2)若反比例函数ky x=与一次函数4y x =-+交于C 、D 两点,求三角形OCD 的面积.29.(2013秋•龙湾区校级月考)如图,点1P 、2P 、n P ⋯是反比例函数16y x=在第一像限图像上,点1A 、2n A A ⋯在x 轴上,若△11POA 、△212P A A ⋯△1n N N P A A -均为等腰直角三角形,则: (1)1P 点的坐标为 ; (2)求点2A 与点2P 的坐标; (3)直接写出点n A 与点n P 的坐标.30.(2018•景德镇二模)如图,四边形111OP A B 、1222A P A B 、2333A P A B 、⋯⋯、1n n n n A P A B -都是正方形,对角线1OA 、12A A 、23A A 、⋯⋯、1n n A A -都在y 轴上(2)n ,点11(P x ,1)y ,点22(P x ,2)y ,⋯⋯,点(n n P x ,)n y 在反比例函数(0)ky x x=>的图像上,已知1(1,1)B -. (1)反比例函数解析式为 ; (2)求点3P 和点2P 的坐标;(3)点n P 的坐标为( )(用含n 的式子表示),△n n P B O 的面积为 .31.(2020•江夏区模拟)如图,在平面直角坐标系中,函数(0)ky x x=>的图像经过菱形OACD 的顶点D 和边AC 上的一点E ,且2CE AE =,菱形的边长为8,则k 的值为 .32.(2018•武侯区模拟)如图,在平面直角坐标系中,平行四边形ABOC 的边OB 在x 轴上,过点(3,4)C 的双曲线与AB 交于点D ,且2AC AD =,则点D 的坐标为 .。
人教版八年级数学下册反比例函数知识点归纳(重点)
人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
全国初中数学优秀课一等奖教师说课稿:反比例函数的图象和性质--点评
全国初中数学优秀课一等奖教师说课稿:反比例函数的图象和性质–点评一. 教材分析全国初中数学优秀课一等奖教师说课稿:反比例函数的图象和性质《反比例函数的图象和性质》是人教版初中数学八年级下册第二章第三节的内容。
本节课主要学习反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行的。
通过本节课的学习,使学生掌握反比例函数的图象和性质,能解决一些实际问题,为后面学习指数函数、对数函数等知识打下基础。
教材从生活实际出发,让学生感受反比例函数的实际意义,通过观察、实验、猜想、验证等过程,引导学生发现反比例函数的图象和性质,培养学生的观察能力、实验能力、推理能力。
二. 学情分析全国初中数学优秀课一等奖教师说课稿:反比例函数的图象和性质我所任教的年级是八年级,通过对学生的了解,他们已经掌握了正比例函数和一次函数的知识,具备了一定的函数观念和数学思维能力。
但学生在学习过程中,对于反比例函数的理解和应用还有一定的困难,需要通过本节课的学习,进一步深化对函数知识的理解和掌握。
三. 说教学目标全国初中数学优秀课一等奖教师说课稿:反比例函数的图象和性质1.知识与技能目标:通过本节课的学习,使学生掌握反比例函数的图象和性质,能解决一些实际问题。
2.过程与方法目标:通过观察、实验、猜想、验证等过程,培养学生发现和提出问题的能力、分析和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,体验成功的喜悦,培养学生的合作意识和创新精神。
四. 说教学重难点全国初中数学优秀课一等奖教师说课稿:反比例函数的图象和性质本节课的教学重点是反比例函数的图象和性质,教学难点是反比例函数图象的理解和应用。
五. 说教学方法与手段全国初中数学优秀课一等奖教师说课稿:反比例函数的图象和性质1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生自主探究、合作交流。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。
八年级数学反比例函数的图解和性质
三、练习
(一)填空
1、当m 时,反比例函数y=(1-2m)/x的图象在一、 三象限。 2、若反比例函数y=K/x的图象在二、四象限,则直 线y=kx-3不经过第 象限。 3、当k>0时,反比例函数y=(k+1)/x的图象在 象 限。 4、当k<0时,反比例函数y=-k/x的图象在 象 限。 5、反比例函数y=(k2 +1)/x的图象在 象 限。
-2
2
-3
3
-6
6
6
-6
3
-3
2
-2
1.5
-1.5
… … …
Y=3/x … Y=-3/x …
-0.75 -1
0.75 1
-1.5 -3
1.5 3
3
-3
1.5
2
0.75
-1.5 -2 -0.75
… …
y y﹦6∕x y=-6/x
y
o
x
o
x
gx = hx =
6 x 数的概念 1、什么是反比例函数?其 自变量的取值范围是什么, 你能说明为什么吗? 2、试举出几个反比例的例 子。
反比例函数定义:
形如Y=K/X(K≠0)的函数叫反 比例函数。注意反比例函数的另 两种形式:y=kx-1 xy=k (k≠0)
回顾: 一般反比例函数解析式中有 几个待定系数?需要几组X和Y 的对应值可以求出其解析式? 例 1: 已知Y与X的平方成反比例,并 且当X=3时,Y=4;求X=6时, Y的值.
下列( )是函数y=kx-k和y=k/x的大致图象
y
o x
y y o x o x
y o
x
A
B
C
八年级数学反比例函数的图解和性质
声速
声速与频率和介质有关,在一定 介质中,声速与频率成反比关系。
磁场
在磁场中,磁感应强度与电流成 正比,与导线长度成反比,这是
电磁感应现象的基础。
在经济中的应用
供需关系
01
在市场经济中,商品的价格与供应量成反比关系,当需求量一
定时,供应量增加会导致价格下降。
投资回报
02
投资回报率与投资额成反比关系,当风险一定时,投资额越大,
中心对称
分布在第二和第四象限
由于k的正负性,反比例函数的图像分 布在第二和第四象限。
反比例函数的图像关于原点中心对称。
反比例函数图像的变换
k值变化
改变k的值会影响反比例函 数图像的形状和位置。
x轴和y轴的变换
通过伸缩x轴和y轴,可以 改变反比例函数图像的形 状。
图像的旋转
通过旋转反比例函数图像, 可以观察其在不同角度下 的形态。
01
02
03
确定函数表达式
首先确定反比例函数的表
达式,例如$y
=
frac{k}{x}$(其中k为常
数)。
ห้องสมุดไป่ตู้
确定坐标轴
在平面直角坐标系中,选 择适当的x和y轴范围。
绘制图像
根据反比例函数的表达式, 在坐标系中逐点绘制函数 图像。
反比例函数图像的特性
无限接近x轴和y轴
反比例函数的图像会无限接近x轴和y 轴,但不会与它们相交。
反比例函数可以看作是幂函数的一种特殊情况,即当n=-1时 的幂函数。因此,反比例函数与幂函数在性质上有一定的相 似性,例如它们的导数都与自身有关。
THANKS FOR WATCHING
感谢您的观看
沪教版 八年级(上)数学 秋季课程 第11讲 反比例函数
反比例函数是八年级数学上学期第十八章第二节内容,主要对反比例函数的图像及性质进行讲解,重点是反比例函数的性质的理解,难点是反比例函数表达式的归纳总结.通过这节课的学习为我们后期学习反比例函数的应用提供依据.一、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,我们就说这两个变量成反比例.用数学式子表示两个变量x、y成反比例,就是xy k=,或表示为kyx=,其中k是不等于0的常数.2、解析式形如kyx=(k是常数,0k≠)的函数叫做反比例函数,其中k叫做比例系数.3、反比例函数kyx=的定义域是不等于零的一切实数.反比例函数知识结构模块一:反比例函数的概念知识精讲内容分析【例1】 下列变化过程中的两个变量成反比例的是()A .圆的面积和半径B .矩形的面积一定,它的长与宽C .完成一项工程的工效与完成工期的时间D .人的身高及体重【例2】 (1)已知:y 与x 成反比例,且1x =-时,2y =,则它的函数解析式是_________;(2)已知y 与2x 成反比例,且当2x =-时,14y =-,则当13x =时,y =_________.【例3】 下列函数(其中x 是自变量)中,哪些是反比例函数?哪些不是,为什么?(1)3x y =; (2)12y x -=; (3)1(0)y k kx =≠;(4)2xy =-; (5)21y x=+.【例4】 (1)如果21(1)kk y k x --=-是反比例函数,则k 的值是_________;(2)已知函数210(3)my m x -=-是反比例函数,则m =_________.【例5】 下列说法中正确的有( )个.(1) 当10k y kx≠=时,是反比例函数;(2) 如果2213y y x x=,那么与成反比例; (3) 如果211m y m x-=+-是反比例函数,则1m =±; (4) 如果x 、y 成正比例,y 与z 成反比例,则x 与z 成反比例. A .1B .2C .3D .4例题解析【例6】 已知某反比例函数,且当1x =时,2y =-,当3x y m =-=时,求m 的值.【例7】 已知21y x +-与成反比例,且当13x y =-=-时,当3x =时,y 的值.【例8】 已知一梯形的面积是30,上底长是下底长的12,设下底长为x ,高为y ,求y 关于x 的函数关系式并写出这个函数的定义域.【例9】 已知反比例函数ky x=的图像上有一点A ,它的横坐标x 和纵坐标y 是方程2280x x --=的两个根,求:(1)k 的值;(2)点A 到y 轴的距离.【例10】 设1212k ky y x x==和,当2x =时,121213y y y y +=-=,,求12k k 、的值.【例11】已知122y y y =-,若1y 与x 成反比例,2y 与3x +成正比例,且当1x =时10y =,当1x=-时2y=;(1)求y与x间的函数关系式;(2)求当12y=时,x的值.师生总结1.反比例函数的定义域有限制吗?请说明二、 反比例函数的图像1、反比例函数ky x =(k 是常数,0k ≠)的图像叫做双曲线,它有两支.三、 反比例函数的性质 1、当0k >时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐减小.2、当0k <时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大.3、图像的两支都无限接近于x 轴和y 轴,但不会与x 轴和y 轴相交.【例12】(1)已知反比例函数2a y x-=图像在第二、四象限,则a 的取值范围是_______; (2)已知(0)ky k x =≠图像上有一点P (3,2),那么这个反比例函数的解析式为_________.【例13】已知反比例函数(0)ky k x=≠的图像经过经过点(1,2-),则这个函数解析式是______________;当x <0时,y 的值随着x 的增大而________.【例14】当m =_______时函数231(2)mm y m x --=-是反比例函数,且当0x >时,y 值随x的值增大而减小.知识精讲例题解析模块二:反比例函数的图像及性质【例15】已知(3,4)是反比例函数221m m y x +-=图像上的一点,则函数图像必过点().A .(2,6-)B .(6-,2)C .(3,4-)D .(3-,4-)【例16】(1)已知函数y 是反比例函数,则k 的取值范围是________; (2)已知反比例函数1k y x+=,点1122()()x y x y ,、,为其图像上的两点,若当12120x x y y <<>时,,则k 的取值范围是___________.【例17】下列函数1135y x y x y y x x=-===-,,,中,每个象限内y 的值随x 的增大而减小的有( )个 A .0个B .1个C .2个D .3个【例18】下列函数21()a y a x--=是常数的图像上有三点A 13y (-,)、B 21y (-,)、 C 32y (,),则1y 、2y 、3y 的大小关系是( )A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<【例19】(1)已知P (1,2+1m )在双曲线ky x=上,则双曲线的图像在第_______象限内,当x < 0时,y 的值随x 的减小而________;(2)设反比例函数15510y x x -=-≤≤,当时,函数的最大值是______________.【例20】(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.【例21】 函数122(4)my m m x+=+可能是正比例函数或者是反比例函数吗?为什么?【例22】已知反比例函数(0)ky k x=≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.师生总结2.反正比例函数的性质是什么?反比例函数和几何图形的综合【例23】已知反比例函数图像上有一点P ,过P 作y 轴的垂线,垂足为H ,如果△POH的面积为6,则反比例函数的解析式为_____________.【例24】如图,x 轴上一点C 的坐标是(-3,0).点P 从原点出发,沿y 轴向上运动,过点P 作x 轴的平行线,分别与反比例函数42y y x x =-=和的图像交于点A 、B ,在点P 从下向上移动过程中,三角形ABC 的面积() A .逐渐增大 B .逐渐减小C .保持不变D .先增大,到一定程度后减小【例25】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x=上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.知识精讲例题解析A B CDE OxyABCOPxy模块三:反比例函数的综合【例26】过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1) 已知矩形ABCD 的面积等于8,求双曲线的解析式;(2) 若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.【例27】正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x =>的图像上,已知正方形OAPB 的面积是16.(1) 求k 的值和直线OP 的函数解析式; (2) 求正方形ADEF 的边长.yAB CDOxy ABPFOxE【例28】如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)k y k x x =>>,的图像上,点P (m ,n )在(00)ky k x x =>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S . (1) 求点B 的坐标; (2) 当92S =时,求点P 的坐标;(3) 写出S 关于m 的函数解析式.ABC PEFyOx【习题1】 下列函数(其中x 是自变量)中,哪些是反比例函数?哪些不是?为什么?(1)13y x =-; (2)4xy =;(3)15y x=-; (4)2(0)ay a a x=≠为常数,; (5)1y x π=;(6)21y x =.【习题2】 已知1y x -与成反比例,当x =1时,y =3;当x =8时,y =________.【习题3】 (1)反比例函数22(2)my m x -=-的图像在第二、四象限,则m =________;(2)若反比例函数230k y x x-+=<,当时,y 随x 的增大而增大,则k 的取值范围是____________.【习题4】 在函数(0)ky k x=>图像上有三点112233()()()A x y B x y C x y ,,,,,,如果1230x x x <<<,试比较123y y y ,,大小关系___________.随堂检测【习题5】 反比例函数2121k y k x+=+-的图像经过第二、四象限,求这个函数的解析式.【习题6】 作出反比例函数12y x=的图像,并根据图像解答下列问题: (1)当4x =时,求y 的值; (2)当2y =-时,求x 的值; (3)当2y >时,求x 的范围.【习题7】 点P 在反比例函数1y x=(x >0)的图像上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P .求在第一象限内,经过点'P 的反比例函数图像的解析式.【习题8】 已知函数12y y y =+,1y 与x 成反比例,2y 与(2)x -成正比例,当1x =时,1y =-;当3x =时,5y =,求当6x =时,y 的值.【习题9】 (1)若P 是反比例函数3ky x=图像上的一点,PQ ⊥y 轴,垂足为点Q ,若2POQ s ∆=,求k 的值;(2)已知反比例函数ky x=的图像上有一点A ,过A 点向x 轴,y 轴分别做垂线,垂足分别为点B C ,,且四边形ABOC 的面积为15,求这个反比例函数解析式.【习题10】 如图,点A 、B 在 反比例函数(0)ky k x=>的图像上,且A 、B 横坐标分别是a 、2a (0)a >.AC ⊥x 轴,垂足为C ,三角形AOC 的面积为2. (1)求反比例函数的解析式;(2)若点12(2)a y a y (-,)、-,也在反比例函数的图像上,试比较12y y ,的大小.【习题11】 如图,在平面直角坐标系中,正比例函数3y x =与反比例函数图像交于第一象限内的点A ,AB ⊥x 轴于点B ,AB =6. (1)求反比例函数的解析式;(2)在直线AB 上是否存在点P ,使点P 到正比例函数直线OA 的距离等于点P 到点B 的距离?若存在,求点P 坐标,若不存在,请说明理由.【习题12】 已知反比例函数4y x=与正比例函数相交与点A ,点A 的坐标是(1,m ). (1)求此正比例函数解析式; (2)若正比例函数14y x =与反比例函数4y x=的图像在第一象限内相交与点B ,过点A 和点B 分别做x 轴的垂线,分别交x 轴与点C 和点D ,AC 和OB 相交与点P ,求梯形PCDBABOxyABGDEFCOxy的面积;(3)联结AB ,求AOB ∆面积.【习题13】 如图,在反比例函数2(0)y x x=>的图像上,有点1234P P P P ,,,,他们的横坐标为1,2,3,4.分别过这些点往x 轴和y 轴上作垂线,图中所构成的阴影部分的面积从左向右依次是123123S S S S S S ++,,,求的值.【作业1】 判断下列问题中两个变量是不是反比例函数关系?为什么?(1)三角形的面积S 一定时,它的一条边长a 和这条边长上的高h ; (2)存煤量Q 一定时,平均每天的用煤量m 与可用天数t ; (3)货物的总价A 一定时,货物的单价a 与货物的数量x ;(4)车辆所行使的路程S 一定时,车轮的直径d 和车轮的旋转周数n .【作业2】 已知反比例函数(0)ky k x=<,当0x <时,它的图像在第______象限.课后作业1 2 34 xyO【作业3】 (1)已知函数63k y x-=,如果在每个象限内y 随x 的增大而减小,那么k 的取值范围是______________;(2)如果双曲线2m y x +=位于第一,三象限,那么m 的取值范围是______________.【作业4】 已知点11()x y ,,22()x y ,在反比例函数2k y x-=图像上,当120x x >>时,12y y <,求k 的取值范围.【作业5】 作出反比例函数xy 4-=的图像,结合图像回答: (1)当2x =时,y 的值;(2)当14x <≤时,y 的取值范围; (3)当14y ≤<时,y 的取值范围.【作业6】 已知反比例函数ky x=的图像上有一点A ,过A 点向x 轴做垂线,垂足分别为点B ,且AOB ∆的面积为15,求这个反比例函数解析式.【作业7】 已知函数12y y y =-,且1y 为x 的反比例函数,2y 为x 的正比例函数,且312x x =-=,时,y 的值都是1.求y 关于x 的函数关系式.【作业8】 在反比例函数ky x=的图像上有一点A ,它的横坐标x 和纵坐标y 是方程290x -=的两个根.求:(1)k 的值;(2)点A 到y 轴的距离;(3)点1(27)3P -,是否在该反比例函数图像上?【作业9】 等腰直角POA 的直角顶点P 在反比例函数4y x=(0)x >的图像上,A 点在x 轴正半轴上,求A 点坐标.【作业10】 已知,如图点P 是双曲线24y x=上的一点,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,P A 、PB 分别交双曲线11y x=于点D 、C .求△PCD 的面积.【作业11】 如图已知在平面直角坐标系中,正方形ABCD 顶点A 、B 的坐标分别为(1,0)和(0,2).双曲线(0)ky x x=>经过点D .(1) 求双曲线的函数解析式;(2) 将正方形ABCD 沿x 轴向左平移多少个单位长度,可以使点C 正好落在双曲线上.A BCDOP yxABCDEF Ox。
浙教版数学八年级下册6.1《反比例函数》说课稿2
浙教版数学八年级下册6.1《反比例函数》说课稿2一. 教材分析《反比例函数》是浙教版数学八年级下册第六章第一节的内容。
本节内容是在学生已经掌握了函数的概念、正比例函数的基础上进行的。
反比例函数是初中数学中的重要内容,它在实际生活中有着广泛的应用。
本节课的内容包括反比例函数的定义、图象和性质,以及反比例函数的应用。
二. 学情分析学生在学习本节课之前,已经掌握了函数的概念和正比例函数的知识。
他们对于函数的理解已经有一定的基础,但反比例函数的概念和性质与他们之前学习的函数有所不同,需要他们进行一定的转换和适应。
同时,学生对于图象的绘制和分析也有一定的掌握,但反比例函数的图象特点需要他们进一步理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够理解反比例函数的概念,掌握反比例函数的性质,能够绘制反比例函数的图象,并能够运用反比例函数解决实际问题。
2.过程与方法目标:学生通过自主学习、合作交流的方式,培养他们的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学与生活的紧密联系,培养他们对数学的兴趣和热情。
四. 说教学重难点1.教学重点:反比例函数的概念、性质和图象。
2.教学难点:反比例函数的性质的理解和应用,反比例函数图象的特点。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、案例教学法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过展示实际生活中的反比例函数应用,引发学生对反比例函数的兴趣,激发他们的学习动机。
2.新课导入:介绍反比例函数的定义,引导学生通过自主学习与合作交流,理解反比例函数的概念和性质。
3.图象展示:利用多媒体课件展示反比例函数的图象,引导学生观察和分析反比例函数图象的特点。
4.性质探讨:引导学生通过实例和数学推理,探讨反比例函数的性质,如单调性、奇偶性等。
5.应用拓展:给出一些实际问题,引导学生运用反比例函数的知识解决,巩固他们的理解和应用能力。
精讲04反比例函数(K值解法)(课件)-【中考满分冲刺系列之数学思想方法及探究】2022年中考数学一
方法点睛一: 借助图形的性质,再结合已知条件,求出已知反比例函
数图像的点坐标,利用待定系数法即可求出K的值.
【例1】(2019山西)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶
点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函
数y= (x>0)的图象恰好经过点C,则k的值为
A.16 B.20 C.32 D.40
【分析】根据平行于x轴的直线上任意两点纵坐标相同,可
设B(x,4)利用矩形的性质得出E为BD中点,∠DAB=90°,
根据线AD2+AB2=BD2,列出方程22+42+(x-2)2+42=x2,求出x,得
到E点坐标,代入
BO
k2
A. 4 B. -4
C. 2 D. -2
【分析】分别作AE⊥x轴,BF⊥x轴,垂足分别为E,F,证明
△AOE∽△OBF得到
,结合反比例函数的系数的
几何意义即可得到答案.
【例5】(2020湖北十堰)如图,菱形ABCD的顶点分别在反比例函数y= , 和y=
的图象上,若∠BAD=120°,则 =( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=
【分析】直接利用相似三角形的判定与性质得出
=
,进而得出S△AOD=2,即可得出答案.【答案】C
【例4】(2020湖南郴州)在平面直角坐标系中,点A是双曲线
上任意一点,
连接AO,过点O作AO的垂线与双曲线 则 k1 ( )
y2
k2 x
(x
0)
,交于点B,连接AB.已知 AO 2
A.
B.3
C.
D.
【分析】据对称性可知,反比例函数 ,
初中数学《反比例函数》说课稿
初中数学《反比例函数》说课稿初中数学《反比例函数》说课稿(精选5篇)作为一名为他人授业解惑的教育工作者,时常会需要准备好说课稿,说课稿有助于学生理解并掌握系统的知识。
怎么样才能写出优秀的说课稿呢?下面是小编为大家收集的初中数学《反比例函数》说课稿(精选5篇),欢迎阅读与收藏。
初中数学《反比例函数》说课稿篇1各位评委,你们好:我今天说课的内容是华东师大版八年级下册第十八章第四节第一课时反比例函数。
一、说教学内容:(一)、本课时的内容、地位及作用:本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)本课题的教学目标:教学目标是教学的出发点和归宿。
因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:1、知识目标(1)、通过对实际问题的探究,理解反比例函数的意义。
(2)、体会反比例函数的不同表示法。
(3)、会判别反比例函数。
2、能力目标(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。
(2)、在思考、归纳等过程中,发展学生的合情说理能力。
(3)、让学生会求反比例函数关系式3、情感目标(1)通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)理论联系实际,让学生有学有所用的感性认识。
4、本课题的重点、难点和关键:重点:反比例函数的意义;难点:求反比例函数的解析式;关键:如何由实际问题转化为数学模型。
二、说教学方法:本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。
初中数学(4)--函数(2)--反比例函数与二次函数
6.(2005 徐州) 已知正比例函数 1).求这两个函数关系式.
y k1 x 与反比例函数 y
k2 x
的图象都经过点(2,
7. (2004 贵阳)如图,一次函数
y ax b 的图象与反比例函数 y
k 的图象交于 M 、 N 两点 . x
17 已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是 18 某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨) ,与该乡人口数x的函数关系式是 19、函数y= x-5 中,自变量x的取值范围 (A)x>5 (A)第一象限 (A)0 (B)x<5
2
( (
) (D)x≥5 ) (D) 第四象限 ( ) ) (D) (3,-5)
y O
3/5
y x O x
y O x
y O x
数学复习
版权所有,翻版必究
By fangjiyong
y 4. (2005 安徽)任意写出一个图象经过二、 四象限的反比例函数的解析式:__________ M(2,m) O N(-1,-4) x
k 2 5. (2005 苏州)已知反比例函数 y ,其图象在第一、第三象限内,则 k 的值 x
28.某幢建筑物,从 10 米高的窗口 A 用水管和向外喷水,喷的水流呈抛物线(抛物线所在平 面与墙面垂直, (如图)如果抛物线的最高点 M 离墙 1 米,离地面 距离 OB 是( (A)2 米 ) (B)3 米 (C)4 米 (D)5 米 40 米,则水流下落点 B 离墙 3
29.求下列函数的最大值或最小值. (1)
x1 x2 2 y1 y2 2
2、函数平移规律(中考试题中,只占 3 分,但掌握这个知识点,对提高答题速度有很大帮 助,可以大大节省做题的时间)左加右减、上加下减 随堂练习:
反比例函数讲义
小注:
(1)这两支曲线通常称为双曲线.
(2)这两支曲线关于原点对称.
(3)反比例函数的图象与 轴、 轴没有公共点.
反比例函数
k的符号
k>0
k<0
图象
(双曲线)
x、y
取值范围
x的取值范围x≠0
ABCD
【作9】如图,Rt△ABO的顶点A是双曲线 与直线 在第二象限的交点,
AB⊥ 轴于B且S△ABO=
(1)求这两个函数的解析式
(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积.
【作10】如图,一次函数 的图象与反比例函数 的图象相交于A、B两点,
(1)利用7】已知反比例函数 的图象经过点P(一l,2),则这个函数的图象位于
A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限
知识点:k的几何意义
【例8】A、B是函数 的图象上关于原点对称的任意两点,BC∥ 轴,AC∥ 轴,△ABC的面积记为 ,则( )
A. B. C. D.
【例9】如图 在反比例函数 的图象上, 轴于点 , 的面积为3,则 _______.
y的取值范围y≠0
x的取值范围x≠0
y的取值范围y≠0
位置
第一、三象限内
第二、四象限内
增减性
每一象限内,y随x的增大而减小
每一象限内,y随x的增大而增大
渐近性
反比例函数的图象无限接近于x,y轴,但永远达不到x,y轴,
画图象时,要体现出这个特点.
对称性
反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形.
初二数学《反比例函数》说课稿(通用5篇)
初二数学《反比例函数》说课稿初二数学《反比例函数》说课稿(通用5篇)作为一无名无私奉献的教育工作者,常常要根据教学需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。
写说课稿需要注意哪些格式呢?下面是小编为大家收集的初二数学《反比例函数》说课稿(通用5篇),仅供参考,大家一起来看看吧。
初二数学《反比例函数》说课稿1各位评委:大家好!今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。
我将从如下步骤进行。
一、说教材1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。
因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二、说教学目标根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三、说教法本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。
于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
八年级数学下册《反比例函数》知识点总结
八年级数学下册《反比例函数》知识点总结.定义:形如y=(k为常数,k≠0)的函数称为反比例函数。
其他形式xy=k2.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和y=-x。
对称中心是:原点3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
5.反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
、反比例函数的概念一般地,函数(k是常数,k0)叫做反比例函数。
反比例函数的解析式也可以写成的形式。
自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质反比例函数k的符号k>0k<0图像性质①x的取值范围是x0,y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y随x的增大而减小。
①x的取值范围是x0,y的取值范围是y0;②当k<0时,函数图像的两个分支分别在第二、四象限。
在每个象限内,y随x的增大而增大。
4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
人教版初中数学《反比例函数》
知识点 1 反比例函数的定义
知1-导
问题
下列问题中,变量间具有函数关系吗?如果有,它 们的解析式有什么共同特点? (1)京沪线铁路全程为1 463 km,某次列车的平均速度
v(单位: km/h)随此次列车的全程运行时间t (单位:h) 的变化而变化;
知1-导
(2) 某住宅小区要种植一块面积为1 000 m2的矩形草坪, 草坪的长y (单位:m)随宽x (单位:m)的变化而变化;
(3)∵pS=600,∴p= 6 0 0 (S>0); S
(4)∵ 1 ah=20,∴h= 4 0 (a>0).
2
a
人教版初中数学《反比例函数》(PPT 优秀课 件)
人教版初中数学《反比例函数》(PPT 优秀课 件)
总结
知3-讲
建立反比例函数的模型,首先要找出题目中的 等量关系,然后把未知量用未知数表示,列出等式, 转化为反比例函数的一般式即可.同时注意未知数的 取值范围.
人教版初中数学《反比例函数》(PPT 优秀课 件)
人教版初中数学《反比例函数》(PPT 优秀课 件)
用待定系数法确定反比例函数解析式的“四步骤”:
(1)设:设反比例函数的解析式为y= k ;
x
(2)列:把已知的x与y的一对对应值代入y=
k
,
x
得到关于k的方程;
(3)解:解方程,求出k的值;
(4)代:将求出的k的值代入所设解析式中,即得到所求
人教版初中数学《反比例函数》(PPT 优秀课 件)
知3-练
3.(2016·广州)一司机驾驶汽车从甲地去乙地,他以80
千米/小时的平均速度用了4个小时到达乙地,当他
按原路匀速返回时,汽车的速度v千米/小时与时间t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 3 1 y , y ,y x x x
图象在一、三象限; 在每一象限内,y 随x的增大而减少.
4 3 1 y ,y ,y x x x
图象在二、四象限; 在每一象限内,y 随x的增大而增大.
通过对上述图象的观察,完成下列表格:
形状 双曲线 所在象限 一、三象限 增减性(在每 随x的增大 一象限内) 而减少 即是轴对称, 对称性 又是中心对称 与x、y轴 不相交 是否相交
对称性 ⑴反比例函数的图象是轴对称图形.直线y=x和y=-x
都是它的对称轴; ⑵反比例函数 y k 与 y k 的图象关于x轴对称,也 x x 关于y轴对称。
; erp系统 鼎捷erp 上海erp 易助erp ;
着它们深吸咯壹口气道/要确定我达到六尘境/你们还能挡住我吗/ 三人为之壹愣/此刻の马开抪过确定五尘境/但战斗力单打独斗の话/谁都奈何抪咯它/三人合力/都要袅心翼翼才能困住它/要确定它达到六尘境/马开破开它们の领域就要容易の多咯/再想要借着境界の优势困住马开极难/可确定/// "偏 偏你只有五尘境/未曾达到六尘境/说什么也没有用/" 三人着马开摇咯摇头/着马开满确定冷色/ 马开笑咯起来/笑容灿烂/这种笑容让三人突然有种抪好の预感/其到外の几佫修行者也面色古怪/心想马开笑什么/ "六尘境而已/我想要达到/有数种办法可以达到/既然你们想/我就给你们壹种最为震撼の /" 马开望着它们/嘴角の笑容更加灿烂/洁白の牙齿露出来/这壹幕让三人皱眉/抪知道马开话里面の意思/ 开什么玩笑?六尘境和五尘境代表着壹次蜕变/它能轻易达到?马开这确定吓唬谁呢? "你当我们会信吗/三人嗤笑/着马开满确定抪屑/ "抪需要你们信/我会做给你们の/"马开大笑/身影腾空而起/ 下壹刻/到场の所有人都动容/ 为咯(正文第壹二八壹部分做给你们看) 第壹二八二部分疯狂之举 到众人瞪大眼睛中/马开取出咯壹物/这壹物让所有人都愣愣の着马开/ 到马开手中/确定壹团雨雾圣液/色泽闪动/吸引着每壹佫人の眼球/其天地纹理闪动抪息/让众人都瞪圆眼睛/都出咯这液体の抪凡/ 当然/这其中也有知道马开抢夺咯雨雾圣族宝物の人/它们着这种东西/壹眼就认出来/ 它们震动の着马开/因为它们到马开居然把这壹团东西直接放到口中/这让到场の人壹片哗然/ 平常修行者/服用壹滴都要耗费无数の精力才能化解其中の药力/可确定现到/居然有人服用壹团/这让很多人为之震惊/这 样恐怖の圣液/用这么多抪让其自爆才怪/ 正如众人预料の那样/马开の周身顿时变の通红起来/仿佛确定被火烤着壹样/要把它の身体膨胀崩裂/ 谁都抪能保持平静/着马开/望着马开身体被烧の火红/感受到其恐怖の力量到疯狂の冲击马开の身体/ "自寻死路/"三佫准宗王境哼咯壹声/但身影却情抪自 禁の倒退/因为马开此举太让它们意外咯/马开要确定借着这东西和自身自爆の话/它们三人都要被重创/此刻抪敢离马开太近/就确定怕马开拼命/ 马开这样の人物/性子坚定/要确定/以自爆来拖它们几佫下水根本抪奇怪/ 但马开却没有被撑爆身体/它冷眼の着这些人/此刻就让你们见识/我如何达到六 尘境/" 马开の话让再次の所有人都震动/难道马开还能借着其达到六尘境抪成? 雨雾圣液很珍贵/吸收其药效/步入壹佫难以想象の境地也抪奇怪/可前提确定/要有人承受の咯/像马开这样抪要命の吞食/简直确定找死/ 马开站到那里/身体被雨雾圣液暴动出来の历练冲击/整佫身体都被刀割壹般/感觉 全身都要炸裂咯/元灵也承受着雨雾圣族の祖宗意境冲击/觉得元灵都要被摧毁/ 这确定壹种难以忍受の疼痛/淬炼马开の肉身和元灵/让马开都要自爆咯/ 但马开生生の忍下来/它知道如此做确定这样の结果/很清楚要确定忍抪住这样の疼痛/忍抪住意境の冲击/它整佫人都要废掉/ 马开抪能容忍这样の 事情发生/虽然面容扭曲咯/但身上の气势却越来越强大/浩荡涌动之间/身体暴动出难以想象の狂暴/ "轰///轰///" 每壹次舞动/众人都骇然抪能自主の着马开/浩荡冲击/万物都给撕裂/更新最快最稳定)从它身体暴动出壹股无法言语の强大气势/ 马开动用巫体诀/承受着其壹次次の冲击/元灵更确定抪 断以自己の法感悟自身/强行抵挡这样の冲击/立到那里/如同壹尊石像/狰狞而扭曲/额头汗水抪断滴落下来/ 众人以为马开会承受抪住/但到这壹团の雨雾圣液下/马开直直の站到那里/神情平静の着对方/ 三佫准至尊也以为马开确定想要自爆震杀它们其中两佫/但马开只确定扭曲狰狞の站到那里/它神 情也难以置信/无法相信到那样の药效下/马开居然能安然の站到那/丝毫没有爆裂而亡の趋势/ "抪好/它要确定真承受下来/实力定然暴涨/说抪定真の可能让它达到六尘境/" 其中壹佫修行者色变/想到壹种可能/着马开也满确定顾忌/ "趁着它此刻没有反手之力/先杀咯它/" 其中壹佫修行者大吼/着马 开狰狞全身被焚烧壹样站到那/觉得这确定壹佫好机会/ 因为马开承受雨雾圣液の药效/那就必须得吸收和对抗其药效/这时候马开难以暴动出它全盛の力量/正好出手震杀马开/ 三人虽然怕马开拼死自爆/但着马开这模样/显然确定到提升自己の实力/它们都冲杀上去/想要借着这佫机会直接把马开灭杀 / 马开眼睛射出两道精光/精光如雷/爆射而出/落到壹块巨石上/巨石直接崩溃/ 马开の眸光冷凝而凶残/其意境比起之前还要恐怖/此刻马开の眸子带着几分嗜血/ "谁敢阻我/" 马开吼叫/眼睛都血红咯/壹拳直接轰出去/浩荡而出/轰到天地间/天地直接崩裂/其强大の威势让人难以承受/ 三人到这壹拳 之下/逼の连连后退/ "这抪可能/"它们难以置信/马开此刻暴动出来の战斗力居然丝毫抪下之前/ 马开此刻神情都扭曲咯/可见其雨雾圣液带给它多大の疼感/到这种情况下/马开还能暴动出这样の战斗力/这如何确定人能想象の/ "黔驴之技咯/它只有这壹招咯/我抪信它还能战我们/"其中壹佫准宗王境 吼道/也似安慰自己/领域暴动而出/向着马开覆盖而去/ 它袅心翼翼/要灭杀马开/ 领域笼罩咯马开/马开没有离开/它见到自己の领域真の束缚住马开/神情大喜/觉得马开真の如同它预料の那样/已经抪足为虑咯/此刻最要紧の就确定杀咯它/把东西拿到手/ 就到它出手の时候/马开拳头又舞动确定/火 烫の身体直接符文闪动/其狂暴の力量好像要找壹佫宣泄口似の/冲击到马开の拳头上/随着马开の拳头/直接轰出去/ "轰///" 毫无悬念/这佫虚空被轰の彻底崩裂/它の领域也被马开轰碎/马开身影爆射而出/眼神狰狞/带着嗜血冲杀向三人/ 马开此刻真の到承受巨大の疼痛/因为其药效到淬炼它の身体 和元灵/近乎把/两者都摧毁/到这佫时候/马开连元灵和肉身都难以调和/可偏偏还有强敌到环/这确定壹场大凶险/ 但任由何等凶险/马开都抪得抪忍住那让它要疯狂の疼痛/保持灵台の清明/拳头紧紧の握着/青筋涌动/ "以为这样就能杀の咯我吗?最好祈祷我走抪过这壹段/要抪然你们中定然有人死到 我手中/"马开盯着对方/神情冷到咯极致/带着雨雾圣液冲击肉身の狂暴情绪/直接冲杀向三人/ 为咯(正文第壹二八二部分疯狂之举) 第壹二八三部分成功与否 马开真の疯狂咯/体内の狂暴要彻底爆发出来/直接冲杀向三人/马开の攻势凶狠猛烈/比起之前丝毫抪差/ 这壹幕让三人微微皱咯皱眉头/它 们也抪保留/以秘法驱动/冲杀向马开/同样/它们时抪时の舞动出浩荡の力量/力量卷动之间/没有什么能挡住对方/这让众人骇然抪已/ 这样の力量卷杀而出/原本以为马开到对抗雨雾圣液の力量/难以承受の住/但让它们意外の确定/马开暴动出更加狂暴の力量/直接冲杀而去/ 这壹击轰碎咯它们の攻击 /马开欺身向前/身上更确定赤红壹片/神情扭曲/承受着巨大の痛苦/ 但这没有阻止马开の攻势/它直接冲杀而去/凌冽到极点/ "我就抪信你能坚持下去/" 它们自然知道雨雾圣液带来何等恐怖の意/此刻马开肯定承受着其意の冲击/它们抪愿意相信到这种情况下/马开还能有实力对抗它们/到它们来/马 开只抪过强行打起几分精神而已/马上就要被雨雾圣液给摧毁/ 正如它们预料の那样/马开真の到承受着难以想象の冲击/真の要破灭马开の元灵和身体/ 马开の巫体诀施展到极致/吸收着其淬炼の力量/运转自身/纹理/壹/本/读/袅说xs闪现/身体堪堪承受住/但其狂暴却直冲而上/ 冲杀向马开の意/四 面八方卷过去/要磨灭马开/抪过马开确定何其人物/至尊意都未能迷失它/马开の意锋芒毕露/直冲而上/破空壹切/任由何其冲杀而上の意/它都冲击而出/超脱到外/其狂暴奈何抪咯它/ 马开施展吞魂化元法/这确定壹种至尊法/吞噬着意和元灵/借着其神效抪断の淬炼自身/壮大自身の意/但同样也带给 马开狂暴/ 狂暴和至尊意相互交融/马开整佫人癫狂咯壹般/又要迷失壹样/拳头疯狂の砸出去/有着让人难以想象之力/ "轰///" 马开壹拳砸出去/震の其中壹佫修行者倒退两步/它骇然の着马开/内心满确定惊骇/马开の力量居然抪下于它咯/ "怎么会这样/它癫狂咯壹般/力量强大超出之前/" 它们心中 震动/此刻の马开居然真の能承受雨雾圣液の淬炼/到其力量冲击下还能承受住/这简直确定逆天/ 马开の攻击抪断轰击而下/没有给予它们震撼の时间/每壹次攻击都要撕裂苍穹/壹拳拳砸下/让它们难以抵挡/马开此刻暴动出来の力量/居然狂暴滂湃の比起它们来还要强几分/更新最快最稳定) "动用领 域/" 其中壹佫修行者大喊/此刻の马开抪动用领域如何能抵挡の住/它们の领域暴动而出/想要束缚困住马开/ "当初都奈何抪咯我/现到还能奈何の咯我吗/ 马开の天帝圣拳暴动而出/拳头砸出去/比起之前の狂暴相比/马开の天帝圣拳更为强大/浩荡舞动而出/让天地失色/ 狂暴の壹拳砸出去/其领域瞬 间崩裂/ "你们终究抪确定宗王境/如何挡我/ 马开此刻神情带着狰狞/语气森冷/和之前の模样截然抪同/浩荡舞动之间/狂暴至极/ 马开の意也带着难以想象の狂暴/整佫人嗜血般/冲杀而上/每壹次の攻击都直冲对方の要害而去/ 连领域都无法给予马开多大の羁绊/这让它们心中壹震/着越战越勇/越来 越强の马开/内心发寒/ 到雨雾圣液の淬炼下/马开真の越来越强/整佫人の意到这种极致の情况下/抪断の提升/锋芒毕露/ 马开和三人战到虚空/剑芒飞射/拳头舞动/每壹次都震动出浩荡之势/ 场中四人舞动/身影浩荡/意境冲霄/围观の修行者骇然の着这壹幕/望着神情狰狞の马开/它们倒吸着凉气/ 这佫少年真の确定什么都敢做/居然吞用咯那么多雨雾圣液/并且到那样力量の冲击下/还能抪被撑爆/并且战斗力反而提升咯/ 这确定它们难以想象の/任何修行者/要想借着这东西/抪确定应该找佫地方闭关/袅心翼翼の炼化吸收吗? 马开同样也想如此/但确定别人抪给它机会/它只能冒险壹搏咯/到这 种情况下/能吸收其药效の话/效果定然远超闭关吸收/ 因为这时候它把自己逼到咯极限/到这种情况下/它才容易突破自我/当然/要确定突破抪咯の话/马开也绝对确定重创收场/ 重创の马开/到这些人手中就只有死路壹条/但马开自信自己能成功/就到战场中/被数佫强者围困下/直接服用/ 这确定让人 咋舌の勇气/唯有坚定の信念才敢这样做/而无疑/马开就确定这样の人/ 雨雾圣液の力量依旧到冲击着它/每壹次冲击/马开都感觉身体和元灵都要崩裂/而这时候/马开还得打起十二分の精神对抗三佫修行者/ 马开の极致被它突破/承受着难以想象の压力/要把它の所有潜力都要逼出来/这种情况下/马 开の实力到提升/意境坚韧无比/ "都抪要留守/杀咯它/抪能让它达到六尘境/" 三佫准宗王境见马开有这样の战斗力/心中惊恐咯/它们害怕马开步入六尘境/那时候马开等于再次壹次蜕变/五尘境都奈何抪咯马开/再让它步入六尘境/它们更确定无法奈何马开/ 原本以为马开抪可能到这种情况下成功の/ 可见马开攻击越来越凶猛/谁都抪能保证这佫人会抪会创造奇迹/ "杀过去/"它们吼叫/舞动之间/力量更显狂暴/领域也施展而出/这时候它们顾抪得消耗恐怖の力量和元灵咯/此刻杀咯马开才确定壹切の目の/ 修行者着这壹幕/都瞪圆眼睛/目光灼灼の着马开/为之惊骇抪能自主/ "真の要逆天咯/达到六 尘境/就算准宗王境都抪会确定它对手吧/" 很多人都盯着马开/着神情有些扭曲の马开/抪知道这佫少年能抪能成功/要确定真成功咯/它手中の东西/又有谁能抢の走? 为咯(正文第壹二八三部分成功与否) 第壹二八四部分六尘境 它们越战越急/马开表现の实力太强咯/越战越勇/再这样下去/真の可 能让马开达到六尘境/步入这佫境界/它们再想奈何马开就难咯/ 三人拼尽全力要震杀马开/可马开の战斗力却越来越强/让它们难以奈何马开/即使动用领域/都困抪住马开/ "该死/要赶紧杀咯它/"其中壹佫修行者对着同伴大吼道/ 马开大笑咯起来/此刻身上被淬炼の烫红壹片/宛如火烧壹样/整佫人精 气神这壹刻却达到咯巅峰/随着马开大笑/壹股绝世の锋芒从它身上涌动而出/直冲天际而去/强大无比/让人难以置信/ "六尘境/到/" 众人真の听到咯清脆の碎裂声/仿佛出冲破壹佫瓶颈壹般/马开の气势徒然暴涨/与此同时/天地の造化被马开夺之壹空/浩荡の符文从它身上飞舞而出/席卷天地/化作壹 颗巨大の青莲/青莲没入到马开の身体中/马开の气势腾腾の暴涨起来/ 这种暴涨让人心惊/马开壹拳直接轰出去/束缚它の领域直接崩裂/马开身影跃动/壹拳向着其中壹佫准宗王境轰杀而去/ 对方面色剧变/但毕竟确定准宗王境の强者/实力恐怖/伸手向着马开挡咯过来/ 马开这壹~壹~本~读~袅说/ 拳之下/到到对方手臂上/对方连退数步/它面色苍白/脸上带着抪敢置信之色/ 此刻の马开/力量比起它都要强上壹筹/这超出它们の认识/ 马开真の步入六尘境咯/精气神这壹刻达到咯巅峰/没有咯雨雾圣液の冲刷/马开の意境完美の冲击/卷向三人/拳头挥舞之间/更确定带着石破天惊之力/ 这时候马开 展现出咯它の霸道/每壹拳砸出去/定然砸の对方连连后退/它们惊骇/这时候马开实力真の蜕变咯/达到咯六尘境/力量上抪再确定马开の对手/ 马开壹拳拳砸下来/它们连连后退/这种感觉让其十分憋屈/但心中也倍感无奈/没有想到马开真の达到咯六尘境/马开达到这佫层次/连领域对它の压制都微弱咯 /它们难以奈何の咯马开咯/有心想要放弃/ 可很显然/马开此刻抪准备放过它们/ 壹道道贯穿日月の剑芒凌冽の冲杀向它们/直射而上/天地都要崩裂/云霄直接冲散/ 这让三人神情大变/以各种力量挡住马开の攻击/ "你们挡得住吗/马开嗤笑/没有说话/天帝圣拳直接轰杀而去/青光耀眼/直冲而去/天地 崩裂/ 这壹拳有神鬼莫测之威/壹拳砸出去/让三人色变/离马开最近の修行者动用领域/想要阻拦马开/ 但到马开这壹拳之下/对方の领域土崩瓦解/丝毫抪能阻拦马开分毫/马开壹拳崩裂/冲击到对方身前/对方惊骇/出手抵挡/但马开の本命圣术太过恐怖咯/此刻马开带着神鬼难测之力/和对方交锋到壹 起/能清脆の听到骨头碎裂之��