Drude Model of metals
金属的Drude模型
(1.2.10)
其中,为金属电阻率,rs为一个所占据体积的等效球半径, a0为玻尔半径。 金属Cu的室温电阻率ρ=1.56∙10-6Ohm-cm, τ=2.7 ∙10-14 sec
3)金属中电子的平均自由程
l = v0τ ; 而 mv02/2 =3kBT/2
在室温下,电子平均速度 v0 的典型值为107 cm/s,
§1 金属的Drude模型
• 金属在固体特性的研究中占据重要位置:元素单质材 料中最为常见的是金属;金属具有良好的电导率、热 导率等。尝试对金属特性的理解也是现代固体理论的 发端。 • 在J.J.Thomson于1897年发现电子3年之后,Drude根据 气体运动论建立了金属自由电子气模型,把金属中的 电子看到由电子组成的理想气体。 • 作为研究金属特性的Drude模型在1900年提出,现在仍 然被用来迅速了解金属及其它一些材料的特性。这个 模型后来经过稍许修改就取得了巨大成功。
上式中F(t)是电子所受的外力。
(1.2.2)
对于受到碰撞的电子对平均动量的贡献: 这部分电子的比率为dt/,它们受到碰撞后无规取向(动量 无规取向对平均动量无贡献)。这部分电子对平均动量的贡 献在于受到碰撞前从外场获得的动量,由于碰撞发生在t+dt 时刻或之前,因此对平均动量的总贡献小于
(dt / ) F (t ) dt
Z是每个原子贡献的价电子(传导电子)数目
对于金属,n的典型值为1022-1023/cm3。这个值要比理想 气体的密度高上千倍 将每个电子平均占据的体积等效成球体,则:
1 V 4 3 rs n N 3
定义电子占据体积的等效球半径:
3 rs 4n
1/ 3
rs的典型值Å。
Computational Fluid Dynamics Modeling of。。。Steelmaking Process外文翻译
学生毕业设计(论文)外文译文学院冶金与材料工程学院专业班级冶金工程学生姓名学号译文要求1.外文翻译必须使用签字笔,手工工整书写,或用A4纸打印。
2.所选的原文不少于10000印刷字符,其内容必须与课题或专业方向紧密相关,由指导教师提供,并注明详细出处。
3.外文翻译书文本后附原文(或复印件)。
文献出处:METALLURGICAL AND MATERIALS TRANSACTIONS B, 2010, 41B(6): 1354-1367.电弧炉炼钢过程中超音速聚流氧枪的流体动力学模拟MORSHED ALAM, JAMAL NASER, GEOFFREY BROOKS, andANDREA FONTANA摘要:超音速的气体射流现在广泛应用于电弧炉炼钢,其他许多工业用来增加气液混合,反应速率和能量效率。
然而,对于超音速聚流氧枪,已有的基本物理研究非常有限。
在本研究中,超音速射流流体动力学(CFD)在有火焰覆盖环境温度和室温中的实验数据进行验证。
数值结果表明,超音速氧、氮的射流在火焰覆盖的潜在的核心长度分别比无火焰覆盖的超过4倍和3倍,这是与实验数据相吻合。
使用火焰笼罩的超音速射流相比常规的超音速射流的扩展率显着下降。
本CFD模型被用于在大约1700K(1427℃)炼钢条件下研究连续超音速氧气射流的特性。
连续超音速氧气射流在炼钢条件的潜在的核心长度是在室温环境温度的1.4倍。
1 引言在碱性氧气转炉和电弧炉炼钢中,高速气体射流被广泛使用于熔炉中提纯铁液和搅拌溶液。
由于动高压与其联合使之具有更高更深的穿透力和能够更好的融合,所以超音速气体射流优于亚音速气流。
拉法儿喷嘴在炼钢中过去常被用来加快气体射流使之接近马赫数2.0的超音速速度[1]。
当一个超音速射流从拉法儿喷嘴喷出时,它便于周围的环境相互作用产生一个湍流混合的区域。
在与喷嘴距离加大的过程中,射流直径会增加,射流速度会减缓。
在吹氧期间,液面与喷嘴出口之间的距离越大,周围流体的夹带越多,反过来又降低了冲击速度以及渗透液面的深度。
固体物理第二章金属自由电子论
u为平均附加速度: v
v :电场附加给电子的平均速度(平均附加速度)。?? 10
考虑某一个电子,从上次碰撞发生起,有t时间的行 程。如果无外电场,其速度为v0。根据特鲁德模型德假 设,碰撞后电子出现的方向是随机的,因此v0将对总体 的电子平均速度毫无影响,即:
v0 0
但在外电场存在条件下,在上一次碰撞后立即附加
上一个速度:
eEt vt m
(E为外加电场,m为电子质量)。因此电子平均速度 只是由各电子的附加速度取平均获得。
vv0vt
eE
m
t2 t1
11
欧姆定律E=j ,其中E为外加电场强度、为电阻率、j 为电流密度。
成功用微观量解释了宏观量!
12
特鲁德模型的其他成功之处
Nat. Photon. 1, 641, 2007
EF0 ~ 几个eV
定义 Fermi 温度:
TF
E
0 F
kB
物理意义:设想将EF0转换成热振动能,相当于多高温度 下的振动能。
金属:TF: 104 ~ 105 K 36
一些金属元素费米能与费米温度的计算值
元素
Li Na K Rb Cs Cu Ag Au Be
EF0 (eV) 4.72 3.23 2.12 1.85 1.58 7.00 5.48 5.51 14.14
怎么求dN! 接下来问题就来了! dU EdN
Here comes the problem U EdN
16
§2.2 Sommerfeld的自由电子论
核心问题
怎么求dN!
对于理想气体貌似有某个方法 对于dV范围内的分子数为: dN=dV内分子密度×dV
对于dE范围内的:
Class-1_531605726
eeee-
eeeeee-
eeeeeeeee-
eee-
e-
பைடு நூலகம்
electrons from ideal gas with charge e
Successes and problems of the Drude model
Successes: • explanation of electrical conductivity and thermal conductivity • Quantitative explanation of the Wiedemann-Franz law (by luck!) • The Hall effect and magnetoresistance • ac conductivity of metals Problems: • heat capacity puzzle: Classical particle: u = 3/2 nkBT, cv = 3/2 nkB = const., experiment cv ~ T • The susceptibility puzzle:
Sommerfeld model = Drude model + quantum mechanics = Free Electron Gas + Schrodinger equation + Fermi statistics
• Sommerfeld kept Drude’s concept of Free Electron Gas, and incorporate quantum mechanics into it. • Free Electron Gas model is also called Drude-Sommerfeld Model
金属电子论
−ih∇ψ k (r ) = hkψ k (r ) u r r P = hk u r r 相应的速度为 r P h k v= = m m
∴
u r h2k 2 P2 1 2 E k = = = mv 2m 2m 2
()
u r k:电子平面波的波矢,它的方向为平面波的传播方向;
它的取值需要由边界条件确定。
kx =
π
nx ,
ky =
π
L
ny ,
kz =
π
L
nz
取整数
u r h2k 2 h2 π 2 2 = ( nx + n y 2 + nz 2 ) E k = 2 2m 2m L
()
以一维情况为例,讨论一下:
ψ (0) = ψ ( L) = 0
当波函数为正弦形式,并且从0到L 的宽度是半波长的整数n倍时,则以 上边界条件就能得到满足。于是:
2mE k = 2 h ∇ 2ψ (r ) + k 2ψ (r ) = 0
2
方程的解:
u r ψk
()
(V)
ur r r i k ⋅r r = Ae
具有平面波的形式
A:归一化因子,由归一化条件确定
∫
u r ∴ψ k
(V)
u r u r ψ ψ k dτ = ∫ ψ k dτ = 1 * u r k
二、运动方程及其解 1. 电子的运动方程(定态薛定谔方程)
⎛ h2 2 ⎞ ∇ + V0 ⎟ψ (r ) = Eψ (r ) ⎜− ⎝ 2m ⎠
Ψ(r):在电子近似下,表示电子运动状态的波函数。
V0: 电子在势阱底部所具有的势能,取V0 =0。 (或者说是晶格平均场+其他电子的平均场) E: 电子的本征能量 令 有
固体物理阎守胜第一章_金属自由电子气体模型
费 米 球
费米面: 费米能, 费米动量, 费米速度, 费米温度
2 kF EF 2m 2
pF kF
vF
kF m
TF
EF kB
由于
N 2
1 4 3 V 4 3 kF 2 3 kF k 3 8 3
N k 3 3 2 n V
3 F 2
自由电子气体模型中仅有的一个独立参量:
k2 E (k ) 2m
2
皆与波矢有关
p k
p k v m m
Born-von Karman边界条件
( x, y, z ) ( x L, y, z ) ( x, y, z ) ( x, y L, z ) ( x, y, z ) ( x, y, z L)
2. 对于电子受到的散射或碰撞,简单地用弛豫时间 描述。在dt时间内,电子受到碰撞的几率为 dt / , 大体
相当于相继两次散射间的平均时间。
在外加电场E情况下,自由电子的运动满足含时 薛定谔方程
2 2 e (r , t ) i (r , t ) 2m
固体通常指在承受切应力时具有一定程度刚 性的物质,包括晶体、准晶体和非晶态固体。 固体物理学的基本问题有:固体是由什么原子 组成?它们是怎样排列和结合的?这种结构是如何 形成的?在特定的固体中,电子和原子取什么样的 具体的运动形态?它的宏观性质和内部的微观运动 形态有什么联系?各种固体有哪些可能的应用?探 索设计和制备新的固体,研究其特性,开发其应用。
(1.1.3)
•自由电子近似使 V (r ) 为常数势,可简单地取为零。 则方程(1.1.3)成为:
2
2m
2 (r ) E (r )
固体物理第六章
§3 电子气体的热容
基本思路与方法
当晶体温度升高时,每个电子对热容都有贡献, 晶体中只有N个电子,按经典理论:Cv=3/2NkB, 但实际上自由电子的热容达不到此值的1%。根据 Drude模型是没法解释的。
按Sommerfeld的自由电子模型,电子气服从费 米统计规律及泡利原理,在T=0k时,电子气充满了 费米球内的所有轨道,当温度T上升时,并不是费米 球内的电子都受到热激发,这是因为在每个k值上只 能有自旋相反的两个电子,由于泡利原理限制,热 激发(kBT)是低能激发,远离费米面的电子不可能被 激发(因为附近无空轨道),只有费米面以外才有空 轨道,因此只有费米面附近的电子才能被激发,要 激发远离费米面的电子必须用高能激发(如光激发 等),而kvT«F,所以远离费米面的电子是冻结的。
k n L
n 1.2.3......
n
2
2m
( n)2
L
<2> 周期性边界条件(与第五章类似)
n (x L) n (x)
在此条件下薛定锷方程的解是行波解,不再是驻波解。
i2n
(x) Aeikx (x L) Ae Ln(Lx)
k 2 L n n 0.1. 2
能量本征值:
n
dk
)1
之所以乘以2是因为每一个k对Байду номын сангаас于两个自旋相反的电子。
三维 情况:
费米分布函数:
f (,T )
1
( )
e kBT 1
μ是电子气的化学势,在给定的体系中,在给定的温 度下,由电子气的总数决定:
当T<<TF时:
f ( T )D( )d N
0
u
F
[1
2
卡梅伦液压数据手册(第 20 版)说明书
iv
⌂
CONTENTS OF SECTION 1
☰ Hydraulics
⌂ Cameron Hydraulic Data ☰
Introduction. . . . . . . . . . . . . ................................................................ 1-3 Liquids. . . . . . . . . . . . . . . . . . . ...................................... .......................... 1-3
4
Viscosity etc.
Steam data....................................................................................................................................................................................... 6
1 Liquid Flow.............................................................................. 1-4
Viscosity. . . . . . . . . . . . . . . . . ...................................... .......................... 1-5 Pumping. . . . . . . . . . . . . . . . . ...................................... .......................... 1-6 Volume-System Head Calculations-Suction Head. ........................... 1-6, 1-7 Suction Lift-Total Discharge Head-Velocity Head............................. 1-7, 1-8 Total Sys. Head-Pump Head-Pressure-Spec. Gravity. ...................... 1-9, 1-10 Net Positive Suction Head. .......................................................... 1-11 NPSH-Suction Head-Life; Examples:....................... ............... 1-11 to 1-16 NPSH-Hydrocarbon Corrections.................................................... 1-16 NPSH-Reciprocating Pumps. ....................................................... 1-17 Acceleration Head-Reciprocating Pumps. ........................................ 1-18 Entrance Losses-Specific Speed. .................................................. 1-19 Specific Speed-Impeller. .................................... ........................ 1-19 Specific Speed-Suction...................................... ................. 1-20, 1-21 Submergence.. . . . . . . . . ....................................... ................. 1-21, 1-22 Intake Design-Vertical Wet Pit Pumps....................................... 1-22, 1-27 Work Performed in Pumping. ............................... ........................ 1-27 Temperature Rise. . . . . . . ...................................... ........................ 1-28 Characteristic Curves. . ...................................... ........................ 1-29 Affinity Laws-Stepping Curves. ..................................................... 1-30 System Curves.. . . . . . . . ....................................... ........................ 1-31 Parallel and Series Operation. .............................. ................. 1-32, 1-33 Water Hammer. . . . . . . . . . ...................................... ........................ 1-34 Reciprocating Pumps-Performance. ............................................... 1-35 Recip. Pumps-Pulsation Analysis & System Piping...................... 1-36 to 1-45 Pump Drivers-Speed Torque Curves. ....................................... 1-45, 1-46 Engine Drivers-Impeller Profiles. ................................................... 1-47 Hydraulic Institute Charts.................................... ............... 1-48 to 1-52 Bibliography.. . . . . . . . . . . . ...................................... ........................ 1-53
固体物理复习题(已解答)
1 简述Drude 模型的基本思想把金属中的电子看做气体,金属由可以自由运动的电子和固定不动的离子实两部分组成,这些可以自由运动的电子使金属导电的成分。
将自由电子看做带电的小硬球,它们的运动遵循牛顿第二定律。
应用独立自由电子气假设:在忽略电子-电子和电子-离子间电磁相互作用(内场)的情况下,它们在金属中运动或并发生碰撞。
2 简述Drude 模型的三个基本假设并解释 独立电子近似:电子与电子无相互作用自由电子近似:除碰撞的瞬间外,电子与离子无相互作用弛豫时间近似:一给定的电子在单位时间内受一次碰撞的几率为1/τ 3在Drude 模型下,固体如何建立热平衡 碰撞前后速度无关联碰撞后获得的速度方向随机 速率与碰撞后的温度相适应4 Drude 模型中对金属导电率的表达式为:mnq τσ2=5 在自由电子气模型中,由能量均分定理知在特定温度T 下电子的动能为: 1.5K B T6 在Drude 模型当中,按照理想气体理论,自由电子气的密度为n ·cm -3,比Cv= 1.5 nK B7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的 导热率 和 电导率 的比值为常数。
8 简述Drude 模型的不足之处?电子对比热的贡献与温度无关,被严重高估(210)对电子速度 2v 低估(210)误认磁化率与温度成反比,而实际无关 什么决定传到电子的数目?价电子? 导体?绝缘体?半导体?他之所以解释 维德曼-弗兰兹 成功,是因为对比热的高估正好抵消对速度的低估 9 对于自由电子气体,系统的化学势随温度的增大而 降低 。
10 请给出Fermi-Dirac 统计分布中,温度T 下电子的能量分布函数,并进一步解释电子能量分布的特点。
11)(/)('+=-TK E E FD B F eE f在温度T 下,能量为E 的状态被占据的几率。
式中EF 是电子的化学势,是温度的函数。
当温度为零时,电子最高占据状态能量,称为费米能级。
CHAPTER 6金属自由电子论
2 2m
d2 dx 2
ψn (x) εnψn (x)
令k 2
2mεn 2
则方程变为: d 2 n (x) dx2 k 2 n (x) 0
解此方程的边界条件有两种选法: <1>固定边界条件
n (0) n (L) 即电子不能跑到晶体外边去。 在固定边界条件下,薛定锷方程的解具有驻 波形式,而能量的本征值:
此时 K (r) eikr (省去了归一化常数), 波矢 Kx.K y.KZ 取一系列分立值:
kx
2π L
nx
ky
2π L
ny
0. 1. 2......
kz
2π L
nz
将
k (r)
k k k x
y
z
代回薛定锷方程可求出能级:
εK
2 2m
k2
2 x
k
2 y
k
2 z
)
=恒常
在波矢空间是一球面方程,不同能量的等 能面是一系列同心球面。
电子在T=0k时所能填充到的最高 等能面称为费米面,我们知道自由电 子的等能面是球面,在T=0k时,费米 面把电子填充过的轨道与电子未填充 过的轨道完全分开了,即费米面内所 有的轨道都被填充,费米面外边都是 空轨道,这一点对金属是非常主要的, 因为只有费米面附近的电子才能决定 金属的动力学性质。
εn
2 2m
( πn )2 L
n为正整数
ψn (x) Asin kx
k nπ L
n 1.2.3......
描写一个电子的量子态需要两个量子数: 能量量子数 k(n)
自旋量子数
ms
1 2
在T=0k时,电子的能级与轨道填充时有
两个原则:
Drude模型
D r u d e 模型一. Drude 模型的提出1897年在研究放电管辉光放电实验中的阴极射线时,Thomson 是通过将组成阴极射线的电子当作经典粒子而最先发现了电子的存在。
在发现电子后的最初一段时期内,对原子结构的研究尚处于探索之中,还没有认识到电子等微观粒子运动的独特本质。
因此,在当时还不具备解释金属中的这些传导电子是如何形成以及怎么运动这两个基本问题的理论基础。
1900年D.Drude 受气体分子运动论的启发提出了金属中经典的自由电子理论即Drude 模型,即认为金属中存在有自由电子气体,并用这一理论来解释金属材料的导电、导热等宏观性能。
二. Drude 模型的四个基本假设1.独立电子近似近似认为电子的运动是彼此独立的,就象孤立的单个电子一样,故又称为单电子近似。
2.自由电子近似用经典粒子的碰撞图象来简化电子与离子实之间复杂的相互作用近似认为单个电子在与离子实的相继两次碰撞之间作自由运动,故金属中的传导电子又常称为自由电子3.弛豫时间近似在dt 时间内电子与离子实之间碰撞的几率应为dt/τ。
电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。
每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。
4.经典近似在与离子实的相继两次碰撞之间电子的运动遵循Newton 运动定律碰撞前后电子遵循Boltzmann 统计分布。
三.Drude 模型的成就自由电子气体+波尔兹曼统计?欧姆定律○虽然金属至少有两种带电粒子,离子与电子,Drude 假设参与导电作用的仅是其中一种。
○传导电子的来源:价电子与芯电子。
◎首先,来解释金属的导电现象并导出电导率。
电子:平均速度为经典近似假设:热运动遵循Maxwell 速度分布律,故有 ◎若与离子实相继两次碰撞之间的时间间隔为t ,则有 因此有 表明:在外电场作用下金属中的自由电子将形成与外电场方向相反的宏观定向运动,于是就形成了电流◎由此可得到金属材料电导率的微观表达式四.Drude 模型的不足以电子的平均自由程为例,来说明Drude 电子模型所遇到的根本性困难。
Drude模型简介
Drude模型简介•最简单的金属模型–只考虑到电子的运动学特性•最成功的金属模型之一–为什么这么简单的模型会获得巨大的成功?•在量子力学与原子物理学诞生之前–1897年,J.J. Thomson发现电子–1900年,Drude提出金属的电导和热导理论,Annalen de Physik1, 566 (1900), ibid. 3, 369 (1900).电导率电子气模型虽然金属中至少有两种带电粒子,离子与电子,Drude 假定参与导电作的仅是其中的一种。
传导电子的来源:价电子与芯电子。
Drude模型的基本假设忽略电子与电子之间的相互作用(独立电子近似),忽略电子与离子之间的相互作用(自由电子近似),电子只受到均匀外电场的作用;(Kinetic theory) 电子受到的碰撞是瞬时的,来自电子与杂质原子之间的散射;电子在单位时间内散射的几率是1/τ,τ是电子驰豫时间(relaxation time / life time);电子在各种散射下达到热力学平衡,即,电子在碰撞之后的状态是随机的,由热力学平衡决定其分布。
=frequency) (cyclotron 为回旋频率令mceHc ω1nec仅依赖于载流子密度和电荷电导的实部和虚部?Drude模型的推广•经典力学→量子力学:Sommerfeld模型•自由电子近似→考虑电子-离子的相互作用:能带理论•独立电子近似→电子-电子相互作用:金属的Fermi-Liquid理论•电子气的局域热平衡(local thermal equilibrium)→小尺度、非平衡特性:介观物理(mesoscopic physics)。
2.金属自由电子气的Drude模型
• 金属中的价电子就象无相互作用的理想气体, 但模型与理想气体又有所不同:
* 电子气体的浓度比理想气体大三个量级 * 有两种粒子:电子,离子
不是很圆滑,所以再加些限制(基本假定),完 成Drude模型的构造
10.107.0.68/~jgche/ 金属电子气的Drude模型
1、已知的金属性质
模型建立的依据
10.107.0.68/~jgche/
金属电子气的Drude模型
4
为什么研究固体从金属开始?
• 金属最基本物质状态之一,元素周期表中有2/3 是金属元素,应用很广泛,当时对金属的了解 比其他固体多
* 比如,电导、热导、光泽、延展等性能很早开始就 被广泛应用 * 区分非金属,实际上也是从理解金属开始
12
思考——假如你是Drude
• 根据已有线索,如何仿照理想气体建立模型?
* 与理想气体(电中性)还是有些不同!除了碰撞的 瞬间,可以不考虑其他。但现有两种带电粒子
• 不是电中性的,有库仑相互作用?那么
* 电子-电子如何相互作用? * 电子-离子实如何相互作用?
• 还有——电传导(也包括热传导)是个输运过 程,非平衡过程,所以
上讲回顾
• 固体的微观定义
* 固体中的原子在其平衡位置附近作微小振动
• 贯穿课程的主线
* 周期性波在周期性结构中的运动
10.107.0.68/~jgche/
金属电子气的Drude模型
1
本讲内容:建模推演比较修正
• 如何用在1900年左右可以理解和接受的假设、 前提和经典理论,在微观层次上建立研究金属 宏观性质的模型,解释实验观察到的金属的良 好导电和导热现象
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fundamentals of Optical Science – OSE 5312 Fall 2003Tuesday, September 9, 2003Some comments on the applicability of the Lorentz model to real materials: (a) InsulatorsThe Lorentz model works surprisingly well, provided we remember that real materials correspond to a collection of Lorentz oscillators with different frequencies. The outer, or valence, electrons predominantly determine the characteristics of the optical properties a solid. In an ionically – bonded material, e.g. alkali-halides such as KCl, the valence electrons are quite strongly localized at the negative ion (for KCl, this would be the Cl atom), and hence the optical spectrum contains some atomic-like features, with many resonances. As the valence electrons are tightly bound, the resonance frequency is high so that these materials may have a transparency range that extends far into the uv. This can be seen in the reflectance spectrum for KCl shown below (taken from Wooten, Ch. 3.) For these types of materials, the external field and the local field can be quite different and it is not trivial to calculate the local field. For this reason, the Lorentz model does not give quantitatively accurate results for ionic materials.(ii) Doped InsulatorsDoped insulators, for example ions in glass, behave somewhat like the ions would in a gas, except that the locally strong electric fields of the host materials may distort the spectrum slightly. The figure below shows the absorption of Nd 3+ ions in a glass host material.Usually, the absorption of the dopant material is in a region of transparency of the host so that we can approximate the polarization as a superposition of polarizations due to the host and dopant material. For the case of a single resonant absorption line, we may write:E i P P P phost dopanthost tot ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Γ--+=+=ωωωωχε22020 where χhost is assumed to be real and constant. Hence;ωωωωχωεΓ--++=i phost r 22021)(Often, we label 1 + χhost as the “high frequency dielectric constant”, ε∞ , so that:ωωωωεωεΓ--+=∞i pr 2202)(.The static dielectric constant, defined as εst = ε(ω=0) is therefore given by setting ω = 0 in the above expression, so that:202ωωεεpst +=∞.Hence, the static dielectric function of a material is affected by dopants, even though the resonant frequency for the dopant is far away from ω = 0.(iii) Semiconductors:Semiconductors are covalently bonded materials where the electrons are evenly shared between neighboring atoms. (Some insulators are covalently bonded, too.) This means that the electrons are smeared out into broader bands and that their resonance frequencies are lower than for ionically bonded materials. Usually these materials can be described by a single energy gap and single broad absorption bandabove the energy gap. The example of Silicon is shown below:Estimation of εr (ω=0) for Si:Noting that the reflectance of Si rises sharply at about 3 eV, we may take this as an estimate for ω0. Hence ω0 ≈(3 x 1.6 x10-19)/ = 4.53 x 1015 rad/s.Now, ωωωωωεΓ--+=i pr 22021)(, so that 221)0(ωωεp r +=, so that if we candetermine ωp , we can estimate ε(0). Now m Ne p 02/∈=ω, and since each Si atom has 4 valence electrons, N = 4N Si ≈ 4x 2 ∙1028 m -3. This gives an estimate of ωp ≈ 1.6 x 1016 rad/s (corresponding to about 10.5 eV) and hence ε(0) ≈ 14. This is compared to a measured value for ε(0) of 12, so the approximations are reasonable. Note that Si appears as a grayish reflector throughout the visible spectrum. (1.7 ~ 3.2 eV)(iv) Metals:- Drude theory of optical properties of metals.We can extend the Lorentz model to metals, in which case, since the electrons are unbound or "free", they experience zero restoring force and hence the resonance frequency, ω02 = K/m is also zero. This is known as the “Drude” model. The equation of motion is then:,)()()(22t E e tt r m tt r m-=∂∂Γ+∂∂which has solution;()ωωωΓ+=i E m e t r 2)()(and hence χ(ω) is given by,ωωωωχΓ+-=i p22)(where once again the plasma frequency is defined by ωp 2 = Ne 2/ε0m . Hence,222222/)(",1)('Γ+Γ=Γ+-=ωωωωχωωωχppor,222222/)(",11)('Γ+Γ=Γ+-=ωωωωεωωωεpr prNow, in a metal, the damping term Γ is just the electron collision rate, which is just the inverse of the mean electron collision time, τ, i.e. Γ = τ-1. Hence,()22222221)(",11)('τωωτωωετωτωωε+=+-=p r p rThe collision rate can be quite rapid - tens of femtoseconds. But for opticalfrequencies, (e.g. for λ = 500 nm, ω = 2πc/λ = 3.8x1015 rad/s) (ωτ)2 >> 1. Under this approximation, we find:323222)(",1)('ωωτωωωεωωωεΓ=≈-≈p pr p r .This approximation may break down in the far-infrared spectral region, where damping may be significant. Note that damping is absolutely necessary to have an imaginary part of χ(ω) or εr (ω).It is useful to look at some plots of εr (ω), n(ω), α(ω) and R(ω). These are plotted on the next page for ωp = 10 and for Γ ≈ 0 or Γ = 0.5. In the limit of no damping, the n = 0 and R =1 for 0 < ω < ωp . Above ωp , κ is zero and the reflectance drops as n rises from zero to unity. Note that even for εr ” = 0, κ and hence α is not zero. Introducing some damping causes R to be < 1 and the reflectance drop at ωp is less severe. The behavior of εr , n and κ is consistent with what we now expect for a Lorentz oscillator with ω0 = 0.nω()αω() n gω()n gω()1 -5The last plots show the real and imaginary parts of the dielectric constant on a log scale. It is interesting to note that only the real part of ε indicates notable behavior around the plasma frequency. One can not see evidence of the plasma frequency by looking at the imaginary part of ε alone, yet both n(ω) and κ(ω) clearly show evidence of the plasma frequency.Optical absorption in low electron density materials – Semiconductors: Recalling that the absorption coefficient is given by α(ω) = 2k 0κ = 2ωκ(ω)/c = ωεr ”(ω)/cn(ω). Now for very high frequencies, or for low electron densities, as may be found in doped semiconductors, ωp 2 << ω2 , n(ω) ~ 1 so that,2222)(")(p p c c cλλωωωεωωαΓ=Γ≅≅,where λp is the wavelength corresponding to the plasma frequency. The λ2dependence of α is commonly seen in semiconductors, where dopant densities are typically in the range of 1016 to 1019 cm -3 as compared to ~ 1022 cm -3 in metals. This absorption is commonly referred to as free-carrier absorption.Tin-doped Indium Oxide (ITO) a transparent conducting electrode materialITO is a semiconducting material that gives quite high electricalconductivity, yet is transparent in the visible. It is particularly useful in low-current applications, such as liquid crystal displays. This is achieved by having a material with low electron density, but those electrons should be highly mobile, which means they travel through the material with relatively few collisions. By choosing the right density of tin doping, ITO can be highly effective. Below, we show the real and imaginary part of ε for ITO from a paper by Hamberg and Granqvist, Journal of Applied Physics, Volume 60, Issue 11, 1986, Pages R123-R159. The plasma frequency, dependent of the Sn density, is typically around 0.7 eV, which corresponds to λ ~1.7μm. Due to this, and the free carrier absorption described above, ITO is not as useful in the near infrared (λ > 1 μm) as it is in the visible.From Hamberg and GranqvistA more recent study by D. Tanner et. al. at the University of Florida, shows that the properties of ITO can be well modeled by the combination of Drude and Lorentz models. Using a model for εr that sums contributions from the Drude model to describe the free-carriers, and from the Lorentz model to describe bound carriers, which have a resonant absorption at ν = 40,000 cm -1 (c //1νλν==) or λ= 250 nm. i.e.ωωωωωωωεεf pfb pbr i i Γ+-Γ--+=∞222202where ε∞ is a background high-frequency dielectric constant, and subscripts, b and f, correspond to bound and free electrons (i.e. Drude and Lorentz contrtibutions, respectively. The plasma frequencies and damping times forthe bound and free electrons are of course different. The results of theirmodel is shown below. (Courtesy, David Tanner, University of Florida.)Significance of ωp:The expressions have been written for εr rather than for χ as they more clearly reveal something significant about the plasma frequency in this form. Notice that at ω = ωp, the real part of the dielectric constant becomes zero. Hence n(ωp) = 0 , which means the phase velocity - ∞. A more rational way to describe this is that the wavelength, λ = 2πc/nω→∞ as ω→ωp. This means that all the electrons are oscillating in phase throughout the propagation length of the material.metalNote that as all the electrons are moving together, there is no charge separation (polarization) and hence no restoring force or sustained oscillation after the field is removed..Plasma oscillations:The above figure shows an entirely transverse field (compared to the surfaces of the material). Should there be a component of the field perpendicular to the surface, there can be a net surface charge as a result of the applied field.The attractive (restoring) force between the surface charges can result in a free oscillation.For no net charge, (q f = 0) then D = 0 = ε0εr E. But E ≠0, so thenεr = εr ’+ i εr ” =0. Hence, εr ’=0. Now, P = charge x displacement /volume. Thus:.&00∈=∈-=-=⋅-=xNe P E xNe AL Lx NeA P δδδThe restoring force is given by: -eE:2∈=-∴xNe eE δ,which is equal and opposite to the acceleration: 0222∈=∂∂x Ne tx m δδ, which is theequation of motion:00222=∈+∂∂x m Netx δδ.Hence the resonance frequency for the plasma oscillation is given by22∈=m Ne p ω.Modifications of Drude theory to account for properties of real metals: The Drude model implies that the only the plasma frequency should dictate the appearance of metals. This works for many metals – see the example of Zinc (Fig. 3.12 in Wooten.) – But is does not explain why copper is red, gold is yellow and silver is colorless. In fact the appearance of these metals is characterized by an edge in the reflectance spectrum, similar to that predicted by the Drude model, but the problem is that all three metals have the same number of valence electrons. Also, the calculated plasma frequency for all three should lie at about 9 eV, - well outside the visible region, so the plasma frequency cannot in itself account for the colors of Cu and Au.All three have filled d-shells. Copper has the electronic configuration[Ar ].3d 10.4s 1 , Silver [Kr ].4d 10.5s 1 and Gold [Xe ].4f 14.5d 10.6s 1. (These metals are known as the “Noble Metals”.) The d -electron bands lie below the Fermi energy of the conduction band: Transitions from the d-band to the empty states above theFermi level can be occur over a fairly narrow band of energies, aroundd F E E -=0ω which can be modeled as additional Lorentz oscillator. The combined effects of the free-electrons (Drude model) and the bound d-electrons (Lorentz model) influence the reflectance properties of the metal.i energy D -bandCHence, εr = εfree + εbound . Where εf is described by the Drude model (ω0 = 0), and εb is described by the Lorentz model. (ω0= [E F – E d ]/ .)Example: Silver:The reflectance spectrum of silver shows a string drop at about 4 eV, well below the expected plasma frequency. The reflectance also rises again for frequencies just above 4 eV. (See Wooten, Fig. 3.15, shown below.)It turns out that this behavior is because Silver has a d-band resonance at ≈ω 4 eV. This can be determined from experimental data by fitting the Drude model to the low frequency data, as shown in Wooten, Fig. 3.18.(Shown below.) Thedifference between dielectric functions from Drude model and from experiment gives the dielectric function due to the d-band resonance, εbound (written as δε(b) in Wooten.) The effect is to “pull” the εr’ = 0 frequency in from 9 eV to about 3,9 eVWooten Fig. 3.18. Realpart of dielectricconstant for SilverThis shift in ωp means that there is a shift in the free plasma oscillation in silver due to the d-electrons. This can be explained by noting that the highly polarizable d-electrons will reduce the electric field that provides the restoring force involved in these oscillations, illustrated on page 6. A reduced restoring force gives a reduced oscillation frequency. See Wooten fig. 3.20 for an illustration of how the d-electrons do this.CopperThe case of copper is almost identical to that of silver, except that the d-band resonance is at about 2 eV. Now since ε’free becomes very large and negative at low frequencies, it turns out that ε’bound due to the d-electrons is not sufficient to pull the net ε through zero. Hence ε’ becomes small at about 2 eV, but there is no true plasma frequency there. However, the effect of this is sufficient to cause R to start to drop at 2 eV, but the reduction is gradual throughout the visible. This gives copper its characteristic red-orange appearance.Reflectance of Copper. From Wooten, Fig. 3.21Fig 3.22 from Wooten. Dielectric function of Copper。