2018年中考数学二轮专题复习讲义:第27讲 图形与变换 第1课时 图形轴对称与中心对称

合集下载

中考数学《图形变换》讲座

中考数学《图形变换》讲座

中考数学《图形变换》讲座王友新知识回顾1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为平移,它是由移动的方向和距离所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段相等,对应角相等,图形的大小与形状都没有发生变化,即平移前后的两个图形全等;且对应点所连的线段平行.3. 如果一个图形沿一条直线对折,对折后的两部分能互相重合,那么这个图形就是轴对称图形,这条直线就是它的对称轴 .4. 如果一个图形沿一条直线折叠,如果它能与另一个图形重合,那么这两个图形成轴对称,这条直线就是对称轴,折叠后重合的对应点就是对应点 .5. 如果两个图形关于轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线.6. 图形旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角7、旋转图形性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.8、把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点9、中心对称图形的性质:1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.10、关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P′(-x,-y).典例精析一、平移问题例1、两个直角边为6的全等的等腰直角三角形AOB和CED按图6所示的位置放置,A 与C重合,O与E重合.(1)求图6中,A B D,,三点的坐标.(2)Rt AOB△沿x轴以每秒2个单位长的速度向右运动,当D △固定不动,Rt CED点运动到与B点重合时停止,设运动x秒后Rt CED△和Rt AOB△重叠部分面积为y,求y与x之间的函数关系式.(3)当Rt CED△以(2)中的速度和方向运动,运动时间4△运动x 秒时Rt CED到如图7所示的位置,求经过A G C,,三点的抛物线的解析式.例2、如图15,矩形ABCD中,3BC=,将矩形ABCD沿对角线AC平移,平AB=,4移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,S'表示矩形NFQC的面积.(1)S与S'相等吗?请说明理由.(2)设AE x=,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?(3)如图16,连结BE,当AE为何值时,ABE△是等腰三角形.二、轴对称问题例1. 把一个矩形纸片如图折叠,使顶点B和D重合,折痕为EF。

浙江省2018年中考数学总复习 第五章 基本图形(二)第27讲 图形与变换 第2课时 图形平移与旋转

浙江省2018年中考数学总复习 第五章 基本图形(二)第27讲 图形与变换 第2课时 图形平移与旋转

第2课时图形平移与旋转1.图形的平移2.图形的旋转1.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=____________________.2.(2017·金华)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.【问题】如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2;(3)通过(1)、(2)作图,你认为利用旋转变换、平移变换作图要注意哪些?【归纳】通过开放式问题,归纳、疏理旋转变换、平移变换,以及利用旋转变换、平移变换作图.类型一识别(画)图形的平移、旋转变换例1(1)(2016·荆门)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.【解后感悟】此题是旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.(2)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.①将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;②以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.【解后感悟】本题利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.1.(1)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BA C的平分线重合于AD(如图1).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图2),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是(填A′D、A′E、A′F).(2)(2016•吉林模拟)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).①将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.类型二网格、平面直角坐标系中的图形变换例2如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【解后感悟】本题是旋转的性质以及图形的平移等知识运用,根据题意得出对应点坐标是解题关键.2.(2017·温州模拟)如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.类型三平移、旋转变换解决路径、面积等问题例3(2017·丽水模拟)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠的面积为32时,它移动的距离AA′等于________.【解后感悟】解决本题的关键是抓住平移后图形的特点,利用方程方法解题.3.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC.把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是.(结果保留π)4.(2015·张家界)如图,在边长均为1的正方形网络纸上有一个△ABC,顶点A、B、C 及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.【经验积累题】【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN;【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由;【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.【方法与对策】这是一道从特殊到一般设置的题型,通过基础图形等边三角形到等腰三角形,步步深入设置问题,其实解决问题的策略也是从简单到复杂,即全等三角形到相似三角形解决问题,通过前面方法来解决后面问题,在学习上是经验积累.这是中考热门题型.【考虑不全,出现漏解】如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是________.参考答案第2课时图形平移与旋转【考点概要】1.方向距离平行相等全等 2.相等旋转角全等【考题体验】1.5 2.(1)如图所示,△A1B1C1即为所求; (2)∵点A′坐标为(-2,2),由图可知,平移4个单位和6个单位时,刚好落在△A1B1C1的边界上,∴若要使向右平移后的A′落在△A1B1C1的内部,即4<a<6.【知识引擎】【解析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1.如图所示:△A1B1C1,即为所求; (2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.如图所示:△A2B2C2,即为所求.(3)画平移图形,必须找出平移的方向、距离;画旋转图形,必须找出旋转中心、方向、角度.运用图形的平移和旋转,要根据已知得出对应点坐标是解题关键.【例题精析】例1(1)∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=23(cm).故答案为:2 3. (2)①平移后的三角形如图1;②如图2,旋转后的三角形如图所示.例2(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,-2).例3 设AC 交A′B′于H ,∵∠A =45°,∠D =90°,∴△A ′HA 是等腰直角三角形,设AA′=x ,则阴影部分的底长为x ,高A′D=12-x ,∴x ·(12-x)=32,∴x =4或8,即AA′=4或8.【变式拓展】1.(1)A′D、A′F、A′E (2)①如图,△A 1B 1C 1即为所求; ②如图,△AB 2C 2即为所求,点B 2(4,-2),C 2(1,-3).2.(1)如图; (2)如图; (3)BB 1=22+22=22;弧B 1B 2的长=90π2180=2π2.点B 所走的路径总长=22+22π.3.π44.(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示; (3)∵OA=4,∠AOA 2=180°,∴点A 绕着点O 旋转到点A 2所经过的路径长为180π×4180=4π.【热点题型】【分析与解】(1)利用SAS 可证明△BAM≌△CAN,继而得出结论.证明:∵△ABC、△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN. (2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC、△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN.(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到AB AM =AC AN,根据∠BAM=∠BAC-∠MAC,∠CAN =∠MAN-∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论. 结论:∠ABC=∠ACN.理由如下:∵BA=BC ,MA =MN ,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC ∽△AMN ,∴AB AM =AC AN,又∵∠BAM=∠BAC-∠MAC,∠CAN =∠MAN-∠MAC,∴∠BAM =∠CAN,∴△BAM ∽△CAN ,∴∠ABC=∠ACN.【错误警示】15°或165°①当正三角形AEF 在正方形ABCD 的内部时,如图1,∵正方形ABCD 与正三角形AEF 的顶点A 重合,BE =DF ,∵AB =AD ,AE =AF ,∴△ABE ≌△ADF(SSS),∴∠BAE =∠FAD.∵∠EAF=60°,∴∠BAE +∠FAD=30°,∴∠BAE =∠FAD=15°.②当正三角形AEF 在正方形ABCD 的外部时,如图2,∵正方形ABCD 与正三角形AEF 的顶点A 重合,BE =DF ,AB =AD ,AE =AF ,∴△ABE ≌△ADF(SSS),∴∠BAE =∠FAD,∵∠EAF =60°,∴2∠BAE -∠EAF+90°=360°,∴∠BAE =165°.故答案为15°或165°.图1 图2本文档仅供文库使用。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

【中考数学】2018中考数学专题复习(九)图形的变换与四边形

【中考数学】2018中考数学专题复习(九)图形的变换与四边形

走进2018年中考初中数学基础巩固复习专题(九)图形的变换与四边形【知识要点】知识点1:图形的变换与镶嵌知识点2:四边形的定义、判定及性质知识点3:矩形、菱形及正方形的判定知识点4:矩形、菱形及正方形的性质知识点5:梯形的判定及性质【复习点拨】1、掌握平移、旋转、对称的性质,灵活地运用平移、旋转、对称解决生活中的问题。

2、掌握平行四边形、矩形、菱形、正方形及梯形的定义、判定、性质,利用这些特殊四边形进行综合计算和证明。

【典例解析】(2017山东枣庄)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,例题1:得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【考点】R1:生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.例题2:(2017山东枣庄)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【考点】PB:翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F 处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.例题3:(2017山东枣庄)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】LB:矩形的性质;KI:等腰三角形的判定;S9:相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC 得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:例题4:(2017山东枣庄)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】SD:作图﹣位似变换;Q4:作图﹣平移变换;T7:解直角三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.例题5:例题6:(2017甘肃张掖)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【考点】LB:矩形的性质;L7:平行四边形的判定与性质;L8:菱形的性质.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BE⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.例题7:(2017重庆B)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【分析】如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN各边的长,相加可得周长.【解答】解:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.(2017山东枣庄)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,例题8:使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,根据角平分线的逆定理得:∠HCG=∠BCG,由平行线的内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.【达标检测】一、选择题1. (2017浙江义乌)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21° C.23° D.24°【考点】LB:矩形的性质;JA:平行线的性质.【分析】由矩形的性质得出∠D=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,在Rt△ACD 中,由互余两角关系得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,在Rt△ACD中,3x+21°=90°,解得:x=23°;故选:C.2. (2017甘肃张掖)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.3.4.5.二、填空题:6.7.8. (2017浙江义乌)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为4600 m.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LD:矩形的判定与性质.【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:46009.(2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B 落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.10. (2017张家界)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为6﹣10 .【考点】R2:旋转的性质;LE:正方形的性质.【分析】根据旋转的想知道的PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(4﹣2)=6﹣10,故答案为:6﹣10.三、解答题11. (2017湖南岳阳)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD .求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD 是解题的关键.12. 如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.13. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.14.(2017浙江衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【考点】LO:四边形综合题.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式, =,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(, t),求出直线AD的解析式为y=﹣x+6,把G(, t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(, t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴, =,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(, t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(, t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(, t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或15. (2017浙江义乌)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)【考点】FI:一次函数综合题.【分析】(1)由题意点P与点C重合,可得点P坐标为(3,4);(2)分两种情形①当点P在边AD上时,②当点P在边AB上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P在线段CD上时.②如图2中,当点P在AB上时.③如图3中,当点P在线段AD上时.分别求解即可;【解答】解:(1)∵CD=6,∴点P与点C重合,∴点P坐标为(3,4).(2)①当点P在边AD上时,∵直线AD的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3.4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得m=﹣,∴P(﹣,4)根据对称性可知,P(,4)也满足条件.②如图2中,当点P在AB上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4).。

《中考专题复习——图形变换(2)》教学设计

《中考专题复习——图形变换(2)》教学设计

《中考专题复习——图形变换(2)》教学设计一、教材分析1.教材内容:初三数学(人教版)中考专题复习——图形变换中旋转变换的复习. 2.教材的地位、特点与作用运动与变化是数学研究中一种基本方法.平移、轴对称、旋转是图形变换的常见三种形式.平移与轴对称都是关于直线运动的,而旋转是关于点运动的.因此,旋转是对图形运动的完善与补充.从变换的角度来研究诸如等腰直角三角形、等边三角形、正方形等图形的结构有助于对这些几何图形有更本质的认识.通过对旋转内容的复习,既培养了学生动手操作的能力,又培养了他们用数学的方法解决有关问题的能力.通过对数与形的有关问题的解决,使得学生数学思维又提升一个层次.二、学情分析在学习本节课前,学生已经学了平移、旋转和轴对称的相关知识,对于图形的变换已经有所认识.初三的学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.经过调查分析,学生对旋转(中心对称)概念和性质的理解以及作旋转(中心对称)的图象掌握较好,但由于相比较平移和轴对称,旋转变换的图形关系打破了图形的均衡与匀称的关系,识别图形之间的关系相对困难,在本节课复习中,仍需教师的引导和梳理.三、课程目标(一)教学目标1.知识目标:会识别旋转图形,并能运用旋转变换解决一些有关图形变换的问题;灵活运用旋转解决有关综合题.2.过程性目标:使学生经历对旋转图形的分析、画图等过程,多角度地感受旋转图形的变换,让学生通过问题串的探究,培养学生探究、分析解决问题的能力.3.情感目标:通过合作学习,建立学生学习数学的自信,在问题研究过程,培养学生合作交流意识和探究新知的创新能力.(二)教学重点与难点教学重点:从变换角度观察图形,利用旋转性质分析问题,解决有关的综合题.教学难点:旋转性质的灵活运用,基本几何图形的旋转及识图、作图能力.四、教法学法分析教法:《中考专题复习——图形变换》我设计了 3 个课时,这节课是第二课时,主要采用“发展教学模式”,教学程式为:梳理基本知识——观察、分析迁移——解决“最近发展区”——编构发展的网络——归纳领悟,形成能力.教学各环节中,适时采用多媒体设备展示学生的成果,提高课堂的效率;借助几何画板演示动态的旋转图形,直观、形象地呈现图形的旋转过程,使信息技术与教学内容有机整合,真正为教学服务.学法:采用“世界咖啡”对话学习模式.“世界咖啡”模式的主要精神就是一组人,针对某个主题,发表各自的见解,互相意见碰撞,激发出意想不到的思维成果,是一种深度汇谈,有效的集体对话方式.每个活动要求做到:(一)请先独立完成活动;(二)组员交流活动情况,组员尝试解决有疑问的题目,可讨论、交流、请教;(三)桌长将问题汇总,归纳,选出代表谈谈小组的学习成果.五、课前准备学生:每位学生准备一个等腰直角三角形、一个等边三角形、一个正方形纸片教师:导学案、多媒体课件、几何画板动态演示图教学环节教学内容师生行为设计意图(二)观察分析迁移解决“最近发展区”活动二:【第一杯咖啡】:感受旋转变换.如图,已知∆AOB、∆COD 均是等腰直角三角形,∠AOB =∠COD = 90︒,连结 AC 和BD,(1)在图 1 中,点 A、O、D 在同一直线上,请判断 AC 与 BD 的关系?并说明理由;图 1(2)若∆COD 转到图 2 的位置,请判断 AC 与 BD 的关系?并说明理由;图 2学生独立尝试解决(1)、(2)组员交流做法.教师巡视,参与小组的交流.学生代表分享小组的学习成果.教师引导学生比较图 1 和图2 的区别与联系.学生可能出现的误区:学生往往会没有考虑 AC 与BD 的位置关系,教师应特别强调.通过【第一杯咖啡】的设计,让学生感受旋转变换的图形之间的关系,让学生尝试从运动的观点观察图形,并尝试运用旋转的性质解决问题,同时为解决【第二杯咖啡】打下基础.通过“世界咖啡”模式,让学生初步经历“独立思考、合作交流、及时反思”的过程.(三)编构活动三:【第二杯咖啡】:进行旋转变换变式一:在第(2)题的基础上改变∆COD 的位置,变成一道新的题目.请同学们画出图形,并判断 AC与 BD 的关系?(不需说明理由)学生先利用等腰直角三角形做实验,独立思考,然后尝试解决问题;同组学生交流新图形,并判断AC 与BD 的关系;小组代表展示小组交流的变式一的设计让学生尝试根据题目需要,有目的对原图形的进行变换,并让学生判断此时 AC与BD 的关系.让学生教学环节教学内容师生行为设计意图(四)归纳领悟,形成能力活动五:课堂小结学生自己总结,并在班上交流:本节课我学会了……使我感触最深的……我感到最困难的是……结合学生所述,教师给予指导.增强学生学习过程中的反思意识,这些及时的反思,能帮助学生举一反三、触类旁通、领悟方法.(五)作业布置1、把各小组的成果进行整理,完成在《导学案》中.2、完成题目:已知:正方形ABCD 中,∠MAN = 45 ,∠MAN 绕点A 顺时针旋转,它的两边分别交CB,DC (或它们的延长线)于点M,N .当∠MAN绕点A旋转到BM=DN时(如图 1),易证BM +DN =MN .(1)当∠MAN绕点A旋转到BM≠DN时(如图 2),线段BM,DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN 绕点A 旋转到如图 3 的位置时,线段BM,DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.教师布置作业学生课后完成首先要求总结课堂上各小组的成果,再一次梳理知识.然后通过题目 2(旋转变换的经典题型),进一步拓宽学生对旋转变换的认识,促进学生数学思考,从而激活学生的数学思维.七、板书设计八、教后反思:这是一节中考专题复习课,布鲁纳说过:“思维永远是从问题开始的.”如果教师依然采用程式化的复习方式,那么就很难调动学生的积极性,同时也很难唤醒学生求知的欲望.基于此,本课例的设计采用了“世界咖啡”模式,学生在小组内发表各自的见解,互相意见碰撞,激发出意想不到的思维成果,同时也增强语言表达能力.还让学生用相关的几何图形纸片做实验,亲身经历画图-观察-猜想-验证-归纳,得出旋转变换的特点.教学中,适时采用实物投影仪展示学生的成果,提高课堂的效率;借助几何画板演示动态的旋转图形,直观、形象地呈现图形的旋转过程,使信息技术与教学内容有机整合,真正为教学服务.通过课堂小结,增强学生学习过程中的反思意识,培养他们良好的学习习惯.近几年,中考数学试题的压轴题中常出现动态问题.这类问题,涉及的知识面广,综合性强,解答时有一定的难度,需要学生有一定的数学方式的理性思维,能进行数学思考.本节课中,“两杯咖啡”的设计充分体现学生“动手操作、独立思考、合作交流、及时反思”的过程.动手操作,能让学生学会数学思考;独立思考,能让学生体会数学思考;合作交流,能让学生完成数学思考;及时反思,能让学生发展数学思考.。

中考数学总复习 第七章 尺规作图及图形变换 第27讲(课堂本)课件

中考数学总复习 第七章 尺规作图及图形变换 第27讲(课堂本)课件
第十四页,共五十六页。
3.作一个角的平分线 作法:①在 OA,OB 上分别截取 OD,OE,使 OD=OE;② 分别以 D,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠ AOB 内交于点 C;③作射线 OC,则 OC 就是∠AOB 的平分线, 如图.
第十五页,共五十六页。
4.作线段的垂直平分线 作法:①分别以点 A 和 B 为圆心,大于21AB 的长为半径作弧, 两弧相交于点 C 和 D;②作直线 CD,则直线 CD 就是线段 AB 的垂直平分线,如图.
第十三页,共五十六页。
2.作一个角等于已知角 作法:①作射线 O′A′;②以点 O 为圆心,以任意长为半径 画弧,交 OA 于点 C,交 OB 于点 D;③以 O′为圆心,以 OC 的长为半径画弧,交 O′A′于点 C′;④以 C′为圆心,以 CD 的长为半径画弧,交前弧于点 D′;⑤过点 D′作射线 O′B′,则∠A′O′B′就是所求作的角,如图.
第十六页,共五十六页。
5.过定点作已知直线的垂线,不论点在已知直线上,还是在 已知直线外,都可以利用线段垂直平分线的作法作出. 6.过定点作已知直线的中线,可以利用线段垂直平分线的作 法作出.
第十七页,共五十六页。
课堂精讲
基本作图 (6 年 6 考) 1.(2018 赤峰)如图,D 是△ABC 中 BC 边上一点,∠C=∠ DAC. (1)尺规作图:作∠ADB 的平分线,交 AB 于 点 E(保留作图痕迹,不写作法); (2)在(1)的条件下,求证:DE∥AC.
解:如图,⊙O 即为所求.
第九页,共五十六页。
5.(2018 广西)如图,在平面直角坐标系中,已知△ABC 的三 个顶点坐标分别是 A(1,1),B(4,1),C(3,3).

2025年甘肃中考数学一轮复习中考命题探究第7章 图形的变化第28讲 图形的对称、平移与旋转

2025年甘肃中考数学一轮复习中考命题探究第7章 图形的变化第28讲 图形的对称、平移与旋转

经过中心对称变换后的图形
3.图形的折叠 实质
图形的对称
性质
(1)位于折痕两侧的图形关于折痕成轴对称; (2)折叠前后的两部分图形全等,对应边、角、线段、周长、 面积等均相等; (3)折叠前后对应点的连线被折痕垂直平分
考点 21 图形的平移与旋转
内容 图示 要素
性质
作图步骤
平移
(1)确定平移方向和平移距离;
(3)旋转前后的图形 点的对应点;
全等
(4)按原图形顺次连接得到
的各关键点的对应点,得
到旋转后的图形
甘肃5年中考真题及拓展 命题点 1 对称图形的判断(省卷:5年2考;兰州:2022.3) 1.[2022兰州3题]下列分别是2022年北京冬奥会、1998年长野冬奥会、 1992年阿尔贝维尔冬奥会、1984年萨拉热窝冬奥会会徽上的图案,其中 是轴对称图形的是( D )
轴对称
中心对称
(1)确定对称轴;
(1)确定对称中心;
(2)确定图形中的关键点;
(2)确定图形中的关键点;
作图 (3)由关键点向对称轴引垂线, (3)连接关键点和对称中心,并
方法 并延长相同长度,找到对应点;延长相同长度,找到对应点;
(4)连接各对应点,得到原图形 (4)连接各对应点,得到原图形
经过轴对称变换后的图形
拓展训练 6.[2024甘孜州]如图,Rt△ABC中,∠C=90°,AC=8,BC=4,折 叠△ABC,使点A与点B重合,折痕DE与AB交于点D,与AC交于点E, 则CE的长为_3_.
拓展训练
7.[2024雅安]如图,把矩形纸片ABCD沿对角线BD折叠,使点C落在点 E处,BE与AD交于点F,若AB=6,BC=8,则cos∠ABF的值是__2245__.

2018-2019年中考数学浙江省数学《第27讲图形与变换(1)》总复习讲解

2018-2019年中考数学浙江省数学《第27讲图形与变换(1)》总复习讲解

第27讲图形与变换第1课时图形轴对称与中心对称1.轴对称与轴对称图形2.中心对称与中心对称图形1.(2016·绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条2.(2016·湖州)为了迎接杭州G 20峰会,某校开展了设计“YJG 20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是( )3.(2017·衢州)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .544.(2017·丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是____________________.【问题】给出下列图形.(1)这些图形既是轴对称图形又是中心对称图形的是________;(2)画出平行四边形ABCD关于DC所在直线对称的平行四边形A1B1C1D1;(3)通过(1)、(2)解题体验,你想到哪些知识和方法?【归纳】通过开放式问题,归纳、疏理轴对称图形和中心对称图形;轴对称和中心对称以及画图.类型一轴对称与轴对称图形、中心对称与中心对称图形例1(1)(2015·无锡)下列图形中,是轴对称图形但不是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆(2)(2017·山东模拟)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.【解后感悟】(1)轴对称图形的关键是寻找对称轴,两边图形折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合;(2)解答的关键是菱形是中心对称图形,并判断出阴影部分的面积等于菱形的面积的一半.1.(1)如图,△ABC中,AB=AC,△ABC与△FEC关于点C成中心对称,连结AE,BF,当∠ACB为________度时,四边形ABFE为矩形( )A .90°B .30°C .60°D .45° (2)(2015·阳谷模拟)若∠AOB=45°,P 是∠AOB 内一点,分别作点P关于直线OA 、OB 的对称点P 1,P 2,连结OP 1,OP 2,则下列结论最准确的是( )A .OP 1⊥OP 2B .OP 1=OP 2C .OP 1≠OP 2D .OP 1⊥OP 2且OP 1=OP 2 (3)(2017·温州模拟)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.类型二 网格、平面直角坐标系中的图形变换例2 如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标;(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.【解后感悟】本题运用图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连结即可.2.(1)(2015·杭州模拟)如下图均为2×2的正方形网格,每个小正形的边长均为1,请分别在四个图中各画出一个与△ABC 成轴对称、顶点在格点上,且位置不同的三角形.(2)(2017·宁波)在4×4的方格中,△ABC 的三个顶点都在格点上.①在图1中画出与△ABC 成轴对称且与△ABC 有公共边的格点三角形(画出一个即可);②将图2中的△ABC 绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.(3)(2015·南昌)如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.类型三轴对称变换解决折叠问题例3(1)(2016·齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连结MC,将菱形ABCD翻折,使点A落在线段CM上的点E 处,折痕交AB于点N,则线段EC的长为.【解后感悟】此题运用菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形.(2)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF 交于点G,连结DG,B′G.求证:①∠1=∠2;②DG=B′G.【解后感悟】本题运用轴对称的性质、平行四边形的性质、全等三角形的证明等知识,首先折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换.另外本题考查了一种常见的解题思路,证明两条线段相等或两个角相等,可以证明它们所在的两个三角形全等.3.(1)(2015·莆田)数学兴趣小组开展以下折纸活动:①对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;②再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是( )A.25°B.30°C.36°D.45°(2)(2016·河南)如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连结AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.类型四轴对称变换解决最小值问题例4(2015·内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A.3B.23C.2 6 D. 6【解后感悟】此题主要运用了轴对称求最短路线以及正方形、等边三角形的性质,把线段PD与PE长度之和转化为两点之间线段最短是解题关键.4.(2016·百色)如图,正△ABC 的边长为2,过点B 的直线l⊥AB,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD +CD 的最小值是( )A .4B .3 2C .2 3D .2+ 3【探索研究题】(2017·台州)如图,矩形EFGH 四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AEEB为( )A .53B .2C .52D .4 【方法与对策】利用菱形的翻折变换(折叠问题)为背景给出问题的信息,借助基本图形,即阴影部分是菱形,揭示数量关系,设AB =4y ,BE =x ,从而得出阴影部分边长为4y -2x ,再由重叠部分面积是菱形ABCD 面积的116,可得阴影部分边长为AB4=y ,根据4y -2x =y ,求出x ,从而得出答案.【对称图形的概念理解不透】以下图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.矩形C.等腰梯形D.平行四边形参考答案第27讲图形与变换第1课时图形轴对称与中心对称【考点概要】1.重合对称轴重合对称轴垂直平分相等对称轴全等2.180°180°对称中心对称中心平分全等【考题体验】1.B 2.D 3.B 4.1 3【知识引擎】【解析】(1)①(2)(3)轴对称和轴对称图形、中心对称和中心对称图形以及对称变换画图.【例题精析】例1(1)A(2)12例2(1)如图所示:点A1的坐标(2,-4); (2)如图所示,点A2的坐标(-2,4).例3(1)如图,过点M 作MF⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =12,∴FM =DM×cos 30°=32,∴MC =FM 2+CF 2=7,∴EC =MC -ME =7-1.故答案为:7-1. (2)证明:①由折叠知,∠1=∠CEF ,又由平行四边形的性质知,CD ∥AB ,∴∠2=∠CEF,∴∠1=∠2. ②由折叠知,BF =B′F,又∵DE =BF ,∴DE =B′F,由①知∠1=∠2,∴GE =GF ,又由平行四边形的性质知,CD ∥AB ,∴∠DEF =∠EFB,由折叠知,∠EFB =∠EFB′,∴∠DEF =∠EFB′,即∠DEG +∠1=∠GFB′+∠2,∴∠DEG =∠GFB′,∴△DEG ≌△B ′FG(SAS),∴DG =B′G.例4 由题意,可得BE 与AC 交于点P.∵点B 与D 关于AC 对称,∴PD =PB ,∴PD +PE =PB +PE =BE 最小.∵正方形ABCD 的面积为12,∴AB =2 3.又∵△ABE 是等边三角形,∴BE =AB =2 3.故所求最小值为2 3.故选B .【变式拓展】 1.(1)C (2)D (3)32.(1)(2)①画出下列其中一个即可.②(3)①根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).②∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4-2=2,∴B,C的坐标分别是(-2,4),(-2,2),∵A1D1=2,D1的坐标是(0,3),A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(-2,4),(-2,2),(2,1),(2,3).3.(1)B(2)322或3554.A【热点题型】【分析与解】依题可得阴影部分是菱形.∴设BE=x,AB=4y.∴阴影部分边长为4y-2x.又∵重叠部分面积是菱形ABCD面积的116,∴阴影部分边长为AB4=y.∴4y-2x=y.∴x=32y,∴AE=(4-32)y=52y,∴AEEB=52y32y=53.故答案为A.【错误警示】B等边三角形只是轴对称图形,等腰梯形也只是轴对称图形,平行四边形只是中心对称图形,故选B.。

2018年湖南中考数学复习资料 20 图形的变换

2018年湖南中考数学复习资料 20 图形的变换

考点二十:图形的变换聚焦考点☆温习理解一、平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。

二、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2、性质(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

三、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

四、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

2018年中考数学基础复习专题(九)图形的变换与四边形

2018年中考数学基础复习专题(九)图形的变换与四边形

2018年中考数学基础复习专题(九)图形的变换与四边形【知识要点】知识点1:图形的变换与镶嵌知识点2:四边形的定义、判定及性质知识点3:矩形、菱形及正方形的判定知识点4:矩形、菱形及正方形的性质知识点5:梯形的判定及性质【复习点拨】1、掌握平移、旋转、对称的性质,灵活地运用平移、旋转、对称解决生活中的问题。

2、掌握平行四边形、矩形、菱形、正方形及梯形的定义、判定、性质,利用这些特殊四边形进行综合计算和证明。

【典例解析】1.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B. C. D.【考点】P3:轴对称图形.【分析】利用轴对称图形定义判断即可.【解答】解:下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是,故选A2.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A. B. C. D.﹣【考点】Q2:平移的性质.【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【考点】R2:旋转的性质.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.4.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=【考点】S1:比例的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边都除以2y,得=,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得=,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选:A.5.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.6.如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【考点】P8:利用轴对称设计图案;X6:列表法与树状图法.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.7.如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3).【考点】Q3:坐标与图形变化﹣平移.【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A 的坐标为(2,0),∴OC=OA=2,C(0,2),∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,∴点C的对应点坐标是(1,3).故答案为(1,3).8.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是①②(填序号)【考点】R2:旋转的性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③错误.故答案为:①②.9.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为6.【考点】S4:平行线分线段成比例.【分析】由a∥b∥c,可得=,由此即可解决问题.【解答】解:∵a∥b∥c,∴=,∴=,∴EF=6,故答案为6.10.正六边形的每个内角等于120°.【考点】L3:多边形内角与外角.【分析】根据多边形内角和公式即可求出答案.【解答】解:六边形的内角和为:(6﹣2)×180°=720°,∴正六边形的每个内角为:=120°,故答案为:120°11.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.12.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.13.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).【考点】Q4:作图﹣平移变换;P5:关于x轴、y轴对称的点的坐标.【分析】(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).14.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【考点】R2:旋转的性质.【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).15.如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD•CG=×2×2=2.学科网16.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【考点】T4:互余两角三角函数的关系;T5:特殊角的三角函数值.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.17.A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)【考点】T8:解直角三角形的应用.【分析】过点C作CD⊥AB与D,根据AC=20km,∠CAB=30°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可.【解答】解:过点C作CD⊥AB与D,∵AC=10km,∠CAB=30°,∴CD=AC=×20=10km,AD=cos∠CAB•AC=cos∠30°×20=10km,∵∠CBA=45°,∴BD=CD=10km,BC=CD=10≈14.14km∴AB=AD+BD=10+10≈27.32km.则AC+BC﹣AB≈20+14.14﹣27.32≈6.8km.答:从A地到B地的路程将缩短6.8km.18.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是5(立方单位),表面积是22(平方单位)(2)画出该几何体的主视图和左视图.【考点】U4:作图﹣三视图.【分析】(1)几何体的体积为5个正方体的体积和,表面积为20个正方形的面积;(2)主视图从左往右看3列正方形的个数依次为2,1,2;左视图1列正方形的个数为2.【解答】解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形(外面4个加里面2个),每个正方形的面积为1,∴组合几何体的表面积为22.故答案为:5,22;(2)作图如下:19.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示)【考点】U6:中心投影.【分析】(1)根据小军和小丽的身高与影长即可得到光源所在;(2)根据光源所在和小华的身高即可得到相应的影长.【解答】解:如图所示:(1)点P就是所求的点;(2)EF就是小华此时在路灯下的影子.20.如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠D=∠ECF,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)解:∵△ADE≌△FCE,∴AD=FC,∵AD=BC,AB=2BC,∴AB=FB,∴∠BAF=∠F=36°,∴∠B=180°﹣2×36°=108°.21.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.22.如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】连接AC,交BD于点O,由“平行四边形ABCD的对角线互相平分”得到OA=OC,OB=OD;然后结合已知条件证得OE=OF,则“对角线互相平分的四边形是平行四边形”,即可得出结论.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BF=ED,∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∴AE∥CF.Zxxk。

图形变换与坐标规律总结

图形变换与坐标规律总结

图形变换与坐标规律总结一、图形变换与坐标变化点的坐标的变化与图形的变换的关系,通过点的坐标的变化可得到图形变换的规律.总结如下:问题:在直角坐标系中描出点(1,2)、(2,6)、(3,2)、(4,6)、(5,2),并将各点用线段依次连接起来,观察所得的图形,你认为它是一个什么图形?解析:通过正确的作图可得,按题目的要求连接后,得到一个图形,如图1所示,这是一个“M”型。

图1 图2变换1:将图1中的点A、B、C、D、E的纵坐标不变,横坐标分别变成原来的2倍,再将所得的点A1、B1、C1、D1、E1按题目中的连接方式连接,所得的图形与原来的图形相比有什么变化?解析:点A1(2,2),B1(4,6),C1(6,2),D1(8,6),E1(10,2),按要求连接起来如图2所示.和原图形比较,M字图被横向拉长为原来的2倍.总结规律:(1)当纵坐标不变,横坐标变为原来的n(n>1)倍时,则图形被横向拉长原来n倍;(2)当横坐标不变,纵坐标变为原来的n(n>1)时,则图形被纵向拉长原来的n倍.(3)当横坐标、纵坐标分别变为原来的n(n>1)倍,则所得图形形状不变,大小变为原来的n2倍.变换2:将图1中的点A,B,C,D,E的点横坐标不变,纵坐标都加上3,再将所得A2,B2,C2,D2,E2点按题目的要求连接,所得的图形与原图形比较有什么变化?解析:点A2(1,5)、B2(2,9)、C2(3,5)、D2(4,9)、E2(5,5).按要求连接后,所得的图形如图3所示,与原来的图形相比,M字形大小、形状不变,而向上平移了3个单位长度.图3总结规律:(1)横坐标不变,纵坐标分别增加(或减少)n个单位长度,则图形向上(或向下)平移了n个单位长度.(n>0);(2)当纵坐标不变,横坐标分别增加(或减少)n个单位长度,则图形向右(或左)平移了n个单位长度.(n>0)变换3:将图1中的点A,B,C,D,E的横坐标,纵坐标都乘以-1,再将所得A3,B3,C3,D3,E3点按题目的要求连接,所得的图形与原图形比较有什么变化?图4解析: A3(-1,-2)、B3(-2,-6)、C3(-3,-2)、D3(-4,-6)、E3(-3,-2).所得的图形如图4所示,与原图形相比,M字形绕O点旋转了180度,即两个图形关于O点成中心对称.总结规律:(1)横、纵坐标分别乘以-1,则所得图形与原图形关于原点成中心对称;(2)当横坐标不变,纵坐标都乘以-1时,所得图形与原图形关于横轴成轴对称;(3)当纵坐标不变,横坐标都乘以-1时,所得的图形与原图形关于纵轴成轴对称.二、图形变换与坐标变化的应用例1如图5,已知△ABC三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2),这三个顶点的纵坐标不变,将横坐标都加上5,得到A′、B′、C′,写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比发生了怎样的变化?解析:A(-2,5)、B(-4,3)、C(-1,2)的纵坐标不变,横坐标都加上5,得到对应点的坐标分别是:A′(3,5)、B′(1,3)、C′(4,2),顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′C′B′与△ABC可以发现:△ABC向右平移5个单位长度后,得到的△A′B′C′.图5 图6例2如图6,已知△ABC三个顶点A(-2,4),B(-4,2),C(-1,1),将点A、B、C的横坐标,纵坐标都乘以-1,得对应点A′、B′、C′.写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比,发生了怎样的变化?解析:A(-2,4),B(-4,2),C(-1,1)的横、纵坐标都乘以-1,得对应点的坐标分别为:A′(2,-4),B′(4,-2),C′(1,-1).作出点A′、B′、C′,顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC绕坐标原点顺时针旋转180°后得到.例3如图7,已知△ABC,A(1,4),B(3,1),C(-2,2).将点A、B、C三点的纵坐标都乘以-1,横坐标不变,得对应点A′、B′、C′,写出点A′、B′、C′点的坐标,并画出△A′B′C′,比较△A′B′C′与△ABC,△A′B′C′与△ABC相比发生了怎样的变化?图7解析:A(1,4),B(3,1),C(-2,2)的纵坐标都乘以-1,得A′(1,-4),B′(3,-1),C′(-2,-2).顺次连接A′B′、B′C′、C′A′,得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC关于x轴对称得到的.例4已知△ABC各顶点的坐标分别是A(0,2),B(1,3),C(2,-2),各点的纵坐标不变,横坐标都乘以2,所得的对应点分别是A′、B′、C′,写出A′、B′、C′点的坐标,并连接A′B′、B′C′、C′A′,比较所得△A′B′C′与原△ABC,发生了怎样的变化?解析:A(0,2),B(1,3),C(2,-2)各点的横坐标分别乘以2,得对应点的坐标分别是A′(0,2),B′(2,3),C′(4,-2),顺次连结A′B′、B′C′、C′A′,得△A′B′C′′,可以发现△ABC 被横向拉伸了2倍.图8 图9例5 如图9,已知△ABC .各顶点的坐标分别是A (-4,0),B (1,0),C (-1,4),将各点的横坐标不变,纵坐标都乘以21后,得对应点为A ′、B ′、C ′,作出△A ′B ′C ′,将 △A ′B ′C ′与△ABC 比较,发生了怎样的变化? 解析:A (-4,0),B (1,0),C (-1,4)纵坐标乘以21,得对应点的坐标分别为A ′(-4,0),B ′(1,0),C ′(-1,2),顺次连结A ′B ′、B ′C ′、C ′A ′得△A ′B ′C ′,比较△A ′B ′C ′与△ABC ,△ABC 被纵向压缩了21. 试一试身手1、在直角坐标系中,(1)描出下列各点,并将这些点用线段依次连接起来.(-5,0),(-5,4),(-8,7),(-5,6),(-2,8),(-5,4);(2)把(1)中的图案向右平移10个单位,作出平移后的图案.2、如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3……已知:A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.参考答案1、解析:首先根据题意在下面的坐标系中描出各点,再依次用线段将其连接起来,即可得出坐标系中y轴左边的图形,再依据要求将各点分别向右平移10个单位,并依次连接各点即可得出y轴左边的图形向右平移10个单位后的图形,如下图所示.2、解析:观察给出的各点的坐标可知:对A、A1,A2,A3而言,后面各点的横坐标分别是前面点的横坐标的2倍,为2n(其中n为各点的下标序数).而纵坐标不变都为3;对2 n(其中n为B、B1,B2,B3而言后面各点的横坐标分别是前面点的横坐标的2倍,为1各点的下标序数),纵坐标不变都为0,由此可知第五次变换后A5的坐标为(32,3),B5的坐标为(64,0).。

2018年浙江省中考数学《第28讲:图形的相似(1)相似形的应用》总复习讲解

2018年浙江省中考数学《第28讲:图形的相似(1)相似形的应用》总复习讲解

第28讲图形的相似第1课时相似形1.比例线段考试内容考试要求比例线段定义在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.a 基本性质若ab=cd,则ad=bc.当b=c时,b2=ad,那么b是a、d的比例中项.黄金分割点C把线段AB分成两条线段AC和BC(AC>BC),如果AC是线段AB 和BC的比例中项,且ACAB=BCAC=5-12≈0.618,那么点C叫做线段AB 的黄金分割点.2.平行线分线段成比例考试内容考试要求基本事实两条直线被一组平行线所截,所得的对应线段.c 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.3.相似图形的有关概念考试内容考试要求相似图形____________________相同的图形称为相似图形.a相似多边形两个边数相同的多边形,如果它们的角分别 ,边 ,那么这两个多边形叫做相似多边形.相似多边形对应 的比叫做相似比.(1)相似多边形周长的比等于相似比; (2)相似多边形面积的比等于相似比的平方相似三角形 两个三角形的三个角分别_ ,三条边 ,则这两个三角形相似.当相似比等于1时,这两个三角形 . 4.相似三角形的判定考试内容考试要求判定1____________________于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.a判定2 三边 的两个三角形相似.判定3 两边 且夹角 的两个三角形相似. 判定4 两角分别 的两个三角形相似.判定5满足斜边和一条直角边 的两个直角三角形相似.拓展直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.5.相似三角形的性质考试内容考试要求性质1.相似三角形的对应角 ,对应边 .a2.相似三角形对应高的比、对应中线的比、对应角平分线的比和周长的比都等于 .3.相似三角形面积的比等于相似比的____________________.三角形 的重心三角形三条中线的交点叫做重心.三角形的重心分每一条中线成1∶2的两条线段.拓展如图,△ABC 中,∠ACB =90°,CD 是斜边AB 上的高,则有下列结论.①AC 2=AD·AB ; ②BC 2=BD·AB ; ③CD 2=AD·BD ; ④AB ·CD =AC·BC.考试内容考试要求基本 思想转化思想:证角相等,证比例线段往往转化为证相似三角形;测量问题,往往构建相似三角形,即实际问题转化为相似三角形问题来解决.b1.(2017·杭州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( )A .AD AB =12 B .AE EC =12 C .AD EC =12 D .DE BC =12 2.(2015·嘉兴)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F.AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则DE EF 的值为( )A .12B .2C .25D .353.(2015·嘉兴)如图是百度地图的一部分(比例尺1∶4000000).按图可估测杭州在嘉兴的南偏西____________________度方向上,杭州到嘉兴的图上距离约2cm ,则杭州到嘉兴的实际距离约为____________________.【问题】如图,点D 在△ABC 的边AC 上.(1)要判断△ADB 与△ABC 相似,添加一个条件是____________________; (2)若△ADB ∽△ABC ,AB =4,AD =2,则AC =________; (3)通过(1)、(2)解答,你能说出相似三角形哪些知识?【归纳】通过开放式问题,归纳、疏理比例、相似多边形有关概念,相似三角形性质、判定.类型一 比例性质、黄金分割等相关概念例1 (1)(2016·山西)宽与长的比是5-12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连结EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 【解后感悟】先根据正方形的性质以及勾股定理,求得DF 的长,再根据DF =GF 求得CG 的长,最后根据CG 与CD 的比值为黄金比,判断矩形DCGH 为黄金矩形.(2) 已知x 3=y 4=z6≠0,求x +y -z x -y +z 的值.【解后感悟】这类题我们一般是设辅助未知数k ,即比值为k ,把所有字母都用含有k 的式子表示出来,从而达到计算或化简的目的.1.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为( )A .12.36cmB .13.6cmC .32.36cmD .7.64cm2.(2015·扬州)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A 、B 、C 都在横格线上,若线段AB =4cm ,则线段BC = cm .类型二 相似多边形例2 已知矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ADCB 相似,则AD =( )A .5-12 B .5+12C . 3D .2 【解后感悟】解题关键是根据相似多边形的性质:对应边的比等于相似比.3.(2015·葫芦岛)如图,在矩形ABCD 中,AD =2,CD =1,连结AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连结AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,…,按此规律继续下去,则矩形AB n C n C n -1的面积为____________________.类型三 相似三角形的判定与性质例3 (2016·南充)已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC ∽△PAM ,延长BP 交AD 于点N ,连结CM.(1)如图1,若点M 在线段AB 上,求证:AP ⊥BN ;AM =AN ;(2)①如图2,在点P 运动过程中,满足△PBC ∽△PAM 的点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 是否成立?(不需说明理由)②是否存在满足条件的点P ,使得PC =12?请说明理由.【解后感悟】本题考查相似三角形的性质、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题.4.(1)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( )A .1∶ 3B .1∶2C .1∶3D .1∶4 (2) (2016·河北)如图,△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( )5.(1)(2015·自贡)将一副三角板按图叠放,则△AOB 与△DOC 的面积之比等于 .(2)(2015·无锡市南长区模拟)如图,△ABC 中,AB =5,BC =3,CA =4,D 为AB 的中点,过点D 的直线与BC 所在直线交于点E ,若直线DE 截△ABC 所得的三角形与△ABC相似,则DE=.类型四与相似三角形相关的问题例4如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4 B.5 C.6 D.7【解后感悟】本题运用圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(1)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连结DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()(2)(2015·杭州模拟)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新的三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对(3) (2015·滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数y =-1x 、y =2x 的图象交于B 、A 两点,则∠OAB 的大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变 7.(2016·龙东)已知,在平行四边形ABCD 中,点E 在直线AD 上,AE =13AD ,连结CE 交BD 于点F ,则EF ∶FC 的值是 .【课本改变题】教材母题--浙教版教材九上第149页第5题课本中有一道作业题:有一块三角形余料ABC ,它的边BC =120mm ,高AD =80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【方法与对策】本题是课本改变题,试题设置上主要是三角形和矩形的组合,通过基本图形是相似三角形,揭示对应边成比例的关系式来解决问题,再深入探究,规律性较强,这种题型是中考常用的命题方式.【找不准相似三角形中的对应边】如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是()A.AB2=BC·BD B.AB2=AC·BDC.AB·AD=BD·BC D.AB·AD=AD·CD参考答案第28讲 图形的相似第1课时 相似形【考点概要】2.成比例 3.形状 相等 成比例 边 相等 成比例 全等 4.平行 成比例 成比例 相等 相等 成比例 5.相等 成比例 相似比 平方【考题体验】1.B 2.D 3.45 80km【知识引擎】【解析】(1)添加条件是∠ABD =∠C 或∠ADB =∠ABC 或者AD AB =AB AC; (2)由△ADB ∽△ABC ,得AD AB =AB AC,得AC =8; (3)相似三角形知识:性质、判定等. 【例题精析】例1 (1)设正方形的边长为2,则CD =2,CF =1.在直角三角形DCF 中,DF =12+22=5,∴FG =5,∴CG =5-1,∴CG CD =5-12,∴矩形DCGH 为黄金矩形.故选D . (2)设x 3=y 4=z 6=k(k ≠0),根据题意,得x =3k ,y =4k ,z =6k ,所以x +y -z x -y +z =3k +4k -6k 3k -4k +6k =k 5k=15. 例2 B例3(1)如图1中,∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠DAB =∠ABC =∠BCD =∠D =90°,∵△PBC ∽△PAM ,∴∠PAM =∠PBC ,PM PC =AM BC =PA PB,∵∠PBC +∠PBA =90°,∴∠PAM +∠PBA =90°,∴∠APB =90°,∴AP ⊥BN ,∵∠ABP =∠ABN ,∠APB =∠BAN =90°,∴△BAP ∽△BNA ,∴PA PB =AN AB ,∴AN AB =AM BC,∵AB =BC ,∴AN =AM. (2)①仍然成立,AP ⊥BN 和AM =AN.理由如图2中,∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠DAB =∠ABC =∠BCD =∠D =90°,∵△PBC ∽△PAM ,∴∠PAM =∠PBC ,PM PC =AM BC =PA PB,∵∠PBC +∠PBA =90°,∴∠PAM +∠PBA =90°,∴∠APB =90°,∴AP ⊥BN ,∵∠ABP =∠ABN ,∠APB =∠BAN =90°,∴△BAP ∽△BNA ,∴PA PB =AN AB ,∴AN AB =AM BC,∵AB =BC ,∴AN =AM. ②这样的点P 不存在.理由:假设PC =12,如图3中,以点C 为圆心12为半径画圆,以AB 为直径画圆,CO =BC 2+BO 2=52>12+12,∴两个圆外离,∴∠APB <90°,这与AP ⊥PB 矛盾,∴假设不可能成立,∴满足PC =12的点P 不存在. 例4 设AE =x ,则AC =x +4,∵AC 平分∠BAD ,∴∠BAC =∠CAD ,∵∠CDB =∠BAC(圆周角定理),∴∠CAD =∠CDB ,∵∠ACD =∠DCE ,∴△ACD ∽△DCE ,∴CD CE =AC DC ,即64=x +46,解得:x =5.故选B . 【变式拓展】1.A 2.12 3.5n22n -1 4.(1)C (2)C 5.(1)1∶3 (2)2或103 6.(1)D (2)A (3)D 7.23或43 【热点题型】【分析与解】(1)设矩形的边长PN =2y mm ,则PQ =y mm ,由条件可得△APN ∽△ABC ,∴PN BC =AE AD ,即2y 120=80-y 80,解得y =2407,∴PN =2407×2=4807(mm ),答:这个矩形零件的两条边长分别为2407mm ,4807mm ; (2)设PN =x mm ,由条件可得△APN ∽△ABC ,∴PN BC =AE AD ,即x 120=80-PQ 80,解得PQ =80-23x.∴S =PN·PQ =x(80-23x)=-23x 2+80x =-23(x -60)2+2400,∴S 的最大值为2400mm 2,此时PN =60mm ,PQ =80-23×60=40(mm ). 【错误警示】A .∵△ABC ∽△DBA ,∴AB BD =BC AB,∴AB 2=BD·BC.。

2025年广西九年级中考数学一轮复习课件 第27讲图形的变换

2025年广西九年级中考数学一轮复习课件 第27讲图形的变换
点 C 落在点 E 处, BE 与 AD 交于点 F . 若 AB =6, BC =8,则
cos ∠ ABF 的值是


.

答题规范
示例:(RJ九上P62第4题改编)
(8分)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均
在格点上).
(1)在图①中先画出一个以格点 P 为顶点的等腰三角形 PAB ,再画
4.

4
.

典型例题
考查点 图形的旋转
1. 如图,已知△ ABC 中,∠ CAB =20°,∠ ABC =30°,将
△ ABC 绕 A 点逆时针旋转50°得到△AB'C',以下结论:① BC =
B'C';② AC ∥ C'B';③C'B'⊥BB';④∠ABB'=∠ACC'.正确的
有(
B )
A. ①②③
B. ①②④
C. ①③④
D. ②③④
变式训练
1. (2024·长春)一块含30°角的直角三角板 ABC 按如图所示的方
式摆放,边 AB 与直线 l 重合, AB =12 cm.现将该三角板绕点 B
顺时针旋转,使点 C 的对应点C'落在直线 l 上,则点 A 经过的路
径长至少为

cm(结果保留π).
经过平移所得的图形中,两组对应点的连线平行(或在同一条直
线上)且相等.
8.运用图形的轴对称、旋转、平移进行图案设计.
近五年广东省中考省卷考情
考点
2020
图形的平移

图形的对称
2021
2022
T12/4分 T6/3分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27讲图形与变换第1课时图形轴对称与中心对称1.轴对称与轴对称图形2.中心对称与中心对称图形1.(2016·绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A.1条 B .2条 C .3条 D .4条2.(2016·湖州)为了迎接杭州G 20峰会,某校开展了设计“YJG 20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是( )3.(2017·衢州)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .544.(2017·丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是____________________.【问题】给出下列图形.(1)这些图形既是轴对称图形又是中心对称图形的是________;(2)画出平行四边形ABCD 关于DC 所在直线对称的平行四边形A 1B 1C 1D 1;(3)通过(1)、(2)解题体验,你想到哪些知识和方法?【归纳】通过开放式问题,归纳、疏理轴对称图形和中心对称图形;轴对称和中心对称以及画图.类型一 轴对称与轴对称图形、中心对称与中心对称图形例1 (1)(2015·无锡)下列图形中,是轴对称图形但不是中心对称图形的是( )A .等边三角形B .平行四边形C .矩形D .圆(2)(2017·山东模拟)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.【解后感悟】(1)轴对称图形的关键是寻找对称轴,两边图形折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合;(2)解答的关键是菱形是中心对称图形,并判断出阴影部分的面积等于菱形的面积的一半.1.(1)如图,△ABC中,AB=AC,△ABC与△FEC关于点C成中心对称,连结AE,BF,当∠ACB为________度时,四边形ABFE为矩形()A.90°B.30°C.60°D.45°(2)(2015·阳谷模拟)若∠AOB=45°,P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1,P2,连结OP1,OP2,则下列结论最准确的是()A.OP1⊥OP2B.OP1=OP2C.OP1≠OP2D.OP1⊥OP2且OP1=OP2(3)(2017·温州模拟)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.类型二网格、平面直角坐标系中的图形变换例2如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.【解后感悟】本题运用图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连结即可.2.(1)(2015·杭州模拟)如下图均为2×2的正方形网格,每个小正形的边长均为1,请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.(2)(2017·宁波)在4×4的方格中,△ABC的三个顶点都在格点上.①在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);②将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.(3)(2015·南昌)如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.类型三轴对称变换解决折叠问题例3(1)(2016·齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连结MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为.【解后感悟】此题运用菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形.(2)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连结DG,B′G.求证:①∠1=∠2;②DG=B′G.【解后感悟】本题运用轴对称的性质、平行四边形的性质、全等三角形的证明等知识,首先折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换.另外本题考查了一种常见的解题思路,证明两条线段相等或两个角相等,可以证明它们所在的两个三角形全等.3.(1)(2015·莆田)数学兴趣小组开展以下折纸活动:①对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;②再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是()A.25°B.30°C.36°D.45°(2)(2016·河南)如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连结AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′为线段MN的三等分点时,BE的长为.类型四轴对称变换解决最小值问题例4(2015·内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A. 3 B.2 3 C.2 6 D. 6【解后感悟】此题主要运用了轴对称求最短路线以及正方形、等边三角形的性质,把线段PD与PE长度之和转化为两点之间线段最短是解题关键.4.(2016·百色)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A .4B .3 2C .2 3D .2+ 3【探索研究题】(2017·台州)如图,矩形EFGH 四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH ,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB为( )A .53B .2C .52D .4 【方法与对策】利用菱形的翻折变换(折叠问题)为背景给出问题的信息,借助基本图形,即阴影部分是菱形,揭示数量关系,设AB =4y ,BE =x ,从而得出阴影部分边长为4y -2x ,再由重叠部分面积是菱形ABCD 面积的116,可得阴影部分边长为AB 4=y ,根据4y -2x =y ,求出x ,从而得出答案.【对称图形的概念理解不透】以下图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .矩形C .等腰梯形D .平行四边形参考答案第27讲 图形与变换第1课时 图形轴对称与中心对称【考点概要】1.重合 对称轴 重合 对称轴 垂直平分 相等 对称轴 全等 2.180° 180° 对称中心 对称中心 平分 全等【考题体验】1.B 2.D 3.B 4.13【知识引擎】【解析】(1)① (2)(3)轴对称和轴对称图形、中心对称和中心对称图形以及对称变换画图.【例题精析】例1 (1)A (2)12例2 (1)如图所示:点A 1的坐标(2,-4); (2)如图所示,点A 2的坐标(-2,4).例3(1)如图,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A =60°,M为AD 中点,∴2MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =12,∴FM =DM ×cos 30°=32,∴MC =FM 2+CF 2=7,∴EC =MC -ME =7-1.故答案为:7-1. (2)证明:①由折叠知,∠1=∠CEF ,又由平行四边形的性质知,CD ∥AB ,∴∠2=∠CEF ,∴∠1=∠2. ②由折叠知,BF =B′F ,又∵DE =BF ,∴DE =B′F ,由①知∠1=∠2,∴GE =GF ,又由平行四边形的性质知,CD ∥AB ,∴∠DEF =∠EFB ,由折叠知,∠EFB =∠EFB′,∴∠DEF =∠EFB′,即∠DEG +∠1=∠GFB′+∠2,∴∠DEG =∠GFB′,∴△DEG ≌△B ′FG(SAS),∴DG =B′G .例4 由题意,可得BE 与AC 交于点P.∵点B 与D 关于AC 对称,∴PD =PB ,∴PD +PE =PB +PE =BE 最小.∵正方形ABCD 的面积为12,∴AB =2 3.又∵△ABE 是等边三角形,∴BE =AB =2 3.故所求最小值为2 3.故选B .【变式拓展】1.(1)C (2)D (3)32.(1)(2)①画出下列其中一个即可.②(3) ①根据对称中心的性质,可得对称中心的坐标是D 1D 的中点,∵D 1,D 的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5). ②∵A ,D 的坐标分别是(0,4),(0,2),∴正方形ABCD 与正方形A 1B 1C 1D 1的边长都是:4-2=2,∴B ,C 的坐标分别是(-2,4),(-2,2),∵A 1D 1=2,D 1的坐标是(0,3),A 1的坐标是(0,1),∴B 1,C 1的坐标分别是(2,1),(2,3),综上,可得顶点B ,C ,B 1,C 1的坐标分别是(-2,4),(-2,2),(2,1),(2,3).3. (1)B (2)322或3554.A【热点题型】【分析与解】依题可得阴影部分是菱形.∴设BE =x ,AB =4y.∴阴影部分边长为4y-2x.又∵重叠部分面积是菱形ABCD 面积的116,∴阴影部分边长为AB 4=y.∴4y -2x =y.∴x =32y ,∴AE =(4-32)y =52y ,∴AE EB =52y 32y =53.故答案为A . 【错误警示】B 等边三角形只是轴对称图形,等腰梯形也只是轴对称图形,平行四边形只是中心对称图形,故选B .。

相关文档
最新文档