高等数学基础练习题

合集下载

高等数学练习题(附答案)

高等数学练习题(附答案)

《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。

高等数学习题

高等数学习题

高等数学练习题一1、一平面过点(1,0,1)-,且平行于向量()2,1,1a →=和()1,1,0b →=-,试求这平面方程.2、求过点(3,1,2)-且通过直线43521x y z -+==的平面方程.3、求过点(3,2,5)-且与两平面43x z -=和251x y z --=的交线平行的直线方程。

4、求过点(0,2,4)且与两平面21x z +=和32y z -=的交线平行的直线方程。

5、求过点()3,0,1-且与平面375120x y z -+-=平行的平面方程.6、求过点(4,1,3)-且垂直于直线31215x y z --==的平面方程. 7、已知某直线过点(1,2,4)-, 且与平面2340x y z -+-=垂直, 则该直线方程8、已知某直线过点 (4,1,3)-, 且平行于直线31215x y z --==,则该直线方程 9、求旋转抛物面221z x y =+-在点(2,1,4)处的切平面方程和法线方程。

10、求曲面3z e z xy -+=在点(2,1,0)处的切平面方程和法线方程。

11、求曲线32,,x t y t z t ===在对应于01t =的点处的切线及法平面方程.12、求曲线21,,1t t x y z t t t +===+在对应于01t =的点处的切线及法平面方程.高等数学练习题二1、设sin u z e v =, 而u xy =, v x y =+. 求z x ∂∂和z y∂∂. 2、设2ln z u v =, 而x u y =, 32v x y =-. 求z x ∂∂和z y∂∂. 3、设23,sin ,,x y z e x t y t -===求dz dt . 4、设22z u v =+,而,u x y v x y =+=-,求,z z x y∂∂∂∂.5、计算二重积分Dd σ⎰⎰,其中D 由两条抛物线y =2y x =所围成闭区域.6、利用极坐标计算22xy D e dxdy --⎰⎰,其中D 是由圆周222x y a +=所围成的闭区域.7、利用极坐标计算22xy D e dxdy +⎰⎰,其中D 是由圆周224x y +=所围成的闭区域.8、计算22ln(1)Dx y d σ++⎰⎰, 其中D 是由圆周221x y +=及坐标轴所围成的第一象限内的闭区域。

高数极限基础练习题

高数极限基础练习题

高数极限基础练习题一、选择题(每题3分,共15分)1. 极限 \(\lim_{{x \to 0}} \frac{\sin x}{x}\) 的值为:A. 0B. 1C. 2D. 无穷2. 函数 \( f(x) = x^2 \sin(\frac{1}{x}) \) 在 \( x = 0 \) 处的极限为:A. 0B. 1C. 无定义D. \( \frac{\pi}{2} \)3. 函数 \( g(x) = \frac{\sin x}{x} \) 在 \( x = \pi \) 处的极限为:A. 0B. 1C. \(\frac{1}{\pi}\)D. \(-1\)4. 极限 \(\lim_{{n \to \infty}} \frac{n^2}{e^n}\) 的值为:A. 0B. 1C. 无穷D. \(\frac{1}{2}\)5. 函数 \( h(x) = \frac{1}{1+x^2} \) 在 \( x = 2 \) 处的极限为:A. \(\frac{1}{5}\)B. \(\frac{1}{4}\)C. \(\frac{1}{3}\)D. \(\frac{1}{2}\)二、填空题(每空2分,共20分)6. 极限 \(\lim_{{x \to 1}} (x^2 - 1)\) 等于______。

7. 函数 \( f(x) = \frac{\ln(x)}{x} \) 在 \( x = e \) 处的极限为______。

8. 极限 \(\lim_{{x \to \infty}} \frac{\sin x}{x}\) 存在,其值为______。

9. 函数 \( g(x) = x - \tan^{-1}(x) \) 在 \( x = 1 \) 处的极限为______。

10. 极限 \(\lim_{{x \to 0}} \frac{e^x - 1}{x}\) 的值为______。

三、计算题(每题10分,共30分)11. 计算极限 \(\lim_{{x \to 0}} \frac{\ln(1+x)}{x}\)。

高中数学练习题基础

高中数学练习题基础

高中数学练习题基础一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x² 3x + 2 = 0}(1) 若A∩B = ∅,则A∪B = A(2) 对于任意实数集R,有R⊆R(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(1) f(x) = x³ 3x(2) g(x) = |x| 2二、三角函数(1) sin 45°(2) cos 60°(3) tan 30°2. 已知sin α = 1/2,α为第二象限角,求cos α的值。

(1) y = sin(2x + π/3)(2) y = cos(3x π/4)三、数列(1) an = n² + 1(2) bn = 2^n 1(1) 2, 4, 8, 16, 32, …(2) 1, 3, 6, 10, 15, …(1) 1, 4, 9, 16, 25, …四、平面向量1. 已知向量a = (2, 3),求向量a的模。

2. 计算向量a = (4, 5)与向量b = (3, 2)的数量积。

(1) a = (2, 1),b = (4, 2)(2) a = (1, 3),b = (2, 1)五、平面解析几何(1) 经过点(2, 3)且斜率为2的直线(2) 经过点(1, 3)且垂直于x轴的直线(1) 圆心在原点,半径为3的圆(2) 圆心在点(2, 1),半径为√5的圆(1) 点(1, 2)到直线y = 3x 1的距离(2) 点(2, 3)到直线2x + 4y + 6 = 0的距离六、立体几何(1) 正方体边长为2(2) 长方体长、宽、高分别为3、4、52. 已知正四面体棱长为a,求其体积。

(1) 正方体A边长为2,正方体B边长为4(2) 长方体A长、宽、高分别为3、4、5,长方体B长、宽、高分别为6、8、10七、概率与统计1. 抛掷一枚硬币10次,求恰好出现5次正面的概率。

高等数学基础练习题

高等数学基础练习题

高等数学基础练习题函数(一)单项选择题⒈下列各函数对中,( )中的两个函数相等.A. 2)()(x x f =,x x g =)(B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(=D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于()对称.A. 坐标原点B. x 轴C. y 轴D. x y =⒊下列函数中为奇函数是( ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是( ).A. 1+=x yB. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim =∞→x xx D. 01sin lim =∞→x x x⒍当0→x 时,变量( )是无穷小量.A. x xsin B. x 1C. x x 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( ),则)(x f 在点0x 连续。

A. )()(lim 00x f x f x x =→B. )(x f 在点0x的某个邻域内有定义C. )()(lim 00x f x f x x =+→D. )(lim )(lim 00x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 .⒉已知函数x x x f +=+2)1(,则=)(x f .⒊=+∞→x x x)211(lim . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 . ⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 .导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim 0( ). A. )0(f B. )0(f 'C. )(x f 'D. 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim 000( ). A. )(20x f '- B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim 0( ). A. e B. e 2C. e 21D. e 41 ⒋设)99()2)(1()(---=x x x x x f ,则=')0(f ( ). A. 99 B. 99-C. !99D. !99-⒌下列结论中正确的是( ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续.(二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,则=')0(f .⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d . ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 .⒋曲线x x f sin )(=在)1,2π(处的切线方程是 . ⒌设x x y 2=,则='y .⒍设x x y ln =,则=''y .导数的应用(一)单项选择题⒈若函数)(x f 满足条件( ),则存在),(b a ∈ξ,使得a b a f b f f --=)()()(ξ. A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是( ).A. )2,(-∞B. )1,1(-C. ),2(∞+D. ),2(∞+-⒊函数542-+=x x y 在区间)6,6(-内满足( ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的( ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足( ),则)(x f 在0x 取到极小值.A. 0)(,0)(00=''>'x f x fB. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是( ).A. 单调减少且是凸的B. 单调减少且是凹的C. 单调增加且是凸的D. 单调增加且是凹的(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f . ⒊函数)1ln(2x y +=的单调减少区间是 .⒋函数2e )(x xf =的单调增加区间是 .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 . ⒍函数3352)(x x x f -+=的拐点是 .(三)计算题⒈设函数 ⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.⒉求函数xx y 12lg -=的定义域.⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.⒋求x xx 2sin 3sin lim 0→.⒌求)1sin(1lim 21+--→xx x .⒍求x xx 3tan lim 0→.⒎求x x x sin 11lim 20-+→.⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性.。

高等数学第一章练习题

高等数学第一章练习题

第一章函数、极限、连续一、单项选择题1.区间[a,+∞),表示不等式()2.若3.函数是()。

(A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。

5.函数6.函数7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点()(A)必不存在(B)至多只有有限多个(C)必定有无穷多个(D)可以有有限个,也可以有无限多个8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数)(A)数列{ x n }必有极限,但不一定等于a(B)数列{ x n }极限存在且一定等于a(C)数列{ x n }的极限不一定存在(D)数列{ x n }一定不存在极限9.数列(A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限10.极限定义中ε与δ的关系是()(A)先给定ε后唯一确定δ(B)先确定ε后确定δ,但δ的值不唯一(C)先确定δ后给定ε(D)ε与δ无关11.任意给定12.若函数f(x)在某点x0极限存在,则()(A) f(x)在 x0的函数值必存在且等于极限值(B) f(x)在x0的函数值必存在,但不一定等于极限值(C) f(x)在x0的函数值可以不存在(D)如果f(x0)存在则必等于极限值13.如果14.无穷小量是()(A)比0稍大一点的一个数(B)一个很小很小的数(C)以0为极限的一个变量(D)0数15.无穷大量与有界量的关系是()(A)无穷大量可能是有界量(B)无穷大量一定不是有界量(C)有界量可能是无穷大量(D)不是有界量就一定是无穷大量16.指出下列函数中当X→0+ 时,()为无穷大量。

17.若18.设19.求20.求21.求22.求23.求24.无穷多个无穷小量之和()(A)必是无穷小量(B)必是无穷大量(C)必是有界量(D)是无穷小,或是无穷大,或有可能是有界量25.两个无穷小量α与β之积αβ仍是无穷小量,且与α或β相比()。

高等数学基础样题(试题及答案)

高等数学基础样题(试题及答案)

高等数学基础样题(试题及答案)一、单项选择题1下列各函数对中,( C )中的两个函数相等.A.2)()(x x f =,x x g =)(B.2)(x x f =,xx g =)(C.3ln )(x x f =,xx g ln 3)(= D.1)(+=x x f ,11)(2−−=x x x g ⒉设函数)(x f 的定义域为),(+∞−∞,则函数)()(x f x f −+的图形关于( C )对称.A.坐标原点B.x 轴C.y 轴D.x y =3.设函数)(x f 的定义域为),(+∞−∞,则函数)()(x f x f −−的图形关于( A )对称.A.坐标原点 B.x 轴 C.y 轴 D.x y =4.下列函数中为奇函数是( B )A.)1ln(2x y += B.xx y cos = C.2xx a a y −+=D.)1ln(x y +=5.下列函数中为偶函数是( D )A.xx y sin 1)(+= B.xx y 2= C.xx y cos = D.)1ln(2x y +=6.下列极限存计算不正确的是( D ).A.12lim 22=+∞→x x xB.0)1ln(lim 0=+→x x C.0sin lim =∞→xxx D.01sinlim =∞→xx x 7.当0→x 时,变量( C )是无穷小量.A. x x sinB. x 1C. xx 1sinD.2)ln(+x 8.当0→x 时,变量( D )是无穷小量.(A) x 1(B) xx sin (C)x2(D)1)ln(+x 9.当0→x 时,变量( C )是无穷小量.(A) x 1(B) xx sin (C)1e −x (D)2x x 10.当0→x 时,下列变量中( D )是无穷小量.(A) x 1sin (B) xxsin (C) 21e (D)1)ln(2+x 11.当0→x 时,下列变量中( A )是无穷大量.(A) x x 21+ (B) x (C)0.001x (D)x−212.设)(x f 在0x 可导,则=−−→hx f h x f h 2)()2(lim 000( D ).A.)(20x f ′−B.)(0x f ′C. )(20x f ′ D.)(0x f ′−13.设)(x f 在0x 可导,则=−−→hx f h x f h )()2(lim000( A ).A.)(20x f ′− B.)(0x f ′ C. )(20x f ′ D.)(0x f ′−14.设)(x f 在0x 可导,则=−−→hx f h x f h 2)()(lim000( C ).A.)(210x f ′B.)(20x f ′C.)(210x f ′− D.)(20x f ′−15.设x x f e )(=,则=∆−∆+→∆xf x f x )1()1(lim 0(B ).(A)e 2(B)e (C)e41(D)e 2116.若)(x f 的一个原函数是x1,则=′)(x f ( D ).A.xln B. 21x− C. x 1 D.32x 17.若x x f cos )(=,则=′∫x x f d )(( B ).A.c x +sinB.cx +cos C.c x +−sin D.c x +−cos 18.若x x f sin )(=,则=′∫x x f d )(( A ).A.c x +sinB.cx +cos C.cx +−sin D.cx +−cos 19.若∫+=c x F x x f )(d )(,则∫=x x f xd )(ln 1( B ). (A))(ln x F (B)cx F +)(ln (C)c x F x+)(ln 1(D)cxF +)1(20.若∫+=c x F x x f )(d )(,则∫=x x f xd )(1(B ). (A))(x F (B)cx F +)(2(C)c x F x+)(1(D)c x F +)(2121.下列无穷限积分收敛的是( B ).A.∫+∞1d 1x x B.∫+∞−0d e x xC.∫+∞1d 1xxD.∫+∞12d 1x x 22.下列无穷限积分收敛的是( C ).(A)xx d 11∫∞+(B)x xd 11∫∞+(C)xx d 1134∫∞+(D)xx d sin 1∫+∞23.下列无穷限积分收敛的是( D ).(A)∫+∞1d 1x x(B)∫+∞0d e xx(C)∫+∞1d 1xx(D)∫+∞12d 1x x 24.下列无穷限积分收敛的是( A ).(A)∫+∞13d 1xx (B)∫+∞cos xdx(C)dxe x ∫+∞13(D)∫+∞1d 1x x 25.下列无穷限积分收敛的是( B ).(A)∫+∞0xd e x(B)dx x ∫+∞021(C)dx x∫+∞11(D)∫+∞1d 1xx26.下列等式中正确的是( B ).(A)d d ()arctan 112+=x x x (B)d d ()12x xx =−(C)x x x d 2)2ln 2(d =(D)d d (tan )cot x x x=27.下列等式中正确的是( C ).(A)dx xx 1)1(d 2−=(B)dxx x2)1(d =(C)xx xd 2)2ln 2(d =(D)d d (tan )cot x x x =28.下列等式成立的是( A ).(A))(d )(d dx f x x f x =∫(B) )(d )(x f x x f =′∫(C))(d )(d x f x x f =∫(D))()(d x f x f =∫29.函数2e e xx y −=−的图形关于( A)对称.(A)坐标原点(B)x 轴(C)y 轴(D)xy =30.函数222xx y +=−的图形关于( A)对称.(A)坐标原点(B)y 轴(C)x 轴(D)x y =31.在下列指定的变化过程中,( C )是无穷小量.(A))(1sin∞→x xx (B))0(1sin→x x(C))0()1ln(→+x x (D))(e 1∞→x x32.在下列指定的变化过程中,( A )是无穷小量.(A))0(1sin→x xx (B))(1sin∞→x xx (C))0(ln →x x (D))(e ∞→x x 33.设)(x f 在0x 可导,则=−−→hx f h x f h 2)()2(lim 000( C ). (A))(0x f ′(B))(20x f ′(C))(0x f ′−(D))(20x f ′−35.下列积分计算正确的是( D ).(A)0d sin 11=∫−x x x (B)1d e 0=∫∞−−x x (C)πd 2sin 0=∫∞−x x (D)d cos 11=∫−x x x 36.下列积分计算正确的是( D ).(A)0d sin 11=∫−x x x (B)1d e 0=∫∞−−x x (C)πd 2sin 0=∫∞−x x (D)d cos 112=∫−x x x 37.下列积分计算正确的是( B ).(A)0d )(11=+∫−−x e e x x (B)0d )(e 11=−∫−−x e x x (C)0d 112=∫−x x (D)0d 11=∫−x x38.=∫x x xf xd )(d d 2( A ). (A))(2x xf (B)xx f d )(21(C))(21x f (D)xx xf d )(239.函数622+−=x x y 在区间)5,2(内满足( D ).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升40.函数62−−=x x y 在区间)55(,−内满足( A ).A.先单调下降再单调上升 B.单调下降C.先单调上升再单调下降 D.单调上升41.函数362−−=x x y 在区间)4,2(内满足( A ).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升42.函数322−+=x x y 在区间)4,2(内满足( D ).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升43.当k=( C )时,<+≥+=0,0,1)(2x k x x x x f在点0=x 处连续 (A)-1(B)0(C)1(D)244.函数 =≠=0,0,5sin )(x k x xxx f 在0=x 处连续,则k=( C )(A)1(B)5(C) 51(D)045.下列函数中,在),(∞+−∞ 内是单调减少的函数是( A )A.x21)(=y B.3x y = C.x y sin = D.2x y =(二)填空题1.函数24)(2−−=x x x f 的定义域是 ),2(]2,(∞+−−∞U .2.函数x x x f −+−=4)2ln(1)(的定义域是 ]4,3()3,2(U − .3.函数x x x f −−=5)3ln()(的定义域是)5,3( .4.函数xx x f −−=6)2ln()(的定义域是)6,2( .5.函数)1ln(92−−=x x y 的定义域是 ]3,2()2,1(U.6.函数24)1ln(x x y −+=的定义域是)2,1(− .7.函数x x y ++−=1)3ln(1的定义域是 )3,2()2,1[U − .8.函数xx y −−+=21)5ln(的定义域是)2,5(− .9.函数12++=x x y 的间断点是1−=x .10.函数3322−−−=x x x y 的间断点是 3=x .11.函数≤>−=0sin 01x x x x y 的间断点是 0=x .12.函数≥+<=0,10,1sin )(2x x x xx x f 的间断点是 0=x .13.若函数 ≥+<+=00)1()(21x k x x x x f x ,在0=x 处连续,则=k e .14.若函数 ≥+<+=00)1()(31x k x x x x f x ,在0=x 处连续,则=k e .15.函数 =≠−−=1111)(2x a x x x x f ,若)(x f 在),0(+∞内连续,则=a 2 .16.函数 =≠=0,,2sin )(x k x xxx f ,在0=x 处连续,则=k 2 .17.已知函数x x x f +=+2)1(,则=)(x f .18.已知函数72)1(2+−=−x x x f ,则=)(x f 62+x .19.若函数>≤+=0201)(2x x x x f x ,则=)0(f 1.20.若函数 >+≤−=0103)(2x e x x x f x,则=)0(f -3 .21.曲线xx f 1)(=在)1,1(处的切线斜率是 21−.22.曲线1)(3+=x x f 在)2,1(处的切线斜率是 3 .23.曲线2)(2+=x x f 在)3,1(处的切线斜率是 2 .24.曲线1)(+=x x f 在)2,1(处的切线斜率是21 .25.曲线2)(+=x x f 在)2,2(处的切线斜率是41 .26.曲线2)(+=x x f 在2=x 处的切线斜率是41 .27.曲线x x f sin )(=在)1,2(π处的切线斜率是 0 .28.曲线x x f sin )(=在)0,(π处的切线斜率是-1 .29.曲线1)(+=x e x f 在)2,0(处的切线斜率是1.30.函数)1ln(2x y +=的单调增加区间是),0(∞+ .31.函数x y arctan =的单调增加区间是),(∞+−∞.32.函数)1ln(2x y +=的单调增加区间是),0(∞+ .33.函数1)1(2++=x y 的单调增加区间是),1(∞+− .34.函数12−=x y 的单调增加区间是 ),0(∞+ .35.函数1)1(2++=x y 的单调减少区间是 )1,(−−∞ .36.函数2e )(x xf −=的单调减少区间是 ),0(∞+ .37.函数12−=x y 的单调减少区间是)0,(−∞ .38.函数2)2(2+−=x y 的单调减少区间是 )2,(−∞ .39.若∫+=c x x x f sin d )(,则=′)(x f x sin −.40.=∫−x x d e d 2xx d e 2−.41.若∫+=c x x x f sin d )(,则=′)(x f x sin −.42.若∫+=c x x x f 2cos d )(,则=)(x f x 2sin 2−.43.若∫+=c x x x f cos d )(,则=)('x f x cos −.44.若∫+=c x x x f cos d )(,则=)(x f x sin −.45.若∫+=c x x x f tan d )(,则=)(x f x2cos 1.46.若42)1(2++=+x x x f ,则=)(x f 32+x.47.已知x x f 2ln )(=,则=)]'2([f 0 .48.=′∫x x d )(sin c x +sin .49.=∫x x dx d d sin 22sin x .50.=∫x dx d x d 3223x .51若x 1是)(x f 的一个原函数,则=)('x f 32x .52.函数2)1(−=x y 的驻点是 1=x .三、计算题(一)计算极限1.1.计算极限4586lim 224+−+−→x x x x x .解:32)1)(4()2)(4(lim 4586lim4224=−−−−=+−+−→→x x x x x x x x x x1.2.计算极限4532lim221+−−+→x x x x x .解:34)1)(4()1)(3(lim 4532lim 1221−=−−−+=+−−+→→x x x x x x x x x x 1.3.计算极限)1sin(3221lim +−−−→x x x x .解:4)1sin()3)(1()1sin(32lim lim 121−=+−+=+−−−→−→x x x x x x x x 1.4.计算极限1)1sin(lim 21−+−→x x x .解:21)1)(1()1sin(lim 1)1sin(lim 121−=−++=−+−→−→x x x x x x x 1.5.计算极限xxx 5sin 6sin lim 0→.解:5655sin lim 66sin lim5655sin 66sin 56lim 5sin 6sin lim 0000=•=•=→→→→x x x xxx x x x x x x x x 1.6.计算极限xxx 2sin 3sin lim0→.解:2322sin lim 33sin lim2322sin 33sin 23lim 2sin 3sin lim0000=•=•=→→→→xx x xx x x x x x x x x x 1.7.计算极限32)3sin(lim 23−++−→x x x x .解:41)1)(3()3sin(lim 32)3sin(lim323−=−++=−++−→−→x x x x x x x x 1.8.计算极限32)3sin(lim 23−−−−→x x x x .解:41)1)(3()3sin(lim 32)3sin(lim 323=+−−=−−−−→−→x x x x x x x x 1.9.计算极限)3sin(9lim 23−−−→x x x .解:6)3sin()3)(3(lim )3sin(9lim323=−+−=−−−→−→x x x x x x x 1.10.计算极限)3sin(9lim 23−−−→x x x .解:6)3sin()3)(3(lim )3sin(9lim323=−+−=−−−→−→x x x x x x x 1.11.计算极限x xx 2sin lim 0→.解:2121sin lim 2sin lim 00=•=→→x x x x x x1.12.计算极限65)2sin(lim22+−−→x x x x .解:1)3)(2()2sin(lim 65)2sin(lim 222−=−−−=+−−→→x x x x x x x x (二)设定求值2.1.设22sin x x y x+=,求y ′.解:由导数四则运算法则得4224222sin 22ln 2cos )2(sin 2)2(sin x x x x x x x x x x x x y xx x x −−+=+−′+=′312sin 22ln 2cos x x x x x x x +−−+=2.2.设x y e sin 2=,求′y .解:由导数四则运算法则得)e 2sin(e e cos e sin e 2x x x x x y ==′2.3.设2x xe y =,求′y .解:由导数四则运算法则得2222xx e x e y +=′2.4.设x x y 33ln +=,求′y .解:由导数四则运算法则和复合函数求导法则得)'(ln )'()'ln (3333x x x x y +=+=′xx x x x x 22ln 323)'(ln ln 323+=+=2.5.设2sin x x y −=,求′y .解:由导数四则运算法则和导数基本公式得)'(sin )'()'sin (22x x x x y −=−=′222cos 221)'(cos 21x x xx x x−=−=2.6.设x e x y 5ln −+=,求′y .解:由导数四则运算法则和复合函数求导法则得)'()'(ln )'(ln 55x x e x e x y −−+−+=′x x e xx e x 5551)'5(1−−−=−+=2.7.设x e x y cos ln +=,求′y .解:由导数四则运算法则和复合函数求导法则得x x e e xy sin 1−=′2.8.设2sin x e y x −=,求′y .解:由导数四则运算法则和导数基本公式得x xe x e y x x 2cos sin 2sin −=−=′ 2.9.设x x y 35ln +=,求′y .解:由导数四则运算法则和复合函数求导法则得)'(ln )'()'ln (3535x x x x y +=+=′xxx x x x 2424ln 35)'(ln ln 35+=+=2.10.设2cos 3x y x −=,求′y .解:由导数四则运算法则和复合函数求导法则得)'(cos )'3()'cos 3(22x x y x x −=−=′222sin 23ln 3)'(sin 3ln 3x x x x x x +=+=2.11.设x x e y x ln tan −=,求′y .解:由导数四则运算法则得xx e x e y x x1cos tan 2−+=′2.12.设x y 2cos ln =,求′y .解:由导数四则运算法则得xxx x x y 22cos 2sin cos sin cos 2−=−=′2.13.设x x x y ln tan 2+=,求′y .解:由导数四则运算法则得x x x x x x x x xy ++=•++=′ln 2cos 11ln 2cos 12222.14.设x x x y ln cos ln 2+=,求d y .解:由微分运算法则得)ln (d )cos (ln d )ln cos (ln d d 22x x x x x x y +=+=)(ln d )(d ln )(cos d cos 122x x x x x x ++= xx x x x x x x x d 1d ln 2d cos sin 2⋅++−=xx x x x d )ln 2tan (++−=2.15.设52x cos x y −=,求y d .解:由微分运算法则和微分基本公式得)(d )(cos d )(cos d d 5252x x x x y −=−=dx x x xd 45)(cos cos 2−=dxx x x )5sin cos 2(4+−=2.16.设x x y 3e cos +=,求y d .解:由微分运算法则和微分基本公式得)3(d )e (cos d )3e (cos d d x x x x y +=+=x x x x ln3d 3)e (d e sin +−=x x x x x ln3d 3d e sin e +−=xx x x ln3)d 3e sin e (+−=2.17.设53x cos x y −=,求y d .解:由微分运算法则和微分基本公式得dxx x x d x y 4253d 5)(cos xd cos 3)((cos d d −=−=)dxx x x )5cos sin 3(42+−=2.18.设x x e y 3sin +=,求y d .解:由微分运算法则和微分基本公式得)3(d )(d )3(d d sin sin x x x x e e y +=+=dx x d e x x 3ln 3)(sin sin +=dxx e x x )3ln 3cos (sin +=2.19.设x e y x ln cos +=,求y d .解:由微分运算法则和微分基本公式得)(ln d )(d )ln (d d cos cos x e x e y x x +=+=dx x x d e x 1)(cos cos += dxx x e x )1sin (cos +−=2.20.设y y x =()是由方程yy x 2xsin 2=确定的函数,求'y .解:等式两端求微分得左端)(sin )(sin )sin (d 222y d x x yd y x +==ydy x ydx x cos sin 22+=右端2222x (d y xdyydx y −==由此得2222cos sin 2y xdyydx ydy x ydx x −=+整理后得xxy y yxy y y d 2cos x sin 22d 222+−=即xy y yxy y y 2cos x sin 22'222+−=2.21.设y y x =()是由方程y x y e cos =确定的函数,求d y .解:等式两端求微分得左端yx x y x y d cos )(cos d )cos (d +==yx x x y d cos d sin +−= 右端y y y d e )e (d ==由此得yy x x x y y d e d cos d sin =+−整理后得xx xy y yd e cos sin d −=2.22.设y y x =()是由方程3y e e x y +=确定的函数,求d y .解:等式两端求微分得 左端y e e y y d )(d ==右端dy y dx e y d y x x x 2333)d()e ()e (d +=+=+=由此得dy y dx e dy e x y 23+=整理后得x ye y y xd 3e d 2−=(三)计算不定积分3.1.计算不定积分x x x d cos ∫.解:由换元积分法得cx x x x xx +==∫∫sin 2)d(cos 2d cos 3.2.计算不定积分∫x xxd e21.解:由换元积分法得c u x x x uu x x+−=−=−=∫∫∫e d e )1(d e d e 121cx +−=1e 3.3.计算不定积分∫x xd ex.解:由换元积分法得ce u x x xu u x x+===∫∫∫2d e 2)(d e 2d e3.4.计算不定积分∫x xx d ln 1.解:由换元积分法得cx c u du u x d x x x x +=+===∫∫∫ln ln ln 1)(ln ln 1d ln 13.5.计算不定积分∫x x d x 1sin 2.解:由换元积分法得c x c u udu xd x x x +=+=−=−=∫∫∫1cos cos sin 1(1sin d x 1sin23.6.计算不定积分∫x x d x 1cos 2.解:由换元积分法得cx c u x d x x x +−=+−=−=∫∫1sin sin )1(1cos d x 1cos23.7.计算不定积分∫x x x d 3cos .解:由分部积分法得∫∫−=x x x x x x x d 3sin 313sin 31d 3cos c x x x ++=3cos 913sin 31(四)计算定积分4.1.计算定积分∫e1d ln x x x .解:由分部积分法得∫∫−=e 12e12e1)d(ln 21ln 2d ln x x x x x x x 414e d 212e 2e 12+=−=∫x x 4.2..计算定积分∫e12d ln x x x . 解:由分部积分法得∫∫−=e 13e13e12)d(ln 31ln 3d ln x x x x x x x 9192e d 313e 3e 123+=−=∫x x 4.3.计算定积分∫e1d ln x x . 解:由分部积分法得∫∫−=e 1e1e1)d(ln ln d ln x x x x x x 1d e e1∫=−=x4.4.计算定积分∫10d x xe x .解:由分部积分法得dx e xex xe x x x∫∫−=10101d 1e 10=−=xe4.5.计算定积分∫e12d ln x x x. 解:由换元积分法得e x e x x e x d x x x x x x 2111d 11)(ln 1ln d ln e1e 12e 1e1e12−=−=+−=+−=∫∫∫4.6.计算定积分∫+e1d ln 2x xx. 解:由换元积分法得∫∫∫=++=+32e1e1d )ln 2()d ln 2(d ln 2u u x x x x x 252322==u4.7.计算定积分∫e1d ln x xx .解:由分部积分法得ex e x xe x d x x x x xx 2442d 122)(ln 2ln 2d ln e1e1e1e1e1−=−=−=−=∫∫∫四、应用题4.1求曲线上的点,使其到点的距离最短.解:曲线上的点到点的距离公式为22)3(y x d +−=d 与2d 在同一点取到最大值,为计算方便求2d 的最大值点,将代入得x x d +−=22)3(令 x x x D +−=2)3()(求导得1)3(2)(+−=′x x D 令0)(2=′d 得25=x .并由此解出210±=y ,即曲线上的点)210,25(和点)210,25(−到点的距离最短.y x 2=A (,)30y x 2=A (,)30y x 2=y x 2=A (,)304.2在抛物线x y 42=上求一点,使其与x 轴上的点的距最短.解:设所求点 ),(y x P =,则y x ,满足 x y 42= 点P 到点A 的距离之平方为x x y x L 4)3()3(222+−=+−=令04)3(2'=+−=x L 解得1=x 是唯一驻点,易知1=x 函数的极小点, 当1=x 时,2=y 或2−=y ,所以满足条件的有两个点)2,1( 和)2,1(− 。

完整)高等数学练习题附答案

完整)高等数学练习题附答案

完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。

+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。

2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。

《高等数学基础》期末试题及答案

《高等数学基础》期末试题及答案

《高等数学基础》期末试题及答案一、选择题(每题5分,共25分)1. 函数f(x) = x² - 2x + 1在x = 1处的导数是()A. 0B. 2C. -2D. 1答案:A2. 函数y = ln(e²x)的导数是()A. 2xB. 2C. e²xD. 1答案:A3. 下列极限中,正确的是()A. lim(x→0) sinx/x = 0B. lim(x→0) sinx/x = 1C. lim(x→0) sinx/x = ∞D. lim(x→0) sinx/x = -1答案:B4. 函数y = x²e²x的极值点为()A. x = 0B. x = 1C. x = -1D. x = 2答案:C5. 定积分∫(0→1) x²dx的值是()A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共25分)6. 函数y = 2x³ - 3x² + 2x + 1的一阶导数是______。

答案:6x² - 6x + 27. 函数y = x²e²x的二阶导数是______。

答案:4x²e²x + 4xe²x8. 极限lim(x→∞) (1 + 1/x)²ⁿ = ______。

答案:e9. 定积分∫(0→π) sinx dx的值是______。

答案:210. 定积分∫(0→π/2) eˣdx的值是______。

答案:eπ/2 - 1三、解答题(每题25分,共75分)11. 设函数f(x) = x³ - 3x² + 4,求f'(x)和f''(x)。

解:f'(x) = 3x² - 6x,f''(x) = 6x - 6。

12. 求函数f(x) = x²e²x的极值点和极值。

高等数学第一章试题库

高等数学第一章试题库

第一章试题库第一部分基础练习题一、选择题1.下列数列收敛的是()。

A.sin n x n = B.1sin n x n n = C.1ln n x n = D.1(1)n n-+2.0()f x +和0()f x -都存在是函数()f x 在0x x =处有极限的().A.充分条件B.必要条件C.充要条件D.无关条件3.下列函数中,相同的是().A.2()lg f x x =与()2lg g x x =B.()f x =()g x =C.()f x x =与()g x =D.()arcsin f x x =与()arcsin()g x x π=-4.设函数()f x 为奇函数,()g x 为偶函数,则()是奇函数。

A.[()]f f x B.[()]g g x C.[()]f g x D.[()]g f x 5.下列变量中是无穷小量的是()A.1ln(1)1(0)x x +-→B.11sin ()x x x→∞C.()122x x →- D.11(0)x e x -→6.函数()cos f x x x =()A.x →∞时为无穷大量 B.x →∞时极限存在C.在(,)-∞+∞内有界 D.在(,)-∞+∞内无界7., 1, n n n x n n⎧⎪=⎨⎪⎩为奇数为偶数,当n →+∞时{}n x 是()A.无穷大量B.无穷小量C.有界变量D.无界变量8.下列关于无穷小的说法中,错误的是()A.有限个无穷小的乘积仍是无穷小B.无穷小与有界函数的乘积是无穷小C.两个无穷小的商仍是无穷小D.有限个无穷小的代数和仍是无穷小9.当x →∞时,函数()sin f x x x =是()。

A.无穷大量B.无穷小量C.无界函数D.有界函数10.下列函数在自变量的变化过程中为无穷小量的是()。

A )0(sin ln →x xxB )0(1→x e xC )1()1(12→-x x D)0(cot →x x 11.设45)(,0,0,)(2-=⎪⎩⎪⎨⎧<≥=x x g x x x x x f ,则=)]0([g f ()A.16-B.4-C.4D.1612.已知(21)f x -的定义域为[0,1],则()f x 的定义域为().A.[1/2,1]B.[-1,1]C.[0,1]D.[-1,2]13.下列各式计算正确的是()A.sin lim1x xx →∞= B.01lim sin 1x x x→= C.1lim sin1x x x→∞= D.011lim sin 1x xx→=14.函数⎪⎩⎪⎨⎧≤<+=<<-+=2020022)(2x x x x x x f 的定义域是()A.)2,2(-B.]0,2(-C.]2,2(-D.(0,2]15.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(lim 0x f x ()A.1B.0C.1-D.不存在16.下列函数在定义域内关于原点对称的是()A.22ln(1)x x +B.1xx +C.3x x e e -+D.ln(x +17.下列数列收敛的是().A.12,2,,(2),n ---L LB.135721,,,,,357921n n -+,L LC.1135721,,,,(1),357921n n n -----+L L ,D.1234,,,,(1),23451n n n ---+,L L 18.下列计算正确的的是().A.1lim(1)xx x e→∞+= B.01lim(1x x e x →+= C.1lim sin 1x x x →∞= D.sin lim 1x xx→∞=19.=-→xx x 21)1(lim ()A.21- B.e - C.21eD.20.22442lim ,313x ax x x x →∞-+=-+那么a 的值为()A.1B.0C.2D.321.当0x →时,tan sin x x e e -与n ax 为等价无穷小,则().A.1,1a n ==B.1,22a n ==C.1,32a n ==D.1,44a n ==22.当0x →时,下列函数哪一个是其他三个的高阶无穷小().A.2xB.1cos x -C.tan x x -D.2ln(1)x +23.当0x →时,与2x 等价的无穷小量是(A.2ln(1)x + B.21xe - C.1cos x-1-24.当0→x 时,1是x 的().A.高阶无穷小B.低阶无穷小C.等价无穷小D.同阶但非等价无穷小25.当0→x 时,)2sin(3x x +与x 比较是().A.高阶无穷小B.等价无穷小C.同阶无穷小,但不是等价无穷小D.低阶无穷小26.设2, 01()2, >1x x f x x x -⎧<≤=⎨⎩,则1x =是该函数的()A.可去间断点B.跳跃间断点C.第二类间断点D 连续点27.设1sin , 0()1, 0x x f x xx ⎧≠⎪=⎨⎪=⎩,则0x =是该函数的()A.可去间断点 B.跳跃间断点 C.第二类间断点 D.连续点28.0x =为函数1()sin f x x x=的()A.可去间断点B.跳跃间断点C.振荡间断点D.无穷间断点29.函数1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩在0x =处()A.无极限B.不连续C.连续D.以上都不对30.0x =是11()1x f x e =+的()。

高等数学基础习题集(含答案)

高等数学基础习题集(含答案)

sin x
,则 f ( x ) 是(
) (C)周期函数 (D)单调函数
(B)无界函数
【解题思路】把函数看成三个分函数,该指数函数无奇偶性, x 为非周期函数, tan x 无严 格单调性. 【详解】 f ( x ) x tan x e
sin x
中, tan x 无界,另负无穷到正无穷都能取到,故整体无界.
n
7、已知极限 lim
x a
f ( x) f (a) 存在,则 lim f ( x) 是否存在?若存在,为多少? x a xa f ( x) f (a) 0 中,分母趋向于 0,而此极限存在,故只能为 型,因此分 xa 0
x a x a
【解题思路】考虑极限的类型. 2、设 f ( x) 0, 1,
x 1, x 1, g ( x ) e x ,求 f [ g ( x)] 和 g[ f ( x)] ,并作出这两个函数的图形. x 1,
x
x x 【解题思路】求 f [ g ( x)] 时,中间变量为 g ( x ) e ,利用函数 y e 的单调性质,考虑 e
【解题思路】利用数列的单调有界准则. 先求出 a2 , a3 ,易猜测数列是单调递减的,故只需 证有下界即可. 【详解】由已知条件易得 an 0 ,利用基本不等式可得, an+1 = (an + 有下界;又因为 an +1 an = 限 lim an 存在. 证毕.
x a
子也以 0 为极限,故 lim f ( x) f (a) 0 ,所以 lim f ( x) 存在,为 f (a) .
1 2 ex sin x 8、极限 lim 2 x 0 1 e x ln(1 x)

《高等数学》练习题及答案解析

《高等数学》练习题及答案解析

《高等数学》练习题及答案解析第一课时一、单选题1、函数4()31f x x =+,则f(1)的值为:(D )A 、0B 、1C 、3D 、4解析:采用代入法,将x=1代入原函数,可得f(1)的值为:/*4*/2、函数y =的定义域为:(D )A 、(-∞,-2]B 、[2,+∞)C 、[-∞,+∞]D 、(-∞,-2]U[2,+∞)解析:根据幂函数性质,要使得该函数有意义,该函数的定义域为:/*(-∞,-2]U[2,+∞)*/。

3、下列函数不是周期函数的是:(c )A 、y=cos(x -2)B 、y=1+sin πxC 、y=xsinxD 、y=2tan3x解析:根据周期函数的定义,可计算得知,/*y=xsinx*/不是周期函数4、指出函数y=lgx 在(0,+∞)的区间内的单调性:(A )A 、单调递增B 、单调递减C 、没有单调性D 、无法确定解析:根据函数单调性的性质,y=lgx 是以10为底的对数函数,在其定义域内是递增的。

因此是/*单调递增*/。

5、设函数f(x)=lnx ,则f(x)-f(y)=(D )A 、f(x+y)B 、f(x -y)C 、f(xy)D 、f(x/y)解析:根据对数函数的运算法则,f(x)-f(y)=lnx -lny=ln(x/y)=f(x/y),因此,f(x)-f(y)的值为:/*f(x/y)*/。

二、判断题1、函数y=sinx 是以2π为周期的函数(A )A 、正确B 、错误解析:函数y=sinx 是周期函数,以2π为周期。

因此该表述是/*正确*/的2、函数y=cosx 是奇函数(B )A 、正确B 、错误解析:函数y=cosx 关于Y 轴对称,因此,函数y=cosx 是偶函数,所以原题的表达是/*错误*/的。

3、函数1()f x x =在开区间(0,1)内无界。

(A )A 、正确B 、错误解析:根据函数的有界性,可知该函数在指定区间内无界。

因此该表述是/*正确*/的三、多选题1、函数的表达法有:(A 、B 、C )A 、解析法B 、列表法C 、图形法D 、反函数法解析:函数的表达法有:/*解析法、列表法、图形法*/等三种。

《高等数学》练习题库及答案,DOC

《高等数学》练习题库及答案,DOC

《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是() A.偶函数B.奇函数C 单调函数D 无界函数2.设f(sin 2x )=cosx+1,则f(x)为() A2x 2-2B2-2x 2C1+x 2D1-x 23A .C .4.A C.5A C 6.→lim 1x7.设x 8.当x A.x 2A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y=()A 、是连续的B 、无界函数C 、有最大值与最小值D 、无最小值11、设函数f (x )=(1-x )cotx 要使f (x )在点:x=0连续,则应补充定义f (0)为()A 、B 、eC 、-eD 、-e -112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续f(x)=0 14、设1516、函数17AC18、AC、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设26、设27、设28、已知29、已知30A、3132、圆A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x可微的()A、充分条件B、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是() A 、0/0型B 、∞/∞型C 、∞-∞D 、∞型37、极限012)sin lim(→x x x x 的未定式类型是() A 、00型38、极限A 39、x x A C 40A C 41、曲线A 42A 、0B 、43A 44、若∫f(x)dx=2e x/2+C=()A 、2e x/2B 、4e x/2C 、e x/2+CD 、e x/245、∫xe -x dx=(D )A 、xe -x -e -x +CB 、-xe -x +e -x +CC 、xe -x +e -x +CD 、-xe -x -e -x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线A50、点(A51A、52、平面A53、方程AC54、方程A55、方程A56AC、两发散数列之和必发散D、两收敛数列之和必收敛57.f(x)在点x=x0处有定义是f(x)在x=x处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C 、f(x)=x 2-1D 、f(x)=5x 4-4x+160设y=(cos)sinx ,则y’|x=0=()A 、-1B 、0C 、1D 、不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=() 2、求极限0lim →x [(x 3-3x+1)/(x-4)+1]=() 3、求极限2lim →x x-2/(x+2)1/2=() 456、已知78、已知910、函数11、函数12、函数13、函数14、函数15、点(16、∫xx 17、若18、若∫19、d/dx ∫a b arctantdt =()20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x 在点x=0连续,则a=() 21、∫02(x 2+1/x 4)dx =()22、∫49x 1/2(1+x 1/2)dx=()23、∫031/2a dx/(a 2+x 2)=()1dx/(4-x2)1/2=()24、∫25、∫л/3лsin(л/3+x)dx=()9x1/2(1+x1/2)dx=()26、∫49x1/2(1+x1/2)dx=()27、∫49x1/2(1+x1/2)dx=()28、∫49x1/2(1+x1/2)dx=()29、∫49x1/2(1+x1/2)dx=()30、∫49x31、∫9x32、∫43334、设35、函数36、37、383940()41424344、通过45lim[x/(x+1)]x=()46求极限∞x→47函数y=x2-2x+3的极值是y(1)=()9x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。

高数极限基础练习题

高数极限基础练习题

高数极限基础练习题一、数列极限1. 计算下列数列的极限:(1) $\lim_{n \to \infty} \frac{1}{n}$(2) $\lim_{n \to \infty} \frac{n+1}{2n+3}$(3) $\lim_{n \to \infty} \frac{n^2 1}{n^2 + 1}$(4) $\lim_{n \to \infty} \frac{\sqrt{n^2 + n}}{n + 1}$ 2. 判断下列数列极限是否存在,若存在,求出其极限值:(1) $\lim_{n \to \infty} (1)^n$(2) $\lim_{n \to \infty} \sin(n\pi)$(3) $\lim_{n \to \infty} \frac{n!}{n^n}$二、函数极限1. 计算下列函数的极限:(1) $\lim_{x \to 0} \frac{\sin x}{x}$(2) $\lim_{x \to 1} \frac{x^2 1}{x 1}$(3) $\lim_{x \to \infty} \frac{1}{x}$(4) $\lim_{x \to 0} \frac{e^x 1}{x}$2. 判断下列函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin 3x}{x}$(2) $\lim_{x \to \infty} \frac{\ln x}{x}$(3) $\lim_{x \to \infty} (1 + \frac{1}{x})^x$三、无穷小与无穷大1. 判断下列表达式是否为无穷小:(1) $\frac{1}{x^2}$ 当 $x \to \infty$(2) $\sin \frac{1}{x}$ 当 $x \to \infty$(3) $e^{x}$ 当 $x \to \infty$2. 判断下列表达式是否为无穷大:(1) $x^3$ 当 $x \to \infty$(2) $\ln x$ 当 $x \to \infty$(3) $\frac{1}{\sqrt{x}}$ 当 $x \to 0^+$四、极限运算法则1. 利用极限运算法则计算下列极限:(1) $\lim_{x \to 0} (3x^2 + 2x 1)$(2) $\lim_{x \to 1} \frac{x^3 3x^2 + 2x}{x^2 2x + 1}$(3) $\lim_{x \to \infty} (x^3 2x^2 + 3)$2. 利用极限的性质,计算下列极限:(1) $\lim_{x \to 0} \frac{\sin x}{x} \cdot\frac{1}{\cos x}$(2) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$(3) $\lim_{x \to 0} \frac{e^x e^{x}}{2x}$五、复合函数极限1. 计算下列复合函数的极限:(1) $\lim_{x \to 0} \frac{\sin(\sqrt{x^2 + 1})}{x}$(2) $\lim_{x \to \infty} \frac{\ln(x^2 + 1)}{x}$(3) $\lim_{x \to 0} \frac{e^{x^2} 1}{x^2}$2. 判断下列复合函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin(\tan x)}{x}$(2) $\lim_{x \to \infty} \frac{\ln(e^x + 1)}{x}$(3) $\lim_{x \to 0} \frac{1 \cos(\sqrt{x})}{x}$六、极限的应用1. 计算下列极限问题:(1) 设 $f(x)2. 已知函数 $f(x) = \frac{x^2 1}{x 1}$,求 $\lim_{x \to 1} f(x)$。

高数基础练习题选择题及答案

高数基础练习题选择题及答案

高数基础练习题选择题及答案高等数学基础模拟练题一、单项选择题1.设函数f(x)的定义域为(-∞,+∞),则函数f(x)+f(-x)的图形关于()对称.A)y=xB)x轴C)y轴D)坐标原点2.当x→0时,变量()是无穷小量.A)1/xB)sinx/xC)2xD)ln(x+1)3.下列等式中正确的是().A)d(arctanx)=1/(1+x^2)dxB)d(1/x)=-1/x^2dxC)d(2xln2)=2dxD)d(tanx)=sec^2xdx4.下列等式成立的是().A)d/dx∫f(x)dx=f(x)B)∫f'(x)dx=f(x)C)d∫f(x)dx=f(x)D)∫df(x)=f(x)5.下列无穷限积分收敛的是().A)∫1/x dx from 1 to +∞B)∫1/x dx from 1 to 0C)∫1/3x^4 dx from 1 to +∞D)∫sinx dx from 0 to +∞二、填空题1.函数f(x)=(x^2-4)/(x-2)的定义域是(-∞,2)∪(2,+∞).2.函数y=(x+2)/(x+1)的间断点是x=-1.3.曲线f(x)=1/x在(1,1)处的切线斜率是-1.4.函数y=ln(1+x^2)的单调增加区间是(0,+∞).5.d∫e^-x^2 dx=-2xe^-x^2+C.三、计算题(每小题9分,共54分)1.计算极限lim(x^2-6x+8)/(x^2-5x+4) as x→4,结果为-2.2.设y=ln(cosx)+x^2lnx,求dy=-(sinx/x)+2xlnx+dx/(xln10).3.计算不定积分∫(1/x+e^x)dx=ln|x|+e^x+C.4.计算定积分∫cosx/x dx,结果为Ci(x)+C,其中Ci(x)为余积分函数.5.计算定积分∫e^(1/x)lnx dx,结果为-γ-2ln2,其中γ为欧拉常数.四、应用题1.求曲线y=x上的点,使其到点A(3,0)的距离最短.解:设点P(x,y)在曲线y=x上,则P到A的距离为d=sqrt((x-3)^2+y^2).将y=x代入得d=sqrt((x-3)^2+x^2)=sqrt(2x^2-6x+9).对d求导得d'=(4x-6)/sqrt(2x^2-6x+9),令d'=0得x=3/2.再求d''(3/2)<0,故点P(3/2,3/2)到A的距离最短.。

简单高数题

简单高数题

简单高数题一、函数与极限部分(6题)1. 求极限 lim_{x to 1}(x^2 - 1)/(x - 1)- 解析:- 首先对分子进行因式分解,x^2 - 1=(x + 1)(x - 1)。

- 则原式可化为lim_{x to 1}((x + 1)(x - 1))/(x - 1)。

- 当xto1时,x≠1,可以约去x - 1,得到lim_{x to 1}(x + 1)。

- 把x = 1代入x+1,得到极限值为2。

2. 设函数f(x)=<=ft{begin{array}{ll}x+1, & x<0 0, & x = 0 x - 1, &x>0end{array}right.,求lim_{x to 0}f(x)- 解析:- 当xto0^-(即x从左边趋近于0)时,f(x)=x + 1,则lim_{x to 0^-}f(x)=lim_{x to 0^-}(x + 1)=1。

- 当xto0^+(即x从右边趋近于0)时,f(x)=x - 1,则lim_{x to0^+}f(x)=lim_{x to 0^+}(x - 1)= - 1。

- 因为lim_{x to 0^-}f(x)≠lim_{x to 0^+}f(x),所以lim_{x to 0}f(x)不存在。

3. 求函数y=√(x^2 - 4)+(1)/(x - 3)的定义域。

- 解析:- 对于根式部分,要使√(x^2 - 4)有意义,则x^2-4≥slant0。

- 解不等式x^2 - 4≥slant0,即(x + 2)(x - 2)≥slant0,得到x≤slant - 2或x≥slant2。

- 对于分式部分,要使(1)/(x - 3)有意义,则x - 3≠0,即x≠3。

- 综合起来,函数的定义域为(-∞,-2]∪[2,3)∪(3,+∞)。

4. 已知函数f(x)=ln(x + 1),求f^′(0)。

- 解析:- 首先对f(x)=ln(x + 1)求导,根据求导公式(ln(u))^′=(1)/(u)u^′,这里u=x + 1,u^′ = 1。

高三数学基础训练试卷

高三数学基础训练试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴是()A. x = 2B. x = 1C. x = 3D. x = 03. 若log2(3x - 1) = 3,则x的值为()A. 2B. 3C. 4D. 54. 下列函数中,单调递增的函数是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = 1/x5. 在三角形ABC中,若a=3,b=4,c=5,则sinA的值为()A. 3/5B. 4/5C. 5/3D. 5/46. 已知复数z = 1 + i,则|z|^2的值为()A. 2B. 3C. 4D. 57. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 4 = 0D. x^2 - 1 = 08. 若等差数列{an}的前n项和为Sn,且a1=1,S5=15,则公差d的值为()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)10. 已知等比数列{an}的前n项和为Sn,且a1=1,S4=15,则公比q的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x) = 2x - 3,则f(-1)的值为______。

12. 在等差数列{an}中,若a1=2,公差d=3,则第10项an的值为______。

13. 已知复数z = 3 - 4i,则|z|^2的值为______。

14. 在三角形ABC中,若∠A=60°,a=5,b=8,则c的值为______。

15. 若等比数列{an}的前n项和为Sn,且a1=1,S5=31,则公比q的值为______。

高等数学练习题(函数)

高等数学练习题(函数)

使所用材料最省?若底面单位面积的造价是侧面单位面积造价
的2倍,问怎样设计才能使造价最低?
练习题九
一、填空题:
1、D: 0 x 1, 0 y 1 dxdy

D
2、D:y 0, x 0, y 1 x dxdy

D
3、D:x2 y2 1
dxdy

D
4、D: y x, x 2, y 0 dxdy
x [ 3 , ]
22
B、 f ( x) ( x 4)2 x [2,4] D、 f ( x) | x | x [1,1]
2、f ( x) 2x2 x 1在[1,3]上满足拉格朗日中值定理条件的
A、
3 4
B、0
C、 3
4
D、1
3、若 x0 是 f ( x) 的极值点,则下列命题正确的是(
dx x
D、
xe xdx
0
1
4、 A、 1 x2 dx
B、 1
ln xdx x
5、 A、 0 e2xdx
B、 1 dx
1x
三、计算:
3
x x 1dx
0
C、 x cos xdx 0
D、
1
x x
2
dx
C、 1 dx 1x
D、
0
1
x x
2
dx
四、求下列各题中所给曲线及直线围成的平面图形面积
下列反常积分中收敛的是(

1、 A、 exdx 0
2、
A、 1
1 x3

3、
A、 0 e xdx
B、2
x
1 ln
x
dx
C、
1 dx 0 1 x

高等数学基础题及答案

高等数学基础题及答案

一、单项选择题(每小题4分,共28分)1.设,则r(A)= ( D ).A .0B .1C .2D .3 2.已知当( A )时,函数为无穷小量.3.当时,下列变量为无穷小量的是( A ).A .B .C .D .4.若,则f (x ) =( C )A .B .-C .D .-5.函数的定义域是( D ) A .B .C .D .且6.以下结论或等式正确的是( C )A .若均为零矩阵,则有B .若,且,则C .对角矩阵是对称矩阵D .若,则7.线性方程组 解的情况是( D )A . 有无穷多解B . 只有0解C . 有唯一解D . 无解二、填空题(每小题4分,共20分) 1.dx e x 2-.2.函数的原函数是 C x +-2cos 213若函数,则62-x4已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = q q 45412+-5曲线在处的切线斜率是21 三、计算题(每小题5分,共30分)1.已知,求 .解:2cos sin 2ln 2)cos ()2()(x xx x xxx y x x ++='-'='2.已知,求 .解:xx x x x x x x x f x x x x x 1cos 2sin 2ln 21)(sin 2sin )2()(ln )sin 2()(++=+'+'='+'='3.设,求.解:由xxx y -+=2cos sin 33,得 32232322322233333cos 3cos sin 3cos 3)(cos sin )(cos cos )(sin xx x x x x x x x x x x d d x y=+='-'== 所以 dx xx d y 322cos 3= 4.计算积分.解:原式21)0cos 21(2cos 2102cos 21222=--⎪⎪⎭⎫ ⎝⎛-=-=ππx 5.计算解:原式C x+=1cos6.解:原式C x x dxx +-=-=⎰221)2(2四、线性代数计算题(10分)设矩阵A =,求逆矩阵.解:02≠=A ,知A 可逆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成人高等教育入学考试《高等数学》模拟题(专升本)
(考试时间150分钟)
答案必须答在答题卡上的指定位置,答在试卷上无效.......
一、选择题(每小题4分,共40分)
1、21
lim
43x x x →∞+=-
A .12
B .1
C .3
D .-13
2、函数)(x f 在2x =处可导,且'(2)4f =,则(2)(2)
lim x f h f x
∆→∞--=∆
A .4
B .-4
C .2
D .-2
3、设函数2
1x y e =+,则'y = A .2
x e
B .2
x xe
C .2
2x xe
D .2
21x xe +
4、若'()0()()0,f x a x b f b <<≤>且则在(a,b)内必有__ __
A.()0f x >
B.()0f x <
C.()0f x =
D.()f x 符号不定
5、设函数2sin(1)y x =-,则dy = A. 2cos(1)x dx - B. 2cos(1)x dx -- C. 22cos(1)x x dx - D. 22cos(1)x x dx --
6、
1
31
x dx -=⎰
A .1
4
B .0
C .1
D .-1
7、x e dx -=⎰ A .x e C -+
B .x e
C --+
C .x e C -+
D .x e C +
8、设函数xy z e =,则z
x
∂=∂ A .xy ye B .xy xe C .xy e D .y e
装 订 线 线 内 不 要 答 题
注意: 因以下项目填写不清而影响成绩自负
准考证号 __________ 姓名
__________ 考试
地点______ ______考场 ______号 归属
区县______ (领准考证的区县)
9、设函数3
()z x y =+,则2z
x y
∂=∂∂
A .3()x y + B. 23()x y + C .6()x y + D .26()x y +
10、若随机事件A 与B 相互独立,而且P(A)=0.4,P(B)=0.5,则P (AB )= A .0.2
B .0.4 C.0.5 D.0.9
二、填空题(每小题4分,共40分)
11、2031
lim 1
x x x x →+-=+ 。

12、=→x
x
x 32tan lim
0_____ 。

13、设函数ln x
y x
=,则'y =____ __ __。

14、设函数sin 2y x =,则''
y = ___ ___ _。

15、曲线3(1)1y x =--的拐点是 。

16、31
dx x =⎰。

17、30
x
d t dt dx =⎰ 。

18、22
(cos )x x dx π
π-+=⎰ 。

19、函数z =的定义域为 。

20、设函数2x y
z e
+=,则全微分dz = 。

三、解答题(共70分) 21、计算(本小题满分8分)
224lim 2
x x x →--
设函数4sin
y x x
=,求dy 23、(本小题满分8分)
计算
cos ln x
dx
x

24、(本小题满分8分)
(,)z
z z x y x y z e
=++=
设是由方程所确定的隐函数,求dz。

袋子中装有大小相同的12个球,其中5个白球,7个黑球,从中任取3个球,求这三个球中至少有一个黑球的概率。

26、(本小题满分10分)
用铁皮做成一个容积一定的圆柱形无盖容器,问应当如何设计,才能使用料最省?
装 订 线 线 内 不 要 答 题
(1)求由曲线x y e 及直线y=1,x=0,y=0所围成的图形的面积S 。

(2)求该平面图形绕x 轴旋转一周所成旋转体的体积V 。

装 订 线 线 内 不 要 答 题
22
1
1
()(3)().f x f x dx f x dx -=⎰⎰设为连续函数,试证。

相关文档
最新文档