ZPW-2000A型无绝缘移频自动闭塞系统特点
ZPW-2000要点
ZPW2000A移频自动闭塞1.1ZPW2000A闭塞系统概述一、概述1.载频、频偏的选择我国于20世纪90年代初引进法国高速铁路的UM71移频自动闭塞设备,并在此基础上结合我国国情研制了更加适应我国铁路的区间移频自动闭塞设备,该设备即为目前铁道部推广使用的ZPW-2000无绝缘轨道电路移频自动闭塞设备。
ZPW-2000无绝缘轨道电路移频自动闭塞低频、载频延用了UM71技术。
载频分别为四种:1700HZ、2000HZ、2300HZ、2600HZ。
其中上行线使用2000 HZ和2600 HZ 交替排列,下行线用l700HZ和2300 Hz交替排列。
UM71轨道电路的频偏Δf为11HZ。
UM71低频调制信号Fc(低频信息)从10.3 HZ 至29 HZ按1.1 HZ递增共18种。
即这18种低频信息分别为:10.3 HZ、11.4HZ、12.5 HZ、13.6 HZ、14.7 HZ、15.8 HZ、16.9 Hz、18 HZ,19.1 HZ、20.2 HZ、21.1H2、22.4 HZ、23.5 HZ、24.6 HZ、25.7HZ、26.8 HZ、27.9 HZ、29 HZ。
在低频调制信号作用下,一个周期内,信号频率发生f1、f2来回变化。
其中f1=f0 -Δf,f2=f0 +Δf 。
2.18信息的显示3.基本工作原理在移频自动闭塞区段,移频信息的传输,是按照运行列车占用闭塞分区的状态,迎着列车的运行方向,自动地向各闭塞分区传递信息的。
如图3-1-1所示,若下行线有两列列车A 、B 运行,A 列车运行在1G 分区,B 列车运行在5G 分区。
由于1G 有车占用,防护该闭塞正线通过信号L 码 11.4出站信号开放黄灯信号L U 码 13.6经18号道岔侧线通过U U S 码 19.1列车“直进”“弯出”通过 U 2 码 14.7 (出站信号开放)进站开放正线停车信号 U 码 16.9 进站开放侧线停车信号U U 码 18进站开放引导信号H B 码 24.6进站信号关闭H U 码 26.8 进站信号机前方有2以上闭塞分区空闲L 码 11.4前方只有2个闭塞分区空闲L U 码 13.6次架为进站信号机开放黄、闪黄信号U 2S 码 20.2(次架信号机显示U S U )次架为进站信号机开放双黄信号U 2 码 14.7(次架信号机显示U U ) 前方只有1个闭塞分区空闲U 码 16.9(次架信号机显示H )前方闭塞分区有车占用H U 码 26.8通过 或出站 信号机信号显示含义发送的低频码(H Z )显示分区的通过信号机7显示红灯,这时7信号点的发送设备自动向闭塞分区2G发送以26.8 Hz调制的中心载频为2300Hz的移频信号。
ZPW-2000A无绝缘移频自动闭塞系统原理
型号为 Z P W一 2 0 0 0 A的无绝缘移频 自动闭塞是一种从法 国引进的 3 . 1 调谐 区断轨检查 只能无绝缘轨道 电路技术 , 但是在我国呈现出国产化的特点 , 并且在满 3 . 2 减小诃谐区 0 . 1 5 n 分路死 区 足我 国基本国情的基础上, 重新进行研发的一种技术。 这一技术的特点 3 . 3 调谐单元断线检查 在价格、 技术性能以及很多方面都具有—定的优势。 并目 获得了一系列 3 . 4 轨道 电路全程断轨检查 的技术专利, 本文重点对这方面的问题进行研究。 3 . 5 钢轨对地不平衡对传输安全的影响及防护 1 Z P W一 2 0 0 0 A型无绝缘移频自动闭塞系统技术特点 4故障查找流程 1 . 1 在原有无绝缘轨道电路整体结构的基础上予 以了肯定 , 并且充 发生故障以后, 首先要对故障加 以 判断, 厘清产生的故障是在室内 还是在室外 , 只有确定 了位置 , 才能进一步 的处理。故障的查找流程主 分保留了相关的优: 势。 1 . 2可以满足轨道电路全程诊断的要求。 要分为三步, 一是相对于发送端而言 , 要按照一定 的顺序进行检查 , 先 是检查室外发送器的功出电压 , 然后检查组合架, 紧接着对区间综合柜 1 . 3 避免出现调谐分录死区段的问题 。 加以检查 ; 二是相对于接收端而言 , 先是对室 内接收输入进行检查 , 然 1 4可以X  ̄ i  ̄ J i 皆 单元断线产生的故障加以进一步的检查。 后检查衰耗盘 以及组合架 , 最后检查区间综合柜; 三是相对于室外设备 1 . 5 降低了试验队拍频产生的干扰 , 并且加以有效的保护。 先检查电缆盒以及发送端相互匹配的变压器以及调谐单元 , 紧接 1 . 6 在相关系统参数的基础上加 以 进一步的优化 , 满足轨道电 路相 而言, 着检查钢轨传输通道 ,然后检查与受电端相互匹配的变压器与协调单 关传输长度 的要求。 l - 7 对于 1 n・ k m标准道碴电阻以及低道碴电阻传输所提出的长度 元 , 最后再对相关电缆盒进行仔细的检查, 找出故障的源头。 般 隋况下 , 室外设备故障 , 无论处理人员先到达送 电端还是受 电 要求均能够满足 , 并目 . 符合稳定 陛的要求。 先用表测量轨面 , 看是否有电压。若有电压 , 则按电流流动方向顺序 1 . 8 选用我国 自主生产的电缆 , 将法国的电缆加 以取代 , 将铜芯的 端 , 线径予以进一步的减小 , 同时也降低备用芯组的使用 , 扩大传输之间的 依次检查测量 , 检查到有 电压和无 电压之间就是故障点。若没有电压 , 距离 , 从而进一步提高系统在技术以及价格等方面的比例 , 解决工程造 则要首先判断是开路故障还是混线故障 , 此时 , 如果先到送 电端就应顺 序检查送电钢丝绳 、 匹配变压器 、 电缆接口等处 , 检查到有电压和无 电 价过高的问题。 1 . 9 选择长钢包铜引接线 的目的在于可以让工务维修变得更加便 压之间就是故障点 ; 如果先到受电端就应迅速检查受 电钢丝绳 、 匹配变 捷。 压器等看是否有混线的可能 , 若无异常, 就应快速 向送电方向移动检查 电容等 , 看是否有造成混线的处所。 1 . 1 0 为了将系统的可靠性予以进一步提升 , 主要运用“ N +1 ” 冗余 轨面 、 发射器以及双机并联的接收器。 室外匹配单元故障 , 一般发生在防雷元件和 电容被击穿 , 如果检查 确认是防雷元件被击穿,为压缩故障延时可临时将电缆线跳过防雷元 1 . 1 1 具有完整的检测和故障报警功能。 2 z P w一 2 0 0 0 A型绝缘轨道 电路系统构成 件接 人设备。 ’ 2 . 1 室外部分。 2 . 1 . 1 调谐区。 按2 9 m设计 , 实现两相邻轨道电路电 与一般的轨道电路存在一定 的差异性 ,在对 Z P W一 2 0 0 0 A产生的 对于本区段的主轨以及小轨具有较高的要求 , 需要保 气隔离 , 由空心线圈、 调谐匹配单元( 调谐单元和匹配变压器) 组成。 2 . 1 . 2 故障进行处理时, 机械绝缘节。 由机械绝缘节空线圈与调匹单元并接构成。 2 . 1 。 3 匹配变压 持在正常工作的状态下,相邻区段的小轨也需要处在正常工作的状态 当在两个区段都出现红光带时 , 很有可能是因为在两个区段的中间 器。按 0 . 2 5 一 l D Q・ k m道碴电阻范围设计 , 实现轨道电路与 S P T 传输电 下 , 针对这一问题的出现 , 应该先在相邻区段之间的 缆的匹配连接。 2 . 1 . 4补偿电容。 使传输通道趋于阻性 , 在轨道电路中, 电 公共部分出现了问题 , 容按等间距法设置, 保证轨道电路良好的传输性能。 2 . 1 . 5传输电缆。 S F F 衰耗盘 E 对输 出电压进行测试, 观察输出电压值是否高出 4 0 0 mV , 如果 型数字信号电缆, 中1 . 0 mm, 总长一般 1 0 k n, i 也可按 1 2 s . k m或者 1 5 k n。 i 是小于这个数值 , 那么就说明是主轨的问题 , 紧接着对相邻区段间的小 观察结果, 如果结果低于 1 0 0 m V, 那么就说 明是 2 . 1 . 6调谐区设备引接线。 采用 3 6 0 0 mm 、 1 6 0 0 mm钢包铜引接线 , 用于调 轨输出电压进行测量 , 谐 单元 、空心 线圈 、机械 节空心线圈等设备 与钢轨 的链接 ,也有 小轨 的问题。 当其 中的—个区段有红光带的现象发生时 , 那么很有可能 4 0 0 0 m m、 2 0 0 0 mm设计。 2 . 1 . 7扼流变压器 。 在每—个轨道电路起到平衡 是相邻后段的小轨存在异常的情况 ,这样就要x C d , 轨的输出电压进行 测试 , 当检测结果低于 1 0 0 m V时, 那么可以肯定是小轨的原因。还有一 次牵引电流的作用。 也就是在室外的主轨道 中有一端电容 比较容易丢失 , 2 . 2室内部分。 2 . 2 . 1 电缆模拟网络。 按0 5 . 、 0 5、 . 1 、 2 . 2 、 2 * 2 六段i 殳汁, 种是特殊 的情况 , 那么小轨电压会 出现低于 7 0 m V 用于对电缆 的补偿 , 总补偿距离为 1 0 k m 。2 . 2 . 2发送器 。 产生高精度、 高 还有可能出现电容塞钉头松动的迹象, 稳定移频信号源, 采用 N + I 冗余 十, 故障时通过发送报警继电器接点 的情况 , 也就会因此造成红光带的出现。 结束 语 转至 + 1 发送。 2 . 2 . 3 接收器。接收器主要的作用就是对主轨道发出的电 本文主要对 Z P W一 2 0 0 0 A故障的相关问题进行 了研究 ,探讨故障 路信号进行接收 , 当满足相关状态的 ̄ , t C T, 还能够对相邻 区 段的信号 进行接收 , 为其提供相关的小轨道电路状态条件 。 一般 情况下的接收器 查找的程序等问题 , 希望对今后的工作提供一定的帮助 。 参考文献 都采用的是双机并联的方式加以运行 。 2 . 2 . 4衰耗盒。 用于实现主轨道电 1 高速铁路管理人 员和专业技术人 员培训教材—Z P w- 2 0 0 0 A型无绝 路、 小轨道电路的调整。给出发送接收故障、 轨道 占用表示及发送 、 接收 … 用+ 2 4 V电源 电压 、 发送功出电压 、 接收 G J 、 xG J 测试条件。 缘移频 自动闭塞 系统 邮 . 北京: 中国铁道 出版社. 2 ] Z P W- 2 0 0 0 A型 无 绝缘 移频 自动 闭塞 系统技 术 综 述阴. 北 京全 路 通信 2 . 3系统防雷。室内: 发送端、 接收端的站防雷。实现对从电缆引入 [ 雷电冲击的横向、 纵向防护 , 并满足电缆绝缘在线测试。室外 : 对从钢轨 信 号研 究设计 院. 3 ] Z P W- 2 0 0 0 A移频 自动闭塞系统原理、 维护和故障��
4-zpw-2000A轨道电路
一、主要技术特点
1、充分肯定、保持UM71无绝缘轨道电路技术特点及优势。
2、解决了调谐区断轨检查,实现轨道电路全程断轨检查。 3、减少调谐区分路死区。 4、实现对调谐单元断线故障的检查。 5、实现对拍频干扰的防护。 6、通过系统参数优化,提高了轨道电路传输长度。 7、提高机械绝缘节轨道电路传输长度,实现与电气绝缘节 轨道电路等长传输。
信息名称
U2S
L5
绿
U3
黄
机车信号显示 黄2闪
车信号载 L4 HB 频自动切 换
既有线机 13 14
轨道电路 15 16 占用检查, 不做机车 HU 信号信息
前方信号 17 18 机显示一 个红灯 H
检测码
绿
17
红黄闪
红黄
红 29
载频
2015/8/6
20.2 21.3 22.4 23.5 24.6 25.7 26.8 27.9
6
2 工作电源 直流电源电压范围: 23.5V~24.5V; 设备耗电情况:发送器在正常工作时负载为400Ω 功出为1电平的情况下,耗电为5.55A;当功出短路 时耗电小于10.5A; 接收器正常工作时耗电小于500mA。 3 轨道电路 分路灵敏度为0.15Ω,分路残压小于140mv。 主轨道无分路死区;调谐区分路死区不大于5m; 有分离式断轨检查性能;轨道电路全程断轨,轨道 继电器可靠落下。
”信号由运行前方相邻轨道电路接收器处理,并将处
理结果形成小轨道电路轨道继电器执行条件通过(
XG、XGH)送至本轨道电路接收器,做为轨道继电
器(GJ)励磁的必要检查条件之一。
2015/8/6
11
主轨道和小轨道检查示意图
2015/8/6 12
ZPW2000A型无绝缘移频自动闭塞系统
1 系统的构成ZPW-2000A型无绝缘移频自动闭塞系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,电气绝缘节由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收,对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止越区传输。
这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘轨道电路分为主轨道电路和调谐区小轨道电路两部分,小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向调谐区小轨道传送,主轨道信号经钢轨送到轨道电路的受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路继电器执行条件送至本区段接收器,本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
该系统“电气-电气”和“电气-机械”两种绝缘节结构电气性能相同,现按“电气-机械”结构进行系统原理介绍,系统原理构成见图2-1,Δ为补偿间距。
图2-1“电气-机械”绝缘节系统原理图1.1 室外部分1) 调谐区(JES—JES)调谐区按29m设计,设备包括调谐单元及空心线圈,其参数保持原“UM71”参数。
功能是实现两相邻轨道电路电气隔离。
2) 机械绝缘节由“机械绝缘空心线圈”(按载频分为1700、2000、2300、2600Hz四种)与调谐单元并接而成,其节特性与电气绝缘节相同。
3) 匹配变压器一般条件下,按0.25~1.0Ω·km道碴电阻设计,实现轨道电路与SPT传输电缆的匹配连接。
ZPW-2000
ZPW2000A移频自动闭塞1.1ZPW2000A闭塞系统概述一、概述1.载频、频偏的选择我国于20世纪90年代初引进法国高速铁路的UM71移频自动闭塞设备,并在此基础上结合我国国情研制了更加适应我国铁路的区间移频自动闭塞设备,该设备即为目前铁道部推广使用的ZPW-2000无绝缘轨道电路移频自动闭塞设备。
ZPW-2000无绝缘轨道电路移频自动闭塞低频、载频延用了UM71技术。
载频分别为四种:1700HZ、2000HZ、2300HZ、2600HZ。
其中上行线使用2000 HZ和2600 HZ 交替排列,下行线用l700HZ和2300 Hz交替排列。
UM71轨道电路的频偏Δf为11HZ。
UM71低频调制信号Fc(低频信息)从10.3 HZ 至29 HZ按1.1 HZ递增共18种。
即这18种低频信息分别为:10.3 HZ、11.4HZ、12.5 HZ、13.6 HZ、14.7 HZ、15.8 HZ、16.9 Hz、18 HZ,19.1 HZ、20.2 HZ、21.1H2、22.4 HZ、23.5 HZ、24.6 HZ、25.7HZ、26.8 HZ、27.9 HZ、29 HZ。
在低频调制信号作用下,一个周期内,信号频率发生f1、f2来回变化。
其中f1=f0 -Δf,f2=f0 +Δf 。
2.18信息的显示3.基本工作原理在移频自动闭塞区段,移频信息的传输,是按照运行列车占用闭塞分区的状态,迎着列车的运行方向,自动地向各闭塞分区传递信息的。
如图3-1-1所示,若下行线有两列列车A 、B 运行,A 列车运行在1G 分区,B 列车运行在5G 分区。
由于1G 有车占用,防护该闭塞正线通过信号L 码 11.4出站信号开放黄灯信号L U 码 13.6经18号道岔侧线通过U U S 码 19.1列车“直进”“弯出”通过 U 2 码 14.7 (出站信号开放)进站开放正线停车信号 U 码 16.9 进站开放侧线停车信号U U 码 18进站开放引导信号H B 码 24.6进站信号关闭H U 码 26.8 进站信号机前方有2以上闭塞分区空闲L 码 11.4前方只有2个闭塞分区空闲L U 码 13.6次架为进站信号机开放黄、闪黄信号U 2S 码 20.2(次架信号机显示U S U )次架为进站信号机开放双黄信号U 2 码 14.7(次架信号机显示U U ) 前方只有1个闭塞分区空闲U 码 16.9(次架信号机显示H )前方闭塞分区有车占用H U 码 26.8通过 或出站 信号机信号显示含义发送的低频码(H Z )显示分区的通过信号机7显示红灯,这时7信号点的发送设备自动向闭塞分区2G发送以26.8 Hz调制的中心载频为2300Hz的移频信号。
ZPW-2000A
接收器接口条件箱BT-01U/DZ 型ZPW-2000A 移频设备整机测试系统实 物 图 片BT-01U/DZ 型ZPW-2000A 型移频设备整机测试系统衰耗器/发送检测器条件箱发送器接口条件箱网络盘接口条件箱 微机及虚拟测试主台组合 匹配变压器接口条件箱调谐单元/空心线圈接口工装检测盘接口条件箱调整器接口条件箱BT-01U/DZ型ZPW-2000A移频设备整机测试系统技术响应书1.主要功能及技术特点随着ZPW-2000A型无绝缘移频自动闭塞系统的全面推广,根据铁道部电务局“要尽快建立国内移频设备统一先进的测试、管理手段,确保安全行车”的有关指示,研制开发出BT-01U/DZ型ZPW-2000A移频设备整机测试系统(以下简称测试系统)。
BT-01U/DZ型测试系统的技术核心之一是采用多类型、大集合群、计算机程控的专用虚拟电测仪器仪表系统,取代传统的多类型、大集合群、手工操作的分立仪器仪表组合。
BT-01U/DZ型测试系统的另一技术核心是采用了计算机USB(通用串行总线)数据传输技术,使得测试过程中大量的数据流得以畅通无阻。
上述技术的采用,使测试系统具备了当代先进技术水平,代表了现代电测技术和电测仪器产品发展的方向。
BT-01U/DZ型测试系统是BT-01系列测试系统产品之一,该系列产品通过铁道部部级产品鉴定,荣获国家重点新产品证书,并取得制造计量器具许可证:豫制00000165-4号。
BT-01U/DZ型测试系统,实现ZPW-2000A无绝缘移频设备整机性能和指标的检查和测试,可以取代大量的测试仪表组合及繁琐的手工操作,能对被测设备进行自动分析、综合判断,实现了测试过程从全部人工测量到虚拟测试系统的自动测试、纪录、判断的转变,有效地避免了人为测试误解或操作不当造成的测试失误,提高了测试的可信度及工作效率。
测试系统测试北京铁路信号工厂生产的ZPW-2000A移频设备一览表:●ZPW〃F型无绝缘移频自动闭塞发送器●ZPW〃J型无绝缘移频自动闭塞接收器●ZPW〃PS型无绝缘移频自动闭塞衰耗盘●ZPW〃PS1型无绝缘移频自动闭塞衰耗盘●ZPW〃S型无绝缘移频自动闭塞衰耗器●ZPW〃PMD型无绝缘电缆模拟网络盘●ZPW〃PML型无绝缘电缆模拟网络盘●ZPW〃ML型无绝缘电缆模拟网络盘●ZPW〃PML1型无绝缘电缆模拟网络盘●ZPW〃JFM型电码化发送检测盘● ZPW〃JF型电码化发送检测器● ZPW〃PJZ型正线检测盘● ZPW〃PJC型侧线检测盘● ZPW〃TJD型单频检测调整器● ZPW〃TJS型双频检测调整器● ZW〃T1型无绝缘轨道电路自动闭塞调谐单元● ZPW〃T型无绝缘轨道电路自动闭塞调谐单元● ZW〃XK1型无绝缘轨道电路自动闭塞空心线圈● ZPW〃XKJ型无绝缘机械绝缘空心线圈● ZPW〃XK型无绝缘轨道电路自动闭塞空心线圈● ZPW〃BP型无绝缘匹配变压器● ZPW〃BP1型无绝缘匹配变压器● ZPW〃BPL型无绝缘匹配变压器测试系统测试上海铁路通信工厂生产的ZPW-2000A移频设备一览表:●ZPW〃F型无绝缘移频自动闭塞发送器●ZPW〃J型无绝缘移频自动闭塞接收器●ZPW〃PS型无绝缘移频自动闭塞衰耗盘●ZPW〃PS1型无绝缘移频自动闭塞衰耗盘●ZPW〃S型无绝缘移频自动闭塞衰耗器●ZPW〃PML型无绝缘电缆模拟网络盘●ZPW〃ML型无绝缘电缆模拟网络盘●ZPW〃CF型电码化发送检测盘●ZPW〃JF型电码化发送检测器● ZPW〃PJZ型正线检测盘● ZPW〃PJC型侧线检测盘● ZPW〃TJD型单频检测调整器● ZPW〃TJS型双频检测调整器● ZPW〃T型无绝缘轨道电路自动闭塞调谐单元● ZPW〃XKJ型无绝缘机械绝缘空心线圈● ZPW〃XK型无绝缘轨道电路自动闭塞空心线圈● ZPW〃BP型无绝缘匹配变压器● ZPW〃BPL型无绝缘匹配变压器测试系统测试沈阳铁路信号工厂生产的ZPW-2000A移频设备一览表:●ZPW〃F型无绝缘移频自动闭塞发送器●ZPW〃J型无绝缘移频自动闭塞接收器●ZPW〃PS型无绝缘移频自动闭塞衰耗盘●ZPW〃S型无绝缘移频自动闭塞衰耗器●ZPW〃PML型无绝缘电缆模拟网络盘●ZPW〃ML型无绝缘电缆模拟网络盘●ZPW〃JFM型电码化发送检测盘●ZPW〃JF型电码化发送检测器● ZPW〃PJZ型正线检测盘● ZPW〃PJC型侧线检测盘● ZPW〃TJD型单频检测调整器● ZPW〃TJS型双频检测调整器● ZPW〃T型无绝缘轨道电路自动闭塞调谐单元● ZPW〃XKJ型无绝缘机械绝缘空心线圈● ZPW〃XK型无绝缘轨道电路自动闭塞空心线圈● ZPW〃BPL型无绝缘匹配变压器2.组成部分测试系统由专家测试系统软件、微机、数字表、测试主台、测试接口条件箱组成。
ZPW-2000A无绝缘移频自动闭塞系统
6. 调谐区设备引接线:采用3600mm、1600mm钢包铜引接线构成。用于 BA、SVA、SVA’等设备与钢轨间的连接。
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
匹配变压器
空心线圈
调谐单元
调谐单元外形
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
2.2 系统构成
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
系统框图
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
2.3 室外部分
1. 调谐区(JES—JES):调谐区按29m设计,设备包括调谐单元及空心 线圈,其参数保持“UM71”参数。功能是实现两相邻轨道电路电气隔离 。
ZPW-2000A无绝缘移频自动闭塞系统
ZPW-2000A无绝缘移频自动闭塞系统—项目综述
1.2 系统技术特点
1)充分肯定、保持UM71无绝缘轨道电路整体结构上的优势。 2)通过解决调谐区断轨检查,实现了轨道电路全程断轨检查。 3)减少了调谐区分路死区。 4)实现了对调谐单元断线故障的检查。 5)实现了对拍频干扰的防护。 6)通过系统参数优化,提高了轨道电路传输长度。 7)提高了机械绝缘节轨道电路传输长度,实现了与电气绝缘节 轨道电路等长传输。
2.4 室内部分
1. 发送器:用于产生高精度、高稳定移频信号源。系统采用N+1冗余设 计。故障时,通过FBJ的接点转至“+1”FS。 2. 接收器:接收器用于接收本主轨道电路信号,并在检查所属调谐区 短小轨道电路状态(XGJ、XGJH)条件下,动作本轨道电路的轨道 继电器(GJ)。另外,接收器还接收相邻区段小轨道电路的信号,向 相邻区段提供小轨道电路状态(XG、XGH)条件。接收器采用DSP 数字信号处理技术,将接收到的两种频率信号进行快速傅氏变换(FFT ),获得两种信号能量谱的分布,并进行判决。系统采用接收器成对双 机并联冗余方式。 3. 衰耗盘:用于实现主轨道电路、小轨道电路的调整。给出发送和接 收故障、轨道占用表示及发送、接收用+24电源电压、发送功出电压、 接收GJ、XG测试条件等。 4. 防雷模拟网络盘:电缆模拟网络设在室内,按0.5、0.5、1、2、2、 2×2km六段设计,用于对SPT电缆长度的补偿,电缆与电缆模拟网络补 偿长度之和为10km 。
ZPW-2000A论文
ZPA—2000A自动闭塞故障处理土狗一、摘要介绍ZPW-2000A型无绝缘移频自动闭塞系统组成、原理及在工程安装施工、开通启用时,轨道电路的测试、调试方法及处理故障的基本程序。
关键字:ZPW-2000A 故障处理二、 ZPW-2000A系统概述1系统简介ZPW-2000A型无绝缘轨道电路,是在法国UM71无绝缘轨道电路技术引用的基础上,结合我国的铁路的具体情况技术再开发。
ZPW-2000A型无绝缘轨道电路充分肯定、保持UM71无绝缘轨道电路的技术特点及优势,解决了轨道电路调谐区断轨检查,实现轨道电路全程断轨检查;减少调谐区分路死区;实现对调谐单元断线故障的检查,通过系统参数优化,提高了轨道电路的传输长度。
2系统组成ZPW-2000A型无绝缘轨道电路系统构成如下图所示:ZPW-2000A型无绝缘轨道电路系统构成图2.1室外设备室外设备主要有:调谐区、机械绝缘、匹配变压器、补偿电容、传输电缆、调谐区设备与钢轨引接线、贯通地线。
1、电气绝缘节ZPW-2000A无绝缘轨道电路分电气绝缘节和机械绝缘节两种。
在电气绝缘节处通过发送调谐单元、接收调谐单元、空芯线圈、钢轨电感及钢轨引接线电感组成串、并联谐振,对相邻区段的频率呈零阻抗端(电压很低相当于短路状态),起到隔离作用;而对于本区段的频率呈极阻抗端(电压很高),能够使接收设备可靠工作,保证信号传输的可靠性。
电气绝缘节处设备布置示意图,如下图所示:图电气绝缘节处设备布置示意图2、机械绝缘机械绝缘节处设备布置如图所示。
图机械绝缘节处设备布置示意图3、补偿电容当轨道电路较长时,钢轨呈现较高的感抗值,如感抗值高于道碴电阻时,则钢轨对((2)补偿电容的种类及规格表室内设备主要有:电源屏、移频柜(JT架)、发送盒、接受盒、衰耗盘、电缆模拟网络箱、系统防雷。
1、发送盒发送器采用热机备用,主机故障自动转换至备机(+1)。
备机的输出频率必须与当故障时,并机便会代替主机工作,因此在接收盒故障时,可直接取下接收盒进行更换,不会影响设备的正常使用。
ZPW-2000A型无绝缘介绍
• 系统防雷 系统防雷由室内、室外两部分构成: 室内防雷设在电缆模拟网络盘内,纵向为 低转移系数的防雷变压器,横向为带劣化 显示的压敏电阻。 室外横向防雷设在匹配变压器内,为压敏 电阻。纵向防雷设在空心线圈处,通过中 心抽头接地。
系统主要技术条件
• 发送器 低频频率:10.3+n×1.1Hz,n=0~17 即10.3Hz、11.4Hz、12.5Hz、13.6Hz、14.7Hz、 15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、 22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、 29Hz。 载频频率:(频偏:±11 Hz,输出功率:70W—负载 400 时)
主要技术特点
• 发送器和接收器均有较完善的检测功能, 发送器可实现“N+1”冗余,接收器可实现 双机互为冗余。发送、接收设备四种载频 频率通用。 • 调谐区按29m设计,设备包括调谐单元及空 心线圈,以实现两相邻轨道电路电气隔离。 • 机械绝缘节按载频分为1700、2000、2300、 2600Hz四种,与调谐单元并接而成。
• 轨道电路 分路灵敏度为0.15 ,分路残压小于等于 140mv(带内)。 轨道电路有三种情况,规定如下: 电气绝缘—电气绝缘:由空心线圈到空心 线圈; 电气绝缘—机械绝缘:由空心线圈到机械 绝缘; 机械绝缘—机械绝缘:由机械绝缘到机械 绝缘。
• 电气绝缘节及调谐单元
电气绝缘节长29米,在两端各设一个调谐单 元(BA)对于较低载频轨道电路(1700、 2000Hz)设置F1型调谐单元,反之,设置F2 型调谐单元。
主要技术特点
• 匹配变压器,一般条件下按0.3~1.0 1 .km道渣电阻设计,实现轨道电路与SPT 传输电缆的匹配连接。 • 补偿电容,根据通道参数并兼顾低道渣电 阻道床传输,选择电容器容量。使传输通 道趋于阻性,保证轨道电路具有良好传输 性能。
第四章ZPW2000A移频自动闭塞
第四章 ZPW2000A移频自动闭塞概述在铁路通信系统中,移频自动闭塞(Automatic Block Signaling)是一种常用的列车自动控制系统。
本文档将介绍ZPW2000A移频自动闭塞系统的基本原理、工作方式、功能特点以及适用范围。
基本原理ZPW2000A移频自动闭塞系统基于铁路线路的技术特点和列车的运行需求,采用移频技术、数字通信技术以及微处理器控制技术等多种技术手段。
它通过无线电信号传输列车的行进信息,实现信号机自动控制列车的行驶速度和间隔,确保列车在安全的距离内行驶,防止事故的发生。
工作方式ZPW2000A移频自动闭塞系统由引导区、保护区和结束区三个功能区组成。
引导区引导区是系统的起始区域,也是列车进入闭塞区域的切入点。
引导区主要负责向接近列车发送进入闭塞区域的信号,并通过无线电通信与列车实现信息的交换。
保护区保护区是系统的主要工作区域,也是列车行驶过程中的关键区域。
保护区通过无线电信号向列车发送行进信息,并根据列车的运行速度和间隔要求,控制信号灯的颜色和显示方式,确保列车行驶安全。
结束区结束区是系统的结束区域,也是列车离开闭塞区域的切出点。
结束区主要负责向列车发送离开闭塞区域的信号,并与列车进行信息的交换,确保列车平稳地退出闭塞区域。
功能特点ZPW2000A移频自动闭塞系统具有以下功能特点:1.系统稳定可靠:采用先进的移频技术和数字通信技术,保证系统传输数据的可靠性和稳定性。
2.灵活可拓展:系统结构简单清晰,易于维护和拓展,可适应不同铁路线路的需要。
3.高安全性能:通过对信号灯和列车的控制,确保列车行驶在安全的速度和间隔范围内,防止事故的发生。
4.自动化操作:系统采用微处理器控制技术,实现对列车行进信息的自动处理和控制,减轻人工操作的负担。
适用范围ZPW2000A移频自动闭塞系统适用于铁路线路的列车自动控制,特别适用于高速铁路和繁忙的城市铁路线路。
它可以提高列车运行的安全性和运行效率,降低事故的发生率,为铁路运输提供可靠的信号控制保障。
【201707-1】ZPW-2000A系统设备简介
空心线圈平衡牵引回流 示意图
第二章 设备结构、使用及原理说明
空心线圈技术指标
序号 1
项 目 指标及范围 电感 33.5μH±1μ
备 注 测试频率:1592 电 流 : 2A±0.05A
H
电阻 18.5mΩ±5.
2
5mΩ
第二章 设备结构、使用及原理说明
3、机械绝缘节空芯线圈(XKJD) 用在车站与区间衔接的机械绝缘处,结构特征与空芯线圈一致,按频率分为四 种,与相应频率调谐单元相并联,可获得与电气绝缘节阻抗相同的效果。 工作原理
补偿电容
补偿电容用途:
为抵消钢轨电感对移频信号传输的影响,采取在轨道电路中,分段加装补偿电容的
方法,使钢轨对移频信号的传输趋于阻性,接收端能够获得较大的信号能量。另外,加
装补偿电容能够实现钢轨断轨检查。在钢轨两端对地不平衡条件下,能够保证列车分路T数字电缆
主机与并机频率选择 均在接收器上进行。 主机+24V取自+24端子 并级+24V取自(+24) 端子
主机小轨道继电器XG
主机小轨道检查条件XGJ
发送接收报警接点
接收电源
第二章 设备结构、使用及原理说明
五、发送器 ZPW· F
安装在机械
第二章 设备结构、使用及原理说明
一、调谐区(电气绝缘节)
电气绝缘节由空芯线圈、29米长钢轨及调谐单元组成,实现相邻两轨道电路的电气 隔离。
调 谐 单 元
空芯线圈
调 谐 单 元
F1
F2
29m
电气绝缘节原理图
第二章 设备结构、使用及原理说明
电气绝缘节原理介绍
电气绝缘节原理图
第二章 设备结构、使用及原理说明
ZPW—2000A无绝缘移频自动闭塞系统认识简述
ZPW—2000A无绝缘移频自动闭塞系统认识简述作者:张凯来源:《科技与创新》2014年第07期摘要:移频自动闭塞以移频轨道电路为基础,以钢轨作为传输通道传递信息。
移频自动闭塞抗干扰性能强,适用于电气化和非电气化区段。
ZPW-2000A型无绝缘移频自动闭塞具有轨道电路传输安全性、传输长度、系统可靠性、可维修性等特点。
ZPW-2000A型无绝缘移频自动闭塞轨道电路系统主要是由室外部分、室内部分和系统防雷三部分组成。
关键词:铁路信号;闭塞;移频;轨道电路中图分类号:U284.43 文献标识码:A 文章编号:2095-6835(2014)07-0002-02铁路信号是组织行车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键技术。
铁路信号在铁路现代化建设和国民经济发展中起着极其重要的作用。
当前,由于铁路运输已向着高速、高密和重载的方向发展,所以,铁路信号已成为实现运输管理自动化、列车运行自动控制和改善铁路员工劳动条件的重要技术手段。
铁路信号系统按其应用场所可分为车站信号控制系统、编组站调车控制系统、区间信号控制系统、铁路行车指挥控制系统和列车运行自动控制系统等。
区间信号自动控制是铁路区间信号闭塞、区段自动控制和远程控制技术的总称,是确保列车在区间内安全运行的技术之一。
1 行车闭塞法由于列车在线路上运行,不能以相互避让的方法避免迎面相撞,加之列车速度快、质量大,从开始制动到停车需要行走较长的距离,这就产生了后续列车追撞前行列车的可能。
闭塞设备是保证列车在区间内运行安全的设备,属于铁路区间信号的一种。
铁路线路以车站(线路所)为分界点划分为若干区间,区间的界限在单线上以两个车站的进站信号机柱的中心线为车站与区间的分界线,在双线或多线上,分别以各线路的进站信号机柱或站界标的中心线为车站与区间的分界线。
为了提高线路通过的能力,在自动闭塞区段又将一个区间划分为若干个闭塞分区,以同方向两架通过信号机作为闭塞分区的分界线。
zpw-2000a
走线槽地线柱焊接示意图
3.1.4.5.5其它设备的接地连接
(1)电源屏使用10mm2扁平铜网编织线(或接地铜缆)与网格地线连接。
(2)控制台使用25mm2的电缆与网格地线连接。
3.1.4.6贯通地线
(1)贯通地线是由25mm2铜缆外面包一层10mm2铅层或者35mm2铜缆组成。
(2)贯通地线与电缆同沟直埋地下,埋深1200mm。
(4)如汇集接地端子排与分线柜距离较近,可与分线柜处电缆成端引出的地线连接后连接分线柜处的接地端子排。
(5)汇集接地端子排用35mm2的电缆两根连接环形地线网,焊接点间距大于1米。
(6)靠近信号楼完全横向连接的扼流变压器中点或者空心线圈中点,采用两根10mm2的电缆与汇集接地端子排连接,电缆长度小于100米;如相邻空心线圈或扼流变压器中点大于100米,则在靠近信号楼侧增设扼流变压器和纵向避雷器,经纵向避雷器与汇集接地端子排连接。
分A、B型内屏蔽数字信号电缆和普通数字电缆,A、B型电缆的备用芯线中(除8芯电缆)应至少有一个屏蔽星绞组。
2.2.1相同频率的发送线对和接收线对不能使用同一根电缆。
2.2.2相同频率的发送线对或接收线对不能使用同一屏蔽四线组。
2.3铁路内屏蔽数字信号电缆的主要规格见下表
铁路内屏蔽数字信号电缆的主要规格表
(5)引入分线柜的屏蔽线的屏蔽网与接地端子排连接
ZPW—2000A型无绝缘移频自动闭塞的维护检修与故障处理
ZPW—2000A型无绝缘移频自动闭塞的维护检修与故障处理作者:张卫伟来源:《中国新技术新产品》2018年第06期摘要:本文介绍了ZPW-2000A型无绝缘移频自动闭塞系统的特点、原理、日常维护检修及故障处理的基本程序。
关键词:ZPW-2000A;日常维护检修;故障处理中图分类号: TK228 文献标志码:A0 前言我国无绝缘轨道电路技术的发展历经UM71型引进、WG-21A型国产化、ZPW-2000A型性能提高的3个阶段,为适应铁路运输的需要,实现跨越式发展,现已将ZPW-2000无绝缘轨道电路确定为我国铁路自闭的技术发展方向。
ZPW-2000A系统以高可靠和适应广等优良性能为实现机车信号主体化创造了必备条件,成为我国铁路自动闭塞系统的首选。
本文对ZPW-2000A型无绝缘移频自动闭塞系统的特点、原理、维护检修及故障处理的基本程序进行了简单的介绍,为提高ZPW-2000A的设备质量,预防ZPW-2000A设备故障的发生提出了一些ZPW-2000A型无绝缘移频自动闭塞的日常维护和故障处理的一些经验和心得、预防故障发生具体措施。
1 ZPW-2000A型无绝缘移频自动闭塞系统的特点:1.1 取消机械绝缘节极大提高了牵引电流的通过能力和安全系数,为重载列车的开行提供了良好的运行环境。
1.2 大量设备集中设置在车站机械室内,室外设备只保留了调谐单元,匹配变压器和空心线圈等极少的设备便于设备的检修和维护,减轻了室外作业的工作量,良好的运行环境也使得设备运行稳定性有了很大提高,设备故障情况明显减少。
1.3 联锁电路设计简单合理,适用重载和提速线路,符合铁路跨越式发展的要求。
1.4 轨道分路灵敏度的提高能够更好的保证行车安全。
1.5 系统中发送器采用N+1冗余,接收器采用成对双机并联运用,系统运行可靠性有了很大提高。
1.6 采用注塑钢包铜引接线和法式塞钉的连接方式,利于维修。
1.7 实现对拍频干扰防护,能够避免牵引电流和其他电源对设备的干扰,保证了联锁安全。
ZPW2000A移频自动闭塞
ZPW-2000A 型 无 绝 缘 移 频 自 动 闭 塞 系 统 系 统 框 图
(1)调谐区(电气绝缘节)
调谐区既电气绝缘节,除车站进出站口交界点 外,各闭塞分区分界点均设电气绝缘节。调谐区 按29m长设计,它由调谐单元(称BA)及空心 线圈(称SVA)组成。其参数保持原“UM71” 参数,功能是实现两相邻轨道电路电气隔离。
小轨道接收电压不小于33.3mV(考虑到上下边频 幅度差,运用中,33~38mV);
小轨道继电器或执行条件电压不小于20V (1700Ω负载,无并机接入状态下)。
3. 直流电源 电压范围:23.5V~24.5V 与原有UM71 系统设备配套,其直流电压范围为
22.5~28.8V。 4.轨道电路 (1)主轨道电路工作值 240mV; (2)小轨道电路工作值 33.3mV; (3)分路灵敏度为0.15Ω; (4)主轨道电路分路残压为140mV(带内);
低频频率:10.3+n×1.1Hz ,n=0~17即: 10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8 Hz、
16.9 Hz、18 Hz、19.1 Hz、20.2 Hz、21.3 Hz、22.4 Hz、23.5 Hz、 24.6 Hz、25.7 Hz、26.8 Hz、27.9 Hz、29 Hz。
频率计数器等。 3、低频和载频编码条件的读取
图3-2-2 低频编码条件的读取
4、移频信号产生
低频,载频编码条件通过并行输入/输出接口分别送到两个 处理器后,首先判断该条件是否有,仅有一路。满足条件后, CPU1 通过查表得到该编码条件所对应的上下边频数值,控 制移频发生器,产生相应 FSK 信号。并由 CPU1 进行自检, 由 CPU2 进行互检,条件不满足,将由两个处理器构成故障 报警。
ZPW-2000A与ZPW-2000S轨道电路对比分析
ZPW-2000A与ZPW-2000S轨道电路对比分析摘要:铁路信号是保证铁路运输的关键技术,对铁路网上各种行车的设备状况、信息传输、调度指令控制起着重要的作用。
伴随高速铁路的快速发展,需要不断更新列车运行自控设备及技术以提高运输效率,改善信息传递,保证行车安全。
目前,ZPW-2000系统已经在我国高速铁路中得到广泛应用,笔者结合实际工作经验,对ZPW-2000系列中应用最为广泛的ZPW-2000A与ZPW-2000S进行简要分析。
关键词:ZPW-2000A;ZPW-2000S;系统构成;特点一、ZPW-2000A与ZPW-2000S产品历程ZPW-2000系列无绝缘移频自动闭塞轨道电路不仅在铁路区间广泛应用,还适宜在中间站站内、复杂大站正线及到发线应用。
ZPW-2000系列包含ZPW-2000A、ZPW-2000G、ZPW-2000R、ZPW-2000S共4种2000系列轨道电路系统。
其中,ZPW-2000A、ZPW-2000S这两种轨道电路系统应用最为广泛。
ZPW-2000A型无绝缘移频自动闭塞是在法国UM71无绝缘轨道电路技术引进及国产化基础上,结合国情进行提高系统安全性、系统传输性能及系统可靠性的技术再开发。
较之UM71,ZPW-2000A型无绝缘移频自动闭塞在轨道电路传输安全性、传输长度、系统可靠性、可维修性以及结合国情提高技术性能价格比、降低工程造价上都有了显著提高。
ZPW-2000S轨道电路系统是一种防电气化谐波干扰的移频轨道电路,是和利时在法国UM2000轨道电路的系统基础上国产化消化吸收研制的轨道电路产品。
ZPW-2000S移频轨道电路设备具有在发送通道故障时发送器自动保护功能,可用于自动、连续检测线路是否被列车占用,也用于传输列车控制信息,以保证行车安全。
ZPW-2000S型具有通信编码和继电编码两种编码控制方式,适用于CTCS-2级、CTCS-3级标准的高速铁路及客运专线,也适用于普速铁路。
ZPW-2000A型无绝缘轨道电路
ZPW-2000A型无绝缘轨道电路摘要:ZPW - 2000A 型无绝缘轨道电路是铁路信号的一个重要的组成部分。
该系统保持UM71无绝缘轨道电路整体结构上的优势,解决调谐区内断轨的检查,且减少调谐区的分路死区长度,并在系统中发送器采用“N + 1”冗余,接收器采用成对双机并联运用,提高系统可靠性。
本文将主要讲述一下ZPW - 2000A 型无绝缘轨道电路的技术特点,相关原理及一些常见故障的现象及处理。
关键词:ZPW - 2000A;型无绝缘轨道电路;故障一、ZPW-2000A型无绝缘轨道电路系统特征1. ZPW-2000A型无绝缘轨道电路主要技术特点ZPW-2000A型无绝缘轨道电路系统,采用1700Hz-2600Hz载频段、FSK制式轨道电路传输特性、主要参数及计算机技术,满足机车信号为主体信号的自动闭塞及列车超速防护系统要求。
其主要技术特点是:充分肯定、保持UM71无绝缘轨道电路的技术特点和优势;解决调谐区断轨检查,实现轨道电路全程电气折断检查;减少调谐区分路死区;实现对调谐单元断线故障的检查;实现对拍频干扰的防护;通过系统参数优化,提高轨道电路传输长度;提高机械绝缘节轨道电路传输长度;实现与电气绝缘节轨道电路等长传输;轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行提高一般轨道电路系统工作稳定性;采用国产信号数字电缆代替法国ZC03电缆,减小铜芯线经,减少备用芯组,加大传输距离,提高轨道电路系统技术性能价格比;采用长钢包铜引接线取代70mm2,铜引接线,利于防护和维修;发送、接收设备四种载频频率通用,减少电码化器材种类,减少运转备用数量,既有利于维护,又可降低工程造价;发送、接收设备有比较完善的检测功能,发送器可以实现“N+1”冗余,接收器可以实现双机互为冗余。
2. ZPW-2000A型无绝缘轨道电路系统构成ZPW-2000A型无绝缘轨道电路系统,采用电气绝缘节来实现相邻轨道电路区段的隔离。
《ZPW-2000A无绝缘移频自动闭塞原理与维护》V5
列车运行在三显示自动闭塞区段,越过显示黄灯的通过信号机时开始减速,至次架显示红灯的通过信号机前停车,因此要求每个闭塞分区的长度绝对不能小于列车的制动距离。随着列车的不断提速,为了提高区间通过能力,采用了四显示自动闭塞。
四显示自动闭塞是在三显示自动闭塞的基础上增加了一种绿黄显示,它能预告列车运行前方三个闭塞分区的状态,允许列车以规定的速度越过绿黄显示后必须减速。
(2)在规定的运行时隔内按三个或四个闭塞分区排列通过信号机,应使列车经常在绿灯状态下运行。
6、自动闭塞的通过信号机采用经常点灯方式,并能连续反映所防护闭塞分区的空闲和占用情况。
在单线自动闭塞区段,当一个方向的通过信号机开放后,另一方向的通过信号机须在灭灯状态,与其衔接的车站向区间发车的出站信号机开放后,对方站不能向该区间开放出站信号机。
7、当进站或通过信号机红灯灭灯时,其前一架通过信号机应自动显示红灯。
8、在自动闭塞区段,当闭塞分区被占用或有关轨道电路设备失效时,防护该闭塞分区的通过信号机应自动关闭。
在双向运行区段,有关设备失效时,经两站有关人员确认后,可通过规定手续改变运行方向。
9、自动闭塞应有与本轨道电路信息相适应的连续式机车信号。四显示自动闭塞必须有超速防护设备。
单向自动闭塞,只防护列车的尾部,双向自动闭塞,必须对列车的尾部和头部两个方向进行防护。为了防止两方向的列车正面冲突,平时规定一个方向的通过信号机亮灯,另一个方向的通过信号机灭灯(或双线区段另一个方向的机车信号没有信息),只有在需要改变运行方向,而且在区间空闲的条件下,由车站值班员办理一定的手续后才能允许反方向的列车运行。
ZPW-2000A无绝缘移频自动闭塞系统认识简述
ZPW-2000A无绝缘移频自动闭塞系统认识简述张凯【期刊名称】《微计算机信息》【年(卷),期】2014(000)007【摘要】Frequency shift automatic block to shift the frequency track circuits based on the information passed to the rail as a transport channel. Frequency shift automatic blocking anti-jamming performance for electrified and non-electrified section. ZPW-2000A Non-Insulated frequency shift track circuits with automatic blocking transport security, transport length, system reliability, maintainability characteristics. ZPW-2000A uninsulated frequency shift automatic blocking system is dominated by the outdoor part of the interior components and systems lightning three parts.%移频自动闭塞以移频轨道电路为基础,以钢轨作为传输通道传递信息。
移频自动闭塞抗干扰性能强,适用于电气化和非电气化区段。
ZPW-2000A型无绝缘移频自动闭塞具有轨道电路传输安全性、传输长度、系统可靠性、可维修性等特点。
ZPW-2000A型无绝缘移频自动闭塞轨道电路系统主要是由室外部分、室内部分和系统防雷三部分组成。
【总页数】2页(P2-3)【作者】张凯【作者单位】中国铁道科学研究院研究生部,北京 100081; 北京铁路局北京西电务段,北京 100070【正文语种】中文【中图分类】U284.43【相关文献】1.浅谈ZPW-2000A型无绝缘移频自动闭塞系统 [J], 魏红星2.ZPW-2000A无绝缘移频自动闭塞系统认识简述 [J], 张凯;3.信号集中监测系统在ZPW-2000A无绝缘移频自动闭塞故障处理中的应用 [J], 周保寿4.ZPW-2000A无绝缘移频自动闭塞系统原理 [J], 刘小钰;张国瑞5.ZPW-2000A无绝缘移频自动闭塞系统的技术综述 [J], 赵自信因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ZPW-2000A型无绝缘移频自动闭塞系统特点
系统的特点体现在以下几方面:
1.分肯定、保持UM71无绝缘轨道电路整体结构上的优势;
2.解决了调谐区断轨检查,实现轨道电路全程断轨检查;
3.减少调谐区分路死区;
4.实现对调谐单元断线故障的检查;
5.实现对拍频干扰的防护;
6.通过系统参数优化,提高了轨道电路传输长度;
7.提高机械绝缘节轨道电路传输长度,实现与电气绝缘节轨道电路等长输;
8.轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行。
既满足了1Ω•km标准道碴电阻、低道碴电阻最大传输长度要求,又为一般长度轨道电路最大限度提供了调整裕度,提高了轨道电路工作稳定性;
9.用SPT国产铁路数字信号电缆取代法国ZC03电缆,减小铜芯线径,减少备用芯组,加大传输距离,提高系统技术性能价格比,降低工程造价;
10.采用长钢包铜引接线取代75m㎡铜引接线,利于维修;
11.系统中发送器采用“N+1”冗余,接收器采用成对双机并联运用,提高系统可靠性,大幅度提高单一电子设备故障不影响系统正常工作的时间。