数阵问题 整理版

合集下载

经典奥数数阵图问题例题

经典奥数数阵图问题例题

1.把1至6分别填入图18-1的各方格中,使得横行3个数的和与竖列4个数的和相等.[分析与解]记横行的中间一个数为a,则有1+2+3+…+6+a=21+a=2倍对应和,所以a 可以填奇数,即1,3,5,对应和为11,12,13,下面给出几种填法:其中的每个图形的横行左右可调换位置,每个竖列的后三个数字位置任意排列.2.把l0至20这11个数分别填入图18-2.的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.[分析与解]设中间圆圈内的数为a,有a被加了5次,而其他位置圆圈内的数字在计算5次和是都只被加了1次,所以有5个和=(10+11+…+19+20)+4a=165+4a,因为5个和,165都是5的倍数,所以4a也应该是5的倍数,则a应是5的倍数,所以a可取10,15,20.当a为10时,有5个和=165+4×10=205,所以每条线段上的和为205÷5=41,如下左图;当a=15时,有5个和=165+4×15=225,所以每条线段上的和为225÷5=45,如下中图;当a=20时,有5个和=165+4×20=245,所以每条线段上的和为245÷5=49,如下右图.3.请分别将l,2,4,6这4个数填在图18-3的各空白区域内,使得每个圆圈里4个数的和都等于15.[分析与解]在计算3个圆圈内的数字和时,已经填出的3个数字各计算了2次,中间的数字计算了3次,另外3个位置只计算了1次,中间的数字较另外3个位置多计算了2次.设中间那个数为a,有2a+2×(5+7+3)+(1+2+4+6)=15+15+15,即2a+43=45,有a=1.于是得到下图:4.在图18-4的7个圆内填入7个连续自然数,使得每两个相邻圆内所填数的和都等于连线上的已知数.那么标有*的圆内填的数是多少?[分析与解]我们知道在计算图中所有线段两端数字的和时,每个圆圈内的数字都被加了2次,于是有这7个连续自然数和的2倍为10+6+9+12+8+11+14=70,即这7个连续自然数的和为35,则中间数为35÷7=5,于是这7个数为2,3,4,5,6,7,8.能得到14的只有6+8,如果*填8那么和为14的线段另一端为6,则和为11的线段另一端为5,和为8的另一端为3,则和为12的线段另一端无法填出;所以,*只能填6,可以如上分析得到填完的下图:5.图18-5的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填入圆圈内,使每条线上各数的和都等于23.[分析与解]当六条线上的数分别相加时,数6只加了1次,其余各数分别加了两次.又已知每条对角线上各数之和都等于23,所以这九个连续自然数之和应是(6×23+6)÷2=72.于是九个数的中间数是72÷9=8,由此可知这九个连续自然数是4,5,6,7,8,9,10,11,12.其中显然只有11+12=23,故x=11,y=12和x=12,y=11.首先考虑x=11,y=12的情况.注意7若不与x或y在一条线上,则23-7=16,只能表示成10+6,而过7的线段却有两条,所以必须f=7,于是c =4,d=5,再由a+b=23-6=17,可知a、b均不为10,e=10,a=8,b =9,于是得到下图:当x=12,y=11时,同理可得:6.将1,2,3,…,9,10这10个数分别填入图18-6中的圆圈内,使得每条线段两端的数相乘的积,除以13都余2.问这5个商数的和是多少?[分析与解]在2~90中被13除余2的数有2,15,28,41,54,67,80.其中可以被分解成1~10中两数乘积的有:2=1×2,15=3×5,28=4×7,54=6×9,80=8×10,正好1~10中每个数字出现了一次,因此可得如下的结果,当然将下图对称变换,旋转变换得到的图形仍然符合题意.有2×1÷13=0……2;3×5÷13=1……2;4×7÷13=2……2;6×9÷13=4……2;8×10÷13=6……2.这些商的和为0+1+2+4+6=13.7.在图18-7的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这3个差数之和.那么这个差数之和的最小值是多少?[分析与解]中间数只要在19与65之间,19和65与它的差数(大数减小数)之和都是65-19=46,所以中间的数填48,三个差数之和最小.那么差数之和为65-48+48-48+48-19=65-19=46.8.请在图18-8中的7个小圆圈内各填入一个自然数,使得图中给出的每个数都是相邻两个圆圈中所填数的差(大数减小数),并且所填的7个数之和是1997.[分析与解]设1左边圈内的数为a,则从a开始顺时针依次对给出的七个差做加法或减法运算,最后结果仍等于a,也就是说,加上的数的和应等于减去的和.又1+2+3+4+5+6+7+8=28,于是给出的七个数应当分成和为14的两组.经分析可知仅有4种不同的分法:①7+6+1=2+3+4+5,②7+5+2=1+3+4+6,③7+4+3=1+2+5+6,④7+4+2+1=3+5+6.其中①又可以分为两种情况:☆加上2、3、4、5,减去7、6、1,这时七个数的总和时7a+32,★加上7、6、1,减去2、3、4、5,这时七个数的总和时7a-32.同样②③④也都分两种情况.②的第一种情况就是加上1、3、4、6,减去7、5、2,七个数的和时7a+16.因为1994=7×285+2,所以①的两种情况都无法使总和为1994,这是因为32-2与32+2都不是7的倍数,而②的第一种情况满足,此时a=283(1994=7×283+16),具体填法如下:9.图18-9是奥林匹克的五环标志,其中a,b,c,d,e,f,g,J,h,i 处分别填入整数l至9.如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?[分析与解]设每个圆内的数字之和为k,则五个圆圈内的数字之和时5k,它等于1~9的和即45,再加上两两重叠处的四个数之和.而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,有5k在(45+10=)55~75(=45+30)之间的,那么k在11~15之间.验证,当k=11,13,14时对应有如下填法,当时当k=12,15时无解.所以,这个相等的和最大是14,最小为11.评注:这道题,同学往往只是计算到k在11~15之间,然后说最大为15,最小为11,但是没有进一步去验证是否存在这样的填法,导致错误,所以同学们以后在自己认为已经解决问题时,不妨验证一下,对于有些问题,不妨深究深究.[分析与解]10个连续自然数中,9是其中第三大的数,所以这10个连续自然数为2,3,4,5,6,7,8,9,10,11.图中三个2×2的正方形中四数之和相等,所以2+3+…+11再加上两个重复的数,和倍3整除.因为2+3+…+11=65,要使和数最小,两个重复数的和应最小,这两个数可以取2与5,或3与4.这和数是24.和数为24是可能的,如下两图:[分析与解]图中十个数点和为45,除去中心圆圈中的数后是3的倍数,因此中心圆圈只可能为0,3,6,9.当中心为0时,每个阴影三角形三顶点和为15.考虑包括中心圆圈的三个阴影三角形中,除0以外另两个数和为15.而0~9中这样的数组只有(6,9),(7,8)两组,因此中心为0时没有正确填图;当中心为9时,同理可知也不存在正确的填图;当中心为3时,阴影三角形三顶点和为14,含3的三个阴影三角形中另两个数和为11,这样的数组只有(2,9),(4,7),(5,6).简单尝试可知中心为3时也没有正确的填图;当中心填6时,经尝试有如下的结果:13.如图18-13,大三角形被分成了9个小三角形.试将1,2,3,4,5,6,7,8,9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形3条边的每5个数相加的和相等.问这5个数的和最大可能是多少?[分析与解]1~9和为45.设3个只属于一条边的数和为3k,则每条边上五个数字和为(45×2-3k)÷30=30-k.3k最小时,取3k=1+2+3=6,一条边上的和为30-6÷3=28;3k最大时,取3k=9+8+7=24,一条边上的和为30-24÷3=22.因此这个和最大为28,最小为22.以和为28为例,此时三边中间的小三角形内的数为1,2,3,有上方两个三角形和+1+左边两个三角形和=28;左边两个三角形和+3+右边两个三角形和=28;右边两个三角形和+2+上方两个三角形和=28;于是有2倍(上方两个三角形和+左边两个三角形和+右边两个三角形和)+1+3+2=28+28+28,即上方两个三角形和+左边两个三角形和+右边两个三角形和=39.可得上方两个三角形和为14,左边两个三角形和为13,右边两个三角形和为12.下面我们给出一种填法:每边和为22时,同理可得,我们给出一种填法:14.将1,2,3,4,5,6,7,8这8个数分别填入图l8-14的8个空格中,使四边正好组成加、减、乘、除4个正确的等式.[分析与解]除式只有4种可能:8÷4=2,6÷3=2,8÷2=4和6÷2=3,其中后两种情况乘法式子将无法满足,前两种情况对应着如下两种填法:15.图18-15包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?[分析与解]如下图所示,设最左边的四个数为a,b,c,d,则第一组数算式计算结果为a+b,c+d,a+c,b+d.而最右边圆圈内数为,a+b+c+d,也就是四个数的和,因此我们可以重新理解题目为找到四个自然数,使它们两两相加的四个和与它们自身全不相等,求它们和的最小值.最小的四个数(1,2,3,4)易知不符合题意,同样(1,2,3,5)也不成立,当这四个数为(1,2,3,6)时有正确填图如下,因此最右边的数最小为12.。

(完整版)数列数阵数塔练习汇总

(完整版)数列数阵数塔练习汇总

2、观察表一寻找规律(表二表三分别是从表一中选取的一部分)。

则a+b=___。

表一 表二 表三3、一列自然数0,1,2,3…,2005,… ,2024。

第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2004。

现在将这列自然数排成以下数表:⑴ 第10行第1个数是?⑵ 第1行第20个数是? ⑶ 2005在第几行第几列?4、有一串真分数:1/2 ,1/3, 2/3, 1/4, 2/4, 3/4,1/5, 2/5 ,3/5, 4/5 …那么第1001个分数是___。

5、把5,6,7,8,9填入图中的五个○中,每个○中的数互不相同,且每条直线上的三个○中的数的和相同,则共有多少种不同的填法?数列、数阵练习题1、观察下列各数:1, 1, 5/7, 7/15, 9/31,…按你发现的规律计算这列数的第7个数为___。

0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 …… … … … …11 14 a 11 1317 b0 3 8 15 … 1 2 7 14 …4 5 6 13 …9 10 11 12 … ……………6、如图是有名的“六角幻方”:将l到19这19个自然数填人图中的圆圈中,使得每一条直线上圆圈中的各数之和相等,美国数学爱好者阿当斯从l910年开始,到1962年,用了52年的时间才找到了解答.我们给大家填人了6个自然数,请你完成这个“六角幻方”.7、将1-12这12个数分别填入图中的12个小圆圈里,使每条直线上的四个小圆圈中的数字之和都相等,这个相等的和是多少?8、把5,6,7,8,9填入图中的五个○中,每个○中的数互不相同,且每条直线上的三个○中的数的和相同,则共有多少种不同的填法?9、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)1,1,2,3,5,8,( ),21,34… (2)1,2,2,4,3,8,4,16,5,( ) (3)2,1,4,3,6,9,8,27,10,( ).(4)下面数列的每一项由3个数组成的数组表示,它们依次是: (1, 3,5),(2,6,10),(3,9,15)…问:第100个数组内3个数的和是多少?10、先观察算式,找出规律,然后填数。

一上奥数(数阵、填数、填符号、搭配、路线、排队)

一上奥数(数阵、填数、填符号、搭配、路线、排队)

1.数阵图类型 发射型:封闭型2.突破方法:①找数字出现最多的线,用加减法去算②头中尾,填中间,大小大小手拉手3.数阵图歌数阵图,真有趣,每条线,和相等数越多,先找他,头中尾,中间填10.9.3.在图中空格里填上一个数,使得横行、竖行的三个数的和等于9.4.把4、5、7、8四个数填在四个空格里,使得横行、竖行三个数相加等于18.5.在圆圈里填上合适的数,使每条线上三个数的和都等于10.6.在正方形中填上合适的数,使横行、竖行、斜行上的三个数相加都等于18.7.把数字1、2、3、4、6、7、8、9分别填入下面八个圆圈中,使每条线上的三个数字的和等于15.8.把1、2、3、4、5这五个数填入图中的方格中,使横行、竖行三个数的和都相等.9.把1、2、3、4、5这五个数填入图中的方格中,使横行、竖行三个数的和都等于9.10.把1、2、3、4、5、6、7这七个数填入下面的圆中,使每条线上的三个数相加都相等.11.把1、2、3、4、5、6、7这七个数填入下面的圆中,使每条线上的三个数相加和都等于14.12.把2、3、4、5、6、7、8这七个数填入下面的圆中,使每条线上的三个数和都等于15.13.把4、6、9、11这四个数分别填入下图的圆圈中,使每条线上及大圆圈上的各数相加和都相等.14.把5、5、7、7、9、9分别填在下面的圆圈里,使每条边上都有5、7、9.8简单数阵知识点:11. (2)填数,使每条线上的三个数之和都得15.2.在圆圈里填上合适的数,使每条线上三个数的和都等于8.3.要使表格中每行、每列和两条对角线上的三个数的和都为18,下面每个方框里应填什么数?4.在下列两图的空格中填上数,使横行和竖行或每条对角线上的三个数相加都等于15.5.在下面的○里填上适当的数,使每条线上的三个数之和都是12.6.把3,4,5,6,7这五个数分别填入下面的空格里,使横行、竖行的三个数相加都得15.7.把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于1 2.8.把3,4,5,7,9,11,13这七个数分别填入○里,使每条直线上的三个数相加的和都为 20.9.把4、6、9、11这四个数分别填入下图的圆圈中,使每条线上及大圆圈上的各数相加和都相等.10.在每个方格内,只能填1、2、3三个数字,使横行、竖行的三个数相加都相等,但每一横行、竖行的三个数字互不相同.54、634和8,5和7随便填1.相邻数加法和减法的特征: ①加法特征:大小、大小和相等,是横式变形的根本.②减法特征:相邻两数相减,差永远是1.(减法相等的依据)③根据等式是天平,可以左右加减同一个数(等式重要性质)2.重要方法:①找特殊:对于多个式子,有些式子的填法很多(不作为突破点),要学会寻找填法较少或者唯一的作为突破点;②分组法:几个连续数的“和”填式子,找中间数9横式填数知识点:3.不等式填数,先假设是等式,然后根据要求填写合适的数.4.当你不会做题的时候,往数学方法靠近,千万不可“胡猜乱想”:①学习方法第一位②多看看前面的笔记,帮助自己理解.(每个算式中,同一个数只能用一(1)()+()=()+()(2)()+()-()=()(3)()-()+()=()2.把1、2、3、4、5、6、7、8这8个数分别填入下面的方框里(每个数只能用一次),使等式成立.3.把4、5、6、7、9、13分别填入下面的中(每个数只能用一次),使等式成立.4.将0、1、2、3、7、8、9填入下面的方格内,使算式成立.5.把2、3、4、6、7、9分别填入下面6个圆圈中,使3个算式成立.6.在下面括号里填入适当的数.()-9>26+7 (2)()-12<10+207.把1~10这十个数填入横线中,使等式成立.(每个数只能用一次)8.智力擂台.(1)把0、1、2、3、4、5按要求填在方格里,每个数只能用一次.□-□=□-□=□-□如果是加法算式,又可以怎样填呢?□+□=□+□=□+□(2)数学谜语.像个蛋,不是蛋;说它圆,不太圆;说它没有它又有,十、百、千、万连成串.猜一数字.9.把1、2、3、6、7、8、9分别填入□中,使算式成立:10.用2、3、4、5、6、7、8、9这八个数编出下面两道加减混合算式(每个数只能用一次).11.在括号里填入合适的数,使不等式成立.15+3>() 27-()>26-7 9+()<()29四个数值编三道加减混合算式.(每个算式中每个数只能用一次)(1)()+()=()+()(2)()+()-()=()(3)()-()+()=()2.把0、1、2、3、7、8、9分别填入□中,使算式成立:3.把3、4、5、6、32、33、34、35这8个数填入下面的两个算式中,使等式成立.4.在5、6、7、8、9、10、11中选择6个数填入下面的算式,使等式成立.()+()=()+()=()+()()-()=()-()=()-()5.括号里最小能填几?()-4>7+2 26-()<9+146.用2、4、5、6、7和10组成加减两个算式(每个数字只能使用一次).()+()=()()-()=()7.从1——9这九个数中选出4个数进行组合,使他们相加的和是100.8.把1~10这十个数填入横线中,使等式成立.(每个数只能用一次)参考答案:课堂共同学习1.(1)3+6=4+5 (2)3+6-4=5 (3)5-3+4=6(答案不唯一:核心借助3+6=4+5)2.1+8-7=2,3+6-4=5(答案多多,核心借助大小大小和相等)3.①6+7=13,②9-5=44.8+9=20-3=17(突破点:中间第一个必然为2,最后一个首位必然是1)5.3+7=10,9-4=5,2+6=8(突破点:只有2+6=8)6.43,41(最小和最大填法)7.(突破点在最后一个)8.(1)5-4=3-2=1-0 (2)0+5=1+4=2+3 (3)0 9.8+9=23-6=1710.2+9-8=3, 7-5+4=6(答案多多)11.略课后自我提升:1.(1)26+29=27+28 (2)26+29-27=28 (3)28-26+27=292.8+9=20-3=173.3+35-4=34 5+33-6=324.5+11=6+10=7+9 6-5=8-7=10-95.14 、 46.5+2=7 10-4=67.32+68=1008.略1.填符号核心理念:看得数,变少了,找减号,变多了,找加号.2.对于相同数字填符号:如4 4 4 4 = 0(运用组合法靠近要求的结果)三种组合:①单个为4 ②4+4=8 ③4-4=03.对于相邻位置凑数字:①找靠近结果的数字组合 ②剩下的按照加减去推断 如:1 2 3 4 5 =33,优先考虑23结合.(选择填“>、<、=、+、或-”).10 15○9+6 18-7○1115○5=20 19○2○8=9 20○0=10○10 11○3○5=92.将1、2、3、4、5、6、7、8分成和相等的四组填入下面的方格中.3.将1、2、3、4、5、6、7、8分成和相等的两组组填入下面的方格中.4.在四个4中间填上“+、-”号,使算式成立.(写出三种不同的填法)4 4 4 4 = 010巧填符号知识点:4 4 4 4 = 04 4 4 4 = 05.在下面的方格中填入适当的数,使相邻三个数相加的和都是10.6.在数字之间添上“十”号,位置相邻的两个数字可以组成一个数.5 6 7 8 9 = 98.7.在下图五个2中间填上“+、-”号,使算式成立.(写出三种不同的填法)2 2 2 2 2 = 22 2 2 2 2 = 22 2 2 2 2 = 28.在方格里填上合适的数,使等式成立.(1)9=□+2+3(2)□=□-4-1(3)8-□=□+59.在下面的数字间填上“+、-”号,使算式成立.(位置相邻的数字可以组成一个数)1 2 3 4 5 = 51 2 3 4 5 = 241 2 3 4 5 = 610.在六个8之间填上加减号,使等式成立(提示位置相同的数字可以组成一个数)8 8 8 8 8 8=8811.在1、3、5、7、9之间填上“+或-”(位置相邻的数可以组成一个数),使等式成立.1 3 5 7 9 =7912.在合适的地方填写“+或-”,使等式成立.1 2 3 4 5 6=1-”,使等式成立.5 5 5 5 = 02.在合适的地方填写“+或-”,使等式成立.1 2 3 4 5 = 73.在所给的已知数之间,填上“+或-”使等式成立.(1)8 4 3 = 9 (2)5 6 3 = 8(3)7 2 1 = 8 (4)9 5 2 = 64.在下列各数之间填上“+或-”(相邻数可以组成一个数),使他们结果为10.2 2 2 1 1 1 = 105.在○中填入“+或-”,使等式成立.(1)8○9=19○2 (2)30○15=9○6(3)3○8=14○3 (4)20○20=17○176.在1、2、3、4、5之间填上“+”(位置相邻,可以组成一个数),使他们和等于33. 1 2 3 4 5 =337.在6个6之间填上“+或-”,使下面的等式成立. 6 6 6 6 6 6=0 6 6 6 6 6 6=12参考答案:课堂共同学习:(部分有答案)6.5+6+78+9=98.8.(1)4;(2)多种答案如:5、10;(3)多种答案如:0、3和1、2 11.13+57+9=79 12.1+2+3-4+5-6=1课后自我提升:(部分有答案) 2.1+2+3-4+5=7 4.22-2-11+1=10 6.1+23+4+5=331.组合问题: 按照从左往右的顺序先固定一个,然后交换后面的位置,或者和后面的每一个都结合.2.搭配问题:①标号码 ②画线条 ③数数量(加法思维)11搭配组合知识点:3. 简单的数码分类方法:①在个位:从1数到60,个位有6个2②在十位:从1数到60,十位只有20——29有10个24.培养学生严谨的顺序思维,做到不重复和不遗漏.有3顶不同颜色的草帽和3条不同颜色的彩带,你知道有几种不同的搭配方式吗?3.10个小朋友要分两伙做游戏,一共有几种不同的分法?4.某人数数,他从一开始,按照1、2、3、4…的顺序一直数到22,他一共数了几个1,几个2?5.小芳与3个小朋友见面,互相握手问好,一共要握几次手?6.中午学生食堂供应主食3种:米饭、馒头、面条,菜4种:青菜、鱼、牛肉、鸡肉.小红到食堂吃饭,主食和菜各挑选一份,她一共有几种不同的选法?7.用7、2、1三个数字可以组成多少个不同的三位数?8.老师有2件不同款式的上衣,有3条不同颜色的裤子,你知道老师能搭配出几种不同的穿着方式吗?9.星星面前有一盘花生米,他“1、2、3、4、5.....”一个一个的往下数,一直数到35.星星一共数了几个5,一共数了几个2?10.4个人下围棋,每两个人下一盘围棋,一共下了几盘围棋?11.明明有一个5分硬币,4个2分硬币,8个1分硬币,要组成8分,共有几种不同的搭配方法?12.从小力、小红、小新、小芳4人中挑选2位同学参加小记者选拔比赛,一共有几种不同的选法?3条不同款式的裤子.一件上衣搭配一条裤子,一共有多少种不同的搭配方法?2.小冉有3条不同款式的裙子,5双不同款式的靴子,某日她要去参加聚会,若穿裙子和靴子,则不同的穿着搭配方式的种数为() A.7 B.8 C.153.用9、0、5三个数字,可以组成多少个不同的三位数?4.课间时间到了,学校为同学们准备的点心有4种:饼干、面包、薯条、蛋挞;准备的饮料有3种:果汁、牛奶、酸奶.每位同学可以任意选择一种点心和一种饮料,请问有几种不同的选择方法?5.红、黄、绿三种颜色可以组成不同的信号方式,有几种不同的信号方式?6.甜甜学数数:1、2、3、4、…一个接一个地往下数,一直数到45,她一共数了()个含有数字5的自然数.7.用2,3,4三个数字可以组成多少个不同的三位数?写出并从小到大排列.8.从A、B、C、D四位同学中任选2人参加学校演讲比赛,一共有几种不同的可能性?并列举各种可能的结果.参考答案:课堂共同练习:1.4个2.9种3.5种4.13个1,6个25.6次6.12种7.6个8.6种9.4个5,14个210.6盘11.7种12.6种课后自我提升:1.6种2.C3.4个4.12种5.6种6.5个7.一共有6个;从小到大排列为:234<243<324<342<423<4328.一共有6种不同的可能性,分别是:AB ,AC ,AD ,BC ,BD ,CD .1.学习树状加法图:2.标号→画线→数数进行相加3.小猫要回家,它可以有几种不同的走法?4.从甲地到乙地有3条路,从乙地到丙地有4条路,那么从甲地经过乙地到丙地有几种走法?5.一只蜜蜂,从“1”爬到“6”处,有几种不同的走法?6.小蚂蚁从1走到5,不走重复路,有几种不同的走法?7.小明、小红、小强、小莉是好朋友,这天他们每两人互通了一次电话。

五年级奥数数阵问题

五年级奥数数阵问题

课时3 数阵问题(一)一.数阵填“幻方”就是同学们比较熟悉得一种数学游戏,由幻方演变出来得数阵问题,也就是一类比较常见得填数问题。

这里,主要讨论一些数阵得填法。

解答数阵问题通常用两种方法:一就是待定数法,二就是试验法。

待定数法就就是先用字母(或符号)表示满足条件得数,通过分析、计算来确定这些字母(或符号)应具备得条件,为解答数阵问题提供方向。

试验法就就是根据题中所给条件选准突破口,确定填数得可能范围。

把分析推理与试验法结合起来,再由填数得可能情况,确定应填得数。

二.例题精析例1 把5、6、7、8、9五个数分别填入下图得五个方格里,如图a使横行三个数得与与竖行三个数得与都就是21。

先把五格方格中得数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A +E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

小试牛刀把1——10各数填入“六一”得10个空格里,使在同一直线上得各数得与都就是12。

2、把1——9各数填入“七一”得9个空格里,使在同一直线上得各数得与都就是13。

3、将1——7七个自然数分别填入图中得圆圈里,使每条线上三个数得与相等。

例2 将1——10这十个数填入下图小圆中,使每个大圆上六个数得与就是30。

分析设中间两个圆中得数为a、b,则两个大圆得总与就是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a与b就是1与4时,每个大圆上另外四个数分别就是(2、6,8,9)与(3、5,7,10);当a与b就是2与3时,每个大圆上另外四个数分别为(1、5,9,10)与(4,6,7,8)。

小试牛刀1、把1——8八个数分别填入下图得○内,使每个大圆上五个○内数得与相等。

2、把1——10这十个数分别填入下图得○内,使每个四边形顶点得○内四个数得与都相等,且与最大。

数阵问题

数阵问题

13.简单的数阵问题
例2:把1~7七个数字分别填入下左图中,使每条线上的三个○内的数字和相加为10。

例3:把1~11这11个数分别填入下左图的○里,使每条线上的三个数相加的和都等于18。

例5:将1~6这六个自然数分别填入下图中,使得三角形每条边上的三个数之和等于10。

6:把10~80八个整十数填入下左图的○中,使每个圆上五个数的和为210。

例7:将1~9九个数字分别填入下图中的小圆圈内,使三角形每边上四个数的和是17。

例8:请将1、2、3、4、5、6、7、8、9九个数分别填入下图的九个小圆圈里,使每个三角形上三个数的和都等于15。

例10:把1~6分别填入下图中,使每个圆圈里的四个数相加之和都等于19。

12。

4、将1、2、3、4、
5、
6、7七个数填入下图的小圆圈内,使每条线上三个数的和与每个圆上三个数的和都等于12。

20,且有一个顶点○内的数字为1。

7、将1~10填入下图中的10个○内,使得每个菱形的4个顶点数之和都等于20。

16。

1649、将1~10填入下图中,使每边三个数之和都等于14。

7、8、10、12,使每个圆内的四个数的和都等于25。

数阵问题

数阵问题

数阵问题
我们把给定的一些数,按照一定的要求或规律,填在规定形状的图形中,这样的图形叫做数阵图。

数阵问题就是根据要求在数阵图里填出相应的数的问题。

数阵问题的题型主要有三种:辐射型、封闭型、综合型。

分析:例1图中要填的九个数为1~9的自然数,要使每行、每列以及对角线上三个数的和都相等,关键是要找出这个和是多少,再考虑九格中以哪一格为突破口去填数。

(1)1~9这九个数字的和是45,正好是三横行数字的和,所以每一横行上三个数的和等于45÷3=15。

同样,每一纵列和对角线上三个数的和也是15。

(2)在计算每一横行、每一纵列和每一对角线上的数的和时,正中间的一个数要计算几次(4次)?四个角的数要计算几次(3次)?其
余的数要计算几次(2次)?因此我们以中心方格的数为突破口,先考虑它应是几,再考虑四个角上的数各是几,最后填写其余的数。

解:(一)在1~9中,选三个不同的数相加,和等于15的算式有:①9+5+1 ②9+4+2 ③8+6+1 ④8+5+2 ⑤8+4+3 ⑥7+6+2 ⑦7+5+3 ⑧6+5+4
(二)在这八个式子里,有哪个数出现了五次呢?(5),所以正中间的一个数是5。

再观察,出现过三次的数分别是2、4、6、8,把这四个数分别填在四个角上。

(三)最后根据和是15填出其他的数。

(选中空白处出答案)。

五年级奥数数阵问题

五年级奥数数阵问题

课时3 数阵问题(一)一.数阵填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,主要讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

二.例题精析例1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。

先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D +E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

小试牛刀把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2、把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3、将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

例2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2、6,8,9)和(3、5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1、5,9,10)和(4,6,7,8)。

小试牛刀1、把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2、把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

数阵问题专项练习30题有答案ok

数阵问题专项练习30题有答案ok

数阵问题专项练习30题(有答案)ok数阵问题专项练习30题(有答案)1.如图:5个小三角形的顶点处有6个圆圈,如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等,问这6个质数的积是多少?2.把1~9个数分别填入○中,使每条边上四个数的和相等.3.把1~8这8个数填入图中,使每边上的加、减、乘、除成立.4.把1~9,填入图中,使每条线段三个数和及四个顶点的和也相等.5.将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.6.把1~12这十二个数,填入下图中的12个○内,使每条线段上四个数的和相等,两个同心圆上的数的和也相等.7.把1~11这11个数分别填入如下图11个○内,使每条虚线上三个○内数的和相等,一共有几种不同的和?8.将1﹣12这十二个数分别填入图中的十二个小圆圈里,使每条直线上的四个小圆圈中的数字之和26.9.把1~10填入图中,使五条边上三个○内的数的和相等.10.下图中有大、小六个正方形,将1~9九个数分别填入圈内,使每个正方形角上的四个数的和都相等.11.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.12.将98~106九个数分别填入下图中的空圈内,使每条线上四个数的和都等于402.13.将1、2、3、4、5、6、7、8、9分别填入图中的9个圆圈内,使图中每条直线上所填数之和都等于K,问:K 的值是多少?(图中有7条直线)14.将1~10这十个数分别填入下图中的十个○内,使每条线段上四个○内数的和相等,每个三角形三个顶点上○内数的和也相等.15.利用猴子跳楼法,写出1﹣49的数字并且每一行一列对角线上的数字之和相等.16.将,,,,这九个数分别填入图中,使每一横行,每一竖行,两条对角线中三个数的和都相等.17.现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子.要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来.18.把2、3、4、5、6、7、8、9、10填下入面的空格里(三行三列的格子),使横行、竖行、斜行上三个数的和都是18.19.有大、中、小三个正方形,组成了8个三角形,现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.请问:能否使8个三角形顶点上数字之和相等?如果能,请给出填数方法;如果不能,请说明理由.20.将1至6六个数填入下图所示球体的圈内,使球体的各个大圆上每四个数的和都相等.21.在右面□里填上1﹣8这8个数字,这8个数字使连线的两个□里的数字不相邻.22.将1至8八个数分别填入圈内,使每个大圆上五个数的和分别为20、21或22,一共各有几组填法?23.将1、4、7、10、13、16、19、22八个数分别填入圈内;如果正方形每条边上的三个数的和都相等,那么四个角上四个数的和最小是多少?24.将1~12填入下图的空格中,使每个圆内的四个数的和都等于25.25.把1﹣﹣7这七个自然数分别填入下圆圈里,使每条线上的三个数的和相等.26.将1~8八个数分别填入下图的圈内,使三个大圆上的四个数的和都相等.这个和最大可以是多少?最小必须是多少?27.10个连续的自然数中第三个的数是9,把这10个数填入图中的10个方格内,每格填一个数,要求图中3个2×2的正方形中4个数之和相等,那么这个和最小值是_________ .28.把1~16这16个数,填入图中的16个○内,使五个正方形的四个顶点上○内数的和相等.29.如图中有大、中、小三个正方形,组成了八个三角形.现在把1,2,3,4分别填在大正方形的四个顶点上,再把1,2,3,4分别填在中正方形的四个顶点上,最后把1,2,3,4分别填在小正方形的四个顶点上.(1)能不能使八个三角形顶点上数字之和都相等?(如果能,请画草图填出;如不能,请说明理由)(2)能不能使八个三角形顶点上数字之和各不相同?(如果能,请画草图填出;如不能,请说明理由)30.10棵树栽5行,每行栽4棵,你能设计出怎样栽吗?(用△代表树画一画.)参考答案:1.分析:根据题意,每个小三角形三个顶点上的数之和相等,这6个质数都是一样的,但是没有6个相同的质数和是20;把中间的单独看作一个与其它5个质数不一样的质数;因为3×5+5=20;也就是20=3+3+3+3+3+5;然后再进一步解答即可.解答:解:根据题意可得:20=3+3+3+3+3+5;所以,可得:这6个质数的积是:3×3×3×3×3×5=1215.2.分析:首先设三个顶点处的三个数分别为a、b、c,在运算中都加了2次,所以1+2++3+4+5+6+7+8+9+a+b+c=45+a+b+c一定是3的倍数,进一步得出a+b+c也是3的倍数,三个数的和可以是6,9,12,15,18,由此进一步分析得出答案:①当a+b+c=6时,每一条边上的和为(45+6)÷3=17,答案如图①.②当a+b+c=9时,每一条边上的和为(45+9)÷3=18,经计算找不出结论.③当a+b+c=12时,每一条边上的和为(45+12)÷3=19,答案如图②.④当a+b+c=15时,每一条边上的和为(45+15)÷3=20,经计算找不出结论.⑤当a+b+c=18时,每一条边上的和为(45+18)÷3=21,答案如图③.解答:解:由以上分析可得,符合的有三种情况,答案如下:3.分析:由于将1、2、3、4、5、6、7、8分别填入图中8个空格内,由于左边的运算既有除法,也有乘法,又因为8和6的约数不止一个,所以可以确定左上角和右下角的数字一个应该是8和6,然后根据图中的运算即可确定其他数字.①从左上角为6开始,6﹣5=1,1+7=8,8=2×4,6÷3=2;②从左上角为8开始,8﹣7=1,1+5=6,6=3×2,8÷4=2.这样,就完成了填图.解答:解:根据分析答案如下图:4.分析:根据题意,先求出每条线段三个数和及四个顶点的和,再根据题意解答.解答:解:根据题意,1~9的和是:1+2+3+…+8+9=45,有两种配对方式,第一种是:(1、9),(2、8),(3、7),(4、6),5;(1、8),(2、7),(3、6),(4、5),9;根据配对,假设中间的数字是5,那么四个顶点的和是:(45﹣5)÷2=20,每条线段三个数和也为20,20﹣5=15,只有7+8=15,9+6=15,只有两组,与题意不符;假设中间的数字是9,那么四个顶点的和是:(45﹣9)÷2=18,每条线段三个数和也为18;根据配对,尝试可以得出答案:5.分析:1+2+3+4+5+6+7+8=36.①20+20﹣36=4,也就是公共部分两个数的和应该是4,所以中间的两个数应填1和3,左右两边三个数的和相等且为20﹣4=16,左面可填2、6、8,右面可填4、5、7;②21+21﹣36=6,也就是公共部分两个数的和应该,6,所以中间的两个数应填2和4或1和5,左右两边三个数的和相等且为21﹣6=15,中间的两个数填2和4时,左面可填1、6、8,右面可填3、5、7,中间的两个数填1和5时,左面可填3、4、8,右面可填2、6、7;③22+22﹣36=8,也就是公共部分两个数的和应该,8,所以中间的两个数应填1和7、2和6或3和5(有三种填法),左右两边三个数的和相等且为22﹣8=14,以中间的两个数填1和7为例,左面可填2、4、8,右面可填3、5、6.解答:解:根据分析,数字填法如下图:6.分析:1+2+3+…+12=78,使每条线段上四个数的和相等为78÷3=26,两个同心圆上的数的和也相等为78÷2=39,1+12+5+8=26,9+4+10+3=26,2+6+7+11=26,1+7+3+8+11+9=39,2+4+5+6+10+12=39,符合题意.解答:解:由分析答案如下:7.分析:假设中间○内填入的数是a,每条虚线上三个○内数的和是k,则有1+2+3+4+5+6+7+8+9+10+11+4a=5k,66+4a=5k:当a=1时,k=(66+4)÷5=14;当a=2、3、4、5、时,k不是整数,无解;当a=6时,k=(66+24)÷5=18;当a=7、8、9、10时,k不是整数,无解;当a=11时,k=(66+44)÷5=22;即可得解.一共有3种不同的和.解答:解:把1~11这11个数分别填入如下图11个○内,使每条虚线上三个○内数的和相等,一共有3种不同的和.14、18、22,如下图所示:8.数阵问题专项练习30题(有答案)ok分析:此图可看作由两个三角形组成,先看尖向上的三角形,把1、2和10写在顶点上.其中一条边,1+10=11,那么另外两个空的和为26﹣11=15,因为10用过了,所以只能填7和8;另一条边10+2=12,另外两个空的和为26﹣12=14,所以只能是9和5;再看底边,1+2=3,所以另外两个空只能是11+12=23.这样就还剩下尖向下的三角形三个顶点上的数字,先看底边,7+9=16,那么另外两个空为4和6,最后一个顶点就为3.解答:解:答案如图,9.分析:把1~10填入图中,使五条边上三个○内的数的和相等.五条边上三个○内的数的总和是1+2+3+4+5+6+7+8+9+10+(a+b+c+d+e)=55+(a+b+c+d+e),a、b、c、d、e是在五条边交点上,重复加两遍的数字,很明显,每条边上的数字和是11+>11,所以,重复的数字应为大数,探究一下,把1、2、3、4、5放在中间,10放在1 所在边上,(6+7+8+9+10)÷5=40÷5=8,8也在1、10边上,相应其他边为(10、2、7),(7、3、9),(9、4、6,),(6、5、8)每条边上的和为19,如下图:解答:解:如图:10.分析:根据题意,可得1~9九个数的和是:1+2+3+…+8+9=45,根据图,最大的正方形与斜着的正方形再加上中间的圈的数的和是45,根据配对,可知5不能配对,(45﹣5)÷2=20,每个正方形角上的四个数的和是20,再根据题意解答即可.解答:解:根据题意,1~9九个数的和是:1+2+3+…+8+9=45,前后数配对可得,(1、9),(2、8),(3、7),(4、6),5由分析可得,每个正方形角上的四个数的和是:(45﹣5)÷2=20;根据配对,中间一个数字是5,经过尝试,可得如下答案:数阵问题专项练习30题(有答案)ok11.分析:根据题意,设中间的圆圈中的数是A,那么每条线段上三个圆圈内的数相加的和都等于18,也就是1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,然后再进一步解答即可.解答:解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.12.分析:402﹣95﹣97=210,只有104+106=210,可以先确定这两个空,402﹣96﹣104=202,103+99=202;402﹣96﹣106=200,102+98=200;402﹣97﹣99=206,105+101=206;402﹣95﹣102﹣105=100;正好把98、99、100、101、102、103、104、105、106全部填入.解答:解:答案如图,13.分析:根据题干,可以看出有些圆圈处于三条直线上,而另一些圆圈处于两条直线上,还有一个圆圈处于一条直线上,要想利用“重数”的分析法,有很大的困难,通过分析不难看出有一个圆圈的位置特殊,即A圆圈,除去这个圆圈,剩下的8个圆圈正好组成3行,从它出发就能找到答案.数阵问题专项练习30题(有答案)ok解答:解:如下:除去A圆圈的数字,剩下的8个圆圈恰好组成三行,那么每条直线上所填数字之和为:1+2+3+4+5+6+7+8+9﹣A=3K,所以A一定是3的倍数,也就是说A一定是3或6或9,那么K的值可能是14或13或12,如果A=9,那么右下角圈内只能填1或2,此时右下角的数字至少为10,显然不符合题意.如果A=6,那么每条直线上圈内数之和K=13,而在下图中可以得出B=C+6(比较法),因此D+6+B=C+D+12=13,显然这是错误的.所以只要当A=3时可以得出正确答案如下图:所以K=14.答:K的值是14.14.分析:假设中间的数是a,每条线段上四个○内数的和相等为k,则有:1+2+3+…+10+2a=3k,55+2a=3k,当a=1时,k=57÷3=19,1+2+6+10=19,1+7+8+3=19,1+9+4+5=19,每个三角形三个顶点上○内数的和也相等,2+7+9=18,4+6+8=18,5+3+10=18.符合题意.解答:解:15.分析:把1﹣49这49个数字放入一个7×7的矩阵中,使每行、每列及对角线上的七个数字之和相等,即构造一个7阶幻方.对所有奇数阶幻方的构造,都可以采取“连续摆数法”(猴子跳楼),其法则如下:把“1”放在中间一列最上边的方格中,从它开始,按对角线方向(比如说按从左下到右上的方向)顺次把由小到大的各数放入各方格中,如果碰到顶,则折向底,如果到达右侧,则转向左侧,如果进行中轮到的方格中已有数或到达右上角,则退至前一格的下方.数阵问题专项练习30题(有答案)ok解答:解:这个幻方如下:16.分析:将,,,,,,九个数分别化为分母是12的分数,得到分子分别为6、4、3、2、8、9、1、5、7,而用这连续9个数组成的幻方是熟知的,如下图:再将图中的每个数除以12就是所求.解答:解:答案如下图:17.分析:每行每列的棋子总数是偶数,那么每行和每列的棋子数可能是2个或者4,一共有4行,那么每行的数量分别是:2、2、4、4;一共有5列,所以一列的数量分别是:2,2,2,2;先确定第一列的两个棋子的位置,然后根据每行和每列的棋子数填入方格中.解答:解:○代表棋子,可以这样填:答案不唯一.18.数阵问题专项练习30题(有答案)ok分析:我们可以利用两种方法解答:(1)幻和法:先根据幻和求出中心数:18÷3=6;剩余的每两个数的和是18﹣6=12;由12=2+10=3+9=4+8=5+6;调整每一对数的位置填入表格即可.(2)罗伯法:①居上行正中央,依次斜填切莫忘,上出框界往下写,右出框时左边放,重复便在下格填,出角重复一个样.②在第一行居中的方格内放2,依次向右上方填入3、4、5…;③如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;④如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;⑤如果右上方已有数字和出了对角线,则向下移一格继续填写. 3阶幻方不止这一种填法,只要将2(开始的数)放于四个边格的正中,向幻方外侧依次斜填其余数字;若出边,将数字另放一侧;若目标格已有数字或出角,回一步填写数字,再继续按一开始的相同方向依次斜填其余数字(详见下图按线放法).解答:解:根据分析填图如下:19.分析:不能,我们把8个三角形顶点的数字加起来,假设相等是m,则8m=大正方形的数字和+3遍中正方形的数字和+2遍小正方形的顶点数字和,各个正方形的数字和都是1+2+3+4=10,代入,8m=60,60不能被8整除,因此得解.解答:解:假设三角形的顶点数字和相等是m,则有:8m=(1+2+3+4)×(1+3+2),8m=60,60不能被8整除,所以m不存在,假设错误.即不能使8个三角形顶点上数字之和相等.答:不能使8个三角形顶点上数字之和相等.20.分析:根据图,先求出各个大圆上每四个数的和,再根据题意进一步解答即可.解答:解:由图可知,这个球体由三个大圆,把这三个大圆的每四个数加起来,正好是1至6六个数加了两次,那么每个大圆四个数的和是:2×(1+2+3+4+5+6)÷3=14,将1到刘分为,(1、6)(2、5)(3、4);根据尝试可以得出答案.21.分析:要使□里填上1﹣8这8个数字,这8个数字使连线的两个□里的数字不相邻,中间的两个“□”里必然填入两头的数,可把最中间的填入1,中间下面的填入8,“1”的左右分别填入3、4,“8”的左右分别填入5、6,最上面的填入7,这样就完成了填空.解答:解:根据分析填空如下图:22.分析:设两圈相交部分的两个数分别为a和b,每个圆上五数之和为k.根据题意,可得:1+2+3+…+8+a+b=2k,36+a+b=2k,把k=20、21或22代入,即可求出a+b的值,即可确定a、b的值.解答:解:设两圈相交部分的两个数分别为a和b,每个圆上五数之和为k.根据题意,可得:1+2+3++8+a+b=2k,36+a+b=2k;(1)如果k=20,则a+b=4,4=1+3,一组填法.(2)如果k=21,则a+b=6,6=1+5;6=2+4,两组填法.(3)如果k=22,则a+b=8,8=1+7;8=2+6;8=3+5,三组填法.23.分析:因为1+4+7+10+13+16+19+22=92,设正方形四个角上四个数分别为a、b、c、d.因为a、b、c、d被加了两次,所以可设92+a+b+c+d=4k.a+b+c+d取最小值为1+4+7+10=22,92+22=114,114不是4的倍数,又因为每两个数之间相差3,符合以上条件的最小值为120,则四个数的和就是120﹣92=28.解答:解:根据92+a+b+c+d=4k,a+b+c+d取最小值为1+4+7+10=22,92+22=114,114不是4的倍数,又因为每两个数之间相差3,符合以上条件的最小值为120,则四个数的和就是120﹣92=28,1+7+16+4=28.答案如下:24.分析:假设中间两圆交叉处的数是a、b、c、d,则有1+2+3+…+12+a+b+c+d=25×4,78+a+b+C+d=100,a+b+c+d=22,8+7+2+5=22,9+7+8+1=25,10+7+5+3=25,4+8+2+11=25,6+2+5+12=25;解答:解:答案如图,25.分析:假设中间的数字是a,每条直线上的三个数的和都相等是m,列出等式,凑数,即可得解.解答:解:1+2+3+4+5+6+7+2a=3m,28+2a=3m,m=(28+2a)÷3,a和m都必须是整数,把a从1~7这个代入,m是整数的即为解,a=1,m=10;2+7+1=3+6+1=4+5+1=10;a=4,m=12;4+7+1=2+4+6=3+4+5=12;a=7,m=14;1+6+7=2+5+7=3+4+7=14;如下图所示:26.分析:要使和最小,重复数字尽可能要小.因为:1+2+3+…+8+a+a+b+c=3k(a、b、c为重复的数字,k为大圆上的四个数的和),也就是36+2a+b+c=3k,所以2a+b+c的和应是3的倍数,且尽可能小,只有1+1+3+4=9能被3整除且最小,36+9=3k,k=45÷3=15;同样,要使和最大,则考虑重复数字尽可能大,只有8+8+7+4=27能被3整除且最大,36+27=3k,k=63÷3=21.解答:解:根据分析:这个和最大可以是21;最小必须是15.填法如下图:27.分析:10个连续的自然数中第三个的数是9,说明这10个数是7、8、9、10、11、12、13、14、15、16,假设中间的两个方格的数是a、b,3个2×2的正方形中4个数之和为k,则有:7+8+9+…+16+a+b=3k,115+a+b=3k,38+=k,a+b+1必须是3的倍数,当a+b+1=7+10+1=18,或者a+b+1=8+9+1=18时,k最小=38+6=44.解答:解:答案如图,28.数阵问题专项练习30题(有答案)ok分析:因为1+2+…+16=(1+16)×(16÷2)=136,136÷4=34,所以每个正方形内的数的和为34,然后组出4组和为34的4个数,再从每组选出一个能组成和为34的数填入中间的正方形,又因为1+16=17、2+15=17、3+14=17、4+13=17、5+12=17、6+11=17、7+10=17、8+9=17,所以可以把它们两两相组填入图中,同时注意中间的四个数的和为34即可.解答:解:根据分析答案如下图:29.分析:(1)不能,我们把8个三角形顶点的数字加起来,假设相等是m,则8m=大正方形的数字和+3遍中正方形的数字和+2遍小正方形的顶点数字和,各个正方形的数字和都是1+2+3+4=10,代入可得8m=60,60不能被8整除,因此得解.(2)由于每个三角形顶点上数字之和最小可能是1+1+2=4,最大可能是4+4+3=11,故可能使八个三角形顶点上数字之和各不相同.解答:解:(1)假设三角形的顶点数字和相等是m,则有:8m=(1+2+3+4)×(1+3+2),8m=60,60不能被8整除,所以m不存在,假设错误.即不能使8个三角形顶点上数字之和相等.答:不能使8个三角形顶点上数字之和相等.(2)如图所示:30.分析:10棵树栽5行,每行栽4棵,必然有几棵树会处在多行列中,再从10和5的角度出发,寻求突破.组成五星的线有5条,在5个角上各栽一棵树,交叉点各栽一棵树,就完成了设计.解答:解:如图:。

数阵问题

数阵问题

数阵问题(二)把一些数按照一定的要求排成各种各样的图形,这类图形称为数阵图,简称数阵,数阵是由幻方演变而来,数阵图种类繁多,这一讲我们就来讨论学习数阵问题。

学习例题:例1.把3、4、5、6、7这五个数分别填入图中的五个方格里,使横行、竖列三个数的和都是14。

例2.将1~7分别填入图中的○内,使每条线段上三个○内数的和相等。

(请写出三种不同答案)例3.将1~9这9个数分别填入图中的○内,使三角形每边上的四个数之和都等于23。

例4.将5~14这十个自然数填入图中的○内,使每个大圈上六个数的和都相等。

例5.将1~10这十个自然数分别填入图中的十个○内,使各条线段上四个○内数的和相等,每个三角形三个顶点上○内数的和也相等。

例6.如图,正方体的每一个角上有一个小圆圈。

请你把1~8这8个数分别填到小圆圈中,使正方体每个面上的4个数字之和都相等。

思考与练习:1.把1~9这九个数填入“七一”的每个小方格内,使每个横行、竖行的数字和都是13。

2.将1~7这7个数分别填入图中的○里,使每条线上3个数的和等于10。

3.将1~9这九个自然数分别填入图中九个小三角形中,使每四个小三角形组成的大三角形内的四个数的和等于20。

4.将1~13这13个数分别填入图中的○里,使每条线段上四个○内的数之和相等。

5.将1~11填入图中的○内,使得每条线段上的三个圆圈内数字之和等于22。

6.将1~10这10个自然数填入图中○中,使五边形每条边上的三个数之和相等,并使和尽可能地小。

7.将1~8这8个数填入图中的方格中,使上面四格、下面四格、左面四格、右面四格、中间四格、对角线四格和四角四格内四个数相加的和都是18。

8.将1~9这九个自然数填入图中○内,使对角线上五个○内数的和相等,每个正方形四个顶点上数的和也相等。

9.将1、2、3、4、5、6、7、8、9这9个数字填入下图中,使每条线上的数字和相等。

10.将9~23这15个自然数分别填在图中15个顶点处,使每个正方形4个顶点处4个数的和相等,而且也等于中间这个五边形5个顶点处5个数字的和,这个相等的和是多少?请将这15个数分别填在图中的15个顶点处,使它们符合题意。

数阵问题

数阵问题

我是这样解的
请将14、13、512、12、712、23、34、56、1112这九个分数分别填入图中的九个圆圈内,使每个三角形顶点上的三个数之和都相等。

数阵问题
□吴国和
要将这九个分数填入图中,使每个三角形顶点上的三个数之和都相等并非易事。

我们不妨把题目所给的九个分数分别扩大到原来的12倍,使这九个分数变成3至11这九个连续的自然数,这样的话,要使每个三角形顶点上的三个数之和都相等就容易多了。

从图中可知,外围三个小三角形顶点上九个数之和,正好就是3至11这九个连续自然数的和——63,所以每个三角形顶点上的三个数之和是63÷3=21。

在3至11这九个连续自然数中,三个数之和为21的可能情形共有八种:3+7+11,3+8+10,4+6+11,4+7+10,4+8+9,5+6+10,5+7+9,6+7+8。

而处于图形中间小三角形上的每个数,都应在三个三角形中出现,也就是说,填在中间的三个数,必须在上面八组和中至少出现3次。

由上面排出的八种情况不难分析出,填在中间的三个数,只能从4、6、7、8、10这五个数中选取。

又因为这五个数中满足三数之和等于21,所以这三个数要么是4、7、10,要么是6、7、
8。

由此可以得到两个答案,然后把每个自然数缩小到原来的112,还原成原分数。

先放大,后缩小,是解决问题的关键。

121112137125614
51234231311121271223145123456(作者单位:江苏省海门市德胜小学)
4
31075
98116
114
6
3875
910。

数阵问题(一)

数阵问题(一)

数阵问题(一)把一些数按照一定的要求排成各种各样的图形,这类图形称为数阵图,简称数阵,数阵是由幻方演变而来,数阵图种类繁多,这一讲我们就来讨论学习数阵问题。

学习例题:例1.将1~9这九个数填在图中正方形的九个方格中,使得每个横行、竖行和对角线上三个数的和都相等。

例2.请用7、9、11、13、15、17、19、21、23构成一个三阶幻方。

例3.将1~25填入下图的方格内,组成一个五阶幻方。

例4.请将1~16这16个数排成一个四阶幻方。

例5.下图是一个九宫图,第一行第三列上的数是6,第二行第一列上的数是7,请你在其他位置上填上适当的数,使每行、每列以及每条对角线上三个数的和为30。

67例6.请将下面的三阶幻方填写完整。

155319例7.请将下面的三阶幻方填写完整。

201118思考与练习:1.我们将奇数阶幻方正中央的数称为“中心数”,请通过罗伯法观察三阶幻方、五阶幻方、七阶幻方,回答下面的问题:(1)三阶幻方的幻和是中心数的倍。

(2)五阶幻方的幻和是中心数的倍。

(3)七阶幻方的幻和是中心数的倍。

2.按三个填数步骤把4~12这9个数填在图中3×3的格内,制成三阶幻方。

3.用一组互不相等的9个自然数构造一个三阶幻方,使幻方和为48。

4.将3、4、5、6、…、18这16个数编制成四阶幻方。

5.用将1~49填入下图的方格中,组成一个七阶幻方。

6.在图中空格内填上适当的数,使每行、每列、每条对角线上的三个数的和都为27。

12137.将图中的数重新排列,使每行、每列以及每条对角线上三个数的和相等。

14 14 1424 24 241919198.在图中空格里,填上适当的数,使每行、每列以及每条对角线上三个数的和相等。

133179.在图中空格里,填上适当的数,使每行、每列以及每条对角线上三个数的和相等。

1814610.将九个不同的非零自然数填入九宫图中,使每行、每列以及每条对角线上三个数的积都相等。

课后作业:1.将9~17这9个数制成三阶幻方。

数阵问题实用

数阵问题实用

第8页/共10页
6.解:所有的数都是重叠数,中心数重叠两次,其它数重叠一次。所以三条边及两个圆 周上的所有数之和为
(1+2+…+7)×2+中心数=56+中心数。 因为每条边及每个圆周上的三数之和都相等,所以这个和应该是5的倍数,再由中 心数在1至7之间,所以中心数是4。每条边及每个圆周上的三数之和等于(56+4)÷5=12。 中心数确定后,其余的数一下还不好直接确定。我们可以试着先从辐射型3-3图开始。 中心数是4,每边其余两数之和是12-4=8,两数之和是8的有1,7;2,6;3,5。于是 得到左下图的填法。
=(66+重叠数×4)÷5。 为使上式能整除,重叠数只能是1,6或11。 显然,重叠数越大,每条直线上的三数之和越 大。所以重叠数是11,每条直线上的三数之和 是22。填法见右图。
第4题
第5题
5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个 数之和相等,并且尽可能大。
6.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之 和与每个圆圈上的三个数之和都相等。
2.将1~9这九个数分别填入右上图中的○里(其中9已填好),使 每条直线上的三个数之和都相等。
如果中心数是5,那么又该如何填?
第6页/共10页
3.将1~9这九个数分别填入右图的小方格里,使横行和竖列上五个数之和相等。(至少找 出两种本质上不同的填法)
第7页/共10页
4之所.5以将和.提每[3等示条(~1:+于直9中2线这2+心上0…七。数的+是个三1重1数数)+叠之分重数和叠,别等数并于填×且4入重]叠左÷45下次。图的○里,使每条直线上的三个数
第3页/共10页
例5 将 10~20填入左下图的○内,其中15已填好,使得每条边上的 三个数字之和都相等。

第21讲数阵问题2

第21讲数阵问题2

第21讲数阵问题(二)例1 把3,4,5,6,7这五个数分别填入右图中的五个方格里,使横行、竖列三个数的和都是14。

例2 将1-7分别填入右图中的○内,使每条线段上三个○内数的和相等。

例3 将1-6这六个数分别填入右图中的○内,使每条边上三个○内数的和都等于9 。

例4 请5-14这十个自然数填入右图的○中,使每个大圆上六个数的和都相等。

例5 将1-10这十个自然数分别填入右图中的十个○内,使各条线段上四个○内数的和相等,每个三角形三个顶点上○内数的和也相等。

思考与练习1、把1-9这九个数填入“七一”的每个小方格内,使每一横行、竖行的数字和都是13。

2、把1-7这七个数分别填入右图的○里,使每条线上3个数的和等于10。

3、将1-13这13个数分别填入右图的○内,使每条线段上四个○内的数之和相等。

4、将10-20填入右图的○内(其中15已填好),使得每条线段上的三个数字之和都相等。

5、将1-6这六个数分别填入右图的○内,使得每条线段上的三个○内所填数的和相等。

6、将1-10这十个自然数填入右图的○中,使五边形每条边上的三个数之和相等,并使和尽可能地小。

7、将1-9这九个自然数分别填入右图九个小三角形中,使每四个小三角形组成的大三角形内的四个数的和等于20。

8、将1-9这九个自然数分别填入右图九个小三角形中,要求靠近大三角形每条边上五个数的和相等,并尽可能地大。

这五个数之和最大是多少?9、将1-8这八个数填入右边的方格内,使上面四格、下面四格、左面四格、右面四格、中间四格、对角线四格和四角四格内四个数相加的和都是1810、将1-9这九个自然数填入右图的○内,使对角线上五个○内数的和相等,每个正方形四个顶点上数的和也相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数阵
趣味导读:
有些数按照一定的要求排列成各种各样的图形,就叫做数阵图,数阵填数的游戏是非常有趣的,有时也有一定的难度。

不过它能促使我们积极地思考问题,分析问题,拓展我们的能力。

有的同学说:这样的数阵图填写时只能采取试的方法,没有其他捷径好走。

其实这话不对。

填写数阵图时,我们应抓住数阵中的关键位置(例如两种线的交点,长方形和正方形的顶点),再根据题目的要求,进行必要的计算,先填写这些关键位置的数,再填写出其他位置的数。

一些数按照一定的规则,填在某一特定图形的规定位置上,这种图形,我们称它为“数阵图”,数阵图的种类繁多,绚丽多彩,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图。

在解答这类问题时,要善于确定所求的和与关键数字间的关系式,用试验的方法,找到相等的和与关键数字:要会对基本解中的数进行适当调整,得到其他的解,从而培养自己的观察能力,思维的灵活性和严密性。

【解法总结】:
做数阵题目,我们的一般步骤是:
①.先观察在图中有哪些格子重复了,重复了几次。

②.根据题中给出的数字以及图形来发现重复的这几个数有什么特点。

③.看看在给出的数中有哪些数符合我们特点,再通过试算,确定每个格子中的数。

【例题1】将1,2,3,4,5这五个数分别填入下图的各正方形中,组成一个“十字数阵图”
使图中横行三个数的和与竖行三个数据的和相等。

解析:根据图形的特点,中间那个数是横行与竖行共用的,要使横行与竖行三个数的和相等,可以先确定中间的数,再让左右两数的和与上、下两数的和相等。

①中间填1,则剩下2,3,4,5,而2+5=4+3,共有8种填法。

②中间填2,则剩下1,3,4,5而这四个数无法组成□+□=□+□的形式所以中间不可填?
③中间填3,则剩下1,2,4,5,而1+5=2+4,共有8种填法:
④中间填4,则剩下1,2,3,5而这四个数无法组成□+□=□+□的形式所以中间可能填4。

⑤中间填5,则剩下1,2,3,4,1+4=2+3共有8种填法。

提示:可以令中间数为一个字母A,根据求和与倍数的关系填数阵图。

练习:
1、将1,3,5,7,9 这五个数分别填入下图的各正方形中,组成一个“十字型数阵图”使图中横行三个数的和与竖行三个数的和相等。

2、将数字1-8分别填入下图中的□内,使每一横行每一竖行相邻3个□的数字和相等。

3、将数字1-5分别填在下图中的○内,使每条线段上3个○内的数字之和相等。

4、将数字1-9分别填在图中的○内使每条线上五个○内数的和相等。

其中一个和为23.
5、把1,4,7,10,13,16,19七个数填入图中7朵花里,使每条线上三个数的和相等。

其中一个和为30.
6、将26、2
7、2
8、36、37、38、46、47、48九个数分别填入下图中的圆圈里,使第一个图每条直线上三个数的和是111。

第二个图自由发挥。

7、把1~7填入下图中,使每条线段上三个○内的数的和相等.第一个图中三个数的和是14.
8、把1~11填入图中,使每条线上三个数的和相等.
【例题2】请你把1-6这六个数字填在下面三角形的O内,使每条边上的数字之和相等。

你能做到吗?
这是一种封闭型的数阵图,填写时的关键是确定三个顶点上的数。

1+2+3+4+5+6=21,用k 表示每边上三个数的和,因为三个顶点上的数在求和时,都用了两次,用a,b,c表示三个顶点的数,使有21+a+b+c=3k因为a+b+c的最小值为6,最大值为15,所以3个k的最小值为27,最大为36,那么k的最小值是9,最大值是12。

①当k=9时,a+b+c=6 这时
a=1,b=2,c=3; a=1,b=3,c=2; a=2,b=1,c=3;
a=2,b=3,c=1; a=3,b=1,c=2; a=3,b=2,c=1;
②当k=10、11、12时,可仿照①的方法进行分析。

本题的填法有很多种,这里只列举其中的几种,其他的填法由同学们自己考虑。

能使每边上的三个数的和都是11吗?你能很快判断出来吗?想一想。

【分析】:因为每条边上的和都是11,所以三条边上的数字之和为11333
⨯=,在三角形三个顶点上的数都重复算了两次,而12345621
+++++=,所以三个角上的三个数之和是
332112
-=。

在16中,和是12的三个数有可能是156246345
、、;,,;,,。

但是当三个数是156
、、时,我们发现在一条边上中点那个数找不到,所以删去。

再通过我们的计算发现只有246
、、的时候,才能满足条件,所以结果是:
13
5
6
4
2
练习:
1在下图12个小圆圈中分别填入1--9这九个数字,规定4个角上的圆圈中必须填入相同的数字,并要使每边上四个数字的和都相等。

有多少种不同的填法,每边上四个数的和可以是几?写出你认为可以的所有结果。

【分析】:根据我们做数阵题目的步骤,我们可以发现只有角上四个数是重复了,所以我们可以设角上的数为x,设每条线上四个数的和为y。

而12348945
++++++=,那么4534
x y
+=。

这是一个不定方程,我们可以用奇偶分析法。

因为45是奇数,4y是偶数,所以3x一定为奇数,那么x只可能是13579
、、、、。

我们通过试算发现x只可能是159
、、三种情况。

2、将1-9这九个数分别填入下面数阵的9个○内,使三角形每条边上4个○内数的和相等。

试着写一写。

3、在图中填入2-9,使每边3个数的和等于15。

4、把1~10填入图中,使五条边上三个○内的数的和相等.
5、把1~8,填入图中,使每条线及正方形四个顶点上的数的和相等.
【例题3】将1,2,3,5,6,7这六个数字填入下表中,使每行中三个数的和相等,同时使每列两个数的和也相等。

解析:因为表中有2行、3列,这样六个数可分成(7,3,2)和(6,5,1)每列两个数的和为24÷3=8,同样这六个数也可分为(7,1)、(6,2)和(5,3)三组。

根据题意,我们同时考虑使每行中的数和每列中数的和分别相等。

你能想出其他11种填法吗?试试看.
练习:
1、将1,3,5,7,9,11这六个数字填入下表中,使每行中三个数的和相等,同时使每列两个数的和也相等。

2、将1--8这八个个数字填入下表中,使每行中四个数的和相等,同时使每列两个数的和也相等。

想一想,你还能写出多少个?
【例题4】将1~8个数分别填入图中,使每个圆圈上五个数和分别为20
解析:中间两个数是重叠数,重叠的次数都是1,所以两个重叠数为:
20×2-(1+2+3+4+5+6+7+8)=4
在已知的八个数中,两个数之和是6的只有1和3.两个大圆上的其他三个数之和为20-4=16. 那么剩下的6个数为2、4、5、6、7、8,把这6个数平分为两组,每组三数之和为16的有2+6+8=16和4+5+7=16。

即如下图所示:
练习:
1、将1~8个数分别填入图中,使每个圆圈上五个数和分别为21、24。

和为21 和为24
2、将1、2、
3、
4、
5、6六个数字填入图中的小圆圈内,使每个大圆上四个数字的和是16。

相关文档
最新文档