中考复习_第21讲矩形、菱形、正方形(含答案)

合集下载

2015年中考数学复习专题复习第二十一讲矩形 菱形 正方形(含参考答案)

2015年中考数学复习专题复习第二十一讲矩形 菱形 正方形(含参考答案)

第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2014•黔南州)如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°思路分析:根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2014•宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是________cm.思路分析:根据菱形的对角线互相垂直且平分各角,可设较小角为x,因为邻角之和为180°,∴x+2x=180°,所以x=60°,画出其图形,根据三角函数,可以得到其中较长的对角线的长.考点三:和正方形有关的证明题例3 (2014•菏泽)已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°,连结MN.(1)若正方形的边长为a,求BM•DN的值.(2)若以BM,DN,MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.思路分析:(1)根据角平分线的定义求出∠CBM=∠CDN=45°,再求出∠ABM=∠ADN=135°,然后根据正方形的每一个角都是90°求出∠BAM+∠NAD=45°,三角形的一个外角等于与它不相邻的两个内角的和∠BAM+∠AMB=45°,从而得到∠NAD=∠AMB,再求出△ABM和△NDA相似,利用相似三角形对应边成比例列式求解即可;(2)过点A作AF⊥AN并截取AF=AN,连接BF、FM,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△ABF和△ADN全等,根据全等三角形对应边相等可得BF=DN,∠FBA=∠NDA=135°,再求出∠FAM=∠MAN=45°,然后利用“边角边”证明△AFM和△ANM全等,根据全等三角形对应边相等可得FM=NM,再求出△FBM是直角三角形,然后利用勾股定理判断即可.考点四:四边形综合性题目【迁移拓展】由条件AD•CE=DE•BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD 上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.【聚焦山东中考】CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.113.(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=23BE,则长AD与宽AB的比值是______ .4.(2014•日照)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC 边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.5.(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin ∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.【备考真题过关】一、选择题1.(2014•郴州)下列性质中,平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等2.(2014•珠海)边长为3cm的菱形的周长是()4.(2014•齐齐哈尔)如图,四边形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直线BD折叠,点C落在点E处,BE与AD相交于点F,连接AE,下列结论:①△FBD是等腰三角形;②四边形ABDE是等腰梯形;③图中共有6对全等三角形;④四边形BCDF的周长为532cm;⑤AE的长为145cm.其中结论正确的个数为()A.2个B.3个C.4个D.5个5.(2014•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.86.(2014•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍7.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°8.(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An 分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n-1 C.n114⎛⎫⎪⎝⎭-D.1n49.(2014•本溪)如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=kx(x>0)的图象上,已知点B的坐标是(65,115),则k的值为()A.4 B.6 C.8 D .1010.(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN 与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°11.(2014•攀枝花)如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO∥12BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有()A.1个B.2个C.3个D.4个12.(2014•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(2014•桂林)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是________.14.(2014•郴州)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD 沿CE折叠后,点B落在AD边的F点上,则DF的长为________.15.(2014•宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= ________cm.16.(2014•巴中)菱形的两条对角线长分别是方程2x-14x+48=0的两实根,则菱形的面积为________.17.(2014•齐齐哈尔)已知正方形ABCD的边长为2cm,以CD为边作等边三角形CDE,cm则△ABE的面积为_____218.(2014•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是_______ (只填写序号).三、解答题第二十一讲矩形菱形正方形答案【重点考点例析】考点一:与矩形有关的折叠问题例1 解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB 和△CED 中,BAE DCE AEB CED AB CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AEB ≌△CED (AAS ), ∴BE=DE ,故C 正确; ∵得不出∠ABE=∠EBD ,∴∠ABE 不一定等于30°,故D 错误. 故选:D .考点二:和菱形有关的对角线、周长、面积的计算问题 例2 解:解:∵菱形的周长为20cm ∴菱形的边长为5cm ∵两邻角之比为1:2 ∴较小角为60° 画出图形如下所示: ∴∠ABO=30°,AB=5cm ,∵最长边为BD ,BO=AB •cos ∠ABO=5∴BD=2BO=考点三:和正方形有关的证明题∴BM •DN=AB •AD=2a ;(2)以BM ,DN ,MN 为三边围成的三角形为直角三角形.证明如下:如图,过点A 作AF ⊥AN 并截取AF=AN ,连接BF 、FM ,∵∠1+∠BAN=90°,∠3+∠BAN=90°,∴∠1=∠3,在△ABF 和△ADN 中,AB AD 13AF AN ⎧⎪∠∠⎨⎪⎩===,∴△ABF ≌△ADN (SAS ),∴BF=DN ,∠FBA=∠NDA=135°,∵∠FAN=90°,∠MAN=45°,∴∠1+∠2=∠FAM=∠MAN=45°,在△AFM 和△ANM 中,AF AN FAM MANAM AM ⎧⎪∠∠⎨⎪⎩===,∴△AFM ≌△ANM (SAS ),∴FM=NM ,∴∠FBP=180°-∠FBA=180°-135°=45°,∴∠FBP+∠FBM=45°+45°=90°,∴△FBM 是直角三角形,∵FB=DN ,FM=MN ,∴以BM,DN,MN为三边围成的三角形为直角三角形.∴CF=PD-PE.【聚焦山东中考】1.C.2.A.34.(1)证明:过点F 作FG ⊥BC 于点G .∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE 和△EGF 中,12B FGE 90AE EF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△EGF (AAS ).∴AB=EG ,BE=FG .又∵AB=BC ,∴BE=CG ,∴FG=CG ,∴∠FCG=∠45°,即CF 平分∠DCG ,∴CF 是正方形ABCD 外角的平分线.(2)∵AB=3,∠BAE=30°,∠tan30°=BE AB,在Rt △CFG 中,cos45°=C G CF , ∴5.(1)证明:如图1,∵E ,F 分别是正方形ABCD 边BC ,CD 的中点, ∴CF=BE ,在Rt △ABE 和Rt △BCF 中,AB BC ABE BCF BE CF ⎧⎪∠∠⎨⎪⎩===∴Rt △ABE ≌Rt △BCF (SAS ),∠BAE=∠CBF ,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF .(2)解:如图2,根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90° ∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,令PF=k (k >0),则PB=2k在Rt △BPQ 中,设QB=x ,∴222x x k 4k =-+(), ∴x=5k 2,∴sin ∠BQP= B P 2k 45k QP 52==, (3)解:∵正方形ABCD 的面积为4,∴边长为2,∵∠BAE=∠EAM ,AE ⊥BF ,∴AN=AB=2,∵∠AHM=90°,∴GN ∥HM , ∴2AGN AHM S AN ()S AM =,∴2AGN S 1=, ∴AGN 4S 5=, ∴AHM AGN GHMN 41S S S 155=-=-=四边形, ∴四边形GHMN 的面积是1 5.【备考真题过关】一、选择题1.A.2.C.3.D4.C.5.C.6.B.7.C.8.B.9.C.10.C. 11.C. 12.C. 二、填空题。

2024成都中考数学复习专题 矩形、菱形、正方形的性质与判定(含答案)

2024成都中考数学复习专题 矩形、菱形、正方形的性质与判定(含答案)

2024成都中考数学复习专题矩形、菱形、正方形的性质与判定基础题1. (2023上海)在四边形ABCD中,AD∥BC,AB=C D.下列说法能使四边形ABCD为矩形的是()A. AB∥CDB. AD=BCC. ∠A=∠BD. ∠A=∠D2. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第2题图3. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等4. (2023深圳)如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a 个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()第4题图A. 1B. 2C. 3D. 45. (2023十堰)如图,将四根木条用钉子钉成一个矩形框架ABCD,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. 对角线BD的长度减小C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变第5题图6. 如图,菱形ABCD中,点E,F分别为AB,BC的中点,EF=2,BD=8,则该菱形的面积为()第6题图A. 12B. 16C. 20D. 327. (2023杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A. 12 B.3-12 C.32 D.33第7题图8. (2023大庆)将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=()第8题图A. 45°+12α B. 45°+32αC. 90°-12αD. 90°-32α 9. (2023河北)如图,在Rt △ABC 中,AB =4,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若S 正方形AMEF =16,则S △ABC =( ) A. 4 3 B. 8 3 C. 12 D. 16第9题图10. [新考法—条件开放](2023齐齐哈尔)如图,在四边形ABCD 中,AD =BC ,AC ⊥BD 于点O .请添加一个条件:________,使四边形ABCD 成为菱形.第10题图 11. (2023怀化)如图,点P 是正方形ABCD 的对角线AC 上的一点,PE ⊥AD 于点E ,PE =3.则点P 到直线AB 的距离为________.第11题图12. (2023绍兴)如图,在菱形ABCD 中,∠DAB =40°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则∠AEC 的度数是________.第12题图13. (2023河南)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为________.14. [新考法—条件开放](2023十堰)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP . (1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当▱ABCD 的对角线满足什么条件时,四边形BPCO 是正方形?第14题图15. 如图,在平行四边形ABCD 中,点E ,F 分别在边BC ,AD 上,且BE =DF ,连接AE ,CF ,EH ⊥CF 于点H ,FG ⊥AE 于点G .(1)判断四边形EGFH 的形状,并说明理由;(2)若AE =5,tan ∠DAE =2,EG =2GF ,求AG 的长.第15题图拔高题16. (2022青羊区模拟)我们规定菱形与正方形接近程度称为“接近度”,设菱形相邻两个内角的度数分别为α,β,将菱形的“接近度”定义为|α-β|,于是|α-β|越小,菱形越接近正方形.第16题图①若菱形的一个内角为80°,则该菱形的“接近度”为________;②当菱形的“接近度”等于________时,菱形是正方形.课时2基础题1. (2023湘潭)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A. 20°B. 60°C. 70°D. 80°第1题图2. 如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC 中点,则EF的长为()第2题图A. 3B. 4C. 5D. 63. 如图所示,将一张矩形纸片沿虚线对折两次,当剪刀与纸片的夹角∠ABC=45°时,已知AB=4 cm,则剪下来图形的周长为()第3题图A. 4 cmB. 4 2 cmC. 16 cmD. 16 2 cm4. (2022青岛改编)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为________.第4题图5. [新考法—数学文化](2023内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一.如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为点F ,G ,则EF +EG =________.第5题图6. (2023天津)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.第6题图(1)△ADE 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.7. (2023内江)如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交CE 的延长线于点F .(1)求证:F A =BD ;(2)连接BF ,若AB =AC ,求证:四边形ADBF 是矩形.第7题图8. (2023兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.第8题图拔高题9. (2023绍兴改编)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.当E,F,O三点重合时,当点E,F分别为OB,OD的中点时,当E,F分别运动到B,D两点时,四边形E1E2F1F2形状的变化依次是()第9题图A. 菱形→平行四边形→矩形B. 菱形→矩形→菱形C. 平行四边形→矩形→平行四边形D. 平行四边形→菱形→正方形10. (2023武侯区二诊节选)如图①,在矩形ABCD中,AD=nAB(其中n>1),点P是AD边上一动点(点P不与点A重合),点E是AB边的中点,连接PE,将矩形ABCD沿直线PE进行翻折,其顶点A翻折后的对应点为O,连接PO并延长,交BC边于点F(点F不与点C重合),过点F作∠PFC的平分线FG,交矩形ABCD的边于点G.(1)求证:PE∥FG;(2)如图②,在点P运动过程中,若E,O,G三点在同一条直线上时,点G与点D刚好重合,求n的值.图①图②第10题图参考答案与解析1. C2. C 【解析】∵正方形的边长为3,∴DC =BC =3,DC 与BC 分别垂直于y 轴和x 轴.∵点C 在第一象限,∴点C 的坐标为(3,3).3. D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第3题解图4. B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,CE ∥FD ,CD =AB =4.∵将线段AB 水平向右平移得到线段EF ,∴AB ∥EF ∥CD ,∴四边形ECDF 为平行四边形,当CD =CE =4时,▱ECDF 为菱形,此时a =BE =BC -CE =6-4=2.5. C 【解析】将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,∵两组对边的长度分别相等,∴四边形ABCD 是平行四边形,故A 正确,∵向左扭动框架,∴BD 的长度减小,故B 正确;∵平行四边形ABCD 的底不变,高变小了,∴平行四边形ABCD 的面积变小,故C 错误;∵平行四边形ABCD 的四条边长度不变,∴四边形ABCD 的周长不变,故D 正确.6. B 【解析】如解图,连接AC ,∵点E ,F 分别为AB ,BC 的中点,∴EF 是△ABC 的中位线,∴AC =2EF =4.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴S 菱形ABCD =12 AC ·BD =12×4×8=16.第6题解图7. D 【解析】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠ABC =90°,∴∠OBC =∠OCB .∵∠AOB =60°,∴∠ACB =12 ∠AOB =30°,∴AB BC =tan ∠ACB =tan 30°=33. 8. D 【解析】∵四边形ABCD 和四边形BGHF 是完全相同的菱形,∴∠DBE =∠BAD =α,AB =AD ,∠ABD =∠CBD =∠CBE +∠DBE =β+α.∴∠ADB =∠ABD =β+α.∵∠BAD +∠ADB +∠ABD =180°,∴α+β+α+β+α=180°,∴β=90°-32α. 9. B 【解析】∵S 正方形AMEF =16,∴AM =4.∵M 是斜边BC 的中点,∴AM 是Rt △ABC 斜边上的中线,∴BC =2AM =8.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2 =43 ,∴S △ABC =12 AB ·AC =12×4×43 =83 . 10. AD ∥BC (答案不唯一) 【解析】当AD ∥BC ,AD =BC 时,四边形ABCD 为平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.11. 3 【解析】如解图,过点P 作PF ⊥AB 于点F ,∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴∠AEP =∠AFP .∵AP =AP ,∴△AEP ≌△AFP (AAS),∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第11题解图12. 10°或80° 【解析】如解图,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E 和E ′.在菱形ABCD 中,∠DAC =∠BAC ,∵∠DAB =40°,∴∠DAC =20°.∵AC =AE ,∴∠AEC =(180°-20°)÷2=80°.∵AE ′=AC ,∴∠AE ′C =∠ACE ′=10°.综上所述,∠AEC 的度数是10°或80°.第12题解图 13. 2或2 +1 【解析】分两种情况,①当∠DNM =90°时,如解图①,则MN ∥AB ,∴AN BM=AD BD.∵M 是BD 的中点,∴BD =2BM ,∴AD =2AN =2;②当∠DMN =90°时,如解图②,连接BN ,∵M 是BD 的中点,∠DMN =90°,∴BN =DN =AB 2+AN 2 =12+12 =2 ,∴AD =2 +1.综上所述,AD 的长为2或2 +1.图①图②第13题解图14. 解:(1)四边形BPCO 为平行四边形.理由如下:由作法得,BP =12 AC ,CP =12BD , ∵四边形ABCD 为平行四边形,∴OC =12 AC ,OB =12BD, ∴OC =BP ,OB =CP ,∴四边形BPCO 为平行四边形.(2)当▱ABCD 的对角线垂直且相等时,四边形BPCO 为正方形.理由:∵AC ⊥BD ,∴四边形BPCO 为矩形,∵AC =BD ,∴OB =OC ,∴四边形BPCO 为正方形.15. 解:(1)四边形EGFH 是矩形.理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BE =DF ,∴AD -DF =BC -BE ,∴AF =CE ,∴四边形AECF 是平行四边形,∴AE ∥CF ,∴∠AEH +∠FHE =180°.∵EH ⊥CF ,FG ⊥AE ,∴∠FGE =∠FHE =∠GEH =90°,∴四边形EGFH 是矩形;(2)∵FG ⊥AE ,∴∠AGF =90°.在Rt △AGF 中,tan ∠DAE =GF AG=2, ∴GF =2AG .∵EG =2GF ,∴EG =4AG .∵AE =AG +EG =5,∴AG =1,即AG 的长为1.16. 20°;0° 【解析】①∵菱形相邻两个内角的度数和为180°,∴α+β=180°,即80°+β=180,解得β=100°,∴该菱形的“接近度”为|α-β|=|80°-100°|=20°;②∵当α=β=90°时,菱形是正方形,∴|α-β|=0°时,菱形是正方形.课时21. C 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴∠DCA =∠1=20°,∴∠2=90°-∠DCA =70°.2. C 【解析】∵四边形ABCD 是菱形,∴BC =DC ,BE =DE ,∵∠DBC =60°,∴△BDC是等边三角形,∴CD =BD =10.∵点F 为BC 中点,∴EF =12CD =5. 3. D 【解析】由折叠可知,剪下的图形两条对角线互相垂直且平分,此时图形为菱形,∵∠ABC =45°,∴剪下的图形有一个角为90°,∴有一个角为90°的菱形是正方形,∵AB =4 cm ,根据勾股定理得BC =42 cm ,故剪下来图形的周长为4×42 =16 2 cm. 4. 6 【解析】∵四边形ABCD 为正方形,AB =2,∴AC =22 .∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =22 ,AO =2 ,∴OE=6 .5. 6013【解析】如解图,连接OE ,∵四边形ABCD 是矩形,∴∠BAD =90°, AB =CD =5,AD =BC =12.在Rt △ABD 中,BD =AB 2+AD 2 =13.∴AC =BD =13.∵AC 与BD 交于点O ,∴AO =CO =BO =DO =132 .∵S △BCO =14 S 四边形ABCD =14×12×5=15,∴S △BCO =S △BEO +S △CEO =12 BO ·EG +12 CO ·EF =12 ×132 (EG +EF )=15,∴EF +EG =15×413 =6013.第5题解图6. (1)3 【解析】(1)如解图,过点E 作EM ⊥AD 于点M ,∵△ADE 是等腰三角形,EA =ED =52 ,AD =3,∴AM =12 AD =32,∴EM =AE 2-AM 2 =(52)2-(32)2 =2,∴S △ADE =12 AD ·EM =12 ×3×2=3. (2)13 【解析】如解图,延长EM 交AG 于点N ,∵∠BAD =∠AME =90°,∴AB ∥NE ,∴∠ABF =∠FEN ,∠BAF =∠ENF .又∵点F 为BE 中点,∴BF =EF ,∴△AFB ≌△NFE ,∴EN =BA =3.由(1)知,EM =2,∴NM =1.∵∠NMD =∠ADC =90°,且M 为AD 中点,∴NM ∥GD ,∴NM 为△AGD 的中位线,∴GD =2NM =2,∴AG =AD 2+GD 2 =13 .第6题解图7. 证明:(1)∵AF ∥BC ,∴∠AFE =∠DCE .又∵E 是AD 的中点,∴AE =DE .在△AFE 和△DCE 中,∵ ⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AFE≌△DCE,∴AF=DC.又∵D是BC的中点,∴BD=CD,∴AF=BD;(2)∵AB=AC,∴△ABC是等腰三角形.又∵D是BC的中点,∴∠ADB=90°,由(1)知F A=BD,又∵F A∥BD,∴四边形ADBF是平行四边形.又∵∠ADB=90°,∴四边形ADBF是矩形.8. 解:(1)四边形OCDE为菱形,理由如下:∵CE是线段OD的垂直平分线,∴OF=DF,OC=DC.∵CD∥OE,∴∠EOF=∠CDF.∵∠EFO=∠CFD,∴△OFE≌△DFC,∴OE=CD,∴四边形OCDE是平行四边形.又∵OC=CD,∴四边形OCDE是菱形;(2)∵四边形ABCD是矩形,∴DO=OC=OA,由(1)可知,OC=DC,∴OC=DO=CD,∴△OCD 是等边三角形,∴∠DCO =∠CDO =60°,∴∠FDG =90°-60°=30°.∵四边形OCDE 是菱形,∴∠DEC =∠DCE =30°,∠CGD =90°-∠DCE =60°,∴∠EDG =30°,∴DG =EG .∵CD =4,∴tan ∠DCG =DG CD =DG 4, ∴DG =4·tan 30°=4×33 =433, ∴EG =433. 9. B 【解析】∵四边形ABCD 为矩形,∠ABD =60°,∴∠CDF =60°,∠EDA =∠CBD =30°.∵OE =OF ,O 为对角线BD 的中点,∴DF =EB .由对称的性质得DF =DF 2,BF =BF 1,BE =BE 2,DE =DE 1,∠F 2DC =∠CDF =60°,∠EDA =∠E 1DA =30°,∠F 1BC =∠FBC =30°,∴E 1F 2=E 2F 1,∠E 1DB =60°,∠F 1BD =60°,∴DE 1∥BF 1,∴E 1F 2∥E 2F 1,∴四边形E 1E 2F 1F 2是平行四边形,如解图①,当E ,F ,O 三点重合时,DO =BO ,∴DE 1=DF 2=AE 1=AE 2,即E 1E 2=E 1F 2,∴四边形E 1E 2F 1F 2是菱形,如解图②,当E ,F 分别为OB ,OD 的中点时,设DB =4,则DF 2=DF =1,DE 1=DE =3,在Rt △ABD 中,AB =2,AD =23 ,连接AE ,易得AE =32 AB =3 ,根据对称性可得AE 1=AE =3 ,∵AD 2=12,DE 21 =9,AE 21 =3,即AD 2=AE 21 +DE 21 ,∴△DE 1A 是直角三角形,且∠E 1=90°,∴四边形E 1E 2F 1F 2是矩形;如解图③,当F ,E 分别与D ,B 重合时,△BE 1D ,△BDF 1都是等边三角形,则四边形E 1E 2F 1F 2是菱形,∴在这三个位置时,四边形E 1E 2F 1F 2形状的变化依次是菱形→矩形→菱形.图①图②图③第9题解图10. (1)证明:由翻折知,∠APE=∠OPE,∵FG平分∠PFC,∴∠PFG=∠CFG.∵AD∥BC,∴∠APF=∠CFP,∴∠EPF=∠PFG,∴PE∥FG;(2)解:由翻折知,EA=EO,∠EOP=90°.∵E,O,D三点在同一条直线上,∴∠DOF=∠EOF=∠C=90°.又∵DF=DF,∠OFG=∠CFG,∴△DOF≌△DCF(AAS),∴DO=DC=AB.∵E是AB的中点,∴设EA=EB=EO=a,∴OD=CD=AB=2a,∴DE=OE+OD=3a.在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,∴AD=(3a)2-a2=22a.∵AD=nAB,∴22a=2na,∴n=2.。

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。

矩形、菱形、正方形精讲精练(含答案)-

矩形、菱形、正方形精讲精练(含答案)-

矩形、菱形、正方形重点与难点:矩形、菱形、正方形的性质与判定定理。

一、知识点(1)矩形:有一个角是直角的平行四边形;菱形:有一组邻边相等的平行四边形;正方形:有一个角是直角并且有一组邻边相等的平行四边形。

(注:矩形、菱形、正方形的定义既是性质又是判定)(2)矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形是轴对称图形菱形的性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;正方形的性质:正方形既是矩形又是菱形,它具有矩形和菱形的全部性质;(3)矩形的判定:有三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;菱形的判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;正方形的判定:先判定是矩形,再判定是菱形;或者先判定是菱形,再判定是矩形。

(4)直角三角形斜边上的中线等于斜边的一半;菱形的面积等于对角线乘积的半二、例题:例1、如图,矩形ABCD中,E为AD上一点,EF⊥CE交AB于F,若DE=2,矩形的周长为16,且CE=EF,求AE的长。

解:∵矩形ABCD∴∠A=∠D=90°(矩形的四个角都是直角)∴∠AEF+∠AFE=90°∵CE⊥EF∴∠AEF+∠DEC=90°∴∠AFE=∠DEC(等角的余角相等)在△AEF和△DCE中B CE D AF⎪⎩⎪⎨⎧=∠=∠∠=∠CE EF DCE AEF D A ∴△AEF ≌ △DCE(AAS )∴AE=DC(全等三角形的对应边相等) ∴2×(AE+DE+CD )=16 即AE=3。

例2、如图,E 是菱形ABCD 边AD 的中点,EF⊥AC 于H ,交CB 的延长线于F ,交AB 于G ,求证:AB 与EF 互相平分。

证明:∵菱形ABCD∴AC 平分∠BAD(菱形的对角线平分对角)AD 平行且等于AB (菱形四条边都相等,平行四边形的对边互相平行) ∠GAE=∠GBF,∠GFB=∠GEA(两直线平行,内错角相等)在△AEH 和△AGH 中⎪⎩⎪⎨⎧∠=∠=∠=∠EHA GHA AH AH EAHGAH ∴△AEH ≌ △AGH(ASA ) ∴AE=AG ∵AE=21AD ∴AG=21AD=21AB 即AG=AB 在△AEG 和△BFG 中⎪⎩⎪⎨⎧=∠=∠∠=∠GB GA GBF GEA FBG EAG ∴△AEG ≌ △BFG(AAS ) ∴AG=BG,EG=FGABCDEFGH例3、如图,以正方形ABCD 的DC 边为一边向外作一个等边三角形,①求证:△ABE 是等腰三角形;②求∠BAE 的度数。

中考复习:四边形

中考复习:四边形

图21-3
第21讲┃ 多边形与平行四边形
9.已知:如图21-4,E、F是平行四边形ABCD的对 角线AC上的两点,AE=CF. 求证:(1)△ADF≌△CBE; (2)EB∥DF.
图21-4
第21讲┃ 多边形与平行四边形
证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE. 又四边形ABCD是平行四边形, ∴AD=CB,AD∥BC.∴∠DAF=∠BCE.
第21讲 多边形与平行四边形 第22讲 矩形、菱形、正方形(一) 第23讲 矩形、菱形、正方形(二) 第24讲 梯形
第21讲
多边形与平行四 边形
第21讲┃ 多边形与平行四边形
┃考点自主梳理与热身反馈 ┃ 考点1 多边形及其性质
(n-2)×180° 内角和 n边形内角和为______________ 360° 多边形 外角和 任意多边形的外角和为________ nn-3 的性质 多边形 n边形共有____________条对角线 2 对角线 相等 相等 各个角________,各条边________ 定义 的多边形叫正多边形 正多边形 正多边形都是轴对称图形,边数为 对称性 偶数的正多边形也是中心对称图形
图21-2
第21讲┃ 多边形与平行四边形
8.如图21-3,平行四边形ABCD的对角线AC、BD相交 于点O,EF过点O与AD、BC分别相交于点E、F,求证: OE=OF.
证明:∵四边形ABCD为平行四边形, ∴AD∥BC,OA=OC, ∴∠EAO=∠FCO,∠AEO=∠CFO, ∴△AEO≌△CFO, ∴OE=OF.
图21-6
第21讲┃ 多边形与平行四边形
12.点A、B、C是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A、B、C、D四点恰能构成一个平行四 边形,则在平面内符合这样条件的点D有( C ) A.1个 B.2个 C.3个 D.4个

中考一轮复习--第21讲 矩形、菱形、正方形

中考一轮复习--第21讲 矩形、菱形、正方形

考法1
考法2
考法3
对应练1(课本习题改编)下列命题,其中是真命题的为( D )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
考法1
考法2
考法3
对应练2(2019·内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线
∵AD2+AB2=BD2,∴64+AB2=4AB2,
8 3
.
3
∴AB=
考法1
考法2
考法3
对应练3
(2018·甘肃白银)已知矩形ABCD中,E是AD边上一个动点,点
F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
∴OD= 2,
∴直线 l∥AC 并且到 D 的距离为 3,同理,在点 D 的另一侧还有一条
直线满足条件,
故共有 2 条符合题意的直线 l.故选 B.
考法1
考法2
考法3
矩形的性质和判定
例1(2018·合肥行知学校模拟)如图,已知▱ABCD,延长AB到E使
BE=AB,连接BD,ED,EC,若ED=AD.
AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的
8 3
长为 3
.
解析:∵四边形ABCD是矩形,
∴AO=CO=BO=DO,∵AE平分∠BAO,
∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,
∴△ABE≌△AOE(ASA),
∴AO=AB,且AO=OB,

中考第一轮复习第21讲平行四边形、矩形、菱形、正方形

中考第一轮复习第21讲平行四边形、矩形、菱形、正方形

第21讲平行四边形、矩形、菱形、正方形,知识清单梳理)平行四边形1.定义:两组对边分别__平行__的四边形叫做平行四边形.2.性质(1)边:对边__平行__且__相等__.(2)角:对角__相等__.(3)对角线:对角线互相平分.(4)对称性:__中心__对称.3.判定(1)两组对边分别__平行__的四边形是平行四边形.(2)两组对边分别__相等__的四边形是平行四边形.(3)一组对边__平行__且__相等__的四边形是平行四边形.(4)两组对角分别__相等__的四边形是平行四边形.(5)对角线互相__平分__的四边形是平行四边形.矩形1.定义:有一个角是__直角__的平行四边形叫做矩形.2.性质(1)边:对边__平行__且__相等__.(2)角:四个角都是__直角__.(3)对角线:对角线互相__平分__且__相等__.(4)对称性:__中心__对称和__轴__对称.3.判定(1)有__一__个角是__直角__的平行四边形是矩形.(2)有__三__个角是__直角__的四边形是矩形.(3)对角线__相等__的平行四边形是矩形.菱形1.定义:有一组__邻边相等__的平行四边形叫做菱形.2.性质(1)边:四边__相等__,对边平行.(2)角:对角__相等__.(3)对角线:对角线互相__垂直__、__平分__,且每一条对角线平分一组对角.(4)对称性:__中心__对称和__轴__对称.3.判定(1)有一组__邻边相等__的平行四边形是菱形.(2)四边__相等__的四边形是菱形.(3)对角线互相__垂直__的平行四边形是菱形.正方形1.定义:有一个角是__直角__,有一组邻边__相等__的平行四边形叫做正方形.2.性质(1)边:四边__相等__,对边平行.(2)角:四个角都是__直角__.(3)对角线:对角线互相__垂直__、__平分__、__相等__,每一条对角线平分一组对角.(4)对称性:__中心__对称和__轴__对称.3.判定(1)有一个角是__直角__、有一组邻边__相等__的平行四边形是正方形.(2)有一组邻边相等的__矩形__是正方形.(3)有一个角是直角的__菱形__是正方形.中点四边形1.顺次连接任意四边形各边中点,所得四边形是__平行四边__形.2.顺次连接平行四边形各边中点,所得四边形是__平行四边__形.3.顺次连接矩形各边中点,所得四边形是__菱__形.4.顺次连接菱形各边中点,所得四边形是__矩__形.5.顺次连接正方形各边中点,所得四边形是__正方__形.6.顺次连接等腰梯形各边中点,所得四边形是__菱__形.,云南省近五年高频考点题型示例)轴对称图形与中心对称图形【例1】(2019曲靖中考)平行四边形、矩形、菱形、正方形中是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个【解析】平行四边形是中心对称图形,不是轴对称图形;矩形、菱形、正方形都是轴对称图形,故是轴对称图形的有3个.【答案】C平行四边形的性质和判定【例2】(2019昆明中考)如图,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC【解析】根据平行四边形的判定定理分别进行分析即可.【答案】C1.(2019曲靖中考)若平行四边形中两个内角的度数比为1∶2,则其中较大的内角是__120__°.2.(2019云南中考)如图,在平行四边形ABCD中,∠C=60°,M,N分别是AD,BC的中点,BC=2CD.求证:(1)四边形MNCD是平行四边形;(2)BD=3MN.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC.∵M,N分别是AD,BC的中点,∴MD=NC,MD∥NC,∴四边形MNCD是平行四边形;(2)连接ND.∵四边形MNCD 是平行四边形, ∴MN =DC.∵N 是BC 的中点,∴BN =CN. ∵BC =2CD ,∠C =60°, ∴△NCD 是等边三角形. ∴ND =NC ,∠DNC =60°. ∵∠DNC 是△BND 的外角, ∴∠NBD +∠NDB=∠DNC. ∵DN =NC =NB ,∴∠DBN =∠BDN=12∠DNC=30°,∴∠BDC =90°. ∵tan ∠DBC =DC DB =33,∴DB =3DC =3MN.3.(2019云南中考)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点,求证:BE =DF.证明:连接BF ,DE.∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵E ,F 分别是OA ,OC 的中点. ∴OE =12OA ,OF =12OC ,∴OE =OF ,∴四边形BFDE 是平行四边形,∴BE =DF.矩形的性质和判定【例3】(2019云南中考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,∠ABC ∶∠BAD =1∶2,BE ∥AC ,CE ∥BD.(1)求tan ∠DBC 的值;(2)求证:四边形OBEC 是矩形.【解析】(1)由四边形ABCD 是菱形,得到对边平行,且BD 为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BCD 的度数,即可求出tan ∠DBC 的值;(2)由四边形ABCD 是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【答案】解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC,∴∠ABC +∠BAD=180°. ∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°,∴∠DBC =12∠ABC=30°,∴tan ∠DBC =tan30°=33; (2)∵BE∥AC,CE ∥BD ,∴四边形OBEC 是平行四边形. ∵四边形ABCD 是菱形, ∴AC⊥BD,即∠BOC=90°. ∴四边形OBEC 是矩形.4.(2019云南中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,若E ,F 是AC 上的两个动点,分别从A ,C 两点以相同的速度向C ,A 运动,其速度为2 cm/s.(1)当E 与F 不重合时,四边形DEBF 是平行四边形吗?说明理由;(2)若BD =24 cm ,AC =32 cm ,当运动时间t 为何值时,以D ,E ,B ,F 为顶点的四边形是矩形?说明理由.解:(1)当E 与F 不重合时,四边形DEBF 是平行四边形.理由如下: ∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵E ,F 两动点分别以相同的速度向C ,A 运动, ∴AE =CF ,∴OA -AE =OC -CF , 即OE =OF ,∴BD ,EF 互相平分,∴四边形DEBF 是平行四边形; (2)∵四边形DEBF 是平行四边形, ∴当BD =EF 时,四边形DEBF 是矩形. ∵BD =24 cm , ∴EF =24 cm ,∴OE =OF =12 cm , ∵AC =32 cm ,∴OA =OC =16 cm , ∴AE =4 cm 或28 cm ,∵E ,F 两动点的速度都是2 cm/s , ∴t =2 s 或t =14 s ,∴当运动时间t =2 s 或14 s 时,以D ,E ,B ,F 为顶点的四边形是矩形.菱形的性质和判定【例4】(2019昆明中考)菱形的两条对角线分别为8,10,则菱形的面积为________.【解析】菱形的面积计算公式S =12ab(a ,b 为菱形的对角线长),∴菱形的面积S =12×8×10=40.【答案】405.(2019曲靖中考)菱形的两条对角线长分别为6和8,则这个菱形的周长为__20__.6.(2019云南中考)如图,在△ABC 中,AB =BC ,D ,E ,F 分别是BC ,AC ,AB 边上的中点. (1)求证:四边形BDEF 是菱形;(2)若AB =12 cm ,求菱形BDEF 的周长.解:(1)∵D,E ,F 分别是BC ,AC ,AB 的中点, ∴DE ∥AB ,EF ∥BC ,∴四边形BDEF 是平行四边形. 又∵DE=12AB ,EF =12BC ,且AB =BC ,∴DE =EF ,∴四边形BDEF 是菱形;(2)∵AB=12 cm ,F 为AB 的中点, ∴BF =6 cm ,∴菱形BDEF 的周长为6×4=24 cm.7.(2019云南中考)如图,△ABC 是以BC 为底的等腰三角形,AD 是边BC 上的高,点E ,F 分别是AB ,AC 的中点.(1)求证:四边形AEDF 是菱形;(2)如果四边形AEDF 的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S. 解:(1)∵AD 是等腰△ABC 底边上的高, ∴D 是BC 边的中点.∵点E ,F 分别是AB ,AC 的中点,∴四边形AEDF 是平行四边形.又AB =AC , ∴DE =DF ,∴▱AEDF 是菱形;(2)连接EF 交AD 于O 点,设AO =x ,EO =y.由题意得⎩⎪⎨⎪⎧x +y =3.5,x 2+y 2=9,∴(x +y)2=9+2xy ,∴12.25=9+2xy ,∴2xy =3.25, ∴S =12·2x·2y=2xy =3.25.正方形的性质和判定【例5】(2019昆明中考)已知:如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF 是正方形(只写结论,不需证明). 【解析】(1)根据矩形的性质可得AB =CD ,∠A =∠D=90°,再根据M 是AD 的中点,可得AM =DM ,然后再利用SAS 证明△ABM≌△DCM ;(2)四边形MENF 是菱形.首先根据中位线的性质可证明NE∥MF,NE =MF ,可得四边形MENF 是平行四边形,再根据△ABM≌△DCM 可得BM =CM ,进而得ME =MF ,从而得到四边形MENF 是菱形;(3)当AD∶AB=2∶1时,四边形MENF 是正方形,证明∠EMF=90°,根据有一个角为直角的菱形是正方形得到结论.此题主要考查了矩形的性质、菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法. 【答案】解:(1)∵四边形ABCD 是矩形, ∴AB =CD ,∠A =∠D=90°. 又∵M 是AD 的中点,∴AM =DM. 在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D=90°,AM =DM ,∴△ABM ≌△DCM(SAS); (2)四边形MENF 是菱形.证明如下: ∵E ,F ,N 分别是BM ,CM ,CB 的中点, ∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形. 由(1)得BM =CM ,∴ME =MF. ∴四边形MENF 是菱形.(3)当AD∶AB=2∶1时,四边形MENF 是正方形.理由:∵M 为AD 中点,∴AD =2AM. ∵AD ∶AB =2∶1,∴AM =AB. ∵∠A =90,∴∠ABM=∠AMB=45°. 同理∠DMC=45°,∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴菱形MENF 是正方形.,近五年遗漏考点及社会热点与创新题)1.遗漏考点正方形的有关计算【例1】如图,正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF=( )A.45° B.30°C.60° D.55°【解析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.本题考查了三角形的内角和定理的运用、等腰三角形的性质的运用,正方形性质的应用及解此题的关键是如何把已知角与未知角结合起来,题目比较典型,但是难度较大.【答案】A【例2】如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1 B. 2C.4-2 2 D.32-4【解析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD的长,再求出BE的长,最后根据等腰直角三角形的直角边等于斜边的22倍计算即可得解.【答案】C2.创新题【例3】一个四边形四条边依次为a,b,c,d且a2+b2+c2+d2=2ac+2bd,则这个四边形是________.【解析】a2+b2+c2+d2=2ac+2bd,(a2-2ac+c2)+(b2-2bd+d2)=0,(a-c)2+(b-d)2=0,∴a-c=0,b-d=0,∴a=c,b=d.∴四边形是平行四边形.【答案】平行四边形,课内重难点真题精练及解题方法总结)1.(2019海南中考)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是( C )A.14 B.16 C.18 D.20【方法总结】掌握菱形的边、对角线的性质,四边相等,对角线互相平分且垂直,再应用勾股定理即可解决.(第1题图)(第2题图)2.(2019贵州中考)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠EAF=45°,将△ABE 绕点A 顺时针旋转90°,使点E 落在点E′处,则下列判断不正确的是( D )A .△AEE ′是等腰直角三角形B .AF 垂直平分EE′C .△E ′EC ∽△AFDD .△AE ′F 是等腰三角形【方法总结】本题考查了旋转的性质、线段垂直平分线的性质、等腰三角形的判定、等腰直角三角形、正方形的性质及相似三角形的判定等知识的综合应用.3.(2019曲靖中考)如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是__10__.【方法总结】本题考查了轴对称——最短路线问题及正方形的性质,解此题通常利用“两点之间,线段最短”的性质.4.(2019临沧中考)如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t s(0<t≤15).过点D 作DF⊥BC 于点F ,连接DE ,EF.(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由. 解:(1)∵△ABC 中,∠B =90°,∠A =60°. ∴∠C =180°-∠B-∠A=30°. 又∵DF⊥BC,CD =4t ,AE =2t. ∴在Rt △CDF 中,DF =12CD =2t ,∴DF =AE ;(2)∵DF∥AB,DF =AE ,∴四边形AEFD 是平行四边形,当AD =AE 时,四边形AEFD 是菱形, 即60-4t =2t ,解得t =10, 即当t =10时,▱AEFD 是菱形; (3)当t =152时,△DEF 是直角三角形(∠EDF=90°); 当t =12时,△DEF 是直角三角形(∠DEF =90°).理由如下:①当∠EDF=90°时,DE ∥BC.∴∠ADE =∠C=30°,∴AD =2AE. 即60-4t =2×2t, 解得t =152,∴t =152时,∠EDF =90°. ②当∠DEF=90°时,DE ⊥EF ,∵四边形AEFD 是平行四边形, ∴AD ∥EF ,∴DE ⊥AD ,∴△ADE 是直角三角形,∠ADE =90°. ∵∠A =60°,∴∠DEA =30°,∴AD =12AE.AD =AC -CD =60-4t ,AE =2t ,∴60-4t =t ,解得t =12.③∵四边形ADEF 是平行四边形, ∴AD ∥EF ,∴∠DFE 不可能为直角.综上所述,当t =152时,△DEF 是直角三角形(∠EDF=90°);当t =12时,△DEF 是直角三角形(∠DEF=90°).5.(2019曲靖中考)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF.(1)求证:四边形CEDF 是平行四边形;(2)若AB =4,AD =6,∠B =60°,求DE 的长.解:(1)在▱ABCD 中, AD ∥BC ,且AD =BC. ∵F 是AD 的中点, ∴DF =12AD =12BC.又∵CE=12BC ,∴DF =CE ,且DF∥CE,∴四边形CEDF 是平行四边形; (2)过点D 作DH⊥BE 于点H. 在▱ABCD 中,∵∠B =60°, ∴∠DCE =60°, ∴∠CDH =30°, ∵AB =4,∴CD =AB =4,∴CH =12CD =2,DH =2 3.在▱CEDF 中,CE =DF =12AD =3,则EH =1.∴在Rt △DHE 中,根据勾股定理知DE =(23)2+1=13.6.(2019贵州中考)如图,DB ∥AC ,且DB =12AC ,E 是AC 的中点.(1)求证:BC =DE ;(2)连接AD ,BE ,若要使四边形DBEA 是矩形,则应给△ABC 添加什么条件,为什么?解:(1)∵E 是AC 的中点, ∴EC =AE =12AC.∵DB =12AC ,∴DB =EC.又∵DB∥EC,∴四边形DBCE 是平行四边形. ∴BC =DE ;(2)添加AB =BC.∴四边形DBEA 是平行四边形. ∵BC =DE ,AB =BC ,∴AB =DE.∴▱DBEA 是矩形.【方法总结】掌握平行四边形、矩形的性质及判定方法. 请完成精练本第29页作业2019-2020学年数学中考模拟试卷一、选择题1.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是( )A.①③②B.②①③C.③①②D.①②③2.如图,,,AB AC BD 是O 的切线,切点分别是,,P C D .若5,3AC BD ==,则AB 的长是( )A .2B .4C .6D .83.已知反比例函数2y x =-,下列说法不正确的是( ) A .图像必经过点()1,2- B .y 随着x 的增大而增大C .图像分布在第二,四象限内D .若1x >,则20y -<< 4.电影《流浪地球》从2月5日上映以来,凭借其气势磅礴的特效场面与动人的父子情获得大众的喜爱与支持,截止3月底,中国电影票房高达4559000000元.数据4559000000用科学记数法表示为( )A .845.5910⨯;B .945.5910⨯;C .94.55910⨯;D .104.55910⨯.5.下列命题中真命题的有( )①同位角相等;②在△ABC 中,若∠A=12∠B=13∠C ,△ABC 是直角三角形;③两条对角线互相垂直的四边形是菱形;④平分弦的直径垂直于弦,并且平分弦所对的弧.A .0B .1C .2D .36.如图,直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点(2,0),直线l 3⊥x 轴于点(3,0),……直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1、l 2、l 3、…、l n 分别交于点A 1、A 2、A 3、…、A n ;函数y =2x 的图象与直线l 1、l 2、l 3、…、l n 分别交于点B 1、B 2、B 3、…、B n .如果△OA 1B 1的面积记作S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,…,四边形A n ﹣1A n B n B n ﹣1的面积记作S n ,那么S 2018=( )A .2017.5B .2018C .2018.5D .20197.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( )A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m8.下列运算正确的是( )A .3a 2•a 3=3a 6B .5x 4﹣x 2=4x 2C .(2a 2)3•(﹣ab )=﹣8a 7bD .2x 2÷2x 2=09.若5-m (0,则( )A .m <5B .3≤m<5C .3≤m≤5D .3<m <5 10.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( )A .B .C .D .11.如图,将曲线c 1:y =k x(x >0)绕原点O 逆时针旋转60°得到曲线c 2,A 为直线y 上一点,P 为曲线c 2上一点,PA =PO ,且△PAO 的面积为y 交曲线c 1于点B ,则OB 的长( )A .B .5C .D 12.已知a 2﹣b 2=6,a+b =2,则a ﹣b 的值为( )A .1B .2C .3D .4二、填空题13.如图,在边长为1的正方形ABCD的各边上,截取AE=BF=CG=DH=x,连接AF、BG、CH、DE构成四边形PQRS.用x的代数式表示四边形PQRS的面积S.则S=___.14.若一组数据1,2,x,4的众数是1,则这组数据的方差为_____.15.如图,在一条南北走向的高速公路左侧有一古塔C,小亮爸爸驾驶汽车沿高速公路从南向北匀速行驶,上午9:00他行驶到A点时,测得塔C在北偏西37°方向,上午9:11行驶到B点时,测得塔C在南偏西63.5°方向,若汽车行驶的速度为90km/h,则在行驶的过程中,汽车离塔C的最近距离约是_____km.(sin37°≈35,tan37°≈34,sin63.5°≈109,tan63.5°≈2)16.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为_____.17.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了__s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.18.若a+b =3,a 2+b 2=7,则ab =_____.三、解答题19.计算:214sin 4522-⎛⎫︒--- ⎪⎝⎭. 20.已知:如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F .(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,平行四边形ABCD 的面积是36,求AD 的长.21.111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦22.计算:101230()3cos -+︒- 23.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为 ;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.已知点A(﹣1,4)在反比例函数y =k x 的图象上,B(﹣4,n)在正比例函数y =12x 的图象上 (1)写出反比例函数y =k x的解析式; (2)求出点B 的坐标. 25.问题发现:如图1,△ABC 是等边三角形,点D 是边AD 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 有何数量关系?拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC 的边长等于,AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.【参考答案】*** 一、选择题二、填空题13.2 (1)1xx-+.14.515.916. 417..18.1三、解答题19.-6【解析】【分析】将特殊三角函数值代入、先计算乘方、化简二次根式和去绝对值符号,最后相加减即可. 【详解】解:原式=4(242⨯---=24+=﹣6.【点睛】考查了特殊三角函数的混合运算,解题关键是熟记特殊三角函数及其运算法则.20.(1)见解析;(2)15 2(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=245,由平行四边形的面积公式可求AD的长.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=12AE=3,BO=FO=12BF=4,AE⊥BF,∴BE5,∵S菱形ABEF=12AE•BF=12×6×8=24,∴BE•AH=24,∴AH=245,∴S平行四边形ABCD=AD×AH=36,∴AD=152.【点睛】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.x=0根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答.【详解】111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦ 193(3)93x x x x --+=- 9299x x x --=-60x =0x =【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.22.【解析】【分析】按顺序依次计算负整数指数幂、代入特殊角的三角函数值、化简二次根式、计算零指数幂,然后再按运算顺序进行计算即可.【详解】原式【点睛】本题主要考查实数的混合运算,解题的关键是掌握负整数指数幂、三角函数值、二次根式的性质及零指数幂的规定.23.(1)14;(2)16【解析】【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A 区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【详解】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A 区域只有1种情况,∴享受9折优惠的概率为14,故答案为:14;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为21 126=.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)4yx=;(2)点B的坐标为:(﹣4,﹣2).【解析】【分析】(1)把A(﹣1,4)代入反比例函数y=kx即可求解;(2) 把B(﹣4,n)代入正比例函数y=12x即可求解.【详解】解:(1)∵点A(﹣1,4)在反比例函数y=kx的图象上,∴k=(﹣1)×4=﹣4,∴反比例函数的解析式为:4yx =.(2)∵B(﹣4,n)在正比例函数y=12x的图象上,∴12×(-4)=n,∴n=﹣2,即点B的坐标为:(﹣4,﹣2).【点睛】本题考查的是反比例函数和正比例函数,熟练掌握两者是解题的关键.25.问题发现:BD=CE;拓展探究:结论仍然成立,见解析;问题解决:BD的长为2和【解析】【分析】问题发现:如图1,由平行线分线段成比例定理可得BD=CE;拓展探究:如图2,证明△BAD≌△CAE,可得BD=CE;问题解决:分两种情况:①如图3,在直角三角形中,根据30°角所对的直角边等于斜边的一半求出DG=1,由勾股定理求出AG BG,从而计算出BD的长.②如图4,求EF的长和CF的长,根据勾股定理在Rt△EFC中求EC的长,所以BD=EC=【详解】解: 问题发现:如图1,BD=CE,理由是∵△ABC是等边三角形,∴AB=AC,∵DE∥BC,∴BD=CE,拓展探究:结论仍然成立,如图2,由图1得,△ADE是等边三角形,∴AD=AE,由旋转得∠BAD=∠CAE,△BAD≌△CAE,(旋转的性质)∴BD=CE,问题解决:当△ADE旋转到DE与AC所在的直线垂直时,设垂足为点F,此时有两种情况:①如图3,∵△ADE是等边三角形,AF⊥DE,∴∠DAF=∠EAF=30°,∴∠BAD=30°,过D作DG⊥AB,垂足为G,∵AD=2,∴∵∴∴BD=2(勾股定理),②如图4,同理得△BAD≌△CAE, ∴BD=CE,∵△ADE是等边三角形, ∴∠ADE=60°,∵AD=AE,DE⊥AC,∴∠DAF=∠EAF=30°,∴EF=FD=12AD=1,∴∴,在Rt△EFC中===∴综上所述,BD的长为2和【点睛】本题是几何变换的综合题,考查了等边三角形、全等三角形的性质与判定;在几何证明中,如果出现等边三角形,它所得出的结论比较多,要准确把握需要利用哪些结论进行证明;此类题的解题思路为:证明两个三角形全等或利用勾股定理求边长;如果有平行的关系,可以考虑利用平行相似来证明.2019-2020学年数学中考模拟试卷一、选择题1.下列命题,是真命题的是( )A.菱形的对角线相等B.若|a|=|b|,那么a=bC.同位角一定相等D.函数y=11x的自变量的取值范围是x≠﹣12.如图,一张矩形纸片ABCD,其中AD=10cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1),再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为()A.165B.83C.85D.1033.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是()A.∠1=50°,∠2=40°B.∠1=40°,∠2=50°C.∠1=30°,∠2=60°D.∠1=∠2=45°4.如图,等边三角形ABC的边长为4,点O是△ABC的内心,∠FOG=120”,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE:②S△ODE=S△BDE:③四边形ODBE的面;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1B.2C.3D.45.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径作弧,两弧交于点M、N;第二步,过M、N两点作直线分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=8,AF=6,CD=4,则BE的长是()A .12B .11C .13D .106.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.47.如图,点D 在半圆O 上,半径OB =,AD =10,点C 在弧BD 上移动,连接AC ,H 是AC 上一点,∠DHC =90°,连接BH ,点C 在移动的过程中,BH 的最小值是( )A .5B .6C .7D .88.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为 (,M 是圆上一点,∠BMO=120°.⊙C 的圆心C 的坐标是( )A .1)22B .1)2- C .1()2D .1()2- 9.如图,在四边形AOBC 中,若∠1=∠2,∠3+∠4=180°,则下列结论正确的有( ) (1)A 、O 、B 、C 四点共圆 (2)AC =BC(3)cos ∠1=2a bc+ (4)S 四边形AOBC =()sin 12a b c +⋅∠A.1个B.2个C.3个D.4个10.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.11.如图,已知菱形ABCD,AB=4,BAD=120∠︒,E为BC中点,P为对角线BD上一点,则PE+PC 的最小值等于( )A. B. C. D.12.下列计算正确的是()A.=B.1)(11+-=C.﹣(﹣a)4÷a2=a2D.2111 (xy)xy xy24-⎛⎫=⎪⎝⎭二、填空题13.方程1322xx x+=--的解为__________.14.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=_____°.15.如图,∠AOB=10°,点P在OB上.以点P为圆心,OP为半径画弧,交OA于点P1(点P1与点O不重合),连接PP1;再以点P1为圆心,OP为半径画弧,交OB于点P2(点P2与点P不重合),连接P1P2;再以点P2为圆心,OP为半径画弧,交OA于点P3(点P3与点P1不重合),连接P2 P3;……请按照上面的要求继续操作并探究:∠P 3 P 2 P 4=_____°;按照上面的要求一直画下去,得到点P n ,若之后就不能再画出符合要求点P n+1了,则n =_____. 16.已知:()521x x ++=,则x =______________.17.在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 、E 、F 是三边的中点,则△DEF 的周长是_____.18.若点P (m ,2)与点Q (3,n )关于x 轴对称,则P 点关于原点对称的点M 的坐标为_____. 三、解答题19.图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上.在图①、图②给定的网格中各画一个△APC ,使点P 在线段AB 上,点C 为格点,且∠APC 的正切值为2.要求:(1)图①中的△APC 为直角三角形,图②中的△APC 为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹.20.现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩.(1)用x 的式子分别表示y 、z ;(2)问如何安排劳力与养殖亩数收益最大?21.如图,在一条不完整的数轴上从左到右有点A ,B .将线段AB 沿数轴向右移动,移动后的线段记为A′B′,按要求完成下列各小题(1)若点A 为数轴原点,点B 表示的数是4,当点A′恰好是AB 的中点时,数轴上点B′表示的数为 .(2)设点A表示的数为m,点A′表示的数为n,当原点在线段A′B之间时,化简|m|+|n|+|m﹣n|.22.某市将开展演讲比赛活动,某校对参加选拔的学生的成绩按A、B、C、D四个等级进行统计,绘制了如下不完整的统计表和扇形统计图,(1)求m、n的值;(2)求“C等级”所对应的扇形圆心角的度数;(3)已知成绩等级为A的4名学生中有1名男生和3名女生,现从中随机挑选2名学生代表学校参加全市比赛,求出恰好选中一男生和一女生的概率23.如图,在平面直角坐标系中,二次函数y=ax2﹣2x+c的图象与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方的抛物线上一动点.(1)求二次函数的表达式;(2)当点P运动到抛物线顶点时,求四边形ABPC的面积;(3)点Q是x轴上的一个动点,当点P与点C关于对称轴对称且以点B、C、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.24.如图是云梯升降车示意图,其点A位置固定,AC可伸缩且可绕点A转动,已知点A距离地面BD的高度AH为3.4米.当AC长度为9米,张角∠HAC为119°时,求云梯升降车最高点C距离地面的高度.(结果保留一位小数)参考数据:sin29°≈0.49,cos29°≈0.88,tan29°≈0.5525.我国古代数学著作《九章算术》中有如下问题:“今有牛五,羊二,直金十二两.牛二,羊五,直金九两,牛羊各直金几何?”意思是:5头牛,2只羊共价值12两“金”.2头牛,5只羊共价值9两“金”.求每头牛,每只羊各价值多少两“金”?【参考答案】***一、选择题二、填空题13.52 x14.5815.816.-5或-1或-317.618.(﹣3,﹣2)三、解答题19.见解析.【解析】【分析】根据正切函数的定义,结合网格特点作图即可.【详解】解:如图所示,图①中的△APC为直角三角形,图②中的△APC为锐角三角形.由题意可知,是DE,AB的中点,。

中考数学第21讲-矩形、菱形、正方形(含答案)

中考数学第21讲-矩形、菱形、正方形(含答案)

中考数学专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【提醒:1、矩形是对称到对称中心是又是对称图形对称轴有条2、矩形被它的对角线分成四个全等的三角形和两个全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等知识解决问题】菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【提醒:1、菱形即是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形知识洁具的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【提醒:菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:⑴正方形也即是对称图形,又是对称图形,有条对称轴⑵几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的和联系】【重点考点例析】考点一:和矩形有关的折量问题例1 如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.对应训练1.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB 于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为.考点二:和菱形有关的对角线、周长、面积的计算问题例2 如图,菱形ABCD的周长为20cm,且tan∠ABD=34,则菱形ABCD的面积为cm2.对应训练2.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC 于点E,则AE的长是()A.5B.2C.485cm D.245cm考点三:和正方形有关的证明题例3 如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.对应训练12.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD 上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.考点四:四边形综合性题目例4 如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A 旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.对应训练4.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是.【聚焦中考】2.已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF ⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=12BD,则四边形ABCD是什么特殊四边形?说明理由.3.如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AF B.EF⊥AC C.∠B=60°D.AC是∠EAF的平分线4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.5.(如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.(1)在图中画出线段DE和DF;(2)连接EF,则线段AD和EF互相垂直平分,这是为什么?【备考真题过关】一、选择题1.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.3cm B.2cm C.2 3 D.4cm2.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形3.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.404.顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形5.如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD 的中点,连接OE,则线段OE的长等于()A.3cm B.4cm C.2.5cm D.2cm6.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形的周长是()A.24 B.16 C.D.7.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A.B.2 C.3 D.28.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD=4AM2.其中正确结论的个数是()A.1 B.2 C.3 D.49.如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=43,④S△ODC=S四边形BEOF中,正确的有()A.1个B.2个C.3个D.4个10.如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A ′B ′C ′D ′,图中阴影部分的面积为( )A .212aB .23aC .2(14a -D .2(13a -二、填空题11.如图,矩形ABCD 中,AB=2,AD=4,AC 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则EF= .1112.如图,在平面直角坐标系中,矩形OABC 的对角线AC 平行于x 轴,边OA 与x 轴正半轴的夹角为30°,OC=2,则点B 的坐标是 .13.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE ⊥AC 于E ,∠EDC :∠EDA=1:2,且AC=10,则DE 的长度是 .14.如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是.16.我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线分别为6cm和8cm的菱形,它的中点四边形的对角线长是.17.菱形的两条对角线长分别为6和8,则这个菱形的周长为.18.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E 为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标.19.如图,在菱形ABCD中,点E、F分别是BD、CD的中点,EF=6cm,则AB= cm.20.如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC 于点F,则四边形BEDF的面积为cm2.21.如图,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为(结果保留两位有效数字,参考数据π≈3.14)22.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6 2,则另一直角边BC的长为.三、解答题23.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.24.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.25.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.27.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.28.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.。

中考数学备考大一轮复习第21课时矩形、菱形与正方形

中考数学备考大一轮复习第21课时矩形、菱形与正方形
考点二 菱形的性质与判定
3.菱形的判定(满足下列条件之一的四边形是菱形) (1)有一组邻边相等的平行四边形. (2)对角线互相垂直的平行四边形. (3)四条边都相等的四边形.
归纳拓展
【归纳拓展】 菱形的说明方法(三种) ①先说明四边形ABCD为平行四边形,再说明平行四边 形ABCD的任一组邻边相等. ②先说明四边形ABCD为平行四边形,再说明平行四边 形ABCD的对角线互相垂直. ③说明四边形ABCD的四条边相等.
归纳拓展
注意以下要点: (1)菱形的对角线互相垂直且平分; (2)菱形的邻边相等; (3)菱形的对角线分别平分两组内角.
强化训练
考点三:正方形的性质和判定
例3(武汉中考)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是

解:如图1, ∵四边形ABCD为正方形,△ADE为等边三角形, ∴AB=BC=CD=AD=AE=DE, ∠BAD=∠ABC=∠BCD=∠ADC=90°, ∠AED=∠ADE=∠DAE=60°, ∴∠BAE=∠CDE=150°,又AB=AE,DC=DE, ∴∠AEB=∠CED=15°, 则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.
考点聚焦
考点三 正方形的性质与判定
1.正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形.它是 最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形. 2.正方形的性质 (1)边:四条边都相等. (2)角:四个角都相等(都等于90°). (3)对角线:对角线互相垂直平分且相等,对角线与边的夹角为45°. (4)对称性:轴对称图形(对称轴有4条);中心对称图形.
归纳拓展
注意以下要点: 矩形的性质:矩形的对角线互相平分且相等; 矩形的四个内角都为90° .

(完整)年中考数学专题复习第二十一讲矩形-菱形-正方形(含详细参考答案)

(完整)年中考数学专题复习第二十一讲矩形-菱形-正方形(含详细参考答案)

B.2 7
C. 5
D.10
3. (2018?大连) 如图,菱形 ABCD 中,对角线 AC ,BD 相交于点 O,若 AB=5,
AC=6 ,则 BD 的长是( )
A.8
B.7
C. 4
D.3
4. (2018?贵阳) 如图,在菱形 ABCD 中, E 是 AC 的中点, EF∥ CB,交 AB 于 点 F,如果 EF=3,那么菱形 ABCD 的周长为( )
21.(2018?盐城) 在正方形 ABCD 中,对角线 BD 所在的直线上有两点 E、F 满足 BE=DF,连接 AE、 AF、 CE、 CF,如图所示. ( 1)求证: △ABE ≌△ ADF; ( 2)试判断四边形 AECF 的形状,并说明理由.
或 600 时,利用等边三角形或直角三角形的相关知识解决的题目】
三、正方形:
1、定义:有一组邻边相等的
是正方形,或有一个角是直角的

正方形
2、性质:⑴正方形四个角都
都是
角,
⑵正方形四边条都
⑶正方形两对角线


每条对角线平分一
组内角
3、判定:⑴先证是矩形,再证
⑵先证是菱形,再证
【名师提醒: 1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特
使平行
18. ( 2018?株洲) 如图,矩形 ABCD 的对角线 AC 与 BD 相交点 O,AC=10,P、
Q 分别为 AO 、AD 的中点,则 PQ 的长度为

19.(2018?武汉)以正方形 ABCD 的边 AD 作等边 △ADE ,则∠ BEC 的度数是 .
三、解答题 20. (2018?柳州) 如图,四边形 ABCD 是菱形,对角线 AC, BD 相交于点 O, 且 AB=2 . ( 1)求菱形 ABCD 的周长; ( 2)若 AC=2,求 BD 的长.

中考复习《矩形、菱形、正方形》测试题(含答案)

中考复习《矩形、菱形、正方形》测试题(含答案)

中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。

中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)

中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)

特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。

中考数学专项训练 矩形、菱形与正方形(含解析)

中考数学专项训练 矩形、菱形与正方形(含解析)

矩形、菱形与正方形一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.矩形、菱形与正方形参考答案与试题解析一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形【考点】旋转的性质;矩形的判定.【分析】根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.【解答】解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF是矩形.故选:A.【点评】本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解答】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x﹣y)2,解得x=y,∴MD=MB=2x﹣y=y,∴==.故选:C.【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm【考点】菱形的性质;勾股定理;解直角三角形.【分析】先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.【解答】解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm,在Rt△AOB中,AB==5cm,∵BD×AC=AB×DH,∴DH=cm,在Rt△DHB中,BH==cm,则AH=AB﹣BH=cm,∵tan∠HAG===,∴GH=AH=cm.故选:B.【点评】本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个【考点】正方形的性质.【分析】根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE 和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.【解答】解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴AE=BF(故①正确),S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∵S△AOB=S△BAF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,∴S△AOB=S四边形DEOF(故④正确),∵∠ABF+∠AFB=∠DAE+∠D EA=90°∴∠AFB+∠EAF=90°∴AE⊥BF一定成立(故②正确).假设AO=OE,∵AE⊥BF(已证),∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),∵在Rt△BCE中,BE>BC,∴AB>BC,这与正方形的边长AB=BC相矛盾,∴,假设不成立,AO≠OE(故③错误);故错误的只有一个.故选:A.【点评】本题考查了正方形的四条边都相等,每一个角都是直角的性质,全等三角形的判定与性质,综合题但难度不大,求出△ADE≌△BAF是解题的关键,也是本题的突破口.二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是 3 .【考点】菱形的性质.【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答】解:由题意,知:S菱形=×2×3=3,故答案为:3.【点评】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积;具体用哪种方法要看已知条件来选择.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .【考点】含30度角的直角三角形;矩形的性质.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.【点评】本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= 20°.【考点】旋转的性质;矩形的性质.【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为:20°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【专题】压轴题.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.【点评】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质;三角形中位线定理.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;平行四边形的判定.【分析】(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.【解答】(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.。

中考数学讲练第21讲《矩形、菱形与正方形》(含答案)

中考数学讲练第21讲《矩形、菱形与正方形》(含答案)

第21讲 矩形、菱形与正方形1.矩形 考试内容 考试要求矩形的定义有一个角是 的平行四边形叫做矩形. B 矩形的性质(1)矩形具有平行四边形所有的性质. C (2)矩形的四个角都是 ,对角线互相平分并且 . (3)矩形既是一个轴对称图形,它有两条对称轴;又是中心对称图形,它的对称中心就是 . 矩形的判定(1)定义法. (2)有三个角是直角的四边形是矩形. (3) 的平行四边形是矩形.2.菱形 考试内容 考试要求菱形的定义 有一组 的平行四边形叫做菱形.B 菱形的性质 (1)菱形具有平行四边形所有的性质.C (2)菱形的四条边 ,对角线互相 ,并且每条对角线平分一组对角.(3)菱形既是一个轴对称图形,两条对角线所在的直线是它的对称轴;又是中心对称图形,它的对称中心就是 .(4)菱形的面积等于对角线乘积的 .菱形的判定 (1)定义法.(2)四条边 的四边形是菱形.(3)对角线 的平行四边形是菱形.3.正方形 考试内容 考试要求正方形 的定义 有一组邻边 ,并且有一个角是_______________的平行四边形叫做正方形.B 正方形 的性质 (1)正方形的四条边 ,四个角都是 ,对角线互相 且 ,并且每一条对角线平分一组对角,具有矩形和菱形的所有性质. C(2)正方形既是轴对称图形也是中心对称图形,对称轴有_____________条,对称中心是对角线的交点.正方形 的判定 (1)有一组邻边相等的____________________是正方形. (2)有一个角是直角的 是正方形. (3)对角线 的四边形是正方形.4.平行四边形、矩形、菱形、正方形的关系考试内容考试 要求 基本 方法 正方形的判定可简记为:菱形+矩形=正方形,其证明思路有两个:先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).C1.(2016·杭州)在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为____________________. 2.(2016·衢州)如图,已知BD 是矩形ABCD 的对角线.(1)用直尺和圆规作线段BD 的垂直平分线,分别交AD 、BC 于E 、F(保留作图痕迹,不写作法和证明).(2)连结BE ,DF ,问四边形BEDF 是什么四边形?请说明理由.【问题】矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形.正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的特殊菱形.因此,我们可以利用矩形、菱形的性质来研究正方形的有关问题,回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系图中: (2)要证明一个四边形是正方形,可以先证明四边形是矩形,再证明这个矩形的________相等;或者先证明四边形是菱形,再证明这个菱形有一角是________.(3)如图菱形ABCD ,某同学根据菱形面积计算公式推导出对角线长为a 的正方形面积是S =12a 2,对此结论,你认为是否正确?若正确,请给予证明;若不正确,举出一个反例来说明.【归纳】通过开放式问题,归纳、疏理平行四边形、矩形、菱形、正方形的关系,以及性质与判定.类型一矩形的性质与判定例1(1)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是() A.AB=CD ;B.AC=BD;C.AB=BC;D.AC⊥BD第(1)题第(2)题(2)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形;⑥AC所在直线为对称轴;⑦矩形ABCD的周长是28,点E是CD的中点,AC=10时,△DOE的周长是12.则正确结论的序号是________.【解后感悟】(1)结合图形,利用图形条件、已知条件综合判定;(2)熟记各种特殊几何图形,利用性质、揭示图形的数量关系是解题关键.1.(1)(2015·南昌)如图,小贤为了检验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形;B.BD的长度增大C.四边形ABCD的面积不变;D.四边形ABCD的周长不变(2)(2015·临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连结EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE第(1)题第(2)题2.(2017·南京模拟)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD 的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.类型二菱形的性质与判定例2(1)如图,菱形ABCD中,对角线AC、BD相交于点O,E是AD的中点,连结OE,①若菱形的边长是10,一条对角线长是12,则此菱形的另一条对角线长是______.②若OE=3,则菱形的周长是________.③若∠ABC=60°,周长是16,则菱形的面积是________.(2)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选一个作为补充条件后,使得四边形ABCD是菱形,现有下列四种选法,其中都正确的是()A.①或②B.②或③C.③或④D.①或④【解后感悟】(1)熟记各种特殊几何图形,利用性质、揭示图形的数量关系是解题关键;(2)结合图形,利用图形条件、已知条件综合判定.3.(1)(2015·黔东南州)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH =( ) A .245 B .125C .12D .24 (2)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出下列条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC ;从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____________________(只填写序号).第(1)题第(2)题第(3)题(3) (2016·梅州)如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 长为半径画弧,两弧交于一点P ,连结AP 并延长交BC 于点E ,连结EF.①四边形ABEF 是____________________;(选“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果)②AE ,BF 相交于点O ,若四边形ABEF 的周长为40,BF =10,则AE 的长为____________________,∠ABC =____________________°.(直接填写结果)4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE =2DE ,延长DE 到点F ,使得EF =BE ,连结CF.(1)求证:四边形BCFE 是菱形;(2)若CE =4,∠BCF =120°,求菱形BCFE 的面积.类型三 正方形的性质与判定例3 如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别在OD 、OC 上,且DE =CF ,连结DF 、AE ,AE 的延长线交DF 于点M.求证:AM ⊥DF.【解后感悟】正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,因此正方形具有这些图形的所有性质.正方形的判定方法有两条道路:(1)先判定四边形是矩形,再判定这个矩形是菱形;(2)先判定四边形是菱形,再判定这个菱形是矩形.5.(1)(2015·日照)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④(2)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2 B.3 C.2 2 D.2 3(3)(2015·黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于____________________度.第(1)题第(2)题第(3)题6.(2017·绍兴模拟)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD 上,连结BF、DF.(1)求证:BF=DF;(2)连结CF,请直接写出BE∶CF的值(不必写出计算过程).类型四特殊平行四边形的综合运用例4(2016·临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【解后感悟】本题是三角形与四边形综合问题,涉及全等三角形、平行四边形、矩形、正方形的判定与性质.解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.7.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连结EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE =∠BAP;⑤PD=2EC.其中正确结论的序号是____________________.8.(2016·荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连结EF,当四边形EDD′F为菱形时,试探究△A′DE 的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【课本改变题】教材母题--浙教版八下第147页,作业题第5题(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF;(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长;(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).【方法与对策】这题是从特殊到一般的规律探究题.从课本题出发逐步提出问题,解决问题,然后根据这些解题体验,领悟解题方法,再来解决一般性问题,这是中考命题热点之一,平时学习要重视一些典型的基本图形.【由于思维定势,对问题考虑不全】若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为________.1.(2017苏州)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为( )A .283B .243 C.323 D .3238- (第1题)(第2题)2.(2017苏州)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB(结果保留根号). 3.(2016苏州)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形;(2)若AC =8,BD =6,求△ADE 的周长.4.(2018•咸宁)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 .5.(2018•江西)在正方形ABCD 中,AB=6,连接AC ,BD ,P 是正方形边上或对角线上一点,若PD=2AP ,则AP 的长为 .6.(2018•盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.7.(2018•潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF ⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.参考答案第21讲矩形、菱形与正方形【考点概要】1.直角直角相等对角线的交点对角线相等 2.邻边相等相等垂直平分对角线的交点一半相等互相垂直 3.相等直角相等直角垂直平分相等四矩形菱形互相垂直平分且相等 4.两组对边分别平行有一个角是直角有一组邻边相等有一组邻边相等有一个角是直角【考题体验】1.105°或45°2.(1)如图,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【知识引擎】【解析】(1)根据在平行四边形中,邻边相等的是菱形,邻边垂直的是矩形,而既是矩形又是菱形的平行四边形是正方形,可根据此关系来画图.如图(2)根据正方形的判定方法进行解答即可.即两种常见的方法:①一组邻边相等的矩形是正方形.②一个角是直角的菱形是正方形.∴填:一组邻边,直角.(3)本题的证明方法有多种,可根据正方形的对角线互相垂直平分且相等,将正方形分成四个直角三角形的面积和来求证,也可通过对角线求出正方形的边长来求证.∴结论正确.证明:S 正方形ABCD =S △AOB +S △AOD +S △COD +S △BOC =4×12×12a ×12a =12a 2. 【例题精析】例1 (1)B ;(2)①②③⑤⑦ 例2 (1)①16 ②24 ③83 (2)D例3 证明:∵四边形ABCD 是正方形,∴OD =OC.又∵DE =CF ,∴OD -DE =OC -CF ,即OF =OE ,在Rt △AOE 和Rt △DOF 中,⎩⎪⎨⎪⎧AO =DO ,∠AOD =∠DOF ,OE =OF ,∴△AOE ≌△DOF ,∴∠OAE =∠ODF.∵∠OAE +∠AEO =90°,∠AEO =∠DEM ,∴∠ODF +∠DEM =90°,即可得AM ⊥DF.例4 (1)FG =CE ,FG ∥CE ;(2)过点G 作GH ⊥CB 的延长线于点H ,∵EG ⊥DE ,∴∠GEH +∠DEC =90°,∵∠GEH +∠HGE =90°,∴∠DEC =∠HGE ,在△HGE 与△CED中,⎩⎪⎨⎪⎧∠GHE =∠DCE ,∠HGE =∠DEC EG =DE ,,∴△HGE ≌△CED(AAS),∴GH =CE ,HE =CD ,∵CE =BF ,∴GH =BF ,∵GH ∥BF ,∴四边形GHBF 是矩形,∴GF =BH ,FG ∥CH ,∴FG ∥CE ,∵四边形ABCD 是正方形,∴CD =BC ,∴HE =BC ,∴HE +EB =BC +EB ,∴BH =EC ,∴FG =EC. (3)成立.∵四边形ABCD 是正方形,∴BC =CD ,∠FBC =∠ECD =90°,在△CBF与△DCE 中,⎩⎪⎨⎪⎧BF =CE ,∠FBC =∠ECD BC =DC ,,∴△CBF ≌△DCE(SAS),∴∠BCF =∠CDE ,CF =DE ,∵EG =DE ,∴CF =EG ,∵DE ⊥EG ,∴∠DEC +∠CEG =90°,∵∠CDE +∠DEC =90°,∴∠CDE =∠CEG ,∴∠BCF =∠CEG ,∴CF ∥EG ,∴四边形CEGF 是平行四边形,∴FG ∥CE ,FG =CE.【变式拓展】1.(1)C (2)B2.(1)∵四边形ABCD 是矩形,M ,N 分别是AB ,CD 的中点,∴MN ∥BC ,∴∠CBN =∠MNB ,∵∠PNB =3∠CBN ,∴∠PNM =2∠CBN ; (2)连结AN ,根据矩形的轴对称性,可知∠PAN =∠CBN ,∵MN ∥AD ,∴∠PAN =∠ANM ,由(1)知∠PNM =2∠CBN ,∴∠PAN =∠PNA ,∴AP =PN ,∵AB =CD =4,M ,N 分别为AB ,CD 的中点,∴DN =2,设AP =x ,则PD =6-x ,在Rt △PDN 中,PD 2+DN 2=PN 2,∴(6-x)2+22=x 2,解得:x =103,所以AP =103.3.(1)A (2)③ (3)①菱形 ②103 1204. (1)略; (2)∵∠BCF =120°,∴∠EBC =60°,∴△EBC 是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=8 3.5. (1)B (2)C (3)656. (1)只要证明△BEF ≌△DGF(SAS),∴BF =DF ; (2)∵BF =DF ,∴点F 在对角线AC 上,∵AD ∥EF ∥BC ,∴BE ∶CF =AE ∶AF =AE ∶2AE =22,∴BE ∶CF =22. 7.①②④⑤8.当四边形EDD′F 为菱形时,△A ′DE 是等腰三角形,△A ′DE ≌△EFC ′.理由:∵△BCA 是直角三角形,∠ACB =90°,AD =DB ,∴CD =DA =DB ,∴∠DAC =∠DCA ,∵A ′C ′∥AC ,∴∠DA ′E =∠A ,∠DEA ′=∠DCA ,∴∠DA ′E =∠DEA′,∴DA ′=DE ,∴△A ′DE 是等腰三角形,∵四边形DEFD′是菱形,∴EF =DE =DA′,EF ∥DD ′,∴∠C ′EF =∠DA′E ,∠EFC ′=∠C′D′A′,∵CD ∥C ′D ′,∴∠A ′DE =∠A′D′C′=∠EFC′,在△A ′DE 和△EFC′中⎩⎪⎨⎪⎧∠EA ′D =∠C′EF ,A ′D =EF ,∠A ′DE =∠EFC′,∴△A ′DE ≌△EFC ′.【热点题型】【分析与解】(1)证明:如图1,∵四边形ABCD 为正方形,∴AB =BC ,∠ABC =∠BCD =90°,∴∠EAB +∠AEB =90°.∵∠EOB =∠AOF =90°,∴∠FBC +∠AEB =90°,∴∠EAB =∠FBC ,∴△ABE ≌△BCF ,∴BE =CF.(2)如图,过点A 作AM ∥GH 交BC 于M ,过点B 作BN ∥EF 交CD 于N ,AM 与BN 交于点O′,则四边形AMHG 和四边形BNFE 均为平行四边形,∴EF =BN ,GH =AM , ∵∠FOH =90°,AM ∥GH ,EF ∥BN ,∴∠NO ′A =90°,故由(1)得,△ABM ≌△BCN ,∴AM =BN ,∴GH =EF =4.(3)①8 ②4n.热点图错误警示图【错误警示】由题中射线BM 交正方形的一边于点F 知有如下两种情形:∴BM =5或12 1. A ;274 3.【解答】(1)证明:∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴AE ∥CD ,∠AOB =90°,∵DE ⊥BD ,即∠EDB =90°,∴∠AOB =∠EDB ,∴DE ∥AC ,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.4.解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).5.解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.6.证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.7.(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.。

中考数学专题特训第二十一讲:矩形_菱形_正方形(含详细参考答案)

中考数学专题特训第二十一讲:矩形_菱形_正方形(含详细参考答案)

中考数学专题复习第二十一讲矩形菱形正方形【基础知识回首】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判断:⑴用定义判断⑵有三个角是直角的是矩形⑶对角线相等的是矩形【赵老师提示: 1、矩形是对称到对称中心是又是对称图形对称轴有条2、矩形被它的对角线分红四个全等的三角形和两个全等的三角形0 或 1200角时,利用直角、矩形中常有题目是对角线订交成3 60三角形、等边三角形等知识解决问题】菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判断:⑴用定义判断⑵对角线相互垂直的是菱形⑶四条边都相等的是菱形【赵老师提示: 1、菱形即是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分红四个全等的三角形和两对全等的三角形3、菱形的面积能够用平行四边形面积公式计算,也能够用两对角线积的来计算0或 600 时,利用等边三角形或直角、菱形常有题目是内角为4 120三角形知识洁具的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线均分一组内角3、判断:⑴先证是矩形,再证⑵先证是菱形,再证【赵老师提示:菱形、正方形拥有平行四边形的全部性质,正方形拥有以上特别四边形的全部性质。

这四者之间的关系可表示为:⑴正方形也即是 对称图形,又是 对称图形,有 条对称轴⑵几种特别四边形的性质和判断都是从 、 、 三个方面来看的,要注意它们 的和联系 】 【要点考点例析】考点一:和矩形相关的折量 问题例 1 ( 2012?肇庆)如图,四边形 ABCD 是矩形,对角线 AC 、 BD 订交于点 O , BE ∥ AC交 DC 的延伸线于点 E .(1)求证: BD=BE ;(2)若∠ DBC=30 °, BO=4 ,求四边形 ABED 的面积.思路剖析:( 1)依据矩形的对角线相等可得 AC=BD ,而后证明四边形 ABEC 是平行四边形,再依据平行四边形的对边相等可得 AC=BE ,从而得证;(2)依据矩形的对角线相互均分求出 BD 的长度,再依据30°角所对的直角边等于斜边的一半求出 CD 的长度,而后利用勾股定理求出 BC 的长度,再利用梯形的面积公式列式计算即可得解.解答:( 1)证明:∵四边形 ABCD 是矩形, ∴AC=BD , AB ∥CD , ∵BE ∥AC ,∴四边形 ABEC 是平行四边形,∴ A C=BE ,∴ B D=BE ;( 2)解:∵在矩形 ABCD 中, BO=4 ,∴BD=2BO=2 ×4=8 , ∵∠ DBC=30 °, ∴CD= 1 BD= 1× 8=4,22∴ A B=CD=4 , DE=CD+CE=CD+AB=4+4=8 ,在 Rt △ BCD 中, BC=BD 2 - CD 2 82 -42 =4 3,∴四边形 ABED 的面积 =1(4+8)× 43 =24 3 .2评论: 本题考察了矩形的对角线相互均分且相等的性质, 平行四边形的判断与性质, 30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的要点.对应训练1.( 2012?哈尔滨)如图,四边形ABCD 是矩形,点 E 在线段 CB 的延伸线上,连结DE 交AB 于点 F,∠AED=2 ∠CED ,点 G 是 DF 的中点,若 BE=1,AG=4 ,则 AB 的长为.1.15考点:矩形的性质;勾股定理.专题:计算题.剖析:依据直角三角形斜边上的中线等于斜边的一半可得AG=DG ,而后依据等边平等角的性质可得∠ ADG= ∠ DAG ,再联合两直线平行,内错角相等可得∠ADG= ∠ CED,再依据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGE=2 ∠ ADG ,从而获得∠AED= ∠AGR ,再利用等角平等边的性质获得AE=AG ,而后利用勾股定理列式计算即可得解.解:∵四边形ABCD 是矩形,点G 是 DF 的中点,∴AG=DG ,∴∠ ADG= ∠ DAG ,∵AD ∥BC,∴∠ ADG= ∠ CED,∴∠ AGE= ∠ ADG+ ∠ DAG=2 ∠ CED,∵∠ AED=2 ∠ CED ,∴∠ AGE= ∠ AED ,∴A E=AG=4 ,在 Rt△ ABE 中, AB= AE2- BE2 42 -12 = 15.故答案为:15 .评论:本题考察了矩形的性质,等边平等角的性质,等角平等边的性质,以及勾股定理的应用,求出 AE=AG 是解题的要点.考点二:和菱形相关的对角线、周长、面积的计算问题例 2 (2012?衡阳)如图,菱形ABCD 的周长为 20cm,且 tan∠ ABD= 3,则菱形 ABCDcm2.4的面积为思路剖析:连结 AC 交 BD 于点 O,则可设 BO=3x ,AO=4x ,既而在 RT△ ABO 中利用勾股定理求出 AB ,联合菱形的周长为 20cm 可得出 x 的值,再由菱形的面积等于对角线乘积的 一半即可得出答案.解答:解:连结AC 交BD 于点O ,则 AC ⊥ BD , AO=OC , BO=DO ,设 BO=3x ,AO=4x ,则 AB=5x ,又∵菱形 ABCD 的周长为 20cm ,∴ 4× 5x=20cm , 解得: x=1 ,故可得 AO=4 , BO=3 ,AC=2AO=8cm , BD=2BO=6cm , 故可得 1AC ×BD=24cm2 .2故答案为: 24.评论: 本题考察了菱形的性质, 掌握菱形的对角线相互垂直且均分的性质, 及菱形的面积等于对角线乘积的一半是解答本题的要点.对应训练2.( 2012?山西)如图,已知菱形 ABCD 的对角线 AC 、 BD 的长分别为 6cm 、 8cm , AE ⊥ BC 于点 E ,则 AE 的长是( )A . 5 3 cmB . 2 5 cm48 24C .cmD .cm552.考点:菱形的性质;勾股定理. 剖析:依据菱形的性质得出BO 、 CO 的长,在 RT △ BOC 中求出 BC ,利用菱形面积等于对角线乘积的一半, 也等于 BC ×AE ,可得出 AE 的长度. 解答:解:∵四边形 ABCD 是菱形, ∴CO= 1 AC=3cm , BO= 1BD=4cm , AO ⊥ BO ,22∴BC=AO 2 +BO 2 =5cm ,∴S 菱形 ABCD =BD ?AC 2 = 1× 6×8=24cm 2,2∵S 菱形 ABCD =BC ×AD ,∴BC × AE=24 , ∴ A E=24cm ,5应选 D .评论:本题考察了菱形的性质,也波及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线相互垂直且均分.考点三:和正方形相关的证明题例 3(2012?黄冈)如图,在正方形ABCD 中,对角线AC 、 BD 订交于点O, E、 F 分别在 OD、 OC 上,且 DE=CF ,连结 DF 、 AE , AE 的延伸线交 DF 于点 M .求证: AM ⊥ DF.考点:正方形的性质;全等三角形的判断与性质.专题:证明题.剖析:依据DE=CF ,可得出OE=OF ,既而证明△ AOE ≌△ DOF ,得出∠ OAE= ∠ ODF,然ABCD 是正方形,后利用等角代换可得出∠DME=90 °,即得出了却论.解答:证明:∵∴OD=OC ,又∵ DE=CF ,∴OD-DE=OC-CF ,即 OF=OE ,AO=DO在 RT△ AOE 和 RT△ DOF 中,AOD= DOF ,OE=OF∴△ AOE ≌△ DOF ,∴∠ OAE= ∠ ODF,∵∠ OAE+ ∠ AEO=90 °,∠ AEO= ∠DEM ,∴∠ ODF+ ∠ DEM=90 °,即可得 AM ⊥ DF.评论:本题考察了正方形的性质、全等三角形的判断与性质,解答本题的要点是经过全等的证明得出∠ OAE= ∠ODF ,利用等角代换解题.对应训练ABCD 中,等边三角形AEF 的极点E、 F 分别在BC 和12.( 2012?贵阳)如图,在正方形 CD 上.(1)求证: CE=CF;(2)若等边三角形 AEF 的边长为 2,求正方形 ABCD 的周长.考点:正方形的性质;全等三角形的判断与性质;等边三角形的性质;等腰直角三角形.剖析:( 1)依据正方形可知 AB=AD ,由等边三角形可知 AE=AF ,于是能够证明出△ ABE ≌△ADF ,即可得出 CE=CF;(2)连结 AC,交 EF 与 G 点,由三角形AEF 是等边三角形,三角形ECF 是等腰直角三角形,于是可知AC ⊥ EF,求出 EG=1 ,设 BE=x ,利用勾股定理求出x,即可求出BC 的上,从而求出正方形的周长.解答:( 1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∵△ AEF 是等边三角形,∴AE=AF ,在 Rt△ ABE 和 Rt△ ADF 中,∵ AB=AD AE=AF,∴R t △ ABE ≌ Rt△ ADF ,∴C E=CF ,(2)解:连结AC ,交 EF 于 G 点,∵△ AEF 是等边三角形,△ECF 是等腰直角三角形,∴AC ⊥ EF,在 Rt△ AGE 中, EG=sin30 ° AE= 1× 2=1 ,2∴EC= 2 ,设 BE=x ,则 AB=x+ 2 ,在 Rt△ ABE 中, AB 2+BE 2=AE 2,即( x+ 2 )2+x2=4,解得 x= 2 6 ,2∴AB= 2 6 2 = 26 ,2 2∴正方形 ABCD 的周长为 4AB= 2 2 6 .评论:本题考察了正方形的性质,全等三角形的判断与性质,等边三角形的性质和等腰三角形的性质,解答本题的要点是对正方形和三角形的性质的娴熟运用,本题难度不大,是一道比较不错的试题.考点四:四边形综合性题目例 4(2012?江西)如图,正方形ABCD 与正三角形AEF 的极点 A 重合,将△ AEF 绕顶点 A 旋转,在旋转过程中,当BE=DF 时,∠ BAE 的大小能够是.7. 15°或 165°15°或 165°考点:正方形的性质;全等三角形的判断与性质;旋转的性质.专题:分类讨论.剖析:利用正方形的性质和等边三角形的性质证明△ABE ≌△ ADF ( SSS),有相像三角形的性质和已知条件即可求出当BE=DF 时,∠ BAE 的大小,应当注意的是,正三角形AEF 能够再正方形的内部也能够在正方形的外面,因此要分两种状况分别求解.解答:解:①当正三角形AEF 在正方形 ABCD 的内部时,如图1,∵正方形 ABCD 与正三角形AEF 的极点 A 重合,当 BE=DF 时,AB=AD∴BE=DF ,AE=AF∴△ ABE ≌△ ADF ( SSS),∴∠ BAE= ∠FAD ,∵∠ EAF=60 °,∴∠ BAE+ ∠FAE=30 °,∴∠ BAE= ∠FAD=15 °,②当正三角形AEF 在正方形ABCD 的外面时.∵正方形 ABCD 与正三角形AEF 的极点 A 重合,当 BE=DF 时,∴AB=AD BE=DF AE=AF,∴△ ABE ≌△ ADF ( SSS),∴∠ BAE= ∠FAD ,∵∠ EAF=60 °,∴∠ BAE= (360° -90° -60°)×∴∠ BAE= ∠FAD=165 °故答案为: 15°或 165°.1+60° =165 °,2评论:本题考察了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判断和全等三角形的性质和分类议论的数学思想,题目的综合性不小.对应训练4.( 2012?铜仁地域)以边长为 2 的正方形的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于 A 、 B 两点,则线段AB 的最小值是.4. 2考点:正方形的性质;垂线段最短;全等三角形的判断与性质;直角三角形斜边上的中线.专题:证明题.剖析:证△COA ≌△ DOB ,推出等腰直角三角形AOB ,求出 AB= 2OA ,得出要使AB 最小,只需OA 取最小值即可,当OA ⊥ CD 时, OA 最小,求出OA 的值即可.解答:解:∵四边形CDEF 是正方形,∴∠ OCD= ∠ ODB=45 °,∠ COD=90 °, OC=OD ,∵AO ⊥OB,∴∠ AOB=90 °,∴∠ CAO+ ∠ AOD=90 °,∠ AOD+ ∠ DOB=90 °,∴∠ COA= ∠ DOB ,∵在△ COA 和△ DOB 中OCA= ODBOC=OD,AOC= DOB∴△ COA ≌△ DOB ,∴OA=OB ,∵∠ AOB=90 °,∴△ AOB 是等腰直角三角形,由勾股定理得: AB=OA 2 +OB 2 = 2 OA ,要使 AB 最小,只需 OA 取最小值即可,依据垂线段最短, OA ⊥ CD 时, OA 最小, ∵正方形 CDEF ,∴ F C ⊥ CD , OD=OF ,∴ C A=DA , ∴OA= 1CF=1 ,2即AB= 2,故答案为: 2 .评论: 本题考察了勾股定理,全等三角形的性质和判断,正方形的性质,垂线段最短等知识点的应用,要点是求出AB=2OA和得出OA ⊥CD时 OA最小,题目拥有必定的代表性,有必定的难度.【聚焦山东中考】2.( 2012?青岛)已知:如图,四边形 ABCD 的对角线 AC 、 BD 交于点 O , BE ⊥ AC 于 E , DF⊥AC 于 F ,点 O 既是 AC 的中点,又是 EF 的中点.( 1)求证:△ BOE ≌△ DOF ;( 2)若 OA= 1BD ,则四边形 ABCD 是什么特别四边形?说明原因.2考点:矩形的判断;全等三角形的判断与性质.剖析:( 1)第一依据垂直可得∠ BEO= ∠DFO=90 °,再由点 O 是 EF 的中点可得 OE=OF ,再加上对顶角∠ DOF= ∠ BOE ,可利用 ASA 证明△ BOE ≌△ DOF ;( 2)第一依据△ BOE ≌△ DOF 可得 DO=BO ,再加上条件 AO=CO 可得四边形 ABCD 是平行四边形,再证明 DB=AC ,可依据对角线相等的平行四边形是矩形证出结论.解答:( 1)证明:∵ BE ⊥AC . DF ⊥ AC , ∴∠ BEO= ∠DFO=90 °, ∵点 O 是 EF 的中点, ∴OE=OF ,又∵∠ DOF= ∠ BOE , ∴△ BOE ≌△ DOF ( ASA );( 2)解:四边形 ABCD 是矩形.原因以下:∵△ BOE ≌△ DOF , ∴OB=OD ,又∵ OA=OC ,∴四边形 ABCD 是平行四边形, ∵OA= 1 BD ,OA= 1AC ,22∴BD=AC , ∴?ABCD 是矩形.评论: 本题主要考察了全等三角形的判断与性质, 以及矩形的判断, 要点是娴熟掌握矩形的判断定理: ①矩形的定义: 有一个角是直角的平行四边形是矩形; ②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线相互均分且相等的四边形是矩形”).3.( 2012?威海)如图,在 ?ABCD 中, AE , CF 分别是∠ BAD 和∠ BCD 的均分线,增添一个条件,仍没法判断四边形AECF 为菱形的是()A . AE=AFB .EF ⊥ ACC .∠ B=60 °D . AC是∠ EAF的均分线考点:菱形的判断; 平行四边形的性质. 剖析:依据平行四边形性质推出∠ B= ∠ D ,∠ DAB= ∠DCB ,AB=CD ,AD=BC ,求出∠ BAE= ∠ DCF ,证△ ABE ≌△ CDF ,推出 AE=CF ,BE=DF ,求出 AF=CE ,得出四边形 AECF 是平行四边形,再依据菱形的判断判断即可.解答:解:∵四边形 ABCD 是平行四边形,∴∠ B=∠ D ,∠ DAB= ∠ DCB , AB=CD ,AD=BC ,∵AE , CF 分别是∠ BAD 和∠ BCD 的均分线,∴∠ DCF= 1 ∠DCB,∠BAE= 1 ∠BAD,2 2∴∠ BAE= ∠DCF ,∵在△ ABE 和△ CDF 中∠ D=∠ B AB=CD∠ DCF=∠BAE,∴△ ABE ≌△ CDF ,∴AE=CF , BE=DF ,∵AD=BC ,∴AF=CE ,∴四边形 AECF 是平行四边形,A 、∵四边形AECF 是平行四边形,AE=AF ,∴平行四边形AECF 是菱形,故本选项正确;B、∵ EF⊥ AC ,四边形AECF 是平行四边形,∴平行四边形AECF 是菱形,故本选项正确;C、依据∠ B=60 °和平行四边形 AECF 不可以推出四边形是菱形,故本选项错误;D、∵四边形 AECF 是平行四边形,∴A F ∥BC,∴∠ FAC= ∠ ACE ,∵AC 均分∠ EAF ,∴∠ FAC= ∠ EAC ,∴∠ EAC= ∠ECA ,∴A E=EC ,∵四边形 AECF 是平行四边形,∴四边形 AECF 是菱形,故本选项正确;应选 C.评论:本题考察了平行四边形的性质和判断、菱形的判断、全等三角形的性质和判断、平行线的性质等知识点,主要考察学生的推理能力.4.( 2012?聊城)如图,矩形ABCD 的对角线订交于点O, DE∥ AC , CE∥BD .求证:四边形OCED 是菱形.考点:菱形的判断;矩形的性质.专题:证明题.剖析:第一依据两对边相互平行的四边形是平行四边形证明四边形 OCED 是平行四边形,再依据矩形的性质可得 OC=OD ,即可利用一组邻边相等的平行四边形是菱形判断出结论.解答:证明:∵DE ∥ AC , CE∥ BD ,∴四边形 OCED 是平行四边形,∵四边形 ABCD 是矩形,∴OC=OD ,∴四边形 OCED 是菱形.评论:本题主要考察了菱形的判断,矩形的性质,要点是掌握菱形的判断方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线相互垂直的平行四边形是菱形.5.( 2012?济宁)如图, AD 是△ ABC 的角均分线,过点 D 作 DE ∥AB , DF∥ AC ,分别交AC、AB 于点 E和 F.(1)在图中画出线段 DE 和 DF;(2)连结 EF,则线段 AD 和 EF 相互垂直均分,这是为何?考点:菱形的判断与性质;作图—复杂作图.剖析:( 1)依据题目要求画出线段DE、 DF 即可;(2)第一证明四边形AEDF 是平行四边形,再证明∠EAD= ∠ EDA ,依据等角平等边可得EA=ED ,由有一组邻边相等的平行四边形是菱形可证明四边形AEDF 是菱形,再依据菱形的性质可得线段AD 和 EF 相互垂直均分.解答:解( 1)以下图;(2)∵ DE∥AB ,DF∥AC ,∴四边形 AEDF 是平行四边形,∵AD 是△ ABC 的角均分线,∴∠ FAD= ∠ EAD ,∵AB ∥DE,∴∠ FAD= ∠ EDA ,∴∠ EAD= ∠ EDA ,∴E A=ED ,∴平行四边形AEDF 是菱形,∴AD 与 EF 相互垂直均分.评论:本题主要考察了画平行线,菱形的判断与性质,要点是掌握菱形的判断方法,判断四边形为菱形能够联合菱形的性质证出线段相等,角相等,线段相互垂直且均分.【备考真题过关】一、选择题1.( 2012?南通)如图,矩形 ABCD 的对角线AC=8cm ,∠ AOD=120 °,则 AB 的长为()A . 3cmB . 2cmC . 2 3D . 4cm考点:矩形的性质;等边三角形的判断与性质.剖析: 依据矩形的对角线相等且相互均分可得AO=BO= 1AC ,再依据邻角互补求出∠ AOB2的度数,而后获得△ AOB 是等边三角形,再依据等边三角形的性质即可得解. 解:在矩形 ABCD 中, AO=BO=1AC=4cm ,2∵∠ AOD=120 °,∴∠ AOB=180 ° -120°=60 °, ∴△ AOB 是等边三角形,∴ A B=AO=4cm .应选 D .评论:本题考察了矩形的性质,等边三角形的判断与性质,判断出△ AOB 是等边三角形是解题的要点.2.( 2012?黄冈)若按序连结四边形 ABCD 各边的中点所得四边形是矩形,则四边形 ABCD必定是( ) A .矩形B .菱形C .对角线相互垂直的四边形D .对角线相等的四边形考点:矩形的判断;三角形中位线定理.剖析: 本题要依据矩形的性质和三角形中位线定理求解; 第一依据三角形中位线定理知: 所得四边形的对边都平行且相等, 那么其必为平行四边形, 若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必相互垂直,由此得解.解:已知:如右图,四边形EFGH 是矩形,且 E 、 F 、 G 、 H 分别是 AB 、BC 、 CD 、 AD 的中点,求证:四边形 ABCD 是对角线垂直的四边形.证明:因为 E 、 F 、 G 、H 分别是 AB 、BC 、CD 、 AD 的中点,依据三角形中位线定理得: EH ∥ FG ∥BD , EF ∥ AC ∥ HG ;∵四边形 EFGH 是矩形,即 EF ⊥ FG ,∴AC ⊥BD ,应选 C .评论:本题主要考察了矩形的性质和三角形中位线定理, 解题的要点是结构三角形利用三角形的中位线定理解答.3.( 2012?大连)如图,菱形A .20 B . 24 C .28ABCD 中, AC=8 , BD=6 ,则菱形的周长是(D . 40)3.考点:菱形的性质;勾股定理.专题:数形联合.剖析:据菱形对角线相互垂直均分的性质,能够求得 依据勾股定理能够求得AB 的长,即可求菱形ABCD 解:∵菱形对角线相互垂直均分, ∴BO=OD=3 ,AO=OC=4 ,BO=OD ,AO=OC ,在的周长.Rt △ AOD中,∴AB=AO 2BO 2=5,故菱形的周长为应选 A .20.评论: 本题考察了勾股定理在直角三角形中的运用, 考察了菱形各边长相等的性质,本题中依据勾股定理计算 AB 的长是解题的要点.4.( 2012?张家界)按序连结矩形四边中点所得的四边形必定是()A .正方形B .矩形C .菱形D .等腰梯形考点:菱形的判断;三角形中位线定理;矩形的性质.剖析: 因为题中给出的条件是中点, 因此可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形. 解答:解:连结 AC 、BD , 在△ ABD 中,∵AH=HD , AE=EB ∴EH=1BD ,2同理 FG=1BD , HG= 1 AC , EF=1 AC ,222又∵在矩形 ABCD 中, AC=BD ,∴ E H=HG=GF=FE ,∴四边形 EFGH 为菱形.应选 C .5.( 2012?丹东)如图,菱形 ABCD 的周长为 24cm ,对角线 AC 、 BD 订交于 O 点, E 是 AD 的中点,连结 OE ,则线段 OE 的长等于( )A . 3cmB . 4cmC .D . 2cm考点:菱形的性质;三角形中位线定理.剖析:先求出菱形的边长 AB ,再依据菱形的对角线相互均分判断出 OE 是△ ABD 的中位线,而后依据三角形的中位线等于第三边的一半解答. 解:∵菱形 ABCD 的周长为 24cm , ∴边长 AB=24 ÷ 4=6cm , ∵对角线 AC 、 BD 订交于 O 点, ∴BO=DO ,又∵ E 是 AD 的中点, ∴OE 是△ ABD 的中位线, ∴OE=1AB=1× 6=3cm .22应选 A .评论:本题考察了菱形的对角线相互均分的性质,三角形的中位线定理,是基础题,求出 OE 等于菱形边长的一半是解题的要点.6.( 2012?泸州)如图,菱形 ABCD 的两条对角线订交于 O ,若 AC=6 ,BD=4 ,则菱形的周长是()A .24B .16C .4 13D . 2 3考点:菱形的性质;勾股定理.剖析:由菱形 ABCD 的两条对角线订交于O , AC=6 ,BD=4 ,即可得 AC ⊥ BD ,求得 OA与 OB 的长,而后利用勾股定理,求得 AB 的长,既而求得答案.解答:解:∵四边形ABCD 是菱形, AC=6 ,BD=4 ,∴AC ⊥ BD , OA= 1AC=3 , OB= 1D=2 ,AB=BC=CD=AD ,22∴在 Rt △ AOB 中, AB=OA 2 +OB 2 = 13 ,∴菱形的周长是: 4AB=413 .应选 C .评论:本题考察了菱形的性质与勾股定理.本题难度不大,注意掌握数形联合思想的应用.7.( 2012?恩施州)如图,菱形 ABCD 和菱形 ECGF 的边长分别为 2 和 3,∠ A=120 °,则图中暗影部分的面积是( )A .3B .2C .3D . 2考点:菱形的性质;解直角三角形.专题:惯例题型.剖析: 设 BF 、CE 订交于点 M ,依据相像三角形对应边成比率列式求出CG 的长度, 从而得到 DG 的长度, 再求出菱形 ABCD 边 CD 上的高与菱形 ECGF 边 CE 上的高, 而后依据暗影部分的面积 =S △ BDM +S △ DFM ,列式计算即可得解.解答:解:如图,设 BF 、 CE 订交于点 M ,∵菱形 ABCD 和菱形 ECGF 的边长分别为 2 和 3, ∴△ BCM ∽△ BGF ,∴即CM BCGF BGCM2,,32 3解得 CM=1.2 , ∴DM=2-1.2=0.8 , ∵∠ A=120 °,∴∠ ABC=180 ° -120 °=60 °,∴菱形 ABCD 边 CD 上的高为 2sin60° =2×3 3 ,2菱形 ECGF 边 CE 上的高为 3sin60° =3 × 33 3,22∴暗影部分面积3 3=S△BDM +S△DFM =1 2 ××3 +1 2 ××= 3.2应选 A.评论:本题考察了菱形的性质,解直角三角形,把暗影部分分红两个三角形的面积,而后利用相像三角形对应边成比率求出CM 的长度是解题的要点.8.( 2012?贵港)如图,在菱形 ABCD 中,AB=BD ,点 E、F 分别在 BC、CD 上,且 BE=CF ,连结 BF、 DE 交于点 M ,延伸 ED 到 H 使 DH=BM ,连结 AM , AH ,则以下四个结论:①△ BDF ≌△ DCE ;②∠ BMD=120 °;③△ AMH 是等边三角形;④S 四边形ABCD = 3 AM 2.4此中正确结论的个数是()A.1B. 2C.3 D. 4考点:菱形的性质;全等三角形的判断与性质;等边三角形的判断与性质.剖析:依据菱形的四条边都相等,先判断△ABD是等边三角形,再依据菱形的性质可得∠BDF= ∠ C=60 °,再求出 DF=CE ,而后利用“边角边”即可证明△BDF ≌△ DCE,从而判定①正确;依据全等三角形对应角相等可得∠DBF= ∠EDC ,而后利用三角形的一个外角等于与它不相邻的两个内角的和能够求出∠DMF= ∠ BDC=60 °,再依据平角等于 180°即可求出∠ BMD=120 °,从而判断②正确;依据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM= ∠ ADH ,再利用“边角边” 证明△ ABM 和△ ADH 全等,依据全等三角形对应边相等可得AH=AM ,对应角相等可得∠ BAM= ∠ DAH ,而后求出∠MAH= ∠ BAD=60 °,从而判断出△ AMH 是等边三角形,判断出③正确;依据全等三角形的面积相等可得△ AMH 的面积等于四边形ABMD 的面积,而后判断出④错误.解:在菱形 ABCD 中,∵ AB=BD ,∴A B=BD=AD ,∴△ ABD 是等边三角形,∴依据菱形的性质可得∠BDF= ∠ C=60°,∵B E=CF ,∴BC-BE=CD-CF ,即 CE=DF ,CE=DF在△ BDF 和△ DCE 中,BDF= C=60,BD=CD∴△ BDF ≌△ DCE ( SAS),故①小题正确;∴∠ DBF= ∠ EDC ,∵∠ DMF= ∠ DBF+ ∠ BDE= ∠EDC+ ∠ BDE= ∠ BDC=60 °,∴∠ BMD=180 °-∠ DMF=180 ° -60°=120°,故②小题正确;∵∠ DEB= ∠EDC+ ∠C=∠EDC+60 °,∠ ABM= ∠ ABD+ ∠DBF= ∠ DBF+60 °,∴∠ DEB= ∠ABM ,又∵ AD ∥BC,∴∠ ADH= ∠ DEB ,∴∠ ADH= ∠ ABM ,AB=AD在△ ABM 和△ ADH 中,ADH=ABM ,DH=BM∴△ ABM ≌△ ADH (SAS),∴AH=AM ,∠ BAM= ∠DAH ,∴∠ MAH= ∠ MAD+ ∠ DAH= ∠ MAD+ ∠ BAM= ∠ BAD=60 °,∴△ AMH 是等边三角形,故③小题正确;∵△ ABM ≌△ ADH ,∴△ AMH 的面积等于四边形ABMD 的面积,又∵△ AMH 的面积 = 1AM ? 3 AM= 3 AM 2,2 2 4∴S 四边形ABMD = 3 AM 2,4S 四边形ABCD≠ S 四边形ABMD,故④小题错误,综上所述,正确的选项是①②③共 3 个.应选 C.评论:本题考察了菱形的性质,全等三角形的判断与性质,等边三角形的判断与性质,题目较为复杂, 特别是图形的辨别有难度, 从图形中正确确立出全等三角形并找出全等的条件是解题的要点.9.( 2012?丹东)如图,已知正方形 ABCD 的边长为 4,点 E 、 F 分别在边 AB 、 BC 上,且 AE=BF=1 , CE 、 DF 交于点 O .以下结论:①∠ DOC=90 °,② OC=OE ,③ tan ∠ OCD= 4 ,3④S △ ODC =S 四边形 BEOF 中,正确的有()A .1 个B .2 个C .3 个D .4 个考点:正方形的性质;全等三角形的判断与性质;勾股定理;锐角三角函数的定义.剖析:由正方形 ABCD 的边长为 4,AE=BF=1 ,利用 SAS 易证得△ EBC ≌△ FCD ,而后全等三角形的对应角相等,易证得①∠ DOC=90 °正确;②由线段垂直均分线的性质与正方形的性质,可得②错误;易证得∠ OCD= ∠ DFC ,即可求得③正确;由①易证得④正确.解答:解:∵正方形 ABCD 的边长为 4,∴ B C=CD=4 ,∠ B= ∠ DCF=90 °, ∵AE=BF=1 ,∴ B E=CF=4-1=3 , 在△ EBC 和△ FCD 中,BC=CD∵B= DCF , BE=CF∴△ EBC ≌△ FCD ( SAS ), ∴∠ CFD= ∠ BEC ,∴∠ BCE+ ∠ BEC= ∠ BCE+ ∠ CFD=90 °, ∴∠ DOC=90 °; 故①正确;若 OC=OE , ∵DF ⊥ EC , ∴CD=DE ,∵CD=AD < DE (矛盾),故②错误;∵∠ OCD+ ∠ CDF=90 °,∠ CDF+ ∠ DFC=90 °, ∴∠ OCD= ∠ DFC ,∴ t an ∠OCD=tan ∠ DFC== 4 ,DCFC 3故③正确;∵△ EBC ≌△ FCD ,∴S△EBC =S△FCD,∴S△EBC -S△FOC=S△FCD -S△FOC,即 S△ODC =S 四边形BEOF.故④正确.应选 C.评论:本题考察了正方形的性质、全等三角形的判断与性质、直角三角形的性质以及三角函数等知识.本题综合性较强,难度适中,注意掌握数形联合思想与转变思想的应用.10.(2012?泸州)如图,边长为 a 的正方形 ABCD 绕点 A 逆时针旋转 30°获得正方形 A ′B′ C′ D′,图中暗影部分的面积为()A .1a2 B. 3 a2 C.(1 3 )a2 D.(1 3) a2 2 3 4 3考点:正方形的性质;旋转的性质;解直角三角形.剖析:设B′ C′与 CD 交于点 E.因为暗影部分的面积=S 正方形ABCD -S 四边形AB′ED,又 S 正方形ABCD =a 2 ,因此要点是求 S四边形AB′ED.为此,连结AE .依据 HL 易证△ AB ′ E≌△ ADE ,得出∠ B ′ AE= ∠ DAE=30 °.在直角△ADE 中,由正切的定义得出DE=AD ? tan ∠DAE=3S 四边形AB′ED=2S△ADE.a .再利用三角形的面积公式求出3解答:解:如图,设 B ′ C′与 CD 交于点 E,连结 AE .AB E= ADE=90在△ AB ′ E 与△ ADE 中,AE=AE ,AB =AD∴△ AB ′ E≌△ ADE ( HL ),∴∠ B′AE= ∠ DAE .∵∠ BAB ′ =30 °,∠ BAD=90 °,∴∠ B′AE= ∠ DAE=30 °,∴DE=AD ?tan∠ DAE=3a.3∴S 四边形 AB ′ ED=2S△ ADE=2 ×1× a× 3 a= 3 a2.2 3 3∴暗影部分的面积 =S 正方形ABCD -S 四边形AB′ED = (13)a2.3应选: D.评论:本题主要考察了正方形、旋转的性质,直角三角形的判断及性质,图形的面积以及三角函数等知识,综合性较强,有必定难度.二、填空题11.(2012?十堰)如图,矩形ABCD 中, AB=2 , AD=4 , AC 的垂直均分线EF 交 AD 于点E、交 BC 于点 F,则 EF=.11. 5考点:矩形的性质;线段垂直均分线的性质;勾股定理;相像三角形的判断与性质.专题:计算题.剖析:过 D 作 DK 平行 EF 交 CF 于 K ,得出平行四边形DEFK ,推出 EF=DK ,证△ DCK ∽△ CBA ,求出 CK ,依据勾股定理求出DK 即可.解:过 D作DK平行 EF交CF于K,∵四边形 ABCD 是平行四边形,∴AD ∥ BC ,∠ ABC= ∠DCB=90 °, AD=BC=4 , AB=CD=2 ,∵AD ∥BC,EF∥DK ,∴DEFK 为平行四边形,∴E F=DK ,∵EF⊥AC ,∴D K ⊥AC ,∴∠ DPC=90 °,∵∠ DCB=90 °,∴∠ CDK+ ∠ DCP=90 °,∠ DCP+ ∠ ACB=90 °,∴∠ CDK= ∠ ACB ,∵∠ DCK= ∠ ABC=90 °,∴△ CDK ∽△ BCA ,∴即CD BC,CK AB 2 4,CK 2CK=1 ,依据勾股定理得:EF=DK= 5 ,故答案为: 5 .评论:本题考察了矩形性质,相像三角形的性质和判断,勾股定理,线段的垂直均分线性质的应用,要点是求出EO 长,用的数学思想是方程思想.12.( 2012?山西)如图,在平面直角坐标系中,矩形OABC 的对角线AC 平行于 x 轴,边OA 与 x 轴正半轴的夹角为30°, OC=2 ,则点 B 的坐标是.12.(2,23)考点:矩形的性质;坐标与图形性质;解直角三角形.剖析:过点 B 作 DE⊥OE 于 E,有 OC=2 ,边 OA 与 x 轴正半轴的夹角为30°,可求出AC 的长,依据矩形的性质可得OB 的长,从而求出BE, OE 的长,从而求出点 B 的坐标.解答:解:过点 B 作 DE⊥ OE 于 E,∵矩形 OABC 的对角线 AC 平行于 x 轴,边 OA 与 x 轴正半轴的夹角为30°,∴∠ CAO=30 °,∴ A C=4 , ∴ O B=AC=4 , ∴ O E=2 ,∴ B E=2 3 ,∴则点 B 的坐标是 (2,23) ,故答案为: (2,23) .评论:本题考察了矩形的性质, 直角三角形的性质以及勾股定理的运用和解直角三角形的相关知识,解题的要点是作高线获得点的坐标的绝对值的长度,13.( 2012?宁夏)如图,在矩形 ABCD EDC :∠ EDA=1 : 2,且 AC=10 ,则 DE 中,对角线的长度是AC 、BD 订交于.O , DE ⊥AC于 E ,∠ 13.考点:矩形的性质;含 30 度角的直角三角形;勾股定理.剖析:依据∠ EDC :∠ EDA=1 : 2,可得∠ EDC=30 °,∠ EDA=60 °,从而得出△ 等边三角形,再由AC=10 ,求得 DE .解答:解:∵四边形ABCD 是矩形,OCD是∴∠ ADC=90 °, AC=BD=10,OA=OC=1AC=5 ,OB=OD=1BD=5 ,22∴OC=OD ,∴∠ ODC= ∠ OCD ,∵∠ EDC :∠ EDA=1 : 2,∠ EDC+ ∠ EDA=90 °,∴∠ EDC=30 °,∠ EDA=60 °, ∵DE ⊥AC , ∴∠ DEC=90 °,∴∠ DCE=90 ° -∠ EDC=60 °, ∴∠ ODC= ∠ OCD=60 °,∴∠ ODC+ ∠ OCD+ ∠ DOC=180 °, ∴∠ COD=60 °,∴△ OCD 是等边三角形,。

中考数学总复习 第五单元 四边形 第21课时 矩形、菱形、正方形数学课件

中考数学总复习 第五单元 四边形 第21课时 矩形、菱形、正方形数学课件
UNIT FIVE
第五单元
第 21 课时 矩形、菱形、正方形
四边形
课前双基巩固
考点聚焦
考点一 矩形
矩形的定义
矩形的性质
矩形的判定
有一个角是① 直角 的平行四边形叫做矩形
(1)矩形的四个角都是② 直角
轴对称图形,它有④ 2
;(2)矩形的对角线互相平分并且③ 相等 ;(3)矩形是
条对称轴;(4)矩形是中心对称图形,对角线的交点为对称中心
1.如图 21-1,在菱形 ABCD 中,E,F 分别是 AD,BD 的中点,若 EF=2,则菱形 ABCD 的周长是
16
.
图 21-1
2.如图 21-2,已知菱形 ABCD 的两条对角线长分别为 AC=8 和 BD=6,那么,菱形 ABCD 的面积为
图 21-2
24
.
课前双基巩固
3.菱形具有而一般平行四边形不具有的性质是( D )
的中点.
(1)求证:四边形 AEDF 是菱形;
(2)如果四边形 AEDF 的周长为 12,两条对角线的和等于 7,求四边形 AEDF 的面积 S.
解:(1)证明:∵AB=AC,AD 是边 BC 上的高,∴AD 是底边 BC 的中线,
1
1
2
2
图21-9
∵点 E,F 分别是 AB,AC 的中点,∴DE∥AC,DF∥AB,DE= AC,DF= AB,∴四边形 AEDF 是平行四边形,
1
4
4
13
1
13
2
2
4
∵AD⊥EF,∴OE2+OD2=DE2,∴ a2+ b2=32,∴a2+b2=36,
∵a2+b2+2ab=49,∴ab= ,∴S= ab= .

2019中考数学限时训练:课时21矩形、菱形、正方形(有答案)

2019中考数学限时训练:课时21矩形、菱形、正方形(有答案)

课时21矩形、菱形、正方形(时间:40分钟满分:60分)评分标准:选择填空每题 3分. 基础过关1 . (2018上海)已知口ABCD ,下列条件中,不能判定这个平行四边形为矩形的是 ( )B . Z A =ZC C . AC = BD 2 . (2018贵阳)如图1,在菱形ABCD 中,E 是AC 的中点,EF // CB ,交AB 于点F ,如果 3,那么菱形ABCD 的周长为( )D .4 . (2018威海)矩形ABCD 与CEFG 如图3放置,点B , C , E 共线,点 C , D , G 共线, AF ,取 AF 的中点 H ,连接 GH.若 BC = EF = 2, CD = CE = 1,贝U GH 等于( )D . AB 丄 BC EF = A . 24C . 12B . 18 D . 9 3 . (2018AB , EI 丄AD , FH 丄AB , FJ 丄AD ,垂足分别为 G , I , H , J.则图中阴影部分的面积等于 EG 丄) 连接 图1 图3C冷D冷一 1 -5.(2018湖州)如图4,已知菱形ABCD,对角线AC, BD相交于点O•若tan/BAC = 3, AC= 6,BD的长是6•如图5,在矩形ABCD中,对角线AC, BD相交于点O,点E, F分别是AO, AD的中点, AB= 5 cm, BC= 12 cm,贝U EF =7.(2018随州)如图6,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,/ AOC= 60°若将菱形OABC绕点O顺时针旋转75°得到四边形OA' B ' C ', 则点B的对应点B'的坐标为8. (2018青岛)如图7,已知正方形ABCD的边长为5,点E, F 分另在AD,DC 上,AE= DF =9. (6分)如图8,在口ABCD中,对角线AC, BD交于点O, 是等边三角形,/ AED = 2/ EAD .求证:四边形ABCD是正方形. E是BD延长线上的点,且△ ACE的长为2, BE与AF相交于点G,C冷D冷(1)求证:四边形AECD是菱形;I) ft c10. (8分)(2018连云港)如图9,矩形ABCD中,E是AD的中点,延长BA交于点F,连接AC, DF.(1)求11. (8分)(2018贺州)如图10,在厶ABC中,/ ACB = 90° O, D分别是边点C作CE // AB交DO的延长线于点E,连接AE.AC, AB的中点,过图93⑵若四边形AECD的面积为24, tan/BAC = 4,求BC的长.12. (8分)(2018遵义)如图11,正方形ABCD的对角线交于点O,点E, F分别在AB, BC上(AE V BE),且/ EOF = 90° OE , DA的延长线交于点M, OF , AB的延长线交于点N,连接MN.(1)求证:OM = ON ;⑵若正方形ABCD的边长为4, E为OM的中点,求MN的长.f)________ C图11拓展提升1.如图12,矩形ABCD中,AB = 2, AD = 2•点E是BC边上的一个动点,连接AE,过点D作DF丄AE于点卩.当厶CDF是等腰三角形时,BE的长为________________图122•在一张长为7 cm,宽为5 cm的矩形纸片上,现要剪下一个腰长为 4 cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角月电C形的面积为_____________ .参考答案:基础过关 1.B 2.A 3.B 4.C6) 8^2345. 2 6罟7.(-J6, —9.证明:•••四边形ABCD是平行四边形,••• A0= OC.•••△ACE是等边三角形,•E0丄AC,即BD丄AC. • ?ABCD是菱形.•••△ACE是等边三角形,AO = 0C ,•••/ EAO = Z AEC = 60° E0 平分/ AEC.•••/ AEO = 30°又/ AED = 2/ EAD,•/ EAD = 15°.•••/ DAO = Z EAO — Z EAD = 45°.•/ ?ABCD 是菱形,• AC 平分Z BAD.A Z BAD = 2Z DAO = 90°•四边形ABCD是正方形.10 . (1)证明:•••四边形ABCD是矩形,• AB // CD.•Z FAE = Z CDE.•/ E 是AD 的中点,• AE= DE.又Z FEA = Z CED FAE◎△ CDE. • FA = CD.又AF // CD,•四边形ACDF是平行四边形.(2) BC= 2CD.理由:•••四边形ABCD是矩形,•Z CDE = Z BCD = 90°AD = BC.•/ CF 平分Z BCD ,•••/ DCE = 45°.•••Z CDE = 90° •△ CDE是等腰直角三角形.•CD= DE.•/ E 是AD 的中点,• AD = 2CD.•/ AD = BC ,• BC = 2CD.11.(1)证明:••点O是AC的中点,• OA= OC.•/ CE/ AB ,•••/ DAO = Z ECO.[Z DAO = Z ECO,在厶AOD和厶COE中,OA= OC ,Z AOD = Z COE,•△ AOD ◎△ COE (ASA).•AD = CE.•CE // AB,•四边形AECD是平行四边形.又CD是Rt A ABC斜边AB上的中线,• CD = AD. •••四边形AECD是菱形.⑵由⑴知,四边形AECD是菱形,•AC 丄ED.3在Rt△ AOD 中,tan / DAO = = tan/ BAC =' OA 4' 设OD = 3x, OA= 4x,则ED = 2OD = 6x, AC = 2OA = 8x.1 由题意,得2x6x X 8x= 24 ,解得x1= 1, x2=—1(舍去).•OD = 3.•/ O, D分别是AC, AB的中点,•OD 是厶ABC 的中位线.••• BC = 2OD = 6.12 . (1)证明:•••四边形ABCD是正方形,•OA= OB,/ DAO = 45° / OBA = 45°•/ OAM = / OBN = 135°V/ EOF = 90° / AOB= 90°AOM = / BON.图1 •△ OAM◎△ OBN(ASA).•OM = ON.⑵如图1,过点O作OH丄AD于点H ,•OH // AE.V正方形的边长为4,•OH = HA = 2.V E为OM的中点,•HM = 2HA = 4.「.OM = 22+ 42= 2 5.•MN = 2OM = 2 ,10.拓展提升 1.1 或2或2—2 2.8 cm2或2 15 cm2或2 , 7 cm2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形、菱形、正方形
【回顾与思考】
【例题经典】
会解决与特殊平行四边形有关的动手操作问题
例3.(2005年吉林省)如图,在矩形纸片ABCD中,AB=33,BC=6,沿EF折叠后,点C 落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°.
(1)求BE、QF的长.(2)求四边形PEFH的面积.
一、基础训练
1.如图1,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为________.2.(2006年黄冈市)如图2,将边长为8cm的正方形ABCD的四边沿直线L向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是________cm.
(1) (2) (3)
5.(2006年烟台市)如图4,先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如图①所示),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图②所示),若AB=4,BC=3,则图①和图②中,点B 的坐标为_________,点C 的坐标为________.
(4) (5) (6)
6.(2006年广安市)正方形具有而菱形不一定具有的性质是( )
A .对角线相等
B .对角线互相垂直平分
C .对角线平分一组对角
D .四条边相等
7.如图5,在菱形ABCD 中,E 、F 分别是AB ,AC 的中点,如果EF=2,那么菱形ABCD•的周长是( )
A .4
B .8
C .12
D .16
9.(2006年潍坊市)如图7,边长为1的正方形ABCD 绕点A 逆时针旋转30•°到正方形AB ′C ′D ′,图中阴影部分的面积为( )
A .12
B . D .
(7) (8)
10.(2006年淄博市)将一矩形纸片按如图8方式折叠,BC 、BD 为折痕,折叠后A•′B 与E ′B 在同一条直线上,则∠CBD 的度数( )
A .大于90°
B .等于90°
C .小于90°
D .不能确定
二、能力提升
13.(2006年沪州市)如图,在矩形ABCD 中,点E 是BC 上一点,AE=AD ,DF ⊥AE ,垂足为F .线段DF 与图中哪一条线段相等?先将你的猜想出的结论填写在下面的横线上,然后再加以证明.
即DF=________.(写出一线段即可)
答案:
例题经典
例3.(1)BE=2,QF=1 (2)考点精练
1.96 2.16ππ 3.①②⑤
4.∠BAE=∠DAF (答案不唯一)
5.B (4,0),(2),C (4,3), 6.A 7.D 8.C 9.C 10.B
11.(1)略 (2)AB=12
AD 时,•BM ⊥CM 12.根据SAS 证△ABE ≌△CDF
13.DF=DC .证略
14.证△AOE ≌△COF .•即得AE //FC .四边形AFCE 是平行四边形.
又AC ⊥EF ,∴四边形AFCE 是菱形
15.解:•(•1)•∵∠ACB=90°,
∴AC ⊥BC .又∵DE ⊥BC ,∴EF ∥AC .
又∵AE ∥CF ,∴四边形EACF•是平行四边形.
当CF=AC 时,四边形ACFE 是菱形.
此时,CF=AC=2,BD=3-x ,tan ∠B=
23,ED=BD ·tan ∠B=23
(3-x ), ∴DF=EF-ED=2-23(3-x )=23x . 在Rt △CDF 中,CD 2+DF 2=CF 2,
∴x 2+(23x )2=22,∴x=±613
•负值不合题意,舍去),
即当x=613
ACFE 是菱形
(2)由已知得,四边形EACD 是直角梯形,S 梯形EACD =
12×(4-23x )·x=-13x 2+2x .
依题意,得-13
x 2+2x=2,整理得,x 2-6x+6=0.解之,得x 1x 2=3
∵,
∴EACD 的面积等于2.。

相关文档
最新文档