中国人民大学附属中学初二数学质量检测卷(试卷一)
北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)
人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。
北京市海淀区中国人民大学附属中学2022-2023学年八年级下学期数学大作业1
A.2
B. 2 3
C.4
D.0
7.计算 3 27 - (-4)2 + (1π-) 0 得( )
A. π
B.- π
C.0
D.1
8.如图,在平面直角坐标系中,点 P 坐标为(-2,3),以点 O 为圆心,以 OP 的长为 半径画弧,交 x 轴的负半轴于点 A,则点 A 的横坐标介于( )
试卷第11 页,共33 页 X
【详解】解:二次根式中被开方数 x - 3 ³ 0 ,所以 x ³ 3 .
故答案为: x ³ 3. 12.100. 【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母 A 所代表 的正方形的面积 A=36+64=100. 【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方 =64,则斜边的平方=36+64. 故答案为:100. 【点睛】本题考查了正方形的面积公式以及勾股定理. 13.如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形 【分析】根据勾股定理的逆定理即可判断. 【详解】解:设相邻两个结点的距离为 m,则此三角形三边的长分别为 3m、4m、5m, ∵(3m)2+(4m)2=(5m)2, ∴以 3m、4m、5m 为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第 三边的平方,那么这个三角形是直角三角形) 故答案为:如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角 形. 【点睛】此题考查了勾股定理的逆定理,属于基础题,注意仔细阅读题目所给内容,得到 解题需要的信息,比较简单.
试卷第21 页,共33 页 X
13.在没有直角工具之前,聪明的古埃及人用如图的方法画直角:把一根长绳打上等 距离的 13 个结,然后以 3 个结间距、4 个结间距、5 个结间距的长度为边长,用木桩 钉成一个三角形,其中 5 这条边所对的角便是直角.依据是____.
中国人民大学附属中学八年级数学下册第一单元《二次根式》测试题(含答案解析)
一、选择题1.若2a 3<<,则22(2a)(a 3)---等于( ) A .52a - B .12a - C .2a 1- D .2a 5- 2.已知x ,y 为实数,y x 323x 2=-+-+,则y x 的值等于( ) A .6B .5C .9D .8 3.计算132252⨯+⨯的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 4.若3b -+(a ﹣4)2=0,则化简a b 的结果是( ) A .23 B .±23 C .43 D .±43 5.下列运算正确的有( )个.①()22233633-=-⨯= ②85042572+=+= ③3232=+- ④1y y y-= ⑤3242122⨯=⑥()()221312*********-=+-= A .1 B .2 C .3 D .46.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b 7.已知,22a a a 应满足什么条件 ( ) A .a >0B .a≥0C .a =0D .a 任何实数 8.()()4545x x x x --=--x 可取的整数值有( ).A .1个B .2个C .3个D .4个 9.下列计算正确的是( )A .3236362⨯==B .164=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .()25235410-⨯+⨯++= 10.下列根式是最简二次根式的是( )A .8B .12C .12D .15 11.已知51a =-,62b =-,则a 与b 的大小关系是( ). A .a b > B .a b < C .a b = D .无法确定 12.下列运算正确的是( )A .235⋅=B .193627⋅=C .6212⋅=D .32462⋅= 二、填空题13.83=______. 14.若236A ⨯=,则A =_____________.15.计算:182-÷=_________. 16.23()a -=______(a≠0),2(3)-=______,1(32)--=______.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.766519.1112|13()23--+的值是_____ 20.3x -有意义的x 的取值范围是______. 三、解答题 21.计算:20116(2019)|52732π-⎛⎫--- ⎪⎝⎭. 22.阅读理解:某节数学课上,钱老师在复习数轴上的点与数之间的关系时,给出了新的定义:若,,A B C 是数轴上的三个点,如果点C 到A 的距离是点C 到B 的距离的2倍,那么我们就称C 是[,]A B 的黄金点.例如,如图①,点A 表示的数为1-,点B 表示的数为2,表示数1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的黄金点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 是[,]B A 的黄金点.(1)如图②,E F 、为数轴上两点,点E 所表示的数为4-,点F 所表示的数为2.数____所表示的点是[,]E F 的黄金点.(2)如图③2所表示的点G 是[,]M N 的黄金点,当点M 在点N 的右侧,且点N 所表示的数为1-时,此时点M 所表示的数为_______________.(3)如图④,,A B 为数轴上两点,点A 所表示的数为10-,点B 所表示的数为50.现有一只电子蜗牛P 从点B 出发,以3个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,,P A 和B 中恰有一个点为其余两点的黄金点.(请直接写出答案)23.计算:202023125|128(3)-+--24.化简(118842(2)0(25)(25)( 3.14)5π- 25.计算:(1(2)+26.(1)计算((2)先化简,再求值:211()(3)31x x x x +-⋅---,其中x =+1.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据23<<a 给二次根式开方,得到()a 23a ---,再计算结果就容易了.【详解】解:∵23<<a ,∴=|2||3|a a ---()a 23a =---a 23a =--+2a 5=-.故选:D【点睛】本题考查了化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.2.C解析:C【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】解:依题意有3030x x -≥⎧⎨-≥⎩,解得3x =,∴2y=,∴239yx==.故选:C.【点睛】本题主要考查了二次根式有意义的条件,正确把握相关性质是解题关键.3.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4===∵34<<,∴748<<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.4.A解析:A【分析】先根据算术平方根的非负性、偶次方的非负性求出a、b的值,再代入化简二次根式即可得.【详解】由算术平方根的非负性、偶次方的非负性得:4030ab-=⎧⎨-=⎩,解得43ab=⎧⎨=⎩,3===,故选:A.【点睛】本题考查了算术平方根的非负性、偶次方的非负性、化简二次根式,熟练掌握算术平方根和偶次方的非负性是解题关键.5.A解析:A【分析】根据二次根式的运算法则分别进行计算,计算出正确结果即可作出判断.【详解】①-===①错误.1122==2=,故②错误.=()2222=-2=,故③错误. ④==④错误.⑤12=⨯122=⨯24=,故⑤错误.==5=,故⑥正确. ∴①②③④⑤⑥中只有⑥1个正确.故选A..【点睛】 本题主要考查二次根式的运算,解题的关键是能熟练运用二次根式的性质和运算法则进行计算.6.C解析:C【分析】由数轴可得a 、b 和a-b 的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a 、b 在数轴上的位置得知:-1<a <0<b <1,∴a-b <0,则原式=b-a-(b-a )=b-a-b+a=0.故选:C .【点睛】考查了数轴及二次根式的化简,解题关键是由数轴得出a 、b 和a-b 的正负情况. 7.B解析:B【分析】与a 的取值范围即可得到答案.【详解】∵a 的取值范围是0a ≥a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件. 8.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.9.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断.【详解】A 、32322754⨯=⨯=,故A 错误;B 4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;D 、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 10.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A ,故A 不是最简二次根式;B =,故B 不是最简二次根式;C 2,故C 不是最简二次根式, 故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.11.B解析:B【分析】 将a =,b =进行分母有理化,再比较即可. 【详解】 解:451451515151a , 46262626262b , ∵<1<∴16+<+∴a b <.故选B .【点睛】本题考查了分母有理化,不等式的性质,实数比较大小等知识点,熟悉相关性质是解题的关键.12.D 解析:D【分析】根据各个选项中的式子进行计算得出正确的结果,从而可以解答本题.【详解】解:B. 3=,故本选项错误;===,故本选项正确.6故选:D.【点睛】本题考查二次根式的乘法运算,解答本题的关键是明确二次根式乘法运算的计算方法.二、填空题13.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化解析:3【分析】根据二次根式的性质进行化简.【详解】=.故答案为:.3【点睛】本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化.14.【分析】利用实数的除法法则计算即可【详解】解:∵∴A=故答案为:【点睛】本题主要考查了实数的运算熟练掌握实数的除法法则是解题关键解析:【分析】利用实数的除法法则计算即可.【详解】解:∵A=∴A==故答案为:【点睛】本题主要考查了实数的运算,熟练掌握实数的除法法则是解题关键.15.【分析】根据二次根式的除法法则运算即可【详解】解:解法一===-4解法二==-4故答案为:-4【点睛】本题考查了二次根式的除法可以直接被开方数相除也可以先化简两个二次根式再相除解析:4-【分析】根据二次根式的除法法则运算即可.【详解】解:解法一,===-4.解法二,=2-, =-4.故答案为:-4.【点睛】本题考查了二次根式的除法,可以直接被开方数相除,也可以先化简两个二次根式再相除. 16.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 17.【分析】设两个正方形AB 的边长是xy (x <y )得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x )x 求出即可【详解】解:设两个正方形AB 的边长是xy (x <y )则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,-,则阴影部分的面积是(y-x)x=-=2-.故答案为:2【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】=====∵+<∴∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.19.【分析】直接利用二次根式的性质绝对值以及负整数指数幂的性质分别化简得出答案【详解】故答案为:【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质正确掌握相关运算法则是解题关键解析:3【分析】直接利用二次根式的性质,绝对值以及负整数指数幂的性质分别化简得出答案.【详解】11|1()2---+21=3=.故答案为:3.【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质,正确掌握相关运算法则是解题关键.20.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题21.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2016(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.22.(1)8或0;(2)32+2;(3)203t s =或403s 或10s . 【分析】(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x 则2,GE GF = 再利用两点之间的距离公式表示,,GE GF 再列绝对值方程,解方程可得答案;(2)如图,设M 对应的数为,y 由数2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,可得:()2221,y -=+再解方程可得答案; (3)由题意得P 对应的数为:503t -,603,PA t =- 3,60PB t AB ==,再分六种情况讨论:当P 是[,]A B 的黄金点,则2,PA PB = 当P 是[,]B A 的黄金点,则2,PB PA = 当B 是[,]P A 的黄金点,则2,PB BA = 当B 是[,]A P 的黄金点,则2,BA BP = 当A 是[,]B P 的黄金点,则2,BA AP = 当A 是[,]P B 的黄金点,则2,AP AB = 分别列方程求解并检验即可得到答案.【详解】解:(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x则2,GE GF =点E 所表示的数为4-,点F 所表示的数为2.4,2,GE x GF x ∴=+=-42224,x x x ∴+=-=-424x x ∴+=-或4240,x x ++-=当424x x +=-时,8,x ∴=当4240x x ++-=时,0,x =所以8或0所表示的点是[,]E F 的黄金点.故答案为:8或0.(2)如图,设M 对应的数为,y2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,2,212,GM GN GN GM y ∴==+=-,()2221,y ∴-=+ 222+2322y ∴=+=+所以M 对应的数为322+,故答案为:32+2.(3)如图, P 的最长运动时间为:()5010=203s --,由题意得P 对应的数为:503t -,()50310603,PA t t =---=- ()505033,PB t t =--=当P 是[,]A B 的黄金点,则2,PA PB =60323,t t ∴-=⨯20,3t ∴= 当P 是[,]B A 的黄金点,则2,PB PA =()32603t t ∴=-40,3t ∴= 当B 是[,]P A 的黄金点,则2,PB BA =()501060AB =--=,3260,t ∴=⨯可得:40,t =不合题意舍去,当B 是[,]A P 的黄金点,则2,BA BP =6023,t =⨯10,t ∴=当A 是[,]B P 的黄金点,则2,BA AP =()602603t ∴=-,10,t ∴=当A 是[,]P B 的黄金点,则2,AP AB =603260,t ∴-=⨯20,t ∴=- 不合题意,舍去,综上:当203t s =或403s 或10s 时,,P A 和B 中恰有一个点为其余两点的黄金点. 【点睛】 本题考查的是数轴上两点之间的距离,数轴上的动点问题,分类讨论的数学思想,绝对值方程的应用,一元一次方程的应用,合并同类二次根式,掌握以上知识是解题的关键.23..【分析】由二次根式的性质、乘方、算术平方根、绝对值、以及立方根进行化简,然后进行计算,即可得到答案.【详解】解:20201|1-=151)(2)3-+-+--=4123--=.【点睛】本题考查了二次根式的性质、乘方、算术平方根、绝对值、以及立方根,解题的关键是熟练掌握运算法则进行化简.24.(1)2)2--.【分析】(1)由二次根式的性质进行化简,然后进行计算即可;(2)由二次根式的混合运算,平方差公式,零指数幂的运算法则进行化简,然后计算即可.【详解】解:(1==(2)0( 3.14)π-=(25)1--=31--+=2--【点睛】本题考查了二次根式的混合运算,二次根式的性质,零指数幂,平方差公式,解题的关键是熟练掌握运算法则进行计算.25.(1)2【分析】(1)把每个二次根式化成最简后再把被开方数相同的项合并;(2)按照乘法分配律去括号,按照除法法则计算二次根式的商,再把所得结果各项化简后合并同类二次根式即可得到最终答案.【详解】解:(1)原式==(241+-=(2)原式=3=(121-+.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则和化简方法是解题关键 .26.(1)2;(2)21x -. 【分析】(1)先由二次根式的性质进行化简,然后计算二次根式的混合运算,即可得到答案;(2)先把分式进行化简,然后把1x =代入计算,即可得到答案. 【详解】解:(1)(=12+÷==2;(2)211()(3)31x x x x +-⋅--- =11[](3)3(1)(1)x x x x x +-•---+ =11()(3)31x x x -•--- =311x x --- =21x -;=当1x=时,原式【点睛】本题考查了二次根式的性质,二次根式的混合运算,分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.。
中国人民大学附属中学初二数学质量检测卷(试卷一)
中国人民大学附属中学初二数学质量检测卷(试卷一)一、选择题:在每小题给出的四个选项中,只有一项符合题意,请把你认为正确的选项填入括号中。
本大题共10小题,共40分.1. 化简二次根式2)3(-等于A. 3B. -3C. ±3D.92. 若实数x 、y 满足2(2)30x y -++=,则xy 的值为A. -5B. 5C. -6D. 63. 在下列图形中,既是中心对称图形又是轴对称图形的是A. 等腰三角形B. 正方形C. 平行四边形D. 等腰梯形 4. 函数11-+=x x y 的自变量x 的取值范围为A. x ≠1 B . x ≥-1 C. x >-1且x ≠1 D . x ≥-1且x ≠1 5. 下列二次根式中,与3是同类二次根式的是 A.13B. 9C. 18D. 246. 如图是一个中心对称图形,点A 为对称中心,若∠C =90°,∠B =30°,BC =1,则BB ′的长为A. 4B.33 C. 332 D. 334 7. 菱形的两条对角线的长分别是6和8,则这个菱形的周长是 A.5 B. 20 C. 24D. 408. 下列命题正确的是A. 平行四边形的对角线相等B. 矩形的对角线互相平分C. 菱形的对角线相等且互相平分D. 等腰梯形的一组对边相等且平行 9. 已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90得1OA ,则点1A 的坐标为A. ()a b -,B. ()a b -,C. ()b a -,D. ()b a -,10. 图1中的“箭头”是以AC 所在直线为对称轴的轴对称图形,90BAD ∠=︒,2AB =.图2到图4是将“箭头”沿虚线剪拼成正方形的过程,则图1中BC 的长为A. 1B.5 C. 2 D. 25二、填空题:请把你认为正确的选项填入表格内.本大题共6小题,每空4分,共36分.11. 计算:b a 527=____________,714=___________,65⨯=____________.12. 在梯形ABCD 中,AD ∥BC ,点E 、F 分别是AB 、CD 的中点,若AD =5,BC =7,则EF = .13. 一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13, ∠B =90°,木板的面积为 .14. 在平行四边形ABCD 中,AB =5,BC =7,∠B 、∠C 的平分线分别交AD 于E 、F ,则EF = .15. 如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,点P 为AB 边上任一点,过P 分别作PE ⊥AC 于E ,PF ⊥BC 于F ,则线段EF 的最小值是 .16. 如图,在平面直角坐标系xOy 中,1B (0,1),2B (0,3),3B (0,6),4B (0,10),…,以12B B 为对角线作第一个正方形1112A B C B ,以23B B 为对角线作第二个正方形2223A B C B ,以34B B 为对角线作第三个正方形3334A B C B ,…,如果所作正方形的对角线1n n B B +都在y 轴上,且1n n B B +的长度依次增加1个单位,顶点n A 都在第一象限内(n ≥1,且n 为整数).那么1A 的纵坐标...为 ;用n 的代数式表示n A 的纵坐标...为 .三、解答题:本大题共7小题,共44分.17. (5分)计算:10112()31(2)3π-+-----.18. (5分)计算:(235)(31)--. 19. (6分)已知:如图,梯形ABCD 中,AD ∥BC ,30B ∠=︒,60C ∠=︒,2AD =,6BC =,点E 为AB 中点,BC EF ⊥于点F ,求EF 的长.20. (6分)列分式方程解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到上海需要的时间.21. (7分) 阅读理解:对于任意正实数a b 、,2()0a b -≥,20a ab b ∴-+≥.2a b ab ∴+≥,只有当a b =时,等号成立.结论:在2a b ab +≥(a b 、均为正实数)中,若ab 为定值p ,则2a b p +≥,只有当a b =时,a b +有最小值2p . 根据上述内容,回答下列问题:(1)若0m >,只有当m = 时,1m m+有最小值 . (2)探索应用:已知(30)A -,,(04)B -,,点P 为双曲线12(0)y x x=>上的任意一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.22. (8分)如图,在平面直角坐标系中,O 为坐标原点,△AOB 为等边三角形,点A 的坐标是(34,0),点B 在第一象限,AC 是∠OAB 的平分线,并且与y 轴交于点E ,点M 为直线AC 上一个动点,把△AOM 绕点A 顺时针旋转,使边AO 与边AB 重合,得到△ABD . (1)求直线OB 的解析式;(2)当点M 与点E 重合时,求此时点D 的坐标;(3)设点M 的纵坐标为m ,求△OMD 的面积S 关于m 的函数解析式.23. (7分)已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的数量关系为 ; (2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.GEBD ACFGE BD ACFGF BDACEGFBDACE图1 图2 图3中国人民大学附属中学初二数学质量检测卷(试卷一)试题答案一、选择题:在每小题给出的四个选项中,只有一项符合题意.本大题共10小题,共40分.题号 1 2 3 4 5 6 7 8 9 10 答案ACBDADBBCD二、填空题:本大题共6小题,共36分. 题号 111213 14 1516答案233aab2730624312522(1)2n +三、解答题:本大题共7小题,共44分.17. 解: 原式=233311--+-…………………………………………4分=33-.…………………………………………5分18. 解:原式=623535--+…………………………………………4分=1173-.…………………………………………5分19. 解:过点A 作AG ∥DC ,交BC 于点G .……………………………1分 ∴ ︒=∠=∠601C . ∵ AD ∥BC ,∴ 四边形AGCD 为平行四边形.……………………………………2分∴ 2CG AD ==. ∵ 6=BC ,∴ 4=BG .……………………………………3分 ∵ 12180B ∠+∠+∠=︒,30B ∠=︒, ∴ ︒=∠902.∴ 在△BAG 中,34232AB =⨯=. ……………………………………4分 又∵ E 为AB 中点,∴ 321==AB BE .……………………………………5分∵ BC EF ⊥于F ,∴ 2321==BE EF .……………………………………6分(若学生使用其他方法,只要解法正确,皆给分.)20. 解:设小明乘坐动车组到上海需要x 小时.……………1分依题意,得6.1621602160⨯+=x x . …………………………3分解得 10=x . ……………………………………4分 经检验:10x =是方程的解,且满足实际意义. ………5分 答:小明乘坐动车组到上海需要10小时. ………6分 21. 解:(1) m = 1 (填1m不扣分),最小值为 2 ; ……………………2分 (2)设12(,)P x x ,则12(,0),(0,)C x D x,123,4CA x DB x∴=+=+, ………………………………………………………3分1112(3)(4)22ABCD S CA DB x x∴=⨯=+⨯+四边形,化简得:92()12S x x=++, ………………………………………………4分 9990,026x x x x x x>>∴+≥⨯=, 只有当9,3x x x==即时,等号成立.…………………………………………………5分 ∴S ≥2×6+12=24.∴S 四边形ABCD 有最小值24. ……………………………………………………6分 此时,P (3,4),C (3,0),D (0,4), ∴ AB =BC =CD =DA =5,∴ 四边形ABCD 是菱形. ……………………………………………………7分 22. 解:(1)B (32,6); …………………………………………………1分OB l :x y 3=. ……………………………………………………2分(2)如图1,由题意x DA ⊥轴,︒=∠=∠30BAD EAO .则点D 的横坐标为34; ……………………………………3分 此时 823===OA AE DA ,即点D (34,8).……………………………4分(3)过M 作x MN ⊥轴,设a MN =,如图2,当4m >时,S =111(2)3(343)432222m m m m m m +⋅--⋅-⋅⋅ 2323m m =-.………………………………………5分如图3,当24m <≤时,由︒=∠30OAM ,∴ a MA 2=,a NA 3=.S =111(433)(2)3432222m m m m m m -⋅++⋅-⋅⋅2323m m =-. ……………………………………………6分 如图4,当02m ≤≤时,S =111(433)(2)3432222m m m m m m -⋅++⋅-⋅⋅2323m m =-+. ……………………………………………7分 如图5,当0m <时,由︒=∠30NAM ,∴ a MA 2=,a NA 3=.S =111432(2)3(433)222m m m m m m ⋅⋅++⋅-+⋅.2323m m =+. ……………………………………………8分∴ ()2223232,323(02),323(0).m m m S m mm m m m ⎧->⎪⎪=-+≤≤⎨⎪+<⎪⎩(四种情况讨论正确一种给1分) 23.(1)GC =EG . ……………………………………………………………1分 (2)如图,延长EG 交CD 于M ,易证△GEF ≌△GMD ,得G 为EM 的中点. 易得CG 为直角△ECM 的斜边上的中线.于是有GC =GE .……………………………………………3分 (3)如图,延长EG 到M ,使EG =GM ,连接CM 、CE .易证△EFG≌△MDG,则EF=DM、∠EFG=∠MDG.∵∠DBE+∠DFE+∠BDF=90°,∴∠DBE+∠GDM+∠BDF=90°.∴∠MDC+∠DBE=45°.∵∠EBC+∠DBE=45°,∴∠EBC=∠MDC.进而易证△CBE≌△CDM,∴EC=CM、∠ECB=∠MCD.易得∠ECM=90°,∴CG为直角△ECM斜边EM的中线.∴EG=GC.………………………………………………………3分其他证法:(1)EG =CG.………………………………………………………1分(2)成立.……………………………………………………………2分证明:过点F作BC的平行线交DC的延长线于点M,连结MG.∴EF=CM,易证EFMC为矩形∴∠EFG=∠GDM.在直角三角形FMD中,∴DG=GF,∴FG=GM=GD.∴∠GMD=∠GDM.∴∠EFG=∠GMD.∴△EFG≌△GCM.∴EG=CG.……………………………………………………………4分(3)成立.取BF的中点H,连结EH,GH,取BD的中点O,连结OG,OC.∵CB=CD,∠DCB=90°,∴12CO BD=.∵DG=GF,1//,.21//,.2GH BD GH BDOG BF OG BF∴=∴=且且∴CO=GH.∵△BEF为等腰直角三角形.∴12EH BF.∴EH=OG.∵四边形OBHG为平行四边形,∴∠BOG=∠BHG.∵∠BOC=∠BHE=90°.∴∠GOC=∠EHG.∴△GOC≌△EHG.∴EG=GC.……………………………………………………………7分(若学生使用其他方法,只要解法正确,皆给分.)。
北京中国人民大学附属中学2021届数学八上期末质量跟踪监视试题
北京中国人民大学附属中学2021届数学八上期末质量跟踪监视试题一、选择题1.下列等式成立的是( )A .0(1)1-=-B .0(1)1-=C .101-=-D .101-=2.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A.B.C. D.3.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣64.下列计算正确的是( )A .(2x)3=2x 3B .(x+1)2=x 2+1C .(x 2)3=x 6D .x 2+x 3=x 55.下列计算正确的是A .a 2+a 2=a 4B .(2a)3=6a 3C .a 9÷a 3=a 3D .(-2a)2·a 3=4a 5 6.下列计算正确的是( ) A.()2363a 2a 6a -⋅=-B.623a a a ÷=C.()()22x y x y x y --+=-D.222(ab 1)a b 2ab 1--=++ 7.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,DE ⊥AC ,垂足为E ,ED 的延长线与直线AB 交于点F ,则图中与∠EDC 相等的角(∠EDC 除外)有( )A .1个B .2个C .3个D .4个8.如图,直线l 是一条河,P ,Q 是两个村庄。
欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )A. B.C. D.9.点P(a-1,-b+2)关于x 轴对称与关于y 轴对称的点的坐标相同,则a ,b 的值分别是( )A.1-,2B.1-,2-C.2-,1D.1,210.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,若AD =3,BE =1,则DE =( )A.1B.2C.3D.411.如图,已知AB =DC ,需添加下列( )条件后,就一定能判定△ABC ≌△DCB .A.AO =BOB.∠ACB =∠DBCC.AC =DBD.BO =CO12.如图是用直尺和圆规作一个角等于已知角,那么能得出的依据是运用全等三角形判定( )A.边边边B.边角边C.角边角D.角角边13.如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°,则∠DOE 的度数为( )A .35°B .45°C .55°D .60° 14.以下列各组线段为边,能组成三角形的是( )A .3cm .4cm .8cmB .8cm ,7cm ,15cmC .5cm ,5cm ,11cmD .11cm ,12cm ,13crn15.如图,图中有四条互相不平行的直线1L 、2L 、3L 、4L 所截出的七个角,关于这七个角的度数关系,下列选项正确的是( )A.∠2=∠4+∠5B.∠3=∠1+∠6C.∠1+∠4+∠7=180°D.∠5=∠1+∠4二、填空题 16.有下列各式:①·x y y x ;②x b y a ÷;③62x x ÷;④23·a a b b.其中,计算结果为分式的是_____.(填序号)17.如图,现有正方形甲1张,正方形乙2张,长方形丙3张,请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,可将多项式2232a ab b ++分解因式为______.【答案】(a+b)(a+2b)18.如图,△ABC 为等腰三角形,AB =AC ,AB >BC ,∠1=∠2≠90°,∠1+∠BAC =180°,点A 、F 、E 、D 在一条直线上,点D 在BC 边上,CD =2BD.若△ABC 的面积为40,求△ABE 与△CDF 的面积之和________19.如图,在七边形ABCDEFG 中,AB ED , 的延长线相交于点O 。
北京市人大附中2025届数学八年级第一学期期末教学质量检测模拟试题含解析
北京市人大附中2025届数学八年级第一学期期末教学质量检测模拟试题模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.下列各式中,正确的是( )A .16=±4B .±16=4 C.3273-=-D.2(4)4-=-2.如图,在ΔABC中,∠BAC=120°,点D是BC上一点,BD的垂直平分线交AB于点E,将ΔACD沿AD折叠,点C恰好与点E重合,则∠B等于( )A.15°B.20°C.25°D.30°3.下列约分正确的有()(1)22a2a33a2a11aa---=+++;(2)()()33a m n1b n m-=-;(3)2xyxy2+=+;(4)a m ab m b+=+A.0个B.1个C.2个D.3个4.在下列各原命题中,其逆命题为假命题的是()A.直角三角形的两个锐角互余B.直角三角形两条直角边的平方和等于斜边的平方C.等腰三角形两个底角相等D.同角的余角相等5.将△ABC的三个顶点坐标的横坐标都乘以-1,并保持纵坐标不变,则所得图形与原图形的关系是()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将原图形沿x 轴的负方向平移了1个单位6.若代数式在实数范围内有意义,则实数x 的取值范围是( )A .x <3B .x >3C .x≠3D .x =37.下列实数中是无理数的是( )A .B .C .0.38D .8.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①3(1)(1)x x x x x +=+- ②2222()x xy y x y -+=-③21(1)1a a a a -+=-+ ④2216(4)(4)x y x y x y -=+-A .1个B .2个C .3个D .4个9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( ) A .中位数是12.7% B .众数是15.3%C .平均数是15.98%D .方差是010.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( ) A .2 B .12 C .-2 D .12-11.如图,在△ABC 中,AB =AD =DC ,∠BAD =26°,则∠C 的度数是( )A .36°B .77°C .64°D .38.5°12.选择计算(﹣4xy 2+3x 2y )(4xy 2+3x 2y )的最佳方法是( ) A .运用多项式乘多项式法则 B .运用平方差公式C .运用单项式乘多项式法则D .运用完全平方公式二、填空题(每题4分,共24分)13.等腰三角形的一个外角是140︒,则其底角是14.如果方程x 3m1x 2x 2-+=--有增根,那么m =______.15.分式2y x ,23x y,14xy 的最简公分母是_______. 16.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x 千米/时,根据题意,可列方程为______________.17.在平行四边形ABCD 中,12AC =,8BD =,AD a =,那么a 的取值范围是______.18.函数y=x –1的自变量x 的取值范围是 .三、解答题(共78分)19.(8分)如图,AB AC =,D 是BC 边的中点,DE AB ⊥于E ,DF AC ⊥于F .(1)求证:BE CF =;(2)若60A ∠=︒,1BE =,求ABC ∆的周长.20.(8分)如图①,△ABC 是等边三角形,点P 是BC 上一动点(点P 与点B 、C 不重合),过点P 作PM ∥AC 交AB 于M ,PN ∥AB 交AC 于N ,连接BN 、CM .(1)求证:PM +PN =BC ;(2)在点P 的位置变化过程中,BN =CM 是否成立?试证明你的结论;(3)如图②,作ND ∥BC 交AB 于D ,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).21.(8分)如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =,若25CAE ∠=︒,求ACF ∠的度数.22.(10分)(1)计算:2x (x ﹣4)+3(x ﹣1)(x+3);(2)分解因式:x 2y+2xy+y .23.(10分)已知12y y y =+,1y 与1x +成反比例,2y 与2x 成正比例,且当x=1时,y=1;当x=1时,y=-1.求y 关于x 的函数解析式,并求其图像与y 轴的交点坐标.24.(10分)解分式方程:-2x x ﹣1=234-x . 25.(12分)计算:(x-y ) 2-(y +2x )( y -2x ).26.小华在八年级上学期的数学成绩如下表所示(单位:分):类别 平时期中 考试 期末 考试测验1测验2 测验3 课题学习 成绩8870 98 86 90 87 (1)计算小华该学期平时的数学平均成绩;(2)如果该学期数学的总评成绩根据如图所示的权重计算,请计算出小华该学期数学的总评成绩.参考答案一、选择题(每题4分,共48分)1、C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C、3=-,此项正确;D、4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.2、B【分析】由题意根据折叠的性质得出∠C=∠AED,再利用线段垂直平分线的性质得出BE=DE,进而得出∠B=∠EDB,以=以此分析并利用三角形内角和求解.【详解】解:∵将△ACD沿AD折叠,点C恰好与点E重合,∴∠C=∠AED,∵BD的垂直平分线交AB于点E,∴BE=DE,∴∠B=∠EDB,∴∠C=∠AED=∠B+∠EDB=2∠B,在△ABC中,∠B+∠C+∠BAC=∠B+2∠B+120°=180°,解得:∠B=20°,故选:B.【点睛】本题考查折叠的性质和线段垂直平分线上的点到线段两端点的距离相等的性质,熟记相关性质是解题的关键.3、B【分析】原式各项约分得到结果,即可做出判断.【详解】(1)()()()2a-3a+1a-3a+1a+1=,故此项正确;(2)()()()()3333a m n a m n a=bb n m b m n--=----,故此项错误;(3)2xy xy21xy2xy2++==++,故此项错误;(4)a mb m++不能约分,故此项错误;综上所述答案选B【点睛】此题考查了约分,约分的关键是找出分子分母的公因式.4、D【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.5、B【解析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【详解】根据对称的性质,得三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.故选B.【点睛】这一类题目是需要识记的基础题.考查的侧重点在于学生的识记能力,解决的关键是对知识点的正确记忆.6、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.7、A【解析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【详解】解: A、π是无限不循环小数,是无理数;B、=2是整数,为有理数;C、0.38为分数,属于有理数;D. 为分数,属于有理数.故选:A.【点睛】本题考查的是无理数,熟知初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解答此题的关键.8、B【解析】试题解析:①x3+x=x(x2+1),不符合题意;②x2-2xy+y2=(x-y)2,符合题意;③a2-a+1不能分解,不符合题意;④x2-16y2=(x+4y)(x-4y),符合题意,故选B9、B【解析】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、15(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.10、A【分析】根据“代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项”可知x 2系数等于0,所以将代数式整理计算后合并同类项,即可得出x 2的系数,令其等于0解答即可.【详解】原式=322222x mx x x mx ++--- ()()322122x m x m x =+-+--∵代数式不含x 2项∴m -2=0,解得m=2故答案选A.【点睛】本题考查的是多项式的乘法和不含某项的问题,知道不含某项,代表某项的系数为0是解题的关键.11、D【分析】根据等腰三角形两底角相等求出∠B =∠ADB ,根据等边对等角可得∠C =∠CAD ,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB =AD ,∠BAD =26°,∴∠B=12(180°-∠BAD )=12(180°-26°)=77°, ∵AD =DC ,∴∠C =∠CAD ,在△ABC 中,∠BAC +∠B +∠C =180°,即26°+∠C +∠C +77°=180°,解得:∠C =38.5°,故选:D .【点睛】本题主要考查等腰三角形的性质:等腰三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.12、B【解析】直接利用平方差公式计算得出答案.【详解】选择计算(﹣4xy 2+3x 2y )(4xy 2+3x 2y )的最佳方法是:运用平方差公式. 故选:B .【点睛】此题主要考查了多项式乘法,正确应用公式是解题关键.二、填空题(每题4分,共24分)13、70°或40°【解析】解:当140°外角为顶角的外角时,则其顶角为:40°,则其底角为:(180°-40°)÷2 =70°,当140°外角为底角的外角时,则其底角为:180°﹣140°=40°.故答案为70°或40°.点睛:本题主要考查等腰三角形的性质和三角形内角和定理的应用,掌握等腰三角形的两底角相等和三角形三个内角的和为180°是解题的关键.14、-1【解析】分式方程去分母转化为整式方程,把x2=代入整式方程求出m的值即可.【详解】解:去分母得:x3x2m-+-=,由分式方程有增根,得到x2=,代入整式方程得:m1=-,故答案为1-【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15、11xy1.【分析】取各系数的最小公倍数,各字母的最高次幂.1,3,4的最小公倍数为11,x的最高次幂为1,y的最高次幂为1,则得出最简公分母.【详解】解:分母1x,3y1,4xy的最简公分母为11xy1,故答案为11xy1.【点睛】本题考查了最简公分母,关键是掌握最简公分母的定义,分两个部分确定.16、14801480370x x=++【解析】试题解析:设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程:1480x=148070x++3,故答案为1480x=148070x++3.17、2<a<8.【分析】根据平行四边形性质求出OD,OA,再根据三角形三边关系求出a 的取值范围.【详解】因为平行四边形ABCD 中,12AC =,8BD =, 所以114,622OD BD AO AC ====, 所以6-4<AD<6+2,即2<a<8.故答案为:2<a<8.【点睛】考核知识点:平行四边形性质.理解平行四边形对角线互相平分是关键.18、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1. 考点:二次根式有意义三、解答题(共78分)19、(1)详见解析;(2)1.【分析】(1)先利用等腰三角形等边对等角得出∠B =∠C ,再利用AAS 证明△BDE ≌△CDF ,即可得出结论;(2)先证明△ABC 是等边三角形,然后根据含30°的直角三角形的性质求出等边三角形的边长,则周长可求.【详解】(1)证明:∵AB =AC∴∠B =∠C ,∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠BED =∠CFD =90°,∵D 是BC 边的中点,∴BD =CD ,在△BDE 和△CDF 中,B C BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF (AAS )∴BE =CF ;(2)解:∵AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴∠B =∠C =60°,∵∠BED =∠CFD =90°,∴∠BDE =∠CDF =30°,∴BD=2BE=2=CD,∴BC=4,∴△ABC周长=4×3=1.【点睛】本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形的判定及等边三角形的判定方法是解题的关键.20、(1)见解析;(2)结论成立,理由见解析;(3)见解析【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN=BC;(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF即可.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴△BMP,△CNP是等边三角形,∴∠BPM=∠CPN=60°,PN=PC,PN=PC,∴∠BPN=∠MPC,∴△BPN≌△MPC,∴PM=PB,PN=PC,∵BP+PC=BC,∴PM+PN=BC;(2)BN=CM总成立,理由:由(1)知△BPN≌△MPC,∴BN=CM;(3)解:如图③即为所求.作ND ∥BC 交AB 于N ,作ME ∥BC 交AC 于M ,作EF ∥AB 交BC 于F ,连接DF ,作直线AH ⊥BC 交BC 于H ,同(1)可证△AND ,△AME ,△BPM ,△CEF 都是等边三角形,∴D 与N ,M 与E ,B 与C 关于AH 对称.∴BM=CE ,∴BM=CF ,∴P 与F 关于AH 对称,∴所做图形是轴对称图形.【点睛】本题属于三角形综合题,考查了等边三角形的性质与判定,全等三角形的判定和性质,轴对称图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21、65°.【分析】先运用等腰直角三角形性质求出45ACB ABC ∠=∠=︒,再用HL 定理可直接证明ABE CBF ∆≅∆,进而可得 20BAE BCF ∠=∠=︒;由ACF ACB BCF ∠=∠+∠即可解决问题.【详解】证明:AB BC =,90ABC ∠=︒,45ACB BAC ∴∠=∠=︒,∵25CAE ∠=︒,∴20BAE ∠=︒在Rt ABE ∆与Rt CBF ∆中,AE CF AB BC =⎧⎨=⎩, ()ABE CBF HL ∴∆≅∆.20BAE BCF ∴∠=∠=︒;452065ACF ACB BCF ∴∠=∠+∠=︒+︒=︒.【点睛】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.22、(1)5x 1﹣1x ﹣9(1)y (x+1)1【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(1)直接提取公因式y ,再利用完全平方公式分解因式得出答案.【详解】(1)原式=1x 1﹣8x+3(x 1+1x ﹣3)=1x 1﹣8x+3x 1+6x ﹣9=5x 1﹣1x ﹣9;(1)原式=y (x 1+1x+1)=y (x+1)1.【点睛】此题主要考查了多项式乘以多项式以及公式法分解因式,正确掌握相关运算法则是解题关键.23、261y x x =-+;函数图像与y 轴交点的坐标为(0,6) 【分析】根据题意设出函数关系式,把2x =时,y=-1;当x=1时,y=1代入y 与x 间的函数关系式便可求出未知数的值,从而求出其解析式;再令0x =,即可求出点的坐标.【详解】解:∵1y 与1x +成反比例,2y 与2x 成正比例, ∴设111k y x =+,222y k x =,其中12k k 、都是非零常数 又12y y y =+,所以2121k y k x x =++ 当x=1时,y=1;当x=1时,y=-1. ∴121222423k k k k ⎧+=⎪⎪⎨⎪+=-⎪⎩,解得1261k k =⎧⎨=-⎩ ∴261y x x =-+ 令0x =,得6y =.∴函数图像与y 轴交点的坐标为(0,6).【点睛】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解题关键是掌握正比例函数的定义条件:正比例函数y=kx 的定义条件是:k 为常数且k≠0,自变量次数为1和反比例函数解析式的一般式y=k x(k≠0)中,特别注意不要忽略k≠0这个条件.24、x =1-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:x 2+2x ﹣x 2+4=3, 解得:x =﹣12, 经检验x =﹣12是分式方程的解. 【点睛】本题考查了分式方程的解法,解分式方程时注意检验.25、5x 2-2xy .【解析】试题分析:先分别用完全平方公式和平方差公式计算,再去括号合并同类项.试题解析:原式=x 2-2xy +y 2-(y 2-4x 2)=x 2-2xy+y 2-y 2+4x 2=5x 2-2xy .26、(1)85.5;(2)87.75【解析】(1)用算术平均数计算平时平均成绩即可;(2)根据扇形统计图所示的权重用加权平均数计算该学期的总评成绩即可.【详解】(1)887098864+++=85.5(分), 答:小华该学期平时的数学平均成绩为85.5分;(2)85.5×10%+90×30%+87×60%=87.75(分), 答:小华该学期数学的总评成绩为87.75分.【点睛】本题主要考查了加权平均数的计算方法.若n 个数x 1,x 2…x k 的权分别是w 1,w 2…w k ,那么这组数的平均数为112212k k kx w x w x w w w w ++⋯+++⋯+ (w 1+w 2+…w k =n).。
北京市人大附中2025届数学八上期末质量检测模拟试题含解析
北京市人大附中2025届数学八上期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,∠A 、∠1、∠2的大小关系是( )A .∠A >∠1>∠2B .∠2>∠1>∠AC .∠A >∠2>∠1D .∠2>∠A >∠12.下列各组数中,是勾股数的是( ) A .7,8,9B .6,8,11C .5,12,14D .3,4,53.函数y 2x -x 的取值范围是( ) A .x >2B .x ≤2C .x ≥2D .x ≠24.一个圆柱形容器的容积为V 3m ,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x 立方米/分钟,则下列方程正确的是( ) A .2V Vt x x+= B .4V V t x x += C .11224V Vt x x⋅+⋅= D .24V V t x x+= 5.如图,ABC 中,90,30,ACB B CD AB ∠=︒∠=︒⊥于D ,AE 平分CAB ∠交CD 于F ,点E 到AB 的距离为4cm ,则CEF △的周长为( )A .4cmB . 8cmC .12cmD .1?6cm 6.下列运算正确的是( )A .235325x x x += B .0( 3.14)0π-= C .α8÷α4= α2D .()236xx =7.216x kx ++是一个完全平方式,则k 等于( ) A .8±B .8C .4±D .48.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为A .2300230033x 1.3x += B .2300230033x x 1.3x +=+ C .2300460033x x 1.3x+=+ D .4600230033x x 1.3x+=+ 9.下列代数式中,属于分式的是( ) A .-3B .a b --C .1xD .34a b -10.某种产品的原料提价,因而厂家决定对产品进行提价,现有3种方案:①第一次提价%m ,第二次提价%n ;②第一次提价%n ,第二次提价%m ;③第一次、第二次提价均为%2m n+.其中m 和n 是不相等的正数.下列说法正确的是( ) A .方案①提价最多 B .方案②提价最多 C .方案③提价最多D .三种方案提价一样多11.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC ≌DEF 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC12.已知2310x x -+=,则223x x -++值为( ) A .10B .9C .12D .3二、填空题(每题4分,共24分)13.若5mn =,222339m mn n m n +-=+,且3m n ≠-,则22m n +=__________. 14.已知2100x x +-=,则()()()2213121x x x --+--的值为_________. 15.若关于x 的分式方程=3的解是负数,则字母m 的取值范围是 ___________ .16.在Rt △ABC 中,90︒∠=C ,13AB =,12AC =,则BC =_____.17.如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若BC =4,则BE +CF =__.18.点(2,9)P -与点Q 关于x 轴对称,则点Q 的坐标是__________. 三、解答题(共78分)19.(8分)我们知道,如果两个三角形全等,则它们面积相等,而两个不全等的三角形,在某些情况下,可通过证明等底等高来说明它们的面积相等,已知ABC ∆与DEC ∆是等腰直角三角形,90ACB DCE ∠∠==,连接AD 、BE . (1)如图1,当90BCE ∠=时,求证ACD BCE S S =△△(2)如图2,当090BCE <∠<时,上述结论是否仍然成立?如果成立,请证明;如果不成立,说明理由.(3)如图3,在(2)的基础上,如果G 点为AD 的中点,连接CG ,延长CG 交BE 于F ,试猜想GF 与BE 的位置关系,并证明你的结论.20.(8分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)七年级 a 85 b S七年级2八年级85 c 100 160(1)根据图示填空:a=,b=,c=;(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.21.(8分)已知:如图,9×9的网格中(每个小正方形的边长为1)有一个格点△ABC.(1)利用网格线,画∠CAB的角平分线AQ,交BC于点Q,画BC的垂直平分线,交射线AQ于点D;(2)连接CD、BD,则∠CDB=°.22.(10分)八(2)班分成甲、乙两组进行一分钟投篮测试,并规定得6分及以上为合格,得9分及以上为优秀,现两组学生的一次测试成绩统计如下表: 成绩(分) 4 5 6 7 8 9 甲组人数(人) 1 2 5 2 1 4 乙组人数(人)114522(1)请你根据上表数据,把下面的统计表补充完整,并写出求甲组平均分的过程; 统计量 平均分 方差 众数 中位数 合格率 优秀率 甲组 2.56 6 80.0% 26.7% 乙组6.81.76786.7%13.3%(2)如果从投篮的稳定性角度进行评价,你认为哪组成绩更好?并说明理由; (3)小聪认为甲组成绩好于乙组,请你说出支持小聪观点的理由;23.(10分)在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值.24.(10分)如图,已知B ,D 在线段AC 上,且AD =CB ,BF =DE ,∠AED =∠CFB =90°求证:(1)△AED ≌△CFB ; (2)BE ∥DF .25.(12分)解决下列两个问题:(1)如图(1),在ABC ∆中,3AB =,5BC =,EF 垂直平分BC ,点P 在直线EF 上,直接写出PA PB +的最小值,并在图中标出当PA PB +取最小值时点P 的位置; (2)如图(2),点M ,N 在BAC ∠的内部,请在BAC ∠的内部求作一点P ,使得点P 到BAC ∠两边的距离相等,且使PM PN =.(尺规作图,保留作图痕迹,无需证明).26.如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.参考答案一、选择题(每题4分,共48分) 1、B【分析】根据三角形的一个外角大于任何一个和它不相邻的内角解答. 【详解】∵∠1是三角形的一个外角,∴∠1>∠A ,又∵∠2是三角形的一个外角,∴∠2>∠1, ∴∠2>∠1>∠A . 故选:B . 【点睛】此题主要考查了三角形的内角和外角之间的关系,熟练掌握,即可解题. 2、D【分析】满足a 2+b 2=c 2的三个正整数,称为勾股数,由此求解即可. 【详解】A 、∵72+82≠92,∴此选项不符合题意; B 、∵62+82≠112,∴此选项不符合题意; C 、∵52+122≠142,此选项不符合题意; D 、∵42+32=52,∴此选项符合题意. 故选:D . 【点睛】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;… 3、B【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据2x 0x 2-≥⇒≤.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件. 4、C【分析】根据题意先求出注入前一半容积水量所需的时间为12Vx⋅,再求出后一半容积注水的时间为124V x⋅,故可列出方程. 【详解】根据题意得出前一半容积水量所需的时间为12Vx⋅,后一半容积注水的时间为124V x⋅, 即可列出方程为11224V V t x x⋅+⋅= , 故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程. 5、C【分析】由角平分线的性质易得CE=点E 到AB 的距离等于4cm ,根据等角的余角相等可得CEF CFE ∠=∠得CF CE 4cm ==,再证明△CEF 是等边三角形即可得到结论.【详解】∵ACB 90∠=︒,CD AB ⊥于点D ,AE 平分CAB ∠ ∴CE=点E 到AB 的距离等于4cm ,BAE CAE ∠=∠AEC CAE 90∠︒∠+=,AFD BAE 90∠+∠=︒, AEC AFD ∴∠=∠, CFE AFD ∠=∠, CEF CFE ∴∠=∠,CF CE 3cm ∴==,∵CD AB ⊥, ∴90CDB ∠=︒, ∵30B ∠=︒, ∴60BCD ∠=︒, ∵CF CE =∴△CEF 是等边三角形∴△CEF 的周长为:4×3=12cm . 故选:C . 【点睛】此题主要考查了角平分线的性质和等边三角形的判定,注意利用直角三角形的性质. 6、D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A .2332x x +两项不是同类项,不能合并 ,错误; B .0( 3.14)1π-=,错误; C .844÷a a a =,错误; D .()623x x =,正确【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则. 7、A【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可得出结论. 【详解】解:∵216x kx ++是完全平方式,∴()222222448164x x kx x k x x x ++±=++==±+ 解得:8k =± 故选A . 【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键. 8、B【解析】试题分析:因为设甲车间每天能加工x 个,所以乙车间每天能加工1.3x 个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程:2300230033x x 1.3x+=+.故选B . 9、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解: -3;a b --;34a b -是整式;1x符合分式的概念,是分式 故选:C 【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数. 10、C【分析】方案①和②显然相同,用方案③的单价减去方案①的单价,利用完全平方公式及多项式乘以多项式的法则化简,去括号合并后再利用完全平方公式变形,根据m 不等于n 判定出其差为正数,进而确定出方案③的提价多.【详解】解:设%=m a ,%n b =,则提价后三种方案的价格分别为: 方案①:(1)(1)(1)a b a b ab ++=+++; 方案②:(1)(1)(1)a b a b ab ++=+++;方案③:2222(1)(1)24a b a ab b a b ++++=+++, 方案③比方案①提价多:222(1)(1)4a ab b a b a b ab +++++-+++ 222114a ab b a b a b ab ++=+++----2224a ab b ab ++=-21()4a b =-, m 和n 是不相等的正数,a b ∴≠,∴21()04a b ->, ∴方案③提价最多.故选:C . 【点睛】此题考查了整式混合运算的应用,比较代数式大小利用的方法为作差法,熟练掌握完全平方公式是解本题的关键. 11、B【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【详解】A.添加E ABC ∠∠=,根据AAS 能证明ABC ≌DEF ,故A 选项不符合题意.B.添加DE AB =与原条件满足SSA ,不能证明ABC ≌DEF ,故B 选项符合题意;C.添加AB//DE ,可得E ABC ∠∠=,根据AAS 能证明ABC ≌DEF ,故C 选项不符合题意;D.添加DF//AC ,可得DFE ACB ∠∠=,根据AAS 能证明ABC ≌DEF ,故D 选项不符合题意, 故选B . 【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 12、A【分析】由题意根据等式和分式的基本性质以及完全平方公式对式子进行变形,进而整体代入求解. 【详解】解:由222221133()1x x x x x x-++=++=++,可知0x ≠, 已知2310x x -+=,等式两边同时除以x 可得:13x x+=, 将13x x +=,代入221()13110x x ++=+=, 所以22310x x -++=.故选:A.【点睛】本题考查完全平方公式,结合等式和分式的基本性质运用整体替换的思想进行分析是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据2223(3)()m mn n m n m n +-=+-=3m+9n 求出m-n=3,再根据完全平方公式即可求解.【详解】∵2223(3)()m mn n m n m n +-=+-=3m+9n=3(m+3n )又3m n ≠-∴m-n=3∴22m n +=(m-n )2+2mn=9+10=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用. 14、12【分析】首先分别利用完全平方公式和多项式相乘的法则去掉括号,然后合并同类项即可得到最简形式,接着利用整体思想代入即可求出结果.【详解】解:原式=4x 2-4x+1-3x 2+5x+2-1=x 2+x+2,∵x 2+x-10=0,∴x 2+x=10,∴原式=10+2=12;【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键,用了整体代入思想.15、m>-3且m≠-2【解析】先解关于x的分式方程,求得x的值,然后再依据“解是负数”建立不等式求m的取值范围.【详解】原方程整理得:2x-m=3(m+1),解得:x=-(m+3),∵x<0,∴-(m+3)<0,即m>-3,∵原方程是分式方程,∴x≠-1,即-(m+3)≠-1,解得:m≠-2,综上所述:m的取值范围是m>-3,且m≠-2,故答案为:m>-3,且m≠-2【点睛】此题考查了分式方程的解,解答本题时,易漏掉分母不等于0这个隐含的条件,熟练掌握解分式方程的方法及分式有意义的条件是解题关键.16、1【分析】在Rt△ABC中,∠C=90°,则AB2=AC2+BC2,根据题目给出的AB,AC的长,则根据勾股定理可以求BC的长.【详解】∵AB=13,AC=12,∠C=90°,∴==1.故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.17、1.【详解】试题分析:先设BD=x,则CD=4-x,根据△ABC是等边三角形,得出∠B=∠C=60°,所以∠BDE=∠CDF=30°,再利用含30°的直角三角形三边的关系(30°角所对的直角边等于斜边的一半),求出BE =12BD=2x和CF=12CD=42x-,即可得出BE+CF=2x +42x -=1. 考点:等边三角形18、(2,9)--【分析】已知点()2,9P -,根据两点关于x 轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q 的坐标.【详解】∵点(2,9P -)与点Q 关于x 轴对称,∴点Q 的坐标是:()2,9--.故答案为()2,9--【点睛】考查关于x 轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.三、解答题(共78分)19、 (1)证明见解析;(2)成立,理由见解析;(3) GF ⊥BE ,证明见解析【分析】(1)由△ABC 和△DEC 是等腰直角三角形,即可得出相应的线段相等,从而可以证明出ACD BCE S S =△△;(2)作AG 垂直于DC 的延长线于G ,作BH 垂直于CE ,垂足为H ,利用题目已知条件可证的△ACG ≌△BCH ,从而知道AG=BH ,即可得出ACD BCE S S =△△;(3) 延长CG 到点H ,连接AH ,根据题目已知可证的△AGH ≌△DGC ,得到CD=AH ,∠AHG=∠HCD ,进一步证的△AHC ≌△ECB ,得到∠CEB=∠AHC=∠HCD ,最后利用互余即可证得GF ⊥BE .【详解】证明:(1)∵△ABC 和△DEC 是等腰直角三角形∴AC=CB ,DC=CE ,∠ACB=∠DCE=90°∵∠BCE=90°∴∠ACD=90° ∵12ACD S AC CD =⨯⨯△,1=2BCE S BC CE ⨯⨯△ ∴ACD BCE S S =△△(2)成立如图所示,作AG 垂直于DC 的延长线于G ,作BH 垂直于CE ,垂足为H∵∠DCE=90°∴∠GCE=90°∵BH ⊥CE∴∠BHC=90°∴GD ∥BH∴∠GCB=∠CBH∵∠GCB+∠ACG=90°,∠BCH+∠CBH=90°∴∠BCH=∠ACG在△ACG 和△BCH 中BCH ACG AC BCAGC BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACG ≌△BCH∴AG=BH ∵12ACD S AG CD =⨯⨯△,1=2BCE S BH CE ⨯⨯△,CE=CD ∴ACD BCE S S =△△(3)GF ⊥BE如图所示,延长CG 到点H ,使得HG=GC ,连接AH∵点G 为AD 的中点∴AG=GD在△AGH 和△DGCAG GD HG GCHGA CGD =⎧⎪=⎨⎪∠=∠⎩∴△AGH ≌△DGC∴CD=AH ,∠AHG=∠HCD∴AH ∥CD∴∠HAC+∠ACD=180°∵∠ACB=∠DCE=90°∴∠ACD+∠BCE=180°∴∠HAC=∠BCE∵△DCE 是等腰三角形∴CD=CE∴CE=AH在△AHC 和△ECB 中AH CE AC BCHAC BCE =⎧⎪=⎨⎪∠=∠⎩∴△AHC ≌△ECB∴∠CEB=∠AHC=∠HCD∵∠HCD+∠FCE=90°∴∠FCE+∠CEF=90°∴∠CFE=90°∴GF ⊥BE【点睛】本题主要考查的是全等三角形的综合运用,正确的掌握全等三角形的判定方法是解题的关键.20、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.【分析】(1)根据平均数、中位数、众数的概念分析计算即可;(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可; (3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.【详解】解:(1)七年级的平均分a =75+80+85+85+100=855,众数b =85,八年级选手的成绩是:70,75,80,100,100,故中位数c=80;故答案为85,85,80;(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,故七年级决赛成绩较好;(3)S2七年级=2222(7585)(8085)2(8585)(10085)705-+-+⨯-+-=(分2),S2七年级<S2八年级∴七年级代表队选手成绩比较稳定.【点睛】本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.21、(1)见解析;(2)1【分析】(1)根据网格线的结构特征,直接画出角平分线和垂直平分线,即可;(2)根据勾股定理的逆定理,即可得到答案.【详解】(1)如图所示,射线AQ即为∠BAC的平分线,DE所在直线即为BC的垂直平分线;(2)由网格线的结构特征可得:CD2=12+52=26, BD2=12+52=26,BC2=42+62=52,∴CD2+ BD2= BC2,∴△BCD是直角三角形,即:∠BDC=1°,故答案为:1.【点睛】本题主要考查角平分线和垂直平分线的定义以及勾股定理的逆定理,掌握角平分线和垂直平分线的定义以及勾股定理的逆定理是解题的关键.22、(1)6.8,6,7,求甲组平均分的过程见解析;(2)乙组的成绩更好,理由:乙组的方差小于甲组的方差,所以乙组的成绩稳定;(3)从优秀率看,甲组的成绩比乙组的成绩好【分析】(1)根据加权平均数,众数,中位数的定义求解即可;(2)根据方差越小成绩越稳定即可判断;(3)从优秀率看甲的成绩比乙的成绩好.【详解】解:(1)甲组的平均分=41526572819415⨯+⨯+⨯+⨯+⨯+⨯=6.8(分), 甲组得6分的人数最多,有5人,故众数为6分,将乙组的成绩按从小到大的顺序排序后,第8名的成绩为7分,故乙组的中位数是7分, 故答案为:6.8,6,7;(2)乙组的成绩更好,理由:乙组的方差小于甲组的方差,所以乙组的成绩稳定; (3)从优秀率看,甲组的成绩比乙组的成绩好.【点睛】本题考查方差,平均数,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)①E ,F . ②()3,3-;(2)1k =或2k =.【分析】(1)①找到E 、F 、G 中到x 、y 轴距离最大为3的点即可;②先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可;(2)先分析出直线上的点到x 、y 轴距离中有4的点,再根据“等距点”概念进行解答即可.【详解】解:(1)①点(3,1)A -到x ,y 轴的距离中的最大值为3,∴与点A 是“等距点”的点是E ,F .②点B 坐标中到x ,y 轴距离中,至少有一个为3的点有(3,9),(3,3),-(9,3)--, 这些点中与点A 符合“等距点”的定义的是()3,3-.故答案为①E ,F ;②()3,3-.(2)1(1,3),T k ---2(4,43)T k -两点为“等距点”.若|43|4k -≤,则43k =--或43k -=--,解得7k =-(舍去)或1k =.若|43|4k ->时,则|43||3|k k -=--,解得0k =(舍去)或2k =.根据“等距点”的定义知1k =或2k =符合题意.即k 的值是1或2.【点睛】本题主要考查了坐标的性质,此题属于阅读理解类型题目,首先要读懂“等距点”的定义,而后根据概念解决问题,需要学生能很好的分析和解决问题.24、(1)详见解析;(2)详见解析.【分析】(1)根据HL 证明Rt △AED ≌Rt △CFB 得出结论;(2)证明△DBE ≌△BDF ,则∠DBE =∠BDF ,可得出结论.【详解】(1)∵∠AED =∠CFB =90°,在Rt △AED 和Rt △CFB 中,AD BC DE BF =⎧⎨=⎩, ∴Rt △AED ≌Rt △CFB (HL );(2)∵△AED ≌△CFB ,∴∠BDE =∠DBF ,在△DBE 和△BDF 中,DE BF BDE DBF BD DB =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△BDF (SAS ),∴∠DBE =∠BDF ,∴BE ∥DF .【点睛】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质是解决问题的关键.25、(1)1,图见解析;(2)作图见解析【分析】(1)根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP+BP 的最小值,求出AC 长度即可得到结论.(2)作∠AOB 的平分线OE ,作线段MN 的垂直平分线GH ,GH 交OE 于点P ,点P 即为所求.【详解】解:(1)点P 的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为1.故答案为:1.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE 于点P,则点P即为所求.【点睛】本题考查基本作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用两点之间线段最短解决最短问题.26、(1)证明见解析;(1)69°.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.【详解】(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∵∠A=∠B,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∵A BAE BEAEC BED∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△BED(ASA).(1)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=41°,∴∠C=∠EDC=(180°-41°)÷1=69°,∴∠BDE=∠C=69°.【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.。
北京市海淀区中国人民大学附属中学2021-2022学年八年级上学期期中数学试题(解析版)
【解析】
【分析】根据线段垂直平分线定理可得 , ,然后表示出△ADE的三边之和,等量代换可得其周长等于 的长;
【详解】解: △ABC的边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,
, ,(线段垂直平分线上的点到线段两端点的距离相等),
的周长 (等量代换),
故选: .
【点睛】此题主要考查了线段垂直平分线定理,熟练掌握线段垂直平分线定理是关键,是一道基础题目.
A.28°B.30°C.32°D.35°
【答案】C
【解析】
【分析】根据三角形内角和定理求得∠BAC=74°,根据旋转的性质可得A′B=AB,∠A′=∠BAC=74°,再根据三角形内角和定理即可求解.
【详解】解:∵∠ABC=66°,∠C=40°,
∴∠BAC=180°-∠ABC-∠C=180°-66°-40°=74°.
【详解】解:A、不是轴对称图形,不符合题意;
B、不是轴对称图形,不符合题意;
C、是轴对称图形,符合题意;
D、不 轴对称图形,不符合题意;
故选C.
【点睛】本题主要考查轴对称图形的概念,熟练掌握轴对称图形的概念是解题的关键.
2.在平面直角坐标系中,点A(-2,3)关于y轴对称的点的坐标()
A. (2,3)B. (2,-3)C. (-2,-3)D. (3,2)
2021-2022学年北京人大附中八年级(上)期中数学试卷
一.选择题:(每小题3分,共30分)
1.2021年3月20日三星堆遗址的最新考古发现又一次让世界为之瞩目,下列三星堆文物图案中,是轴对称图形的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】根据轴对称图形的概念“把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图象关于这条直线成轴对称”可直接排除选项.
中国人民大学附属中学初中数学八年级上期末经典题(培优)
一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.C4.C5.C6.A7.B8.B9.A10.A11.D12.D13.C14.C15.C二、填空题16.【解析】【分析】根据三角形的外角的性质判断即可【详解】解:根据三角形的外角的性质得∠2>∠1∠1>∠A∴∠2>∠1>∠A故答案为:∠2>∠1>∠A【点睛】本题考查了三角形的外角的性质掌握三角形的一个17.2(a+2)(a﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2)故答案为:2(a+2)(a﹣2)【点睛】本题考查了因式分解一18.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详19.40°【解析】试题分析:延长DE交BC于F点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°20.xy(x﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy(x2-2x+1)=xy(x-1)2故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合21.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因22.【解析】因为原计划每天铺设xm管道所以后来的工作效率为(1+20)x根据题意得23.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角24.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD根据题意可知AEDB是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角25.-1【解析】【分析】由于式子复合平方差公式的特点则由平方差公式展开可得()-2即可解答【详解】由平方差公式得()-2由二次根式的性质得3-2计算得-1【点睛】此题考查平方差公式的性质解题关键在于利用三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:解析丢失2.A解析:解析丢失3.C解析:解析丢失4.C解析:解析丢失5.C解析:解析丢失6.A解析:解析丢失7.B解析:解析丢失8.B解析:解析丢失9.A解析:解析丢失10.A解析:解析丢失11.D解析:解析丢失12.D解析:解析丢失13.C解析:解析丢失14.C解析:解析丢失15.C解析:解析丢失二、填空题16.【解析】【分析】根据三角形的外角的性质判断即可【详解】解:根据三角形的外角的性质得∠2>∠1∠1>∠A∴∠2>∠1>∠A故答案为:∠2>∠1>∠A【点睛】本题考查了三角形的外角的性质掌握三角形的一个解析:解析丢失17.2(a+2)(a﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2)故答案为:2(a+2)(a﹣2)【点睛】本题考查了因式分解一解析:解析丢失18.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:解析丢失19.40°【解析】试题分析:延长DE交BC于F点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°解析:解析丢失20.xy(x﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy(x2-2x+1)=xy(x-1)2故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:解析丢失21.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:解析丢失22.【解析】因为原计划每天铺设xm管道所以后来的工作效率为(1+20)x根据题意得解析:解析丢失23.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:解析丢失24.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD 根据题意可知AEDB是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角解析:解析丢失25.-1【解析】【分析】由于式子复合平方差公式的特点则由平方差公式展开可得()-2即可解答【详解】由平方差公式得()-2由二次根式的性质得3-2计算得-1【点睛】此题考查平方差公式的性质解题关键在于利用解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。
北京中国人民大学附属中学2021届数学八年级上学期期末质量跟踪监视试题
北京中国人民大学附属中学2021届数学八年级上学期期末质量跟踪监视试题一、选择题1.当x=2时,下列各式的值为0的是( )A .2232x x x --+B .12x -C .249x x --D .21x x +- 2.如果关于x 的分式方程1222x m x x++=--有非负整数解,且一次函数2y x m =++不经过四象限,则所有符合条件的m 的和是( ). A.0 B.2 C.3D.5 3.如果2(1)3,|1|1x y +=-=,那么代数式22225x x y y ++-+的值是( )A .7B .9C .13D .14 4.下列因式分解正确的是( ) A .a 2+8ab+16b 2=(a+4b )2B .a 4﹣16=(a 2+4)(a 2﹣4)C .4a 2+2ab+b 2=(2a+b )2D .a 2+2ab ﹣b 2=(a ﹣b )2 5.据测定,某种杨絮纤维的直径约为0.0000105m v ,该数值用科学记数法表示为( )A .51.0510⨯B .51.0510-⨯C .41.0510-⨯D .710510-⨯ 6.下列各式中,从左到右的变形是因式分解的是( )A .x 2 + 2 x + 3 = (x + 1)2 + 2B .(x + y )(x - y ) = x 2 - y 2C .x 2 - y 2 = (x - y )2D .2 x + 2 y = 2(x + y )7.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A .25B .25或32C .32D .198.如图,已知△ABC 是边长为3的等边三角形,点D 是边BC 上的一点,且BD =1,以AD 为边作等边△ADE ,过点E 作EF ∥BC ,交AC 于点F ,连接BF ,则下列结论中①△ABD ≌△BCF ;②四边形BDEF 是平行四边形;③S 四边形BDEF =2;④S △AEF )A .1个B .2个C .3个D .4个9.下列世界博览会会徽图案中是轴对称图形的是( )A .B .C .D .10.若△ABC ≌△MNP ,∠A=∠M ,∠C=∠P ,AB=4cm ,BC=2cm ,则 NP=( )A .2cmB .3cmC .4cmD .6cm11.如图,AD =AE .补充下列一个条件后,仍不能判定△ABE ≌△ACD 的是( )A.∠B =∠CB.AB =ACC.∠AEB =∠ADCD.BE =CD12.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x+1,若这两个三角形全等,则x 的值为( )A .2B .2或C .或D .2或或13.如图,△ABC 中,BD ⊥AC ,AE ⊥BC ,AE 、BD 交于点O ,连接CO ,∠ABC=54°,∠ACB=48°,则∠COD=( )A .51°B .66°C .78°D .88°14.如图,在△ABC 中,∠C =78°,沿图中虚线截去∠C ,则∠1+∠2=( )A .282°B .180°C .360°D .258°15.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是( )A.4B.5C.6D.8 二、填空题16.若关于x 的分式方程2155a x x +=--有增根,则a 的值为__________. 17.若关于x 的代数式x 2﹣2(m ﹣3)x+9(m 是常数)是一个多项式的平方,则m=_____.18.如图,在△ABC 中,∠C=90°,∠B=20°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于P ,连接AP 并延长交BC 于点D ,则∠ADB=________.19.若三角形的三个内角满足∠B ﹣∠A ﹣∠C=40°,则∠B=________.20.如图,在等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,且DE 长为1,则BC 长为______.三、解答题21.某市为创建生态文明建设城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,甲队单独完成这项工程,刚好如期完成,每施工一天,需付工程款1.5万元;乙工程队单独完成这项工程要比规定工期多用a 天,乙工程队每施工一天需付工程款1万元.若先由甲、乙两队一起合作b 天,剩下的工程由乙队单独做,也正好如期完工(1)当a =6,b =4时,求工程预定工期的天数.(2)若a ﹣b =2.a 是偶数①求甲队、乙队单独完成工期的天数(用含a 的代数式表示)②工程领导小组有三种施工方案:方案一:甲队单独完成这项工程;方案二:乙队单独完成这项工程;方案三:先由甲、乙两队一起合作b 天,剩下的工程由乙队单独做.为了节省工程款,同时又能如期完工,请你选择一种方案,并说明理由.22.分解因式:2x 2﹣12x+18.23.如图,在正方形网格中,△ABC 的三个顶点分别在正方形网格的格点上,△A′B′C′和△ABC 关于直线l 成轴对称,其中A′点的对应为A 点.(1)请画出△A′B′C′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A′B′C′的面积.24.如图,AD 是△ABC 的高线,在BC 边上截取点E ,使得CE =BD ,过E 作EF ∥AB ,过C 作CP ⊥BC 交EF 于点P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国人民大学附属中学初二数学质量检测卷(试卷一)一、选择题:在每小题给出的四个选项中,只有一项符合题意,请把你认为正确的选项填入括号中。
本大题共10小题,共40分. 1. 化简二次根式2)3(-等于 A. 3B. -3C. ±3D.92. 若实数x 、y 满足2(2)30x y -++=,则xy 的值为A. -5B. 5C. -6D. 63. 在下列图形中,既是中心对称图形又是轴对称图形的是A. 等腰三角形B. 正方形C. 平行四边形D. 等腰梯形 4. 函数11-+=x x y的自变量x 的取值范围为A. x ≠1 B . x ≥-1 C. x >-1且x ≠1 D . x ≥-1且x ≠1 5. 下列二次根式中,与3是同类二次根式的是 A.13B. 9C.18D. 246. 如图是一个中心对称图形,点A 为对称中心,若∠C =90°,∠B =30°,BC =1,则BB ′的长为A. 4B.33 C.332 D.3347. 菱形的两条对角线的长分别是6和8,则这个菱形的周长是 A. 5 B. 20 C. 24 D. 408. 下列命题正确的是A. 平行四边形的对角线相等B. 矩形的对角线互相平分C. 菱形的对角线相等且互相平分D. 等腰梯形的一组对边相等且平行 9. 已知点A 的坐标为()a b ,,O 为坐标原点,连结O A ,将线段O A 绕点O 按逆时针方向旋转90得1O A ,则点1A 的坐标为A. ()a b -,B. ()a b -,C. ()b a -,D. ()b a -,10. 图1中的“箭头”是以AC 所在直线为对称轴的轴对称图形,90B A D ∠=︒,2A B =.图2到图4是将“箭头”沿虚线剪拼成正方形的过程,则图1中B C 的长为A. 1B. 5C. 2D. 25二、填空题:请把你认为正确的选项填入表格内.本大题共6小题,每空4分,共36分. 11. 计算:b a 527=____________,714=___________,65⨯=____________.12. 在梯形ABCD 中,AD ∥BC ,点E 、F 分别是AB 、CD 的中点,若AD =5,BC =7,则EF = .13. 一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13, ∠B =90°,木板的面积为 .14. 在平行四边形ABCD 中,AB =5,BC =7,∠B 、∠C 的平分线分别交AD 于E 、F ,则EF = .15. 如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,点P 为AB 边上任一点,过P 分别作PE ⊥AC 于E ,PF ⊥BC 于F ,则线段EF 的最小值是 .16. 如图,在平面直角坐标系xOy 中,1B (0,1),2B (0,3),3B (0,6),4B (0,10),…,以12B B 为对角线作第一个正方形1112A B C B ,以23B B 为对角线作第二个正方形2223A B C B ,以34B B 为对角线作第三个正方形3334A B C B ,…,如果所作正方形的对角线1n n B B +都在y 轴上,且1n n B B +的长度依次增加1个单位,顶点n A 都在第一象限内(n ≥1,且n 为整数).那么1A 的纵坐标...为 ;用n 的代数式表示n A 的纵坐标...为 .三、解答题:本大题共7小题,共44分. 17. (5分)计算:10112()31(2)3π-+-----.18. (5分)计算:(235)(31)--.19. (6分)已知:如图,梯形ABCD 中,AD ∥BC ,30B ∠=︒,60C ∠=︒,2AD =,6B C =,点E 为AB 中点,BC EF ⊥于点F ,求EF 的长.20. (6分)列分式方程解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到上海需要的时间. 21. (7分) 阅读理解:对于任意正实数a b 、,2()0a b -≥,20a ab b ∴-+≥. 2a b ab ∴+≥,只有当a b =时,等号成立.结论:在2a b ab +≥(a b 、均为正实数)中,若a b 为定值p ,则2a b p +≥,只有当a b =时,a b +有最小值2p .根据上述内容,回答下列问题:(1)若0m >,只有当m = 时,1m m+有最小值 .(2)探索应用:已知(30)A -,,(04)B -,,点P 为双曲线12(0)y x x=>上的任意一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D .求四边形A B C D 面积的最小值,并说明此时四边形A B C D 的形状.22. (8分)如图,在平面直角坐标系中,O 为坐标原点,△AOB 为等边三角形,点A 的坐标是(34,0),点B 在第一象限,AC 是∠OAB 的平分线,并且与y 轴交于点E ,点M 为直线AC 上一个动点,把△AOM 绕点A 顺时针旋转,使边AO 与边AB 重合,得到△ABD . (1)求直线OB 的解析式;(2)当点M 与点E 重合时,求此时点D 的坐标;(3)设点M 的纵坐标为m ,求△OMD 的面积S 关于m 的函数解析式.23. (7分)已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的数量关系为 ;(2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.GEBD ACFGE BD ACFGF BDACEGFBDACE图1 图2 图3中国人民大学附属中学初二数学质量检测卷(试卷一)试题答案一、选择题:在每小题给出的四个选项中,只有一项符合题意.本大题共10小题,共40分.题号 1 2 3 4 5 6 7 8 9 10 答案ACBDADBBCD二、填空题:本大题共6小题,共36分. 题号 111213 14 1516答案 233aab2730624312522(1)2n +三、解答题:本大题共7小题,共44分. 17. 解: 原式=233311--+-…………………………………………4分=33-.…………………………………………5分18. 解:原式=623535--+…………………………………………4分=1173-.…………………………………………5分19. 解:过点A 作AG ∥DC ,交B C 于点G .……………………………1分 ∴ ︒=∠=∠601C .∵ AD ∥BC ,∴ 四边形AGCD 为平行四边形.……………………………………2分∴ 2C G A D ==.∵ 6=BC ,∴ 4=BG .……………………………………3分 ∵ 12180B ∠+∠+∠=︒,30B ∠=︒, ∴ ︒=∠902. ∴ 在△BAG 中,34232AB =⨯=. ……………………………………4分 又∵ E 为AB 中点,∴ 321==AB BE .……………………………………5分∵ BC EF ⊥于F ,∴ 2321==BE EF .……………………………………6分(若学生使用其他方法,只要解法正确,皆给分.)20. 解:设小明乘坐动车组到上海需要x 小时.……………1分 依题意,得6.1621602160⨯+=x x. …………………………3分解得 10=x . ……………………………………4分 经检验:10x =是方程的解,且满足实际意义. ………5分 答:小明乘坐动车组到上海需要10小时. ………6分 21. 解:(1) m = 1 (填1m不扣分),最小值为 2 ; ……………………2分(2)设12(,)P x x,则12(,0),(0,)C x D x ,123,4CA x D B x∴=+=+, ………………………………………………………3分1112(3)(4)22ABC D S C A D B x x ∴=⨯=+⨯+四边形,化简得:92()12S x x =++, ………………………………………………4分 9990,026x x x xxx >>∴+≥⨯= ,只有当9,3x x x==即时,等号成立.…………………………………………………5分 ∴S ≥2×6+12=24.∴S 四边形ABCD 有最小值24. ……………………………………………………6分此时,P (3,4),C (3,0),D (0,4),∴ AB =BC =CD =DA =5,∴ 四边形ABCD 是菱形. ……………………………………………………7分 22. 解:(1)B (32,6); …………………………………………………1分OB l :x y 3=. ……………………………………………………2分(2)如图1,由题意x DA ⊥轴,︒=∠=∠30BAD EAO .则点D 的横坐标为34; ……………………………………3分此时 823===OAAE DA ,即点D (34,8).……………………………4分(3)过M 作x MN ⊥轴,设a MN =, 如图2,当4m >时,S =111(2)3(343)432222m m m m m m +⋅--⋅-⋅⋅2323m m =-.………………………………………5分如图3,当24m <≤时,由︒=∠30OAM ,∴ a MA 2=,a NA 3=.S =111(433)(2)3432222m m m m m m -⋅++⋅-⋅⋅2323m m =-. ……………………………………………6分如图4,当02m ≤≤时,S =111(433)(2)3432222m m m m m m -⋅++⋅-⋅⋅2323m m =-+. ……………………………………………7分如图5,当0m <时,由︒=∠30NAM ,∴ a MA 2=,a NA 3=.S =111432(2)3(433)222m m m m m m ⋅⋅++⋅-+⋅.2323m m =+. ……………………………………………8分∴ ()2223232,323(02),323(0).m m m S m mm m m m ⎧->⎪⎪=-+≤≤⎨⎪+<⎪⎩(四种情况讨论正确一种给1分) 23. (1)GC =EG . ……………………………………………………………1分 (2)如图,延长EG 交CD 于M ,易证△GEF ≌△GMD ,得G 为EM 的中点.易得CG 为直角△ECM 的斜边上的中线.于是有GC =GE .……………………………………………3分 (3)如图,延长EG 到M ,使EG =GM ,连接CM 、CE .易证△EFG ≌△MDG ,则EF =DM 、∠EFG =∠MDG . ∵∠DBE +∠DFE +∠BDF =90°,∴∠DBE +∠GDM +∠BDF =90°. ∴∠MDC +∠DBE =45°. ∵∠EBC +∠DBE =45°, ∴∠EBC =∠MDC . 进而易证△CBE ≌△CDM , ∴EC =CM 、∠ECB =∠MCD . 易得∠ECM =90°, ∴CG 为直角△ECM 斜边EM 的中线.∴EG =GC .………………………………………………………3分其他证法:(1)EG =CG . ………………………………………………………1分 (2)成立. ……………………………………………………………2分证明:过点F 作BC 的平行线交DC 的延长线于点M ,连结MG . ∴EF =CM ,易证EFMC 为矩形 ∴∠EFG =∠GDM . 在直角三角形FMD 中, ∴DG =GF , ∴FG =GM =GD . ∴∠GMD =∠GDM . ∴∠EFG =∠GMD . ∴△EFG ≌△GCM .∴EG =CG . ……………………………………………………………4分 (3)成立.取BF 的中点H ,连结EH ,GH ,取BD 的中点O ,连结OG ,OC .∵CB =CD ,∠DCB =90°,∴12C O BD =.∵DG =GF ,1//,.21//,.2G H BD G H BD O G BF O G BF ∴=∴=且且∴CO=GH.∵△BEF为等腰直角三角形.∴12E H B F.∴EH=OG.∵四边形OBHG为平行四边形,∴∠BOG=∠BHG.∵∠BOC=∠BHE=90°.∴∠GOC=∠EHG.∴△GOC≌△EHG.∴EG=GC.……………………………………………………………7分(若学生使用其他方法,只要解法正确,皆给分.)。