高一对数函数综合训练

合集下载

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。

全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练

全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练

全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练单选题1、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A2、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ),它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W ,而将信噪比SN 从1000提升至5000,则C 大约增加了( )(附:lg2≈0.3010) A .20%B .23%C .28%D .50% 答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解. 将信噪比SN 从1000提升至5000时,C 大约增加了Wlog 2(1+5000)−Wlog 2(1+1000)Wlog 2(1+1000)=log 25001−log 21001log 21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.3、设函数f (x )=lg (x 2+1),则使得f (3x −2)>f (x −4)成立的x 的取值范围为( )A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x<−1或x>32,故选:D.4、Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e−0.23(t−53),其中K为最大确诊病例数.当I(t∗)=0.95K 时,标志着已初步遏制疫情,则t∗约为()(ln19≈3)A.60B.63C.66D.69答案:C分析:将t=t∗代入函数I(t)=K1+e−0.23(t−53)结合I(t∗)=0.95K求得t∗即可得解.∵I(t)=K1+e−0.23(t−53),所以I(t∗)=K1+e−0.23(t∗−53)=0.95K,则e0.23(t∗−53)=19,所以,0.23(t∗−53)=ln19≈3,解得t∗≈30.23+53≈66.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5、若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2D .a <b 2 答案:B分析:设f(x)=2x +log 2x ,利用作差法结合f(x)的单调性即可得到答案.设f(x)=2x +log 2x ,则f(x)为增函数,因为2a +log 2a =4b +2log 4b =22b +log 2b所以f(a)−f(2b)= 2a +log 2a −(22b +log 22b)= 22b +log 2b −(22b +log 22b) =log 212=−1<0,所以f(a)<f(2b),所以a <2b .f(a)−f(b 2)= 2a +log 2a −(2b 2+log 2b 2)= 22b +log 2b −(2b 2+log 2b 2)= 22b −2b 2−log 2b , 当b =1时,f(a)−f(b 2)=2>0,此时f(a)>f(b 2),有a >b 2当b =2时,f(a)−f(b 2)=−1<0,此时f(a)<f(b 2),有a <b 2,所以C 、D 错误. 故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题. 6、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43, 所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).7、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0, 所以(12)a+(12)b=1,故选:B .8、若2x =3,2y =4,则2x+y 的值为( ) A .7B .10C .12D .34 答案:C分析:根据指数幂的运算性质直接进行求解即可. 因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12, 故选:C9、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.10、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1 x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.填空题11、已知a=lg5,用a表示lg20=__________.答案:2−a分析:直接利用对数的运算性质求解因为a=lg5,所以lg20=lg1005=lg100−lg5=2−a,所以答案是:2−a12、函数y=a x+1(a>0,a≠1)恒过定点___________.答案:(−1,1)分析:利用指数型函数的特征,求解函数恒过的定点坐标.当x+1=0,即x=−1时,y=a0=1,所以y=a x+1(a>0,a≠1)恒过定点(−1,1).所以答案是:(−1,1)13、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题14、已知a 12+a−12=3,求下列各式的值.(1)a+a−1;(2)a2+a−2;(3)a 32+a−32+2a2+a−2+3.答案:(1)7(2)47(3)25分析:(1)将所给的等式两边平方,整理即可求得a+a−1的值;(2)将(1)中所得的结果两边平方,整理即可求得a2+a−2的值;(3)首先利用立方差公式可得a 32+a−32=(a12+a−12)(a−1+a−1),然后结合(1)(2)的结果即可求得代数式的值.(1)将a 12+a−12=3两边平方,得a +a −1+2=9,所以a +a −1=7. (2)将a +a −1=7两边平方,得a 2+a −2+2=49, 所以a 2+a 2=47. (3)∵a 12+a −12=3,a +a −1=7,a 2+a 2=47, ∴a 32+a−32=(a 12)3+(a −12)3=(a 12+a −12)(a −1+a −1)=3×(7−1)=18,∴a 32+a−32+2a 2+a −2+3=18+247+3=25.15、已知函数f (x )=log a (a x −1)(a >0,a ≠1) (1)当a =12时,求函数f (x )的定义域;(2)当a =2时,存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立,求实数m 的取值范围. 答案:(1)(−∞,0);(2)m <log 279,.分析:(1)利用真数大于0,即可求解定义域;(2)令g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),由题意可知m <g (x )max ,令t =2x −12x +1,求解t 的取值范围,然后可求g (x )max ,从而求出m 的取值范围.(1)当a =12时,f (x )=log 12(12x −1),故:12x −1>0,解得:x <0,故函数f (x )的定义域为(−∞,0);(2)由题意知,f (x )=log 2(2x −1)(a >1),定义域为x ∈(0,+∞),易知f (x )为x ∈(0,+∞)上的增函数, 设g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),x ∈[1,3],设t =2x −12x +1=1−22x +1,x ∈[1,3],故2x +1∈[3,9],t =1−22x +1∈[13,79],因为g (x )=log 2t 单调递增,则g (x )∈[log 213,log 279].因为存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立故:m <g (x )max ,即m <log 279.。

学年高中数学课时练习22对数函数的概念对数函数y=log2x的图像和性质北师大版必修1

学年高中数学课时练习22对数函数的概念对数函数y=log2x的图像和性质北师大版必修1

对数函数的概念对数函数y=log2x的图像和性质【基础全面练】(20分钟35分)1.下列函数是对数函数的是( )A.y=ln x B.y=ln (x+1)C.y=log x e D.y=log x x【解析】选A.对数函数底数不能是自变量x,所以C,D都不对.对数函数的真数是自变量x,所以B不对.2.函数f(x)=11-x+lg (1+x)的定义域是( )A.(-∞,-1) B.(1,+∞)C.(-1,1)∪(1,+∞) D.(-∞,+∞)【解析】选C.由真数1+x>0得,x>-1.又因为1-x≠0,所以x>-1,且x≠1.3.对数函数的图像过点M(16,4),则此对数函数的解析式为( )A.y=log4x B.y=log14xC.y=log12x D.y=log2x【解析】选D.设f(x)=log a x(a>0,a≠1),过点M(16,4),所以log a16=4,所以a=2.4.若f(x)=log a x+(a2-4a-5)是对数函数,则a=________.【解析】由已知得a2-4a-5=0,又因为a>0,a≠1,所以a=5.答案:55.若函数y=f(x)是函数y=5x的反函数,则f(f(5))=________.【解析】因为y=f(x)与y=5x互为反函数,所以f(x)=log5x.所以f(f(5))=f(log55)=f(1)=log51=0.答案:06.若函数y=log a(x+a)(a>0且a≠1)的图像过点(-1,0).(1)求a的值.(2)求函数的定义域.【解析】(1)将(-1,0)代入y=log a(x+a)(a>0,a≠1)中,有0=log a(-1+a),则-1+a=1,所以a=2.(2)由(1)知y=log2(x+2),由x +2>0,解得x >-2,所以函数的定义域为{x|x >-2}.【综合突破练】 (30分钟 60分)一、选择题(每小题5分,共25分)1.若对数函数f(x)满足f(9)=2,则f(3)=( )A .0B .1C .3D .4【解析】选B.设对数函数为f(x)=log a x(a>0,a≠1),所以2=log a 9.所以a =3.所以解析式为y =log 3x.所以f(3)=log 33=1.2.函数y =2-log 2x 的定义域是( )A .(3,+∞)B .(-∞,4]C .(4,+∞)D .(0,4]【解析】选D.由2-log 2x≥0,得log 2x≤log 24,所以x≤4,又因为x>0,所以0<x≤4.【误区警示】本题易忽视真数x>0,从而误选B.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y|y =⎝ ⎛⎭⎪⎫12x ,x ∈[0,+∞) ,N ={}y|y =log 2x ,0<x≤1 ,则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1)【解析】选C.因为M =(0,1],N =(-∞,0],所以M ∪N =(-∞,1].4.函数y =log 2x ,x ∈⎣⎢⎡⎦⎥⎤14,4 的值域为( ) A .[2,4]B .[-1,2]C .[-2,2]D .[-2,1]【解析】选C.因为y =log 2x 是增函数,所以y min =log 214=-2,y max =log 24=2. 所以,其值域为[-2,2].5.已知f(x)是函数y =log 2x 的反函数,则y =f(1-x)的图像是( )【解析】选C.函数y =log 2x 的反函数为y =2x ,故f(x)=2x ,于是f(1-x)=21-x =⎝ ⎛⎭⎪⎫12 x -1 ,此函数在R 上为减函数,其图像过点(0,2),所以C 选项中的图像符合要求.【光速解题】本题求出f(x)=2x后,令x =-1,x =1,计算y =f(1-x)的函数值,从而得到答案.二、填空题(每小题5分,共15分)6.已知函数f(x)=log 3x +log 13x ,则f( 3 )=________.【解析】f( 3 )=log 3 3 +log 13 3 =12 -12=0. 答案:07.已知函数f(x)=log a (x +2),若图象过点(6,3),f(x)=________,f(30)=________.【解析】代入(6,3),得3=log a (6+2)=log a 8,即a 3=8,所以a =2,所以f(x)=log 2(x +2),所以f(30)=log 232,令log 232=m ,所以2m=32=25,所以m =5.答案:log 2(x +2) 5【误区警示】该题的解析式为f(x)=log a (x +2),解题过程中注意别写成了f(x)=log 2x.8.设f(x)是奇函数,当x>0时,f(x)=log 2x ,则当x<0时,f(x)=________.【解析】当x<0时,-x>0,f(-x)=log 2(-x).又因为f(x)为奇函数,所以f(-x)=-f(x)=log 2(-x),故当x<0时,f(x)=-log 2(-x).答案:-log 2(-x)【补偿训练】函数f(x)=log 2x 在区间[a ,2a](a>0)上最大值与最小值之差为________.【解析】因为f(x)是增函数,所以f(x)max =f(2a)=log 22a ,f(x)min =f(a)=log 2a. 所以f(x)max -f(x)min =log 22a -log 2a =log 22=1.答案:1三、解答题(每小题10分,共20分)9.求下列函数的定义域:(1)y =log 3(1-x). (2)y =1log 2x. 【解析】(1)因为当1-x>0,即x<1时,函数y =log 3(1-x)有意义,所以函数y =log 3(1-x)的定义域为(-∞,1).(2)由log 2x≠0,得x>0且x≠1.所以函数y =1log 2x的定义域为{x|x>0,且x≠1}. 10.(1)已知f(x)=log 3x ,若f(x)=-2,求x 的值.(2)若log 2m<0<log 2n ,求m ,n 满足的关系.【解析】(1)因为f(x)=-2,所以f(x)=log 3x =-2,由指数、对数式互化得x =3-2=19. (2)因为log 2m<0<log 2n ,所以log 2m<log 21<log 2n ,f(x)=log 2x 在区间(0,+∞)上是增加的,所以0<m<1<n.【应用创新练】设方程2x+x -3=0的根是a ,方程log 2x +x -3=0的根为b ,求a +b 的值.【解析】将方程整理得2x =3-x ,log 2x =3-x.由图可知,a 是指数函数y =2x 的图像与直线y =3-x 的交点A 的横坐标,b 是对数函数y =log 2x 的图像与直线y =3-x 交点B 的横坐标.由于函数y =log 2x 与y =2x互为反函数,它们的图像关于直线y =x 对称,因此,A ,B 两点也关于直线y =x 对称.于是点A 为(a ,b),点B 为(b ,a).由于点A 、点B 都在直线y =-x +3上,故有b =-a +3或a =-b +3,即a +b =3.【补偿训练】已知对数函数f(x)=(m 2-m -1)·log (m +1)x ,求f(27)的值.【解析】因为f(x)是对数函数,故⎩⎪⎨⎪⎧m 2-m -1=1,m +1>0,m +1≠1,解得m =2,所以f(x)=log 3x ,f(27)=log 327=3.。

新高考数学复习考点知识提升专题训练30---对数函数的性质及应用

新高考数学复习考点知识提升专题训练30---对数函数的性质及应用

新高考数学复习考点知识提升专题训练(三十) 对数函数的性质及应用(一)基础落实1.(多选)若log a 2<log b 2<0,则下列结论正确的是( ) A .0<b <1 B .0<a <1 C .a >b D .b >a >1解析:选ABC 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2,所以a >b . 2.若集合A ={}x |3x 2+x -2≤0,则A ∩B =( )A.⎣⎡⎦⎤-1,23B.⎣⎡⎦⎤23,1 C.⎝⎛⎦⎤12,1D.⎝⎛⎦⎤12,23解析:选D A ={}x |3x 2+x -2≤0=⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤23, B ={x |log 2(2x -1)≤0}={x |0<2x -1≤1}=⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1, ∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤23. 3.已知函数y =log a (2-ax )在(-1,1)上是x 的减函数,则a 的取值范围是( ) A .(0,2) B .(1,2) C .(1,2] D .[2,+∞)解析:选C4.已知a =log 23,b =log 2e ,c =ln 2,则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .b >a >c D .a >b >c解析:选D 因为函数y =log 2x ,y =ln x 在定义域上单调递增,又3>e >2,所以log 23>log 2e >log 22=1,所以a >b >1,ln e >ln 2,所以c <1,所以a >b >c .5.(多选)对于函数f (x )=lg ⎝⎛⎭⎫1|x -2|+1,下列说法正确的有( )A .f (x +2)是偶函数B .f (x +2)是奇函数C .f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D .f (x )没有最小值解析:选AD 对A 、B ,因为f (x )=lg ⎝ ⎛⎭⎪⎫1|x -2|+1,所以f (x +2)=lg ⎝⎛⎭⎫1|x |+1,又f (-x +2)=lg ⎝ ⎛⎭⎪⎫1|-x |+1=lg ⎝⎛⎭⎫1|x |+1, 故f (x +2)为偶函数,故A 正确,B 错误. 对C ,因为f (x )=当x ∈(2,+∞)时,因为y =1x -2在x ∈(2,+∞)为减函数,故y =1x -2+1为减函数,所以y =lg ⎝ ⎛⎭⎪⎫1x -2+1在区间(2,+∞)为减函数.故C 错误. 对D ,因为当x ∈(2,+∞)时,y =lg ⎝ ⎛⎭⎪⎫1x -2+1为减函数.故当x →+∞时,y →0.故f (x )没有最小值.故D 正确. 6.已知a =e-0.3,b =log 20.6,c =log 3π,则a ,b ,c 从大到小的顺序是________.解析:因为0<e -0.3<e 0=1,log 20.6<log 21=0,log 3π>log 33=1,所以c >a >b . 答案:c >a >b7.设0<a <1,函数f (x )=log a (2a x -2),则使得f (x )<0的x 的取值范围为________.解析:由于y =log a x (0<a <1)在(0,+∞)上为减函数,则2a x -2>1,即a x >32.由于0<a <1,可得x <log a 32.答案:⎝⎛⎭⎫-∞,log a 32 8.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.解析:由得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8) =ln[-(x -1)2+9], 设u =-(x -1)2+9, 又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数, 因此f (x )的单调递减区间是(1,4). 答案:(1,4)9.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4; (3)log 0.57,log 0.67;(4)log 31.25,log 20.8.解:(1)因为函数y =log 23x 是(0,+∞)上的减函数,且0.5<0.6,所以log 230.5>log 230.6.(2)因为函数y =log 1.5x 是(0,+∞)上的增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.(3)因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5, 即log 0.67<log 0.57.(4)因为log 31.25>log 31=0,log 20.8<log 21=0,所以log 31.25>log 20.8. 10.已知函数f (x )=log a (ax 2-x ). (1)若a =12,求f (x )的单调区间;(2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围. 解:(1)当a =12时,f (x )=log 12⎝⎛⎭⎫12x 2-x , 由12x 2-x >0,得x 2-2x >0,解得x <0或x >2, 所以函数的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数的增区间为(-∞,0), 减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象为开口向上,对称轴为x =12a的抛物线,①当0<a <1时,要使函数f (x )在区间[2,4]上是增函数,则g (x )=ax 2-x 在[2,4]上单调递减,且g (x )min =ax 2-x >0,②当a >1时,要使函数f (x )在区间[2,4]上是增函数,则g (x )=ax 2-x 在[2,4]上单调递增,且g (x )min =ax 2-x >0,综上可得,a >1.所以实数a 的取值范围为(1,+∞).(二)综合应用1.设函数则满足不等式f (x )+f ⎝⎛⎭⎫x -14>2的x 的取值范围是( ) A.⎝⎛⎭⎪⎫-23+2578,+∞B.⎝⎛⎦⎤78,1C.⎝⎛⎦⎤1,54D.⎝⎛⎭⎫78,+∞ 解析:选D 由已知f (x )是R 上的增函数, 当x >1时,f (x )>2,当x -14>1,即x >54,不等式显然成立,当x ≤1时,f (x )+f ⎝⎛⎭⎫x -14=4x -2+4⎝⎛⎭⎫x -14-2>2,x >78,所以78<x ≤1, 当1<x ≤54时,f (x )=log 2(x +3)>2,f ⎝⎛⎭⎫x -14=4⎝⎛⎭⎫x -14-2=4x -3>0,不等式f (x )+f ⎝⎛⎭⎫x -14>2成立,综上,满足不等式的x 的取值范围为⎝⎛⎭⎫78,+∞. 2.(多选)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1),则( ) A .函数f (x )+g (x )的定义域为(-1,1) B .函数f (x )+g (x )的图象关于y 轴对称 C .函数f (x )+g (x )在定义域上有最小值0 D .函数f (x )-g (x )在区间(0,1)上是减函数解析:选AB ∵f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1), ∴f (x )+g (x )=log a (x +1)+log a (1-x ),由x +1>0且1-x >0得-1<x <1,故A 对;由f (-x )+g (-x )=log a (-x +1)+log a (1+x )=f (x )+g (x )得函数f (x )+g (x )是偶函数, 其图象关于y 轴对称,B 对;∵-1<x <1,∴f (x )+g (x )=log a (1-x 2),∵y =1-x 2在[0,1)上单调递减,由复合函数的单调性可知,当0<a <1时,函数f (x )+g (x )在[0,1)上单调递增,有最小值f (0)+g (0)=log a (1-0)=0;当a >1时,函数f (x )+g (x )在[0,1)上单调递减,无最小值,故C 错;∵f (x )-g (x )=log a (x +1)-log a (1-x ),当0<a <1时,f (x )=log a (x +1)在(0,1)上单调递减,g (x )=log a (1-x )在(0,1)上单调递增,函数f (x )-g (x )在(0,1)上单调递减;当a >1时,f (x )=log a (x +1)在(0,1)上单调递增, g (x )=log a (1-x )在(0,1)上单调递减,函数f (x )-g (x )在(0,1)上单调递增,D 错.故选A 、B.3.已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是________.解析:因为f (a )=f (b ),所以|lg a |=|lg b |,又b >a >0,所以lg a <0,即a <1,lg b >0,即b >1,所以0<a <1<b ,|lg a |=-lg a ,|lg b |=lg b ,即lg a +lg b =lg(ab )=0,所以b =1a ,则a +2b =a +2a.令g (x )=x +2x ,由对勾函数的性质知函数g (x )在(0,1)上单调递减,所以g (a )>1+21=3,即a +2b的取值范围是(3,+∞).答案:(3,+∞)4.已知f (x )=log 12(x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数,求实数a 的取值范围. 解:(1)当a =-1时,f (x )=log 12(x 2+x +1). ∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴log 12 (x 2+x +1)≤log 1234=2-log 23,∴f (x )的值域为(-∞,2-log 23]. ∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上递减, 在⎝⎛⎭⎫-12,+∞上递增,y =log 12x 在(0,+∞)上递减,∴f (x )的单调递增区间为⎝⎛⎦⎤-∞,-12, 单调递减区间为⎝⎛⎭⎫-12,+∞.(2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又y =log 12u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立.解得-1≤a ≤12.故实数a 的取值范围是⎣⎡⎦⎤-1,12. 5.已知函数f (x 2-1)=log mx 22-x 2(m >0,且m ≠1). (1)判断f (x )的奇偶性;(2)解关于x 的不等式f (x )≥log m (3x +1). 解:(1)x +11-x >0⇒(x +1)(1-x )>0⇒-1<x <1.f (x 2-1)=log mx 22-x 2(m >0,且m ≠1), 设x 2-1=t ,则f (t )=log mt +11-t(-1<t <1), 所以f (x )=log m x +11-x (-1<x <1),f (-x )=log m -x +11+x =log m ⎝ ⎛⎭⎪⎫x +11-x -1=-f (x ),故函数f (x )为奇函数. (2)3x +1>0⇒x >-13.不等式f (x )≥log m (3x +1),即f (x )=log m x +11-x≥log m (3x +1)⎝⎛⎭⎫-13<x <1.当m >1时:x +11-x ≥3x +1且-13<x <1,解得x ∈⎝⎛⎦⎤-13,0∪⎣⎡⎭⎫13,1. 当0<m <1时:x +11-x ≤3x +1且-13<x <1,解得x ∈⎣⎡⎦⎤0,13. 综上所述:当m >1时,解集为⎝⎛⎦⎤-13,0∪⎣⎡⎭⎫13,1; 当0<m <1时,解集为⎣⎡⎦⎤0,13.(三)创新发展(多选)某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以函数f (x )=lg1-x1+x为基本素材,研究该函数的相关性质,取得部分研究成果如下:其中研究成果正确的是( ) A .同学甲发现:函数的定义域为(-1,1),且f (x )是偶函数 B .同学乙发现:对于任意的x ∈(-1,1),都有f ⎝⎛⎭⎫2xx 2+1=2f (x )C .同学丙发现:对于任意的a ,b ∈(-1,1),都有f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+abD .同学丁发现:对于函数定义域内任意两个不同的实数x 1,x 2,总满足解析:选BC 对A ,f (x )=lg 1-x 1+x 定义域为1-x1+x >0⇒(1-x )(1+x )>0,解得x ∈(-1,1).又f (-x )=lg 1+x 1-x =-lg 1-x 1+x =-f (x ),故f (x )=lg 1-x1+x为奇函数.故A 错误.对 B ,f ⎝ ⎛⎭⎪⎫2x x 2+1=lg 1-2x x 2+11+2x x 2+1=lg x 2-2x +1x 2+2x +1==2lg 1-x 1+x=2f (x ),又x ∈(-1,1).故B 正确. 对C ,f (a )+f (b )=lg 1-a 1+a +lg 1-b1+b =f ⎝ ⎛⎭⎪⎫a +b 1+ab =lg 1-a +b1+ab 1+a +b 1+ab==故f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab 成立.故C 正确. 对D ,f (0)=lg 1-01+0=0,f ⎝⎛⎭⎫12=lg 1-121+12=lg 13<0,。

对数函数y=logax的图象和性质的综合问题

对数函数y=logax的图象和性质的综合问题
同理,f(x)在(-∞,-1)上也单调递减. 故 f(x)=log2xx+ -11的单调递减区间是(-∞,-1)和(1,+∞).
素养 提升
(1)对数函数本身不具有奇偶性,但由对数函数复合而成的某 些函数具有奇偶性. (2)该类问题可借助逻辑推理,通过数学运算给予推导证明, 从而培养逻辑推理、数学运算等核心素养.
跟踪训练3 已知y=loga(2-ax)在[0,1]上单调递减,求a的取值范围.
解 令u=2-ax,则y=logau. 因为a>0,所以u=2-ax递减, 由题意知y=logau在[2-a,2]内递增,所以a>1. 又u=2-ax在x∈[0,1]上恒大于0, 所以2-a>0,即a<2. 综上,1<a<2.
2 随堂演练
PART TWO
1.不等式log2(x-1)>-1的解集是
A.xx>23
B.{x|x>2}
C.{x|x>1}
解析 ∵log2(x-1)>-1=log212,
∴x-1>12,即
3 x>2.
√D.xx>32
12345
2.函数f(x)=log2(3x+1),x∈(0,+∞)的值域为
⇔lg10-x=2ax⇔102ax=10-x,

如果①式对任意的实数 x 恒成立,则 2a=-1,即 a=-12.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.(多选)若函数f(x)=loga|x-b|在(-∞,0)上单调递增,则a,b的值可
能是 A.a=2,b=2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6.不等式 log1 5+x <log1 1- x的解集为_(_-__2_,_1_) _ .

32714_《对数函数及其性质》同步练习9(人教A版必修1)

32714_《对数函数及其性质》同步练习9(人教A版必修1)

2.2.2对数函数及其性质5分钟训练(预习类训练,可用于课前) 1.函数f (x )=|log 2x|的图象是()思路解析:考查对数函数的图象及图象变换.注意到y=|log 2x|的图象应是将y=log 2x 的图象位于x 轴下方的部分翻折到x 轴的上方,故选A. 答案:A2.若log a 2<log b 2<0,则a 、b 满足的关系是() A.1<a <bB.1<b <aC.0<a <b <1D.0<b <a <1思路解析:考查y=log a x 和y=log b x 的图象.当x=2时,又log a 2<log b 2<0,所以y=log a x 和y=log b x 为减函数.∴a 、b 均小于1.又由log a 2<log b 2知y=log a x 的图象与y=log b x 的图象如下图所示.故0<b <a <1. 答案:D3.函数y=log a (x-2)+1(a >0且a ≠1)恒过定点_________. 思路解析:若x-2=1,则不论a 为何值,只要a >0且a=1,都有y=1. 答案:(3,1)4.函数f (x )=log (a-1)x 是减函数,则a 的取值范围是_________.思路解析:考查对数函数的概念、性质.注意到a-1既受a-1>0且a-1≠1的制约,又受减函数的约束,由此可列关于a 的不等式求a.由题意知0<a-1<1,∴1<a <2. 答案:1<a <210分钟训练(强化类训练,可用于课中)1.(2006广东高考)函数f(x)=xx -132+lg(3x+1)的定义域是()A.(-31,+∞)B.(-31,1)C.(-31,31)D.(-∞,-31) 思路解析:要使函数有意义,则⎩⎨⎧>+>-,013,01x x 解得-31<x<1.答案:B2.若函数f (x )=log a x (0<a<1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于() A.42B.22C.41D.21思路解析:本题关键是利用f (x )的单调性确定f (x )在[a ,2a ]上的最大值与最小值.f (x )=log a x (0<a<1)在(0,+∞)上是减函数,当x ∈[a ,2a ]时,f (x )max =f (a )=1,f (x )min =f(2a )=log a 2a.根据题意,3log a 2a=1,即log a 2a=31,所以log a 2+1=31,即log a 2=-32.故由32-a =2得a=322-42=. 答案:A3.右图是对数函数y=log a x 当底数a 的值分别取3,34,53,101时所对应图象,则相应于C 1,C 2,C 3,C 4的a 的值依次是()A.3,34,53,101B.3,34,101,53 C.34,3,53,101D.34,3,101,53思路解析:因为底数a 大于1时,对数函数的图象自左向右呈上升趋势,且a 越大,图象就越靠近x 轴;底数a 大于0且小于1时,对数函数的图象自左向右呈下降趋势,且a 越小,图象就越靠近x 轴. 答案:A 4.比较大小:(1)log 0.27和log 0.29;(2)log 35和log 65;(3)(lgm )1.9和(lgm )2.1(m >1);(4)log 85和lg4.思路解析:本题大小比较代表了几个典型的题型.其中题(1)是直接利用对数函数的单调性;题(2)是对数函数底数变化规律的应用;题(3)是指数函数单调性及对数函数性质的综合运用;题(4)是中间量的运用.当两个对数的底数和真数都不相同时,需要找出中间量来“搭桥”,再利用对数函数的增减性.常用的中间量有0、1、2等可通过估算加以选择.(1)log 0.27和log 0.29可看作是函数y=log 0.2x 当x=7和x=9时对应的两函数值,由y=log 0.2x 在(0,+∞)上单调递减,得log 0.27>log 0.29.(2)考察函数y=log a x 底数a >1的底数变化规律,函数y=log 3x (x >1)的图象在函数y=log 6x (x >1)的上方,故log 35>log 65.(3)把lgm 看作指数函数的底数,要比较两数的大小,关键是比较底数lgm 与1的关系.若lgm >1即m >10,则(lgm )x 在R 上单调递增,故(lgm )1.9<(lgm )2.1.若0<lgm <1即1<m <10,则(lgm )x 在R 上单调递减,故(lgm )1.9>(lgm )2.1.若lgm=1即m=10,则(lgm )1.9=(lgm )2.1.(4)因为底数8、10均大于1,且10>8,所以log 85>lg5>lg4,即log 85>lg4.答案:(1)log 0.27>log 0.29.(2)log 35>log 65.(3)m >10时,(lgm )1.9<(lgm )2.1;m=10时,lgm=1,(lgm )1.9=(lgm )2.1;1<m <10时,(lgm )1.9>(lgm )2.1.(4)log 85>lg4. 5.已知函数y=lg (x x -+12),求其定义域,并判断其奇偶性、单调性. 思路解析:注意到12+x +x=xx -+112,即有lg (12+x -x )=-lg (12+x +x ),从而f (-x )=lg (12+x +x )=-lg (12+x -x )=-f (x ),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性. 解:由题意12+x -x >0,解得x ∈R ,即定义域为R.又f (-x )=lg [1)(2+-x -(-x )]=lg (12+x +x )=lgxx -+112=lg (12+x -x )-1=-lg (12+x -x )=-f (x ),∴y=lg (12+x -x )是奇函数.任取x 1、x 2∈(0,+∞)且x 1<x 2,则121+x <122+x ⇒121+x +x 1<122+x +x 2⇒12111x x ++>22211x x ++,即有121+x -x 1>122+x -x 2>0,∴lg(121+x -x 1)>lg (122+x -x 2),即f (x 1)>f (x 2)成立.∴f (x )在(0,+∞)上为减函数.又f (x )是定义在R 上的奇函数,故f (x )在(-∞,0)上也为减函数. 6.作出下列函数的图象:(1)y=|log 4x|-1;(2)y=31log |x+1|.思路解析:(1)y=|log 4x|-1的图象可以看成由y=log 4x 的图象经过变换而得到:将函数y=log 4x 的图象在x 轴下方部分以x 轴为对称轴翻折上去,得到y=|log 4x|的图象,再将y=|log 4x|的图象向下平移1个单位,横坐标不变,就得到了y=|log 4x|-1的图象.(2)y=31log |x+1|的图象可以看成由y=31log x 的图象经过变换而得到:将函数y=31log x 的图象作出右边部分关于y 轴的对称图象,即得到函数y=31log |x|的图象,再将所得图象向左平移一个单位,就得到所求的函数y=31log |x+1|的图象.解:函数(1)的图象作法如图①~③所示.函数(2)的图象作法如图④~⑥所示. 7.函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 思路解析:画出函数y=lg|x|的草图即得答案.在画函数y=lg|x|的草图时,注意应用函数y=lg|x|是个偶函数,其图象关于y 轴对称.比如列表时,要先确定对称轴,然后在对称轴的两侧取值列表. 答案:B8.已知f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.思路解析:要比较两个代数式的大小,通常采取作差法或作商法,作差时,所得差同零比较,作商时,应先分清代数式的正负,再将商同“1”比较大小.因为本题中的f (x )与g (x )的正负不确定,所以采取作差比较法.解:f (x )和g (x )的定义域都是(0,1)∪(1,+∞).f (x )-g (x )=1+log x 3-2log x 2=1+log x 3-log x 4=log x 43x. (1)当0<x <1时,若0<43x <1,即0<x <34,此时log x 43x >0,即0<x <1时,f (x )>g (x );(2)当x >1时,若43x >1,即x >34,此时log x 43x >0,即x >34时,f (x )>g (x ); 若43x=1,即x=34,此时log x 43x=0,即x=34时,f (x )=g (x ); 若0<43x <1,即0<x <34,此时log x 43x <0,即1<x <34时,f (x )<g (x ).综上所述,当x ∈(0,1)∪(34,+∞)时,f (x )>g (x );当x=34时,f (x )=g (x ); 当x ∈(1,34)时,f (x )<g (x ).快乐时光 七个男人和一个女人朋友闲来无事,到街上遛达,看到有一录像点高挂着牌子,写着:今晚精彩录像——《七个男人与一个女人的故事》,莫失良机.朋友好奇心发作,买票进场.待人坐齐以后,开始放映.一开场屏幕上出现了真实片名《八仙过海》. 30分钟训练(巩固类训练,可用于课后)1.如下图,当a >1时,在同一坐标系中,函数y=a -x 与y=log a x 的图象是() 思路解析:首先把y=a -x 化为y=(a 1)x ,∵a >1,∴0<a 1<1.因此y=(a1)x ,即y=a -x 的图象是下降的,y=log a x 的图象是上升的. 答案:A2.(2006福建高考,文)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设a=f(56),b=f(23),c=f(25),则() A.a<b<cB.b<a<cC.c<b<aD.c<a<b 思路解析:由题意,a=f(56)=f(-54)=-f(54)=-lg 54=lg 45,b=f(23)=f(-21)=-f(21)=-lg 21=lg2, c=f(25)=f(21)=lg 21,由于f(x)=lgx 在实数范围内为增函数,所以有c<a<b. 答案:D3.已知函数f (x )=lg (x 2-3x+2)的定义域为F ,函数g (x )=lg (x-1)+lg (x-2)的定义域为G ,那么()A.GFB.G=FC.F ⊆GD.F ∩G=∅思路解析:F={x|x 2-3x+2>0}={x|x>2或x<1},G={x|x>2}.∴G F.答案:A4.已知函数f (x )=log 2(x 2-ax+3a )在[2,+∞]上是增函数,则实数a 的取值范围是() A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,4)思路解析:解决复合函数问题的通法是把复合函数化归为基本初等函数.令u (x )=x 2-ax+3a ,其对称轴x=2a . 由题意有⎪⎩⎪⎨⎧≤>+-=.22,0324)2(a a a u解得-4<a ≤4. 答案:B5.(2006福建高考,理)函数y=log 21-x x(x>1)的反函数是() A.y=122-x x (x>0)B.y=122-x x(x<0)C.y=x x 212-(x>0)D.y=xx 212-(x<0) 思路解析:求函数时一定不要忘记求反函数的定义域,也就是原函数的值域.原函数值域为y>0,由于y=log 21-x x (x>1)=log 21-x x =log 2(1+11-x ),所以1+11-x =2y,x=121-y +1=122-y y .将x,y对调,可得反函数为y=122-x x(x>0).答案:A6.已知函数f (x )=log abx bx -+(a >1且b >0). (1)求f (x )的定义域; (2)判断函数的奇偶性;(3)判断f (x )的单调性,并用定义证明.思路解析:本题考查定义域、单调性的求法及判断方法,注意要利用定义求解.解:(1)由⎪⎩⎪⎨⎧≠->-+,0,0b x b x bx 解得x <-b 或x >b.∴函数f (x )的定义域为(-∞,-b )∪(b ,+∞). (2)由于f (-x )=log a (b x b x --+-)=log a (b x b x +-)=log a (b x b x -+)-1=-log a (bx bx -+)=-f (x ),所以f (x )为奇函数.(3)设x 1、x 2是区间(b ,+∞)上任意两个值,且x 1<x 2.则b x b x -+22-b x b x -+11=))(()(2))(()(1221122121221212b x b x x x b b x b x b bx bx x x b bx bx x x ---=----+--+-. ∵b >0,x 1-x 2<0,x 2-b >0,x 1-b >0, ∴b x b x -+22-b x bx -+11<0.∴b x b x -+22<bx bx -+11.又a >1时,函数y=log a x 是增函数, ∴log ab x b x -+22<log a bx bx -+11,即f (x 2)<f (x 1).∴函数f (x )在区间(b ,+∞)上是减函数.同理,可证f (x )在(-∞,-b )上也是减函数. 7.已知f (x )=log axx-+11(a>0且a ≠1). (1)求函数的定义域; (2)讨论函数的单调性;(3)求使f (x )>0的x 的取值范围. 解:(1)由xx-+11>0得-1<x<1. ∴函数的定义域为(-1,1). (2)对任意-1<x 1<x 2<1,1111x x -+-2211x x -+=)1)(1()(22121x x x x ---<0,∴1111x x -+<2211x x -+.当a>1时,log a1111x x -+<log a 2211x x -+,即f (x 1)<f (x 2); 当0<a<1时,log a2211x x -+>log a 2211x x -+,即f (x 1)>f (x 2).∴当a>1时,f (x )为(-1,1)上的增函数; 当0<a<1时,f (x )为(-1,1)上的减函数.(3)log axx-+11>0=log a 1. ∴当a>1时,x x -+11>1,即x x -+11-1=xx-12>0.∴2x (x-1)<0.∴0<x<1.当0<a<1时,⎪⎪⎩⎪⎪⎨⎧<-+>-+,111,011xx xx解得-1<x<0;当a>1时,f (x )>0的解为(0,1); 当0<a<1时,f (x )>0的解为(-1,0).8.设函数f (x )=x 2-x+b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1),求f (log 2x )的最小值及对应的x 的值.思路解析:关键是利用已知的两个条件求出a 、b 的值.解:由已知得⎪⎩⎪⎨⎧=+-=+-,2)(log ,log log 22222b a a b b a a即)2()1(.4,0)1(log log 222⎪⎩⎪⎨⎧=+-=-b a a a a由①得log 2a=1,∴a=2. 代入②得b=2.∴f (x )=x 2-x+2.∴f (log 2x )=log 22x-log 2x+2=(log 2x-21)2+47. ∴当log 2x=21时,f (log 2x )取得最小值47,此时x=2.9.设a ≠0,对于函数f (x )=log 3(ax 2-x+a ), (1)若x ∈R ,求实数a 的取值范围; (2)若f (x )∈R ,求实数a 的取值范围.思路解析:f (x )的定义域是R ,等价于ax 2-x+a >0对一切实数都成立,而f (x )的值域为R ,等价于其真数ax 2-x+a 能取遍大于0的所有实数值,(1)与(2)虽只有一字之差,但结果却大不相同.解:(1)f (x )的定义域为R ,则ax 2-x+a >0对一切实数x 恒成立,其等价条件是⎩⎨⎧<-=∆>.041,02a a 解得a >21. (2)f (x )的值域为R ,则真数ax 2-x+a 能取遍大于0的所有实数,其等价条件是⎩⎨⎧≥-=∆>.041,02a a 解得0<a ≤21. 10.已知a>0且a ≠1,f (log a x )=12-a a (x-x1). (1)试证明函数y=f (x )的单调性.(2)是否存在实数m 满足:当y=f (x )的定义域为(-1,1)时,有f (1-m )+f (1-m 2)<0?若存在,求出其取值范围;若不存在,请说明理由.(3)若函数f (x )-4恰好在(-∞,2)上取负值,求a 的值. (1)证明:由f (log a x )=12-a a (x-x 1),得f (x )=12-a a (a x -a -x ),x ∈R ,任取x 1<x 2,f (x 1)-f (x 2)=12-a a (1x a -2x a )21211x x x x a a +++.a>1时,1x a <2x a ,a 2-1>0;0<a<1时,1x a >2xa ,a 2-1<0.综上可得f (x 1)<f (x 2),即函数为减函数.(2)解:因为f (-x )=-12-a a(a x -a -x )=-f (x ),即函数为奇函数,f (1-m )+f (1-m 2)<0可转化为f (1-m )<f (m 2-1),所以⎪⎩⎪⎨⎧-<-<-<-<-<-.11,111,11122m m m m 解得1<m<2.(3)解:f (x )-4恰好在(-∞,2)的值为负,即当x ∈(-∞,2)时,有f (x )-4<f (2)-4=0,解得a=2±3.11.已知f (x )=lg (a x -b x )(a>1>b>0). (1)求y=f (x )的定义域;(2)在函数图象上是否存在不同两点,使过这两点的直线平行于x 轴?思路解析:(2)的思维难点是把问题化归为研究函数的单调性问题. 解:(1)由a x -b x >0,得(b a )x >1=(ba )0. ∵ba>1,∴x>0. ∴函数的定义域为(0,+∞).(2)先证明f (x )是增函数.对于任意x 1>x 2>0,∵a>1>b>0,∴1x a >2x a ,1x b <2xb . ∴1xa -1x b >2x a -2xb .∴lg (1xa -1x b )>lg (2x a -2xb ). ∴f (x 1)>f (x 2).∴f (x )在(0,+∞)上为增函数.假设y=f (x )上存在不同的两点A (x 1,y 1)、B (x 2,y 2),使直线AB 平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.∴y=f (x )的图象上不存在两点,使过这两点的直线平行于x 轴.12.2006年春节晚会的现场上无数次响起响亮的掌声,某报记者用仪器测量到最响亮的一次音量达到了90.1分贝.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl )来描述声音的大小:把一很小的声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB ).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区. (1)根据上述材料,列出分贝y 与声压P 的函数关系式.(2)某地声压P=0.002帕,试问该地为以上所说的什么区?声音环境是否优良?思路解析:由已知条件即可写出分贝y 与声压P 之间的函数关系式,然后由函数关系式求得当P=0.002帕时,分贝y 的值.由此可判断所在区. 解:(1)由已知y=(lg0P P )×20=20·lg 0P P(其中P 0=2×10-5). (2)将P=0.002代入函数关系y=20lg0P P ,则y=20lg 5102002.0-⨯=20lg102=40(分贝). 由已知条件知40分贝小于60分贝,所以在噪音无害区,环境优良.。

高考数学基础知识专题提升训练101---对数函数及其性质的应用

高考数学基础知识专题提升训练101---对数函数及其性质的应用

高考数学基础知识专题提升训练对数函数及其性质的应用[微体验]1.下列不等关系中,正确的是( ) A .1.3-0.1>1.3-0.2 B .0.7-0.3<0.70.2 C .2-0.5>⎝ ⎛⎭⎪⎫120.5 D .0.21.8>0.20.8A [因为y =1.3x 是增函数,-0.1>-0.2, 所以1.3-0.1>1.3-0.2.] 2.函数y =log 12(2x +1)的值域为________.解析 ∵2x +1>1,函数y =log 12 x 是(0,+∞)上的减函数,∴log 12 (2x +1)<log 12 1=0,即所求函数的值域为(-∞,0).答案 (-∞,0)3.若函数f (x )=log 2(ax +1)在[0,1]上单调递增,则实数a 的取值范围是________. 解析 由题意得⎩⎨⎧a >0,a ×0+1>0,解得a >0.答案 (0,+∞)4.函数f (x )=log 2(1+2x )的单调增区间是________.解析 易知函数f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞,又因为函数y =log 2x 和y =1+2x 都是增函数,所以f (x )的单调增区间是⎝ ⎛⎭⎪⎫-12,+∞.答案 ⎝ ⎛⎭⎪⎫-12,+∞5.已知函数f (x )=lg(x -1). (1)求函数f (x )的定义域和值域; (2)证明f (x )是增函数. (1)解由x -1>0,得x >1.所以函数f (x )的定义域是(1,+∞),值域为R . (2)证明 设1<x 1<x 2,则f (x 1)-f (x 2)=lg(x 1-1)-lg(x 2-1)=lg x 1-1x 2-1. 因为1<x 1<x 2,所以0<x 1-1<x 2-1.所以0<x 1-1x 2-1<1.所以lg x 1-1x 2-1<0,从而f (x 1)<f (x 2).所以f (x )在(1,+∞)上是增函数.[对应学生用书P 67]探究一 利用单调性比较大小比较下列各组数的大小.(1)log1245与log1267;(2)log123与log153;(3)log a2与log a3.解(1)y=log12x在(0,+∞)上单调递减,又因为45<67,所以log1245>log1267.(2)因为在x∈(1,+∞)上,y=log15x的图象在y=log12x图象的上方,所以log12 3<log153.(3)当a>1时,y=log a x为增函数,所以log a2<log a3;当0<a<1时,y=log a x为减函数,所以log a2>log a3.[方法总结]对数值比较大小的常用方法(1)如果同底,可直接利用单调性求解.(2)如果不同底,一种方法是化为同底的,另一种方法是寻找中间量.(3)如果不同底但同真数,可利用图象的高低与底数的大小关系来解决,或利用换底公式化为同底再进行比较.(4)若底数和真数都不相同,则常借助中间量1,0,-1等进行比较.(5)如果底数为字母,那么要分类讨论,进行分类讨论时,要做到不重不漏.[跟踪训练1]比较下列各组数的大小:(1)log a2.7,log a2.8;(2)log34,log65;(3)log0.37,log97.解(1)当a>1时,由函数y=log a x的单调性可知log a2.7<log a2.8;当0<a<1时,同理可得log a2.7>log a2.8.(2)log34>log33=1,log65<log66=1,∴log34>log65.(3)log 0.37<log 0.31=0,log 97>log 91=0, ∴log 0.37<log 97.探究二 利用单调性解简单的对数不等式问题(1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. 解(1)由log a 12>1得log a 12>log a a .①当a >1时,有a <12,此时无解;②当0<a <1时,有12<a ,从而12<a <1.∴a 的取值范围是⎝ ⎛⎭⎪⎫12, 1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数,∴由log 0.72x <log 0.7(x -1)得⎩⎨⎧2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞). [方法总结]常见的对数不等式有三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解.(3)形如log a x >log b x 的不等式,可利用图象求解. [跟踪训练2]解不等式:log a (x -4)>log a (x -2).解当a >1时,由⎩⎨⎧ x -4>x -2,x -4>0,x -2>0,无解.当0<a <1时,由⎩⎨⎧x -4<x -2,x -4>0,x -2>0,得x >4.∴综上可知,当a >1时,不等式的解集为∅; 当0<a <1时,不等式的解集为(4,+∞). 探究三 对数函数性质的综合应用(1)下列函数中,既是单调函数,又是奇函数的是( ) A .y =x -1 B .y =3|x | C .y =lo g 3xD .y =log 23x(2)已知f (x )=log a (a -a x )(a >1). ①求f (x )的定义域和值域; ②判断并证明f (x )的单调性.(1)D [y =x -1在定义域内不是单调函数;y =3|x |为偶函数;y =log 3x 既不是奇函数也不是偶函数,故A ,B ,C 均不正确.又∵log 23-x =log 2(3x )-1=-log 23x ,log 23x 的定义域为R ,∴函数y =log 23x 为奇函数.令3x =t ,则y =log 2t .∵y =log 2t 与y =3x 在R 上都是增函数, ∴y =log 23x 在R 上为增函数.](2)解①由a >1,a -a x >0,即a >a x ,得x <1.故f(x)的定义域为(-∞,1).由0<a-a x<a,可知log a(a-a x)<log a a=1.故函数f(x)的值域为(-∞,1).②f(x)在(-∞,1)上为减函数,证明如下:任取1>x1>x2,又∵a>1,∴ax1>ax2,∴a-ax1<a-ax2,∴log a(a-ax1)<log a(a-ax2),即f(x1)<f(x2),故f(x)在(-∞,1)上为减函数.[方法总结]解决对数函数综合问题的方法对数函数常与函数的奇偶性、单调性、最值以及不等式等问题综合,求解中通常会涉及对数运算.解决此类综合问题,首先要将所给的条件进行转化,然后结合涉及的知识点,明确各知识点的应用思路、化简方向,与所求目标建立联系,从而找到解决问题的思路.[跟踪训练3]已知函数f(x)=log a(1+x),g(x)=log a(1-x),其中(a>0,且a≠1),设h(x)=f(x)-g(x).求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由.解∵f(x)=log a(1+x)的定义域为{x|x>-1},g(x)=log(1-x)的定义域为{x|x<1},a∴h(x)=f(x)-g(x)的定义域为{x|x>-1}∩{x|x<1}={x|-1<x<1}.∵h(x)=f(x)-g(x)=log a(1+x)-log a(1-x),∴h(-x)=log a(1-x)-log a(1+x)=-[log a(1+x)-log a(1-x)]=-h(x),∴h(x)为奇函数.[对应学生用书P68]1.比较两个对数式大小的方法有以下几种(1)单调性法; (2)中间量法:比较不同底数对数的大小,常借助中间值0进行比较.利用口诀:“同大异小”,判断对数的符号.对于对数log a x,a和x均与1比较大小,当a和x都同大于(小于)1时,loga x大于0,否则logax小于0.(3)分类讨论:比较同底数(不是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小.2.两类对数不等式的解法(1)形如log a f(x)<log a g(x)的不等式.①当0<a<1时,可转化为f(x)>g(x)>0;②当a>1时,可转化为0<f(x)<g(x).(2)形如log a f(x)<b的不等式可变形为log a f(x)<b=log a a b.①当0<a<1时,可转化为f(x)>a b;②当a>1时,可转化为0<f(x)<a b.若a>1,则y=log a f(x)的单调性与y=f(x)的单调性相同,若0<a<1,则y=log a f(x)的单调性与y=f(x)的单调性相反.另外应注意单调区间必须包含于原函数的定义域.3.形如y=log a f(x)的函数的单调性首先要确保f(x)>0,当a>1时,y=log a f(x)的单调性在f(x)>0的前提下与y=f(x)的单调性一致.当0<a <1时,y =log a f (x )的单调性在f (x )>0的前提下与y = f (x )的单调性相反. 4.(1)指数函数、对数函数都是非奇非偶函数,但并不妨碍它们与其他函数复合成奇函数(或偶函数).(2)含对数式的奇偶性判断,一般用f (x )±f (-x )=0来判断,运算相对简单.课时作业(二十七) 对数函数及其性质的应用[见课时作业(二十七)P 169]1.若lg(2x -4)≤1,则x 的取值范围是( ) A .(-∞,7] B .(2,7] C .[7,+∞)D .(2,+∞)B [ ∵lg(2x -4)≤1,∴0<2x -4≤10,解得2<x ≤7.] 2.函数f (x )=|log 12 x |的单调递增区间是( )A .⎝⎛⎦⎥⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)D [f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).]3.已知实数a =log 45,b =⎝ ⎛⎭⎪⎫120,c =log 30.4,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .c <a <bD .c <b <aD [由题知,a =log 45>1,b =⎝ ⎛⎭⎪⎫120=1,c =log 30.4<0,故c <b <a .]4.若log a 35<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,35B .⎝ ⎛⎭⎪⎫0,35∪(1,+∞)C .(1,+∞)D .(0,1)B [当a >1时,log a 35<0,满足题意,当0<a <1时,log a 35<1⇔log a 35<log a a ⇔0<a <35.]5.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <aC [ ∵f (x )为偶函数,∴2|x -m |-1=2|-x -m |-1.∴|x -m |=|-x -m |. ∴-x -m =m -x .∴m =0.∴f (x )=2|x |-1. ∴f (x )的图象关于y 轴对称且在[0,+∞)上是增函数.又∵0>log 0.53>log 0.54=-2,log 25>log 24=2,2m =0,∴c <a <b .]6.已知log 0.72m <log 0.7(m -1),则m 的取值范围是________. 解析 ∵log 0.72m <log 0.7(m -1), ∴2m >m -1>0. 解得m >1. 答案 (1,+∞)7.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.解析 ∵a >1,∴f (x )=log a x 在[a,2a ]上递增,∴log a (2a )-log a a =12,即log a 2=12,∴a 12 =2,a =4.答案 48.解不等式2log a (x -4)>log a (x -2).解原不等式等价于⎩⎨⎧log a (x -4)2>log a (x -2),x -2>0,x -4>0.①当a >1时,又等价于⎩⎨⎧(x -4)2>x -2,x -2>0,x -4>0,解得x >6.②当0<a <1时,又等价于⎩⎨⎧(x -4)2<x -2,x -2>0,x -4>0,解得4<x <6.综上所述,当a >1时,原不等式的解集为(6,+∞); 当0<a <1时,原不等式的解集为(4,6).9.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及y 取得最大值时的x 的值.解 由f (x )=2+log 3x ,x ∈[1,9], 得f (x 2)=2+log 3x 2,x 2∈[1,9],得函数y =[f (x )]2+f (x 2)的定义域为[1,3],y =(2+log 3x )2+2+l og 3x 2,即y =(log 3x )2+6log 3x +6=(log 3x +3)2-3.令log3x=t,则0≤t≤1,则y=(t+3)2-3,当t=log3x=1,即x=3时,y max=13.1.设a=log36,b=log510,c=log714,则( )A.c>b>a B.b>c>aC.a>c>b D.a>b>cD[a=log36=log32+1,b=log52+1,c=log72+1,在同一坐标系内分别画出y=log3x,y=log5x,y=log7x的图象,当x=2时,由图易知log32>log52>log72,∴a>b>c.]2.已知f(x)=log3x的值域是[-1,1],那么它的反函数的值域为________.解析∵-1≤log3x≤1,∴log313≤log3x≤log33,∴13≤x≤3.∴f(x)=log3x的定义域是⎣⎢⎡⎦⎥⎤13, 3,∴f(x)=log3x的反函数的值域是⎣⎢⎡⎦⎥⎤13, 3.答案⎣⎢⎡⎦⎥⎤13, 33.已知函数f(x)=lg(3x-3).(1)求函数f(x)的定义域和值域;(2)设函数h(x)=f(x)-lg(3x+3),若不等式h(x)>t无解,求实数t的取值范围.解(1)由3x-3>0,得x>1,所以f(x)的定义域为(1,+∞).因为(3x-3)∈(0,+∞),所以函数f(x)的值域为R.(2)因为h (x )=lg(3x -3)-lg(3x+3)=lg ⎝ ⎛⎭⎪⎫3x -33x +3=lg ⎝ ⎛⎭⎪⎫1-63x +3的定义域为(1,+∞),且h (x )在(1,+∞)上是增函数,所以函数h (x )的值域为(-∞,0).若不等式h (x )>t 无解,则t 的取值范围为t ≥0.4.(拓广探索)已知函数f (x )=ln(ax 2+2x +1),g (x )=log 12(x 2-4x -5).(1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围;(3)求函数g (x )的递减区间.解 (1)若f (x )的定义域为R ,则y =ax 2+2x +1的图象恒在x 轴的上方,所以⎩⎨⎧ a >0,Δ=4-4a <0,所以a >1.(2)若f (x )的值域为R ,则y =ax 2+2x +1的图象一定要与x 轴有交点,所以a =0或⎩⎨⎧ a >0,Δ=4-4a ≥0,所以0≤a ≤1.(3)函数g (x )的定义域为{x ︱x <-1或x >5},由复合函数单调性的“同增异减”法则,可知函数g (x )的单调递减区间为(5,+∞).。

高中数学对数函数经典练习题及答案(优秀4篇)

高中数学对数函数经典练习题及答案(优秀4篇)

高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。

15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。

16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。

18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。

高中数学北师大版(2019)必修 第一册:对数函数的图像和性质(含解析)

高中数学北师大版(2019)必修 第一册:对数函数的图像和性质(含解析)

对数函数的图像和性质基础全面练 (15分钟 30分)1.函数y =log 2x -2 的定义域是( ) A .(3,+∞) B.[3,+∞) C .(4,+∞) D.[4,+∞)2.如图是三个对数函数的图像,则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b3.(2020·全国卷Ⅲ)设a =log 32,b =log 53,c =23 ,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b4.函数y =log 13(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)5.已知y =log a (3a -1)恒为正值,求a 的取值范围.综合突破练 (30分钟 60分) 一、选择题(每小题5分,共25分)1.已知函数f (x )=|log 2x |,正数m ,n 满足m <n ,且f (m )=f (n ).若f (x )在区间[m 2,n ]上的最大值为2,则m ,n 的值分别是( )A .12 ,2B .14 ,2 C .22,2 D .14,42.已知实数a =log 45,b =⎝ ⎛⎭⎪⎫12 0,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <b D .c <b <a3.对任意实数a ,b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .[0,+∞)B .(-∞,0]C .⎝ ⎛⎭⎪⎫log 223,0D .⎝ ⎛⎭⎪⎫log 223,+∞4.当0<a <1时,在同一坐标系中,函数y =a x与y =log a x 的图像是( )5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1)B .⎝⎛⎭⎪⎫0,13C .⎣⎢⎡⎭⎪⎫17,13D .⎣⎢⎡⎭⎪⎫17,1二、填空题(每小题5分,共15分)6.已知定义域为R 的偶函数f (x )在[0,+∞)上是增加的,且f ⎝ ⎛⎭⎪⎫12 =0,则不等式f (log 4x )<0的解集是________.7.已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________.8.已知函数f (x )=log a (2x -a ),x ∈⎣⎢⎡⎦⎥⎤23,34 .当a =12 时,函数的最小值为________;若恒有f (x )>0,则实数a 的取值范围是________.【变式训练】函数y =log 3(x 2-2x )的递减区间是______.三、解答题(每小题10分,共20分) 9.比较下列各组中两个数的大小: (1)log 31.9,log 32. (2)log 23,log 0.32. (3)log a π,log a 3.141.10.已知f (x )=log 4(4x-1). (1)求f (x )的定义域. (2)讨论f (x )的单调性.(3)求f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上的值域.创新练已知实数x 满足4x-10·2x+16≤0,求函数y =(log 3x )2-log 3x +2的值域.【变式训练】已知函数f(x)=log a(ax2-x),是否存在实数a,使它在区间[2,4]上是增加的?如果存在,求出a的取值范围;如果不存在,说明理由.参考答案:基础全面练 (15分钟 30分)1.函数y =log 2x -2 的定义域是( ) A .(3,+∞) B.[3,+∞) C .(4,+∞) D.[4,+∞)【解析】选D.由log 2x -2≥0,得log 2x ≥log 24,所以x ≥4. 2.如图是三个对数函数的图像,则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b【解析】选D.令y =1,如图所示.则b <c <1<a .3.(2020·全国卷Ⅲ)设a =log 32,b =log 53,c =23 ,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b【解析】选A.因为a =13 log 323<13 log 39=23=c ,b =13 log 533>13 log 525=23=c ,所以a <c <b .4.函数y =log 13(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)【解析】选C.因为3x>0,所以-3x<0, 所以1-3x<1.令t =1-3x ,又y =log 13t 是关于t 的减函数,所以y =log 13t >log 131=0.5.已知y =log a (3a -1)恒为正值,求a 的取值范围.【解析】当⎩⎪⎨⎪⎧0<a <1,0<3a -1<1, 即13 <a <23 时,y =log a (3a -1)恒为正值;当⎩⎪⎨⎪⎧a >1,3a -1>1, 即a >1时,y =log a (3a -1)恒为正值. 综上,a 的取值范围为a >1或13 <a <23 .综合突破练 (30分钟 60分) 一、选择题(每小题5分,共25分)1.已知函数f (x )=|log 2x |,正数m ,n 满足m <n ,且f (m )=f (n ).若f (x )在区间[m 2,n ]上的最大值为2,则m ,n 的值分别是( ) A .12 ,2B .14 ,2 C .22,2 D .14,4 【解析】选A.画出函数f (x )=|log 2x |的图象的大致示意图,如图所示 已知正数m ,n 满足m <n ,且f (m )=f (n ), 所以0<m <1<n .因为f (m )=f (n ),所以|log 2m |=|log 2n |,即-log 2m =log 2n , 所以log 2mn =0,解得mn =1.结合题图知,函数f (x )=|log 2x |在(0,1)为减函数,在(1,+∞)为增函数. 因为0<m <1,所以0<m 2<m <1.函数f (x )在区间[m 2,n ]上,当x =m 2时,f (x )取得最大值, 即f (m 2)=|log 2m 2|=-log 2m 2=2,解得m =12,n =2.2.已知实数a =log 45,b =⎝ ⎛⎭⎪⎫12 0,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <b D .c <b <a【解析】选D.a =log 45>log 44=1,b =⎝ ⎛⎭⎪⎫12 0=1,c =log 30.4<log 31=0, 所以c <b <a .3.对任意实数a ,b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .[0,+∞)B .(-∞,0]C .⎝ ⎛⎭⎪⎫log 223,0D .⎝ ⎛⎭⎪⎫log 223,+∞【解析】选B.在同一平面直角坐标系中分别画出y =log 12 (3x -2)和y =log 2x 这两个函数的图像,如示意图1所示.所以f (x )图像如示意图2.由图可得f (x )=212213321log x x log x x ⎧<<⎪⎨=⎪⎩,,,所以值域为(-∞,0].4.当0<a <1时,在同一坐标系中,函数y =a x与y =log a x 的图像是( )【解析】选D.因为函数y =a x与y =log a x 互为反函数, 所以它们的图像关于直线y =x 对称,且当0<a <1时,函数y =a x与y =log a x 都是减函数,观察图像知,D 正确.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1)B .⎝ ⎛⎭⎪⎫0,13C .⎣⎢⎡⎭⎪⎫17,13D .⎣⎢⎡⎭⎪⎫17,1 【解析】选C.因为f (x )=log a x (x ≥1)是递减的, 所以0<a <1且f (1)=0.因为f (x )=(3a -1)x +4a (x <1)为递减的, 所以3a -1<0,所以a <13.又因为f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数, 所以(3a -1)×1+4a ≥0,所以a ≥17.所以a ∈⎣⎢⎡⎭⎪⎫17,13 . 【误区】本题容易忽视函数在定义域上是递减的,而不仅是在两段上分别是递减的. 二、填空题(每小题5分,共15分)6.已知定义域为R 的偶函数f (x )在[0,+∞)上是增加的,且f ⎝ ⎛⎭⎪⎫12 =0,则不等式f (log 4x )<0的解集是________.【解析】因为f (log 4x )<0,所以-12 <log 4x <12 ,所以log 4412-<log 4x <log 4412,所以12<x <2.答案:⎩⎨⎧⎭⎬⎫x |12<x <27.已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________. 【解题技巧】先化简f 2(x )=(2+log 3x )2,f (x 2)=2+log 3x 2,再求出g (x )进行解答.【解析】由题意可得:⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9. 可得x ∈[1,3], 故g (x )的定义域为[1,3].g (x )=f 2(x )+f (x 2)=(log 3x )2+6log 3x +6,令t =log 3x ,t ∈[0,1],得g (t )=t 2+6t +6, 故当t =1时,g (t )取最大值g (1)=13. 答案:138.已知函数f (x )=log a (2x -a ),x ∈⎣⎢⎡⎦⎥⎤23,34 .当a =12 时,函数的最小值为________;若恒有f (x )>0,则实数a 的取值范围是________.【解析】当a =12 时,函数f (x )=log 12⎝ ⎛⎭⎪⎫2x -12 在区间⎣⎢⎡⎦⎥⎤23,34 上为减函数,当x =34 时取最小值为log 12⎝ ⎛⎭⎪⎫2×34-12 =log 121=0.因为函数f (x )在区间⎣⎢⎡⎦⎥⎤23,34 上恒有f (x )>0,所以a >1,且 2×23 -a >1;或 0<a <1,且0<2×34 -a <1.解得 a ∈∅,或12 <a <1,所以12<a <1.答案:0 ⎝ ⎛⎭⎪⎫12,1【变式训练】函数y =log 3(x 2-2x )的递减区间是______.【解析】令u =x 2-2x (x >2或x <0),则y =log 3u ,且y =log 3u 是增函数,u =x 2-2x (x >2或x <0)的递减区间是(-∞,0),故y =log 3(x 2-2x )的递减区间是(-∞,0). 答案:(-∞,0)三、解答题(每小题10分,共20分) 9.比较下列各组中两个数的大小: (1)log 31.9,log 32. (2)log 23,log 0.32. (3)log a π,log a 3.141.【解析】(1)因为函数y =log 3x 在(0,+∞)上是增函数,1.9<2,故log 31.9<log 32. (2)因为log 23>log 22=1,log 0.32<log 0.31=0, 故log 23>log 0.32.(3)当a >1时,y =log a x 在(0,+∞)上是增函数,π>3.141,故log a π>log a 3.141; 当0<a <1时,y =log a x 在(0,+∞)上是减函数,π>3.141,故log a π<log a 3.141. 10.已知f (x )=log 4(4x-1). (1)求f (x )的定义域. (2)讨论f (x )的单调性.(3)求f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上的值域. 【解析】(1)由4x-1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<41x -1<42x -1,因此log 4(41x -1)<log 4(42x -1),即f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)因为f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上是递增的,又f ⎝ ⎛⎭⎪⎫12 =0,f (2)=log 415,因此f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上的值域为[0,log 415]. 创新练已知实数x 满足4x -10·2x +16≤0,求函数y =(log 3x )2-log 3x +2的值域. 【解析】不等式4x -10·2x +16≤0可化为(2x )2-10·2x +16≤0,即(2x -2)(2x-8)≤0. 从而有2≤2x≤8,即1≤x ≤3. 所以0≤log 3x ≤1.因为函数y =(log 3x )2-log 3x +2, 可化为y =(log 3x )2-12 log 3x +2=⎝⎛⎭⎪⎫log 3x -14 2+3116 , 当log 3x =14 时,y min =3116 ,当log 3x =1时,y max =52,所以所求函数的值域为⎣⎢⎡⎦⎥⎤3116,52 . 【变式训练】已知函数f(x)=log a (ax 2-x),是否存在实数a ,使它在区间[2,4]上是增加的?如果存在,求出a 的取值范围;如果不存在,说明理由. 【解析】存在实数a 满足题意. 设g(x)=ax 2-x.当a>1时,为使函数y =f(x)=log a (ax 2-x)在区间[2,4]上是增加的, 只需g(x)=ax 2-x 在区间[2,4]上是增加的, 故应满足⎩⎪⎨⎪⎧x =12a ≤2,g (2)=4a -2>0,解得a>12,所以a>1.当0<a<1时,为使函数y =f(x)=log a (ax 2-x)在区间[2,4]上是增加的,只需g(x)=ax 2-x 在区间[2,4]上是减少的. 故⎩⎪⎨⎪⎧x =12a ≥4,g (4)=16a -4>0, 无解,此时a 不存在.综上,当a>1时,函数f(x)=log a(ax2-x)在区间[2,4]上是增加的.。

对数与对数函数专题

对数与对数函数专题

对数与对数函数1. log 29×log 34+2log 510+log 50.25=( ) A.0 B.2 C.4 D.62. 已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b3. 设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b4. 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <15. 已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=log 2(-x )+m ,且f ⎝ ⎛⎭⎪⎫12=2,则m =________.考点一 对数的运算【例1】 (1)设2a =5b=m ,且1a +1b=2,则m 等于( )A.10B.10C.20D.100(2)计算:(1-log 63)2+log 62·log 618log 64=________.【训练1】 (1) 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1C.lg 10.1D.10-10.1(2) 2723+⎝ ⎛⎭⎪⎫14log23-log 814=________.考点二 对数函数的图象及应用【例2】 (1) 已知lg a +lg b =0,则函数f (x )=a -x 与函数g (x )=log b x 的图象可能是( )(2)已知函数f (x )=⎩⎨⎧2x,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.【训练2】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A.(0,1) B.(1,2) C.(1,2] D.⎝⎛⎭⎪⎫0,12考点三 解决与对数函数性质有关的问题角度1 比较大小【例3-1】 (1)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A.a =b <cB.a =b >cC.a <b <cD.a >b >c(2) 已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A.c <b <a B.a <b <c C.b <c <a D.c <a <b角度2 解简单的对数不等式【例3-2】 (1) 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A.(2,+∞)B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)C.⎝ ⎛⎭⎪⎫0,22∪(2,+∞) D.(2,+∞)(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.【训练3】 (1) 已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2) 设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________. (3) 已知函数f (x )=log a (x +2)+3(a >0,且a ≠1)的图象恒过定点(m ,n ),且函数g (x )=mx 2-2bx +n 在[1,+∞)上单调递减,则实数b 的取值范围是________.【典例】 已知函数f (x )=e x ,g (x )=ln x 2+12,对任意a ∈R,存在b ∈(0,+∞),使f (a )=g (b ),则b -a 的最小值为( )A.2e -1B.e 2-12C.2-ln 2D.2+ln 2【训练】 若存在正数x ,使得2x (x -a )<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)一、选择题1.已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.82. 设a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <a C.a <c <bD.a <b <c3.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=ln(x +1),则函数f (x )的大致图象为( )4. 若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12+f (lg 5)+f ⎝ ⎛⎭⎪⎫lg 15=( )A.2B.4C.6D.85.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A.(0,+∞)B.(2,+∞)C.(1,+∞)D.⎝ ⎛⎭⎪⎫12,+∞二、填空题6. 已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.7. 已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.8.设函数f (x )=⎩⎨⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________.三、解答题9.已知函数f (x )=log 21+axx -1(a 为常数)是奇函数.(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围.10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f(x)的解析式;(2)解不等式f(x2-1)>-2.11. 在同一直角坐标系中,函数y=1a x,y=log a⎝⎛⎭⎪⎫x+12(a>0,且a≠1)的图象可能是( )12. 设x,y,z为正数,且2x=3y=5z,则( )A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z13. 已知函数f(x)=sin x·lg(1+x2+ax)的图象关于y轴对称,则实数a的值为________.14.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4]不等式f(x2)·f(x)>k·g(x)恒成立,求实数k的取值范围.15. 函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数;②存在[a,b ]⊆D ,使f (x )在[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫-12,12答 案 对数与对数函数1. log 29×log 34+2log 510+log 50.25=( ) A.0B.2C.4D.6解析 原式=2log 23×(2log 32)+log 5(102×0.25) =4+log 525=4+2=6. 答案 D2. 已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b解析 ∵0<a <1,b <0,c =log 1213=log 23>1.∴c >a >b .答案 D4. 设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<abD.ab <0<a +b解析 由题设,得1a =log 0.30.2>0,1b=log 0.32<0.∴0<1a +1b =log 0.30.4<1,即0<a +bab<1.又a >0,b <0,故ab <a +b <0.答案 B5. 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D6. 已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=log 2(-x )+m ,且f ⎝ ⎛⎭⎪⎫12=2,则m =________.解析 由f ⎝ ⎛⎭⎪⎫12=2,且f (x )为奇函数.∴f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2,因此log 212+m =-2,则m =1- 2.答案 1-2考点一 对数的运算【例1】 (1)设2a =5b =m ,且1a +1b=2,则m 等于( )A.10B.10C.20D.100(2)计算:(1-log 63)2+log 62·log 618log 64=________.解析 (1)由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. 解得m =10.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.答案 (1)A (2)1规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并. 2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1) 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1C.lg 10.1D.10-10.1(2) 2723+⎝ ⎛⎭⎪⎫14log23-log 814=________.解析 (1)依题意,m 1=-26.7,m 2=-1.45,代入所给公式得52lg E 1E 2=-1.45-(-26.7)=25.25.所以lg E 1E 2=25.25×25=10.1,即E 1E 2=1010.1.(2)原式=33×23+2-2log 23+23=10.答案 (1)A (2)10考点二 对数函数的图象及应用【例2】 (1) 已知lg a +lg b =0,则函数f (x )=a -x 与函数g (x )=log b x 的图象可能是( )(2)已知函数f (x )=⎩⎨⎧2x,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.解析 (1)由lg a +lg b =0,得ab =1.∴f (x )=a -x=⎝ ⎛⎭⎪⎫1b -x=b x ,因此f (x )=b x 与g (x )=log b x 单调性相同.A ,B ,D 中的函数单调性相反,只有C 的函数单调性相同. (2)作出函数y =f (x )的图象(如图所示).方程f (x )-a =0恰有一个实根,等价于函数y =f (x ) 的图象与直线y =a 恰有一个公共点,故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞). 答案 (1)C (2){0}∪[2,+∞)规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A.(0,1) B.(1,2) C.(1,2]D.⎝⎛⎭⎪⎫0,12解析 (1)由题意可得,f (a )a ,f (b )b ,f (c )c分别看作函数f (x )=log 2(x +1)图象上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图象可知当a>b>c时,f(c)c>f(b)b>f(a)a.(2)由题意,易知a>1.如图,在同一坐标系内作出y=(x-1)2,x∈(1,2)及y=log a x,x∈(1,2)的图象.若y=log a x过点(2,1),得log a2=1,所以a=2.根据题意,函数y=log a x,x∈(1,2)的图象恒在y=(x-1)2,x∈(1,2)的上方.结合图象,a的取值范围是(1,2].答案(1)B (2)C考点三解决与对数函数性质有关的问题多维探究角度1 比较大小【例3-1】 (1)已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是( )A.a=b<cB.a=b>cC.a<b<cD.a>b>c(2) 已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为( )A.c<b<aB.a<b<cC.b<c<aD.c<a<b解析(1)因为a=log23+log23=log233=32log23>1,b=log29-log23=log233=a,c=log32<log33=1.所以a=b>c.(2)显然c=0.30.2∈(0,1).因为log33<log38<log39,所以1<b<2.因为log27>log24=2,所以a>2.故c<b<a.答案(1)B (2)A规律方法比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较,若底数不同,可考虑利用中间量进行比较.角度2 解简单的对数不等式【例3-2】 (1) 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A.(2,+∞)B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)C.⎝ ⎛⎭⎪⎫0,22∪(2,+∞) D.(2,+∞)(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.解析 (1)因为偶函数f (x )在(-∞,0]上是减函数,所以f (x )在(0,+∞)上是增函数,又f (1)=2,所以不等式f (log 2x )>2,即|log 2x |>1,解得0<x <12或x >2.(2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,且8-2a >a ,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0. ∴8-a <a 且8-2a >0,此时解集为∅. 综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83.答案 (1)B (2)⎝⎛⎭⎪⎫1,83规律方法 形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论. 角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0, ∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0.(2)若函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0),故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎨⎧1+a ≥4a +2,4a +2>0,解得-12<a ≤-13.故实数a 的取值范围是⎝ ⎛⎦⎥⎤-12,-13.规律方法 1.研究函数性质,要树立定义域优先的原则,讨论函数的一切问题都在定义域上进行.2.解题注意几点:(1)由f (0)=0,得a =0,需验证f (-x )=-f (x ).(2)f (x )的定义域为R ,转化为不等式恒成立问题.(3)第(3)问运用转化思想,把对数不等式转化为等价的代数不等式.【训练3】 (1) 已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2) 设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________.(3) 已知函数f (x )=log a (x +2)+3(a >0,且a ≠1)的图象恒过定点(m ,n ),且函数g (x )=mx 2-2bx +n 在[1,+∞)上单调递减,则实数b 的取值范围是________.解析 (1)log 1315=log 3-15-1=log 35,因为函数y =log 3x 在(0,+∞)上为增函数,所以log 35>log 3 72>log 33=1,因为函数y =⎝ ⎛⎭⎪⎫14x在(-∞,+∞)上为减函数,所以⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,故c >a >b .(2)由f (x )是奇函数可得a =-1, ∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.(3)∵函数f (x )=log a (x +2)+3(a >0,且a ≠1)的图象恒过定点(m ,n ),令x +2=1,求得x =-1,f (x )=3,可得函数的图象经过定点(-1,3),∴m =-1,n =3.∵函数g (x )=mx 2-2bx +n =-x 2-2bx +3, 在[1,+∞)上单调递减,∴-2b2≤1,即b ≥-1,所以实数b 的取值范围为[-1,+∞). 答案 (1)D (2)(-1,0) (3)[-1,+∞) 赢得高分 基本初等函数的应用“瓶颈题”突破以基本初等函数为载体考查函数的应用,常考常新.命题多与函数零点(不等式)、参数的求值交汇,如2017·全国Ⅲ卷·T15,2018·全国Ⅰ卷·T9,2019·全国Ⅲ卷·T11,解题的关键是活用函数的图象与性质,重视导数的工具作用.【典例】 已知函数f (x )=e x ,g (x )=ln x 2+12,对任意a ∈R,存在b ∈(0,+∞),使f (a )=g (b ),则b -a 的最小值为( )A.2e-1B.e2-12C.2-ln 2D.2+ln 2解析存在b∈(0,+∞),使f(a)=g(b),则e a=ln b2+12,令t=e a=lnb2+12>0.∴a=ln t,b=2e t-12,则b-a=2e t-12-ln t.设φ(t)=2e t-12-ln t,则φ′(t)=2e t-12-1t(t>0).显然φ′(t)在(0,+∞)上是增函数,当t=12时,φ′⎝⎛⎭⎪⎫12=0.∴φ′(t)有唯一零点t=12 .故当t=12时,φ(t)取得最小值φ⎝⎛⎭⎪⎫12=2+ln 2.答案 D思维升华 1.解题的关键:(1)由f(a)=g(b),引入参数t表示a,b两个量.(2)构造函数,转化为求函数的最值.2.可导函数唯一极值点也是函数的最值点,导数是求解函数最值的工具.【训练】若存在正数x,使得2x(x-a)<1成立,则a的取值范围是( )A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)解析由2x(x-a)<1,得a>x-12x ,令f(x)=x-12x (x>0),若a>x-12x有解,则a>f(x)min.由于y=f(x)在(0,+∞)上递增,所以f(x)>f(0)=-1,因此a>-1,实数a的取值范围为(-1,+∞).答案 D一、选择题1.已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8解析 因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24. 答案 A2. 设a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <a C.a <c <bD.a <b <c解析 1<a =log 35=12log 325<32,b =1.51.5>1.5,又c =ln 2<1.故b >a >c .答案 A3.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=ln(x +1),则函数f (x )的大致图象为( )解析 先作出当x ≥0时,f (x )=ln(x +1)的图象,显然图象经过点(0,0),再作此图象关于y 轴对称的图象,可得函数f (x )在R 上的大致图象,如选项C 中图象所示. 答案 C4. 若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝⎛⎭⎪⎫lg 12+f (lg 5)+f ⎝ ⎛⎭⎪⎫lg 15=( ) A.2 B.4 C.6 D.8解析 由于f (x )=|x |+x 3,得f (-x )+f (x )=2|x |. 又lg 12=-lg 2,lg 15=-lg 5.所以原式=2|lg 2|+2|lg 5|=2(lg 2+lg 5)=2.答案 A5.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A.(0,+∞)B.(2,+∞)C.(1,+∞)D.⎝ ⎛⎭⎪⎫12,+∞解析 令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),恒有f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因为M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 答案 A 二、填空题6. 已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. 解析 由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7. 答案 -77. 已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.解析 由题意得,当x >0,-x <0时,f (x )=-f (-x )=-(-e -ax )=e -ax ,所以f (ln 2)=e -a ln 2=eln 2-a =2-a =8=23,即2-a =23,所以a =-3. 答案 -38.设函数f (x )=⎩⎨⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________.解析 当x ≤1时,由21-x ≤2,解得x ≥0,所以0≤x ≤1; 当x >1时,由1-log 2x ≤2,解得x ≥12,所以x >1.综上可知,x ≥0. 答案 [0,+∞)三、解答题9.已知函数f(x)=log21+axx-1(a为常数)是奇函数.(1)求a的值与函数f(x)的定义域;(2)若当x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,求实数m的取值范围.解 (1)因为函数f(x)=log21+axx-1是奇函数,所以f(-x)=-f(x),所以log21-ax-x-1=-log21+axx-1,即log2ax-1x+1=log2x-11+ax,所以a=1,f(x)=log21+x x-1,令1+xx-1>0,解得x<-1或x>1,所以函数的定义域为{x|x<-1或x>1}.(2)f(x)+log2(x-1)=log2(1+x),当x>1时,x+1>2,所以log2(1+x)>log22=1.因为x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,所以m≤1,所以m的取值范围是(-∞,1].10.已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,f(x)=log 12 x.(1)求函数f(x)的解析式;(2)解不等式f(x2-1)>-2.解(1)当x<0时,-x>0,则f(-x)=log 12(-x).因为函数f(x)是偶函数,所以f(-x)=f(x)=log 12(-x),所以函数f(x)的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,且f (0)=0>-2,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).11. 在同一直角坐标系中,函数y =1a x ,y =log a ⎝⎛⎭⎪⎫x +12(a >0,且a ≠1)的图象可能是( )解析 若a >1,则y =1a x 单调递减,A ,B ,D 不符合,且y =log a ⎝⎛⎭⎪⎫x +12过定点⎝ ⎛⎭⎪⎫12,0,C 项不符合,因此0<a <1. 当0<a <1时,函数y =a x的图象过定点(0,1),在R 上单调递减,于是函数y =1a x的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在⎝ ⎛⎭⎪⎫-12,+∞上单调递减.因此, 选项D 中的两个图象符合. 答案 D12. 设x ,y ,z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 解析 令t =2x =3y =5z ,∵x,y,z为正数,∴t>1.则x=log2t=lg tlg 2,同理,y=lg tlg 3,z=lg tlg 5.∴2x-3y=2lg tlg 2-3lg tlg 3=lg t(2lg 3-3lg 2)lg 2×lg 3=lg t(lg 9-lg 8)lg 2×lg 3>0,∴2x>3y.又∵2x-5z=2lg tlg 2-5lg tlg 5=lg t(2lg 5-5lg 2)lg 2×lg 5=lg t(lg 25-lg 32)lg 2×lg 5<0,∴2x<5z,∴3y<2x<5z.答案 D13. 已知函数f(x)=sin x·lg(1+x2+ax)的图象关于y轴对称,则实数a的值为________.解析依题意,y=f(x)为偶函数,则g(x)=lg(1+x2+ax)为奇函数,∴g(-x)+g(x)=lg(1+x2-ax)+lg(1+x2+ax)=0,故1+x2-a2x2=1,即(1-a2)x2=0,则a=±1.答案±114.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4]不等式f(x2)·f(x)>k·g(x)恒成立,求实数k的取值范围.解(1)h(x)=(4-2log2x)log2x=2-2(log2x-1)2因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f(x2)·f(x)>k·g(x),得(3-4log2x)(3-log2x)>k·log2x,令t=log2x,因为x∈[1,4],所以t=log2x∈[0,2],所以(3-4t)(3-t)>k·t对一切t∈[0,2]恒成立,21①当t =0时,k ∈R;②当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t-15, 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以4t +9t-15的最小值为-3. 所以k <-3.综上,实数k 的取值范围为(-∞,-3).15. 函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫-12,12 解析 函数f (x )=log a (a x +t 2)(a <0,且a ≠1)是“半保值函数”,且定义域为R.当a >1时,z =a x +t 2在R 上递增,y =log a z 在(0,+∞)上递增,可得f (x )为R 上的增函数;当0<a <1时,f (x )仍为R 上的增函数,∴f (x )在定义域R 上为增函数,f (x )=log a (a x +t 2)=12x , ∴a x +t 2=a 12x ,则a x -a x 2+t 2=0. 令u =a x 2,u >0,则u 2-u +t 2=0有两个不相等的正实根. 得Δ=1-4t 2>0,且t 2>0,∴0<t 2<14,解得t ∈⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12. 答案 B。

2023年一轮复习《指数函数和对数函数》综合训练(含解析)

2023年一轮复习《指数函数和对数函数》综合训练(含解析)

2023年一轮复习《指数函数和对数函数》综合训练一、单选题(本大题共12小题,共60分)1.(5分)已知函数y=f(x)是定义域为R的奇函数.当x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则实数m的值为()A. √2−1B. 2√2−2C. 2−√2D. 3−2√22.(5分)已知某抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.2%,则至少要抽的次数是(参考数据:lg2=0.301)()A. 6B. 7C. 8D. 93.(5分)已知函数f(x)=sin(π2x)+a(e x−1+e−x+1)有唯一零点,则a=()A. −1B. −12C. 12D. 14.(5分)已知x1是方程x+≶x=3的根,x2是方程x+10x=3的根,那么x1+x2的值为()A. 6B. 3C. 2D. 15.(5分)函数y=|ln|x−2||+x2−4x的所有零点之和是()A. −8B. −4C. 4D. 86.(5分)已知函数f(x)={xlnx−x,x>0f(x+1),x⩽0,若关于x的方程2f(x)−kx+1=0有四个不同的实根,则实数k的取值范围是()A. (−14,−16]∪(14,12]B. [−14,−16)∪[14,12)C. (−12,−13]∪(12,1]D. [−12,−13]7.(5分)已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(−2)=0,则不等式xf(x+1)>0的解集为()A. (−3,−1)∪(0,+∞)B. (−∞,−3)∪(0,1)C. (−∞,−3)∪(−1,+∞)D. (−3,0)∪(1,+∞)8.(5分)已知函数y=f(x)的定义域为(0,+∞),满足对任意x∈(0,+∞),恒有f[f(x)−1x]=4,若函数y=f(x)−4的零点个数为有限的n(n∈N∗)个,则n的最大值为()A. 1B. 2C. 3D. 49.(5分)下列函数中,在定义域内单调递增,且在区间(−1,1)内有零点的函数是()A. y=−x3B. y=2x−1C. y=x2−12D. y=log2(x+2)10.(5分)(示范高中)已知x >0,y >0,≶2x +≶4y =≶2,则1x +1y 的最小值是( )A. 6B. 5C. 3+2√2D. 4√211.(5分)已知函数f(x)={|log 2(x +1)|,x ∈(−1,3)5−x,x ∈[3,+∞),则函数g(x)=f(f(x))−1的零点个数为( )A. 3B. 4C. 5D. 612.(5分)已知函数f(x)在[−3,4]上的图象是一条连续的曲线,且其部分对应值如表:A. (−3,−1)和(−1,1)B. (−3,−1)和(2,4)C. (−1,1)和(1,2)D. (−∞,−3)和(4,+∞)二 、填空题(本大题共4小题,共20分)13.(5分)若log 9(3a +4b )=log 3√ab ,则a +3b 的最小值是________. 14.(5分)已知2a =3,b =log 25,则2b =______,2a+b =______. 15.(5分)若lga ,lgb 是方程2x2-4x+1=0的两个实根,则ab=____. 16.(5分)计算 log23•log38=____. 三 、解答题(本大题共6小题,共72分) 17.(12分)求值:(1)0.027−13−(−17)−2−3−1+(−78)0; (2)3log 32+lg 16+3lg 5−lg 15.18.(12分)计算下列各式的值. (1)i −i 2+i 3−i 4+…+i 2021−i 2022;(2)log 168+101−lg5−(2764)13+(1−√2)lg1. 19.(12分)已知函数f(x)=a −22x +1(a ∈R) 为定义域上的奇函数.(1)求a 的值;(2)判断f(x)在定义域上的单调性,并加以证明;(3)若关于x 的方程f(x)=23在区间(b,b +1)(b ∈N ∗)内有唯一解,求b 的值. 20.(12分)设二次函数f(x)=ax 2+(b −3)x +3.(1)若函数f(x)的零点为−3,2,求函数f(x); (2)若f(1)=1,a >0,b >0,求1a +4b 的最小值. 21.(12分)解下列方程. (1)log 2[log 2(2x +3)]=2; (2)(12)x .82x =4.22.(12分)已知函数f(x)=−x 2+2ex +m −1,g(x)=x +e 2x(x >0).(1)若y =g(x)−m 有零点,求实数m 的取值范围;(2)求实数m 的取值范围,使得g(x)−f(x)=0有两个不相等的实根. 四 、多选题(本大题共5小题,共25分) 23.(5分)已知a >0,b >0,ln a =ln b 2=ln (3a +2b )3,则下列说法错误的是( )A. b =2aB. 3a +2b =b 3C. ln bln (a+1)=log 23D. eln b a=324.(5分)设函数f(x)={3x ,x ⩽0|log 3x|,x >0,若f(x)−a =0有三个不同的实数根,则实数a 的取值可以是( )A. 12 B. 1 C. −1 D. 225.(5分)若关于x 的不等式ae x +bx +c <0的解集为(−1,1),则( )A. b >0B. |a|<|c|C. a +b +c >0D. 8a +2b +c >026.(5分)下列各选项中,值为1的是( )A. log 26.log 62B. log 62+log 64C. (2+√3)12⋅(2−√3)12D. (2+√3)12−(2−√3)1227.(5分)已知函数f(x)={cosx,x >0kx,x ⩽0,若方程f(x)+f(−x)=0有n 个不同的实根,从小到大依次为x 1,x 2,x 3,…,x n ,则下列说法正确的是( )A. x 1+x 2+x 3+…+x n =0B. 当n =1时,k <−1π C. 当n =3且k <0时,tan x 3=−1x 3D. 当k >12π时,n =3答案和解析1.【答案】B;【解析】解:∵函数y=f(x)是定义域为R的奇函数.x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.∴f(0)=0,若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,由y=f(x)=(x−1)2+1,x∈[1,2],故mx=(x−1)2+1有且只有一个解,即x2−(m+2)x+2=0的Δ=0,解得:m=2√2−2,或m=−2√2−2(舍去),故m=2√2−2,故选:B由已知中恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,可得f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,进而可得答案.此题主要考查的知识点是根的存在性及根的个数判断,其中结合函数奇偶性的函数特征,分析出f(x)=mx有且仅有两个正根,是解答的关键.2.【答案】B;【解析】解:假设至少要抽的次数是n,则(1−0.6)n<0.002,∴nlg0.4<lg0.002,∴n>lg0.002lg0.4=lg2−32lg2−1≈6.8.∴至少要抽的次数是7.故选:B.假设至少要抽的次数是n,则(1−0.6)n<0.002,化为对数式即可得出.该题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.3.【答案】B;【解析】解:因为函数f(x)=sin(π2x)+a(e x−1+e−x+1),令x−1=t,t∈R,则g(t)=sin(π2(t+1))+a(e t+e−t)=cos(π2t)+a(e t+e−t)为偶函数,因为函数f(x)=sin(π2x)+a(e x−1+e x−1)有唯一零点,t)+a(e t+e−1)有唯一零点,所以g(t)=cos(π2根据偶函数的对称性,则g(0)=1+2a=0,解得a=−1,2故选:B.t)+a(e t+e−t)有唯一零点,根据偶函数的对称性求令x−1=t,转化为g(t)=cos(π2解.此题主要考查了函数的零点问题,属于中档题.4.【答案】B;【解析】解:第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,其实是与第一个方程一样的.如果x1,x2是两个方程的解,则必有x1=3−x2,∴x1+x2=3.故选:B.第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,由此能求出结果.该题考查两数和的求法,是基础题,解题时要认真审题,注意对数函数性质的合理运用.5.【答案】D;【解析】解:根据函数y=|ln|x−2||+x2−4x的零点,转化为|ln|x−2||+x2−4x=0的根,令y=|ln|x−2||,y=−x2+4x,两个函数的对称轴都为x=2,在同一坐标系中,画出函数的图象:x 3,x 2关于x =2对称,所以x 3+x 2=4, x 1,x 4关于x =2对称,所以x 1+x 4=4, 所以x 1+x 2+x 3+x 4=8, 故选:D .根据函数y =|ln |x −2||+x 2−4x 的零点⇒|ln |x −2||+x 2−4x =0的根⇒y =|ln |x −2||,y =−x 2+4x 交点的横坐标,由两个函数都有对称轴x =2,结合图象可得x 3,x 2关于x =2对称,x 1,x 4关于x =2对称,进而得出答案. 该题考查函数的零点,解题中注意转化思想的应用,属于中档题.6.【答案】C;【解析】解:当x >0时,f ′(x)=lnx ,当0<x <1时,f ′(x)<0,当x >1时,f ′(x)>0,所以当x >0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 又当x ⩽0时,f(x)=f(x +1),所以根据周期为1可得:当x ⩽0时f(x)的图象,故f(x)的图象如图所示:将方程2f(x)−kx +1=0,转化为方程f(x)=k2x −12有四个不同的实根, 令g(x)=k2x −12,其图象恒过(0,−12), 因为f(x)与g(x)的图象有四个不同的交点, 所以k CE <k2⩽k DE 或k BE <k2⩽k AE ,又由A(−3,0),B(−2,0),C(−2,−1),D(−1,−1),E(0,−12), 故k CE =14,k DE =12,k BE =−14,k DE =−16, 所以14<k2⩽12或−14<k2⩽−16, 即12<k ⩽1或−12<k ⩽−13. 故选:C.把方程2f(x)−kx +1=0有四个不同的实根,转化为函数y =f(x)和g(x)=k2x −12的图象有四个交点,作出两个函数的图象,结合图象,即可求解.此题主要考查了函数的零点、转化思想、数形结合思想,难点在于作出图象,属于中档题.7.【答案】B;【解析】本题查抽象函数的单调性和奇偶性的综合应用,属于中档题。

高考数学一轮复习专题训练—对数与对数函数

高考数学一轮复习专题训练—对数与对数函数

对数与对数函数考纲要求1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. 知识梳理 1.对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、运算性质与换底公式(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算性质如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0).3.对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a >10<a <1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.换底公式的两个重要结论(1)log a b =1log b a(a >0,且a ≠1;b >0,且b ≠1).(2)log am b n =nm log a b (a >0,且a ≠1;b >0;m ,n ∈R ,且m ≠0).2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( )(3)函数y =ln 1+x1-x 与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)当x >1时,若log a x >log b x ,则a <b .( ) 答案 (1)× (2)× (3)√ (4)× 解析 (1)log 2x 2=2log 2|x |,故(1)错误.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错误. (4)若0<b <1<a ,则当x >1时,log a x >log b x ,故(4)错误.2.log 29×log 34+2log 510+log 50.25=( ) A.0 B.2 C.4 D.6答案 D解析 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 3.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 当x =2时,函数y =log a (x -1)+2(a >0,且a ≠1)的值为2,所以图象恒过定点(2,2).4.(2020·全国Ⅰ卷)设a log 34=2,则4-a =( ) A.116B.19C.18D.16答案 B解析 法一 因为a log 34=2,所以log 34a =2,则4a =32=9,所以4-a =14a =19.故选B.法二 因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4-log 49 =4log 49-1=9-1=19.故选B.5.(2019·天津卷)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A.c <b <a B.a <b <c C.b <c <a D.c <a <b答案 A解析 显然c =0.30.2∈(0,1).因为log 33<log 38<log 39,所以1<b <2.因为log 27>log 24=2,所以a >2.故c <b <a .6.(2021·陕西名校联考)若log 2x +log 4y =1,则( ) A.x 2y =2 B.x 2y =4 C.xy 2=2 D.xy 2=4答案 B解析 log 2x +log 4y =log 2x +12log 2y =log 2x +log 2y 12=log 2(xy 12)=1,所以xy 12=2,两边平方得x 2y =4.考点一 对数的运算1.设2a =5b =m ,且1a +1b =2,则m =( )A.10B.10C.20D.100 答案 A解析 由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. 因此m 2=10,m =10.2.(2019·北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1C.lg 10.1D.10-10.1答案 A解析 依题意,m 1=-26.7,m 2=-1.45,代入所给公式得52lg E 1E 2=-1.45-(-26.7)=25.25.所以lgE 1E 2=25.25×25=10.1,即E 1E 2=1010.1. 3.计算:(1-log 63)2+log 62·log 618log 64=________.答案 1解析 原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.4.已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________.答案 4 2解析 设log b a =t ,则t >1, 因为t +1t =52,所以t =2,则a =b 2.又a b =b a , 所以b 2b =bb 2,即2b =b 2, 又a >b >1,解得b =2,a =4.感悟升华 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.考点二 对数函数的图象及应用【例1】 (1)在同一直角坐标系中,函数y =1ax ,y =log a ⎝⎛⎭⎫x +12(a >0,且a ≠1)的图象可能是( )(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a的取值范围是________. 答案 (1)D (2)(1,+∞)解析 (1)若a >1,则y =1a x 单调递减,A ,B ,D 不符合,且y =log a ⎝⎛⎭⎫x +12过定点⎝⎛⎭⎫12,0,C 项不符合, 因此0<a <1.当0<a <1时,函数y =a x 的图象过定点(0,1),在R 上单调递减,于是函数y =1a x 的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝⎛⎭⎫x +12的图象过定点⎝⎛⎭⎫12,0,在⎝⎛⎭⎫-12,+∞上单调递减.因此, 选项D 中的两个图象符合.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线y =-x +a 在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与y =f (x )只有一个交点.感悟升华 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【训练1】 (1)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1(2)(2021·西安调研)设x 1,x 2,x 3均为实数,且e -x 1=ln x 1,e-x 2=ln(x 2+1),e-x 3=lg x 3,则( )A.x 1<x 2<x 3B.x 1<x 3<x 2C.x 2<x 3<x 1D.x 2<x 1<x 3答案 (1)D (2)D解析 (1)由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.(2)画出函数y =⎝⎛⎭⎫1e x,y =ln x ,y =ln(x +1),y =lg x 的图象,如图所示:由图象直观性,知x 2<x 1<x 3.考点三 解决与对数函数性质有关的问题角度1 比较对数值大小【例2】 (1)(2020·全国Ⅲ卷)设a =log 32,b =log 53,c =23,则( )A.a <c <bB.a <b <cC.b <c <aD.c <a <b(2)(2021·衡水中学检测)已知a =⎝⎛⎭⎫120.2,b =log 120.2,c =a b,则a ,b ,c 的大小关系是( ) A.a <b <c B.c <a <b C.a <c <b D.b <c <a答案 (1)A (2)B解析 (1)∵3log 32=log 38<2,∴log 32<23,即a <c .∵3log 53=log 527>2,∴log 53>23,即b >c .∴a <c <b .故选A.(2)函数y =⎝⎛⎭⎫12x与y =log 12x 的图象关于直线y =x 对称,则0<⎝⎛⎭⎫120.2<1<log 120.2,∴a <b . 又c =a b =⎝⎛⎭⎫120.2log 120.2=⎝⎛⎭⎫12log 120.20.2=0.20.2<⎝⎛⎭⎫120.2=a ,所以b >a >c .角度2 解简单的对数不等式【例3】 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( ) A.(2,+∞)B.⎝⎛⎭⎫0,12∪(2,+∞) C.⎝⎛⎭⎫0,22∪(2,+∞) D.(2,+∞)答案 B解析 因为偶函数f (x )在(-∞,0]上是减函数,所以f (x )在(0,+∞)上是增函数. 又f (1)=2,所以不等式f (log 2x )>2=f (1),即|log 2x |>1,解得0<x <12或x >2.角度3 对数型函数性质的综合应用【例4】 (2020·合肥调研)已知函数f (x )=log 2⎝⎛⎭⎫12x +a . (1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围. 解 (1)若函数f (x )是R 上的奇函数,则f (0)=0, ∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0.(2)若函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0),故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝⎛⎭⎫12+a .由题设得log 2(1+a )-log 2⎝⎛⎭⎫12+a ≥2, 则log 2(1+a )≥log 2(4a +2).∴⎩⎪⎨⎪⎧1+a ≥4a +2,4a +2>0,解得-12<a ≤-13.故实数a 的取值范围是⎝⎛⎦⎤-12,-13. 感悟升华 1.比较对数值的大小与解形如log a f (x )>log a g (x )的不等式,主要是应用函数的单调性求解,如果a 的取值不确定,需要分a >1与0<a <1两种情况讨论.2.与对数函数有关的复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.【训练2】 (1)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A.a =b <cB.a =b >cC.a <b <cD.a >b >c(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎝⎛⎭⎫1,83 解析 (1)因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1.所以a =b >c .(2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立, 则f (x )min =f (2)=log a (8-2a )>1, 即8-2a >a ,且8-2a >0, 解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立, 知f (x )min =f (1)=log a (8-a )>1,且8-2a >0. ∴8-a <a 且8-2a >0,此时解集为∅. 综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83.A 级 基础巩固一、选择题1.设a =log 0.20.3,b =log 20.3,则( )A.a +b <ab <0B.ab <a +b <0C.a +b <0<abD.ab <0<a +b 答案 B解析 由题设,得1a =log 0.30.2>0,1b=log 0.32<0. ∴0<1a +1b =log 0.30.4<1,即0<a +b ab<1. 又a >0,b <0,故ab <a +b <0.2.(2021·濮阳模拟)已知函数f (x )=lg ⎝⎛⎭⎫3x +43x +m 的值域是全体实数,则实数m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4]答案 D解析 由题意可知3x +43x +m 能取遍所有正实数. 又3x +43x +m ≥m +4,所以m +4≤0,即m ≤-4. ∴实数m 的取值范围为(-∞,-4].3.已知lg a +lg b =0,则函数f (x )=a -x 与函数g (x )=log b x 的图象可能是( )答案 C解析 由lg a +lg b =0,得ab =1.∴f (x )=a -x =⎝⎛⎭⎫1b -x =b x , 因此f (x )=b x 与g (x )=log b x 单调性相同.A ,B ,D 中的函数单调性相反,只有C 的函数单调性相同.4.若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝⎛⎭⎫lg 12+f (lg 5)+f ⎝⎛⎭⎫lg 15=( ) A.2B.4C.6D.8答案 A解析 由于f (x )=|x |+x 3,得f (-x )+f (x )=2|x |.又lg 12=-lg 2,lg 15=-lg 5. 所以原式=2|lg 2|+2|lg 5|=2(lg 2+lg 5)=2.5.已知a =log 3 72,b =⎝⎛⎭⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( ) A.a >b >cB.b >a >cC.c >b >aD.c >a >b 答案 D解析 log 13 15=log 3-15-1=log 35,因为函数y =log 3x 在(0,+∞)上为增函数, 所以log 35>log 3 72>log 33=1,因为函数y =⎝⎛⎭⎫14x 在R 上为减函数,所以⎝⎛⎭⎫1413<⎝⎛⎭⎫140=1,故c >a >b . 6.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A.(0,+∞)B.(2,+∞)C.(1,+∞)D.⎝⎛⎭⎫12,+∞ 答案 A解析 令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),恒有f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因为M 的单调递增区间为⎝⎛⎭⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32, 所以函数f (x )的单调递增区间为(0,+∞).二、填空题7.若log 43=m log 23,则log2m =________.答案 -2解析 ∵log 43=12log 23,∴m =12,∴log 2m =-2. 8.(2021·济南一中检测)已知函数y =log a (2x -3)+2(a >0且a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则b =________.答案 -7解析 令2x -3=1,得x =2,∴定点为A (2,2),将定点A 的坐标代入函数f (x )中,得2=32+b ,解得b =-7.9.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________. 答案 [0,+∞)解析 当x ≤1时,由21-x ≤2,解得x ≥0,所以0≤x ≤1;当x >1时,由1-log 2x ≤2,解得x ≥12,所以x >1. 综上可知,x ≥0.三、解答题10.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解 (1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,所以f (-x )=f (x ).所以当x <0时,f (x )=log a (-x +1),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log a (x +1),x ≥0,log a (-x +1),x <0. (2)因为-1<f (1)<1,所以-1<log a 2<1,所以log a 1a<log a 2<log a a . ①当a >1时,原不等式等价于⎩⎪⎨⎪⎧1a <2,a >2,解得a >2; ②当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧1a >2,a <2,解得0<a <12. 综上,实数a 的取值范围为⎝⎛⎭⎫0,12∪(2,+∞). 11.已知函数f (x )=log 21+ax x -1(a 为常数)是奇函数. (1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围.解 (1)因为函数f (x )=log 21+ax x -1是奇函数, 所以f (-x )=-f (x ),所以log 21-ax -x -1=-log 21+ax x -1, 即log 2ax -1x +1=log 2x -11+ax, 所以a =1,f (x )=log 21+x x -1, 令1+x x -1>0,解得x <-1或x >1, 所以函数的定义域为{x |x <-1或x >1}.(2)f (x )+log 2(x -1)=log 2(1+x ),当x >1时,x +1>2,所以log 2(1+x )>log 22=1.因为x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,所以m ≤1,所以m 的取值范围是(-∞,1].B 级 能力提升12.(2021·西安调研)设函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调增函数;②存在[m ,n ]⊆D (n >m ),使得f (x )在[m ,n ]上的值域为[m ,n ],那么就称y =f (x )是定义域为D 的“成功函数”.若函数g (x )=log a (a 2x +t )(a >0且a ≠1)是定义域为R 的“成功函数”,则t 的取值范围是( )A.⎝⎛⎭⎫0,14 B.⎝⎛⎦⎤0,14 C.⎝⎛⎭⎫-∞,14 D.⎝⎛⎭⎫14,+∞答案 A解析 因为g (x )=log a (a 2x +t )是定义在R 上的“成功函数”,所以g (x )为增函数,且g (x )在[m ,n ]上的值域为[m ,n ],故g (m )=m ,g (n )=n , 即g (x )=x 有两个不相同的实数根.又log a (a 2x +t )=x ,即a 2x -a x +t =0.令s =a x ,s >0,即s 2-s +t =0有两个不同的正数根,可得⎩⎪⎨⎪⎧t >0,Δ=1-4t >0. 解得0<t <14. 13.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为________.答案 2解析 易知函数f (x )=a x +log a x 在[1,2]上单调,所以f (x )在[1,2]上的最大值与最小值之和为f (1)+f (2)=log a 2+6.因此a 2+log a 2+a +log a 1=6+log a 2,∴a 2+a -6=0,解之得a =2或a =-3(舍).14.已知函数f (x )=3-2log 2x ,g (x )=log 2x .(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,求实数k 的取值范围. 解 (1)h (x )=(4-2log 2x )log 2x =2-2(log 2x -1)2.因为x ∈[1,4],所以log 2x ∈[0,2],故函数h (x )的值域为[0,2].(2)由f (x 2)·f (x )>k ·g (x ),得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立,①当t =0时,k ∈R ;②当t ∈(0,2]时,k <(3-4t )(3-t )t恒成立, 即k <4t +9t-15, 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以4t +9t-15的最小值为-3. 所以k <-3.综上,实数k 的取值范围为(-∞,-3).。

高中数学-对数函数的图象和性质(二)

高中数学-对数函数的图象和性质(二)

对数函数的图象和性质(二)高中数学函数 1.进一步掌握对数函数的图象和性质.2.利用单调性进一步求函数的定义域和简单值域问题.3.了解反函数的概念和图象特点.一、与对数函数有关的定义域问题例1 求下列函数的定义域:(1)y =;(2)y =;(3)y =.lg (2-x )1log3(3x -2)log4(4-x )x -3解 (1)要使函数式有意义,则lg(2-x )≥0,∴Error!∴x ≤1.故函数的定义域为(-∞,1].(2)要使函数式有意义,则log 3(3x -2)≠0,∴Error!∴x >,且x ≠1.23故函数的定义域为∪(1,+∞).(23,1)(3)要使函数式有意义,则Error!解得x <4,且x ≠3.故函数的定义域为(-∞,3)∪(3,4).反思感悟 (1)对数函数的真数大于0.(2)求定义域的常用方法是解不等式(组),有时在解不等式时,还要考虑函数的单调性.(3)有时求定义域比较特殊,其解法为从外向里一层一层地将对数符号去掉,每去掉一层对数符号都要考虑函数的单调性,最后求出x 的取值范围.跟踪训练1 求下列函数的定义域:(1)y =log (2x +1);(2)y =.3x +22x +x 2lg (2x -1)解 (1)要使函数式有意义,则Error!解得x >-且x ≠0,12∴函数的定义域为∪(0,+∞).(-12,0)(2)要使函数式有意义,则Error!即Error!解得x >,且x ≠1.12∴函数的定义域为∪(1,+∞).(12,1)二、与对数函数有关的综合性问题例2 已知函数f (x )=log 2(x +1)-2.(1)若f (x )>0,求x 的取值范围;(2)若x ∈(-1,3],求f (x )的值域.解 (1)函数f (x )=log 2(x +1)-2,∵f (x )>0,即log 2(x +1)-2>0,∴log 2(x +1)>2,∴x +1>4,∴x >3.∴x 的取值范围是(3,+∞).(2)∵x ∈(-1,3],∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2],∴log 2(x +1)-2∈(-∞,0].∴f (x )的值域为(-∞,0].反思感悟 (1)求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解;(2)判断函数的奇偶性,一定要先求函数的定义域,再研究f (x )与f (-x )的关系.跟踪训练2 函数f (x )=log a (a >0,且a ≠1)的图象( )1+x1-x A .关于原点对称B .关于直线y =x 对称C .关于直线y =-x 对称D .关于y 轴对称答案 A解析 因为函数f (x )的定义域为(-1,1),f (-x )=log a =log a -1=-loga=-f (x ),1-x1+x (1+x 1-x )1+x1-x 所以函数f (x )为奇函数,所以函数图象关于原点对称.三、反函数问题 在同一坐标系下,画出函数y =2x 与y =log 2x 的图象,观察两函数图象的关系.提示 知识梳理反函数:指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.它们的定义域与值域正好互换.注意点:(1)同底的指数函数与对数函数互为反函数;(2)互为反函数的两个函数图象关于y =x 对称.(高中阶段只要求掌握这一类反函数)例3 若函数y =f (x )是函数y =2x 的反函数,则f (f (2))的值为( )A .16 B .0 C .1 D .2答案 B解析 函数y =2x 的反函数是y =log 2x ,即f (x )=log 2x .∴f (f (2))=f (log 22)=f (1)=log 21=0.反思感悟 互为反函数的函数的性质(1)同底数的指数函数与对数函数互为反函数.(2)互为反函数的定义域与值域互换.(3)互为反函数的两个函数的图象关于直线y =x 对称.跟踪训练3 函数y =log 3x 的反函数的定义域为( )(13≤x ≤81)A .(0,+∞) B.(13,81)C .(1,4) D .[-1,4]答案 D解析 由y =log 3x ,可知y ∈[-1,4].(13≤x ≤81)所以反函数的定义域为x ∈[-1,4].1.知识清单:(1)利用对数函数的单调性求函数的定义域.(2)求简单对数的值域、最值、奇偶性问题.2.方法归纳:数形结合.3.常见误区:求对数型函数的定义域时,有时需求几部分的交集.1.函数f (x )=的定义域为( )1log2x -1A .(0,2) B .(0,2]C .(2,+∞) D .[2,+∞)答案 C解析 若函数f (x )有意义,则Error!即Error!解得x >2.∴函数f (x )的定义域为(2,+∞).2.函数y =x +log 2x (x ≥1)的值域为( )A .(1,+∞) B .(-∞,1)C .[1,+∞) D .[-1,+∞)答案 C3.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A. B. C .2 D .41412答案 B解析 由题意得f (x )在[0,1]上单调递增或单调递减,∴f (x )的最大值或最小值在端点处取得,即f (0)+f (1)=a ,即1+a +log a 2=a ,∴log a 2=-1,解得a =.124.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点,则(32,23)a =________.答案 2解析 由题意得f (x )=log a x (a >0,且a ≠1,x >0),因为f (x )的图象过点,所以loga=,所以=,所以a 2=2,所以a =(负值(32,23)322323a 322舍去).课时对点练1.已知函数f (x )=log 2x ,若函数g (x )是f (x )的反函数,则f (g (2))等于( )A .1 B .2 C .3 D .4答案 B解析 ∵g (x )是f (x )的反函数,∴g (x )=2x ,∴g (2)=22=4,则f (g (2))=f (4)=log 24=2.2.若点(a ,b )在函数y =lg x 的图象上,a ≠1,则下列点也在此图象上的是( )A. B .(10a ,1-b )(1a ,b )C. D .(a 2,2b )(10a ,b +1)答案 D解析 因为点(a ,b )在函数y =lg x 的图象上,所以b =lg a .当x =时,有y =lg =-lg 1a 1a a =-b ,所以点不在此函数的图象上,A 不正确;当x =10a 时,有y =lg(10a )=1+lg(1a ,b )a =1+b ,所以点(10a ,1-b )不在此函数的图象上,B 不正确;当x =时,有y =lg 10a =1-lga =1-b ,所以点不在此函数的图象上,C 不正确;当x =a 2时,有10a (10a ,b +1)y =lg a 2=2lg a =2b ,所以点(a 2,2b )在此函数的图象上,D 正确.3.下列三个数:a =ln ,b =-log 3, 大小顺序正确的是( )2332132,3c ⎛⎫⎪⎝⎭=A .c >a >b B .c >b >a C .b >a >c D .a >b >c答案 B解析 ∵0=log 31>b =-log 3=log 3>a =ln ,∴c >b >a .322323132>0,3c ⎛⎫⎪⎝⎭=4.设f (x )是奇函数,当x >0时,f (x )=log 2x ,则当x <0时,f (x )的解析式为( )A .-log 2x B .log 2(-x )C .-log 2(-x ) D .log x 2答案 C解析 当x <0时,-x >0,f (-x )=log 2(-x ).又因为f (x )为奇函数,所以f (-x )=-f (x ),所以f (x )=-f (-x ),所以f (x )=-log 2(-x ).5.某企业2018年全年投入研发资金150万元,为激励创新,该企业计划今后每年投入的研发资金比上年增长8%,则该企业全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.08≈0.033,lg 2≈0.301,lg 3≈0.477)A .2020年 B .2021年C .2022年 D .2023年答案 C解析 设经过n 年该企业全年投入的研发资金开始超过200万元,则150×(1+8%)n ≥200,则n ≥≈≈3.8,取n =4,则经过4年后是2022年.2lg 2-lg 3lg 1.080.602-0.4770.0336.(多选)任取x 1,x 2∈[a ,b ],且x 1≠x 2,若f>恒成立,则f (x )称为(x 1+x 22)f (x 1)+f (x 2)2[a ,b ]上的凸函数,下列函数中在其定义域上为凸函数的是( )A .y =2x B .y =log 2x C .y =-x 2 D .12y x=答案 BCD7.函数f (x )=的定义域为________.4-x 2ln x 答案 (0,1)∪(1,2]解析 由Error!得0<x ≤2,且x ≠1.∴函数f (x )=的定义域为(0,1)∪(1,2].4-x 2ln x 8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为,则a =________.12答案 4解析 ∵a >1,∴f (x )=log a x 在[a ,2a ]上单调递增,∴log a (2a )-log a a =,即log a 2=,∴a =4.121212=2,a 9.已知函数f (x )=log a (10+x )-log a (10-x )(a >0,且a ≠1).(1)判断f (x )的奇偶性,并说明理由;(2)若f (x )>0,求x 的取值范围.解 (1)函数f (x )是奇函数.理由如下:要使函数有意义,则Error!解得-10<x <10,即函数的定义域为(-10,10).函数的定义域关于原点对称.则f (-x )=log a (10-x )-log a (10+x )=-[log a (10+x )-log a (10-x )]=-f (x ),即函数f (x )是奇函数.(2)若f (x )>0,则f (x )=log a (10+x )-log a (10-x )>0,即log a (10+x )>log a (10-x ),若a >1,则Error!解得0<x <10,若0<a <1,则Error!解得-10<x <0,综上,当a >1时,x 的取值范围为(0,10),当0<a <1时,x 的取值范围为(-10,0).10.已知函数f (x )=log 2(1+x 2).求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上单调递增.证明 (1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为区间(0,+∞)内的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x )-log 2(1+x )=log 2.2121+x 211+x 2由于0<x 1<x 2,则0<x <x ,0<1+x <1+x ,212212所以0<<1,1+x 211+x 2所以log 2<0,1+x 211+x 2所以f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上单调递增.11.已知函数f (x )=x ∈,则f (x )的值域是( )12log ,x [14,22]A. B. C. [0,2] D.[12,2][-12,2][0,12]答案 A解析 因为函数f (x )=在上单调递减,所以函数f (x )的最小值为f =12log x [14,22](22)函数的最大值为f =所以函数的值域为.121log ,2 (14)121log =2,4[12,2]12.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上单调递减B .奇函数,在区间(0,+∞)上单调递增C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减答案 D解析 已知函数的定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数;当x >0时,f (x )=lg x 在区间(0,+∞)上单调递增,又因为f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上单调递减.13.函数f (x )=lg(+x )的奇偶性为( )x 2+1A .奇函数 B .偶函数C .非奇非偶函数D .既奇又偶函数答案 A解析 易知该函数的定义域为R ,又f (x )+f (-x )=lg(+x )+lg(-x )=lg[(x 2+1x 2+1+x )·(-x )]=lg 1=0,∴f (x )=-f (-x ),x 2+1x 2+1∴f (x )为奇函数.14.如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在函数y 1=3log a x ,y 2=2log a x 和y =log a x (a >1)的图象上,则实数a 的值为________.答案 2解析 设B (x ,2log a x ),∵BC 平行于x 轴,∴C (x ′,2log a x ),即log a x ′=2log a x ,∴x ′=x 2,∴正方形ABCD 的边长=|BC |=x 2-x =2,解得x =2.由已知,得AB 垂直于x 轴,∴A (x ,3log a x ),正方形ABCD 边长=|AB |=3log a x -2log a x =log a x =2,即log a 2=2,∴a =.215.已知f (x )=|log 3x |,若f (a )>f (2),则a 的取值范围为________________.答案 ∪(2,+∞)(0,12)解析 作出函数f (x )的图象,如图所示,由于f (2)=f ,故结合图象可知0<a <或a >2.(12)1216.已知函数f (x )=的图象关于原点对称,其中a 为常数.121log 1axx --(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+恒成立,求实数m 的取值范围.()12log 1x m <-解 (1)∵函数f (x )的图象关于原点对称,∴函数f (x )的定义域关于原点对称,∵>0,1-ax x -1∴(x -1)(1-ax )>0,令(x -1)(1-ax )=0,得x 1=1,x 2=,∴=-1,a =-1,1a 1a 经验证,a =-1满足题意.(2)∵()()()()111122221log 1log log 1log 11xf x x x x x +-+-=+-=+,∴当x >1时,()12log 1+<1,x 又当x ∈(1,+∞)时,f (x )+恒成立,()12log 1<x m -∴m ≥-1.即实数m 的取值范围是[-1,+∞).。

第2章 习题课 对数函数

第2章 习题课 对数函数

习题课 对数函数学习目标 1.巩固和深化对数及其运算的理解和运用.2.掌握简单的对数函数的图象变换及其应用.3.会综合应用对数函数性质与其他有关知识解决问题.知识点一 对数概念及其运算1.由指数式对数式互化可得恒等式:⎭⎪⎬⎪⎫a b =Nlog a N =b ⇒log a N a =N (a >0,且a ≠1). 2.对数log a N (a >0,且a ≠1)具有下列性质: (1)0和负数没有对数,即N >0; (2)log a 1=0; (3)log a a =1. 3.运算公式已知a >0,且a ≠1,M ,N >0. (1)log a M +log a N =log a (MN ); (2)log a M -log a N =log a MN ;(3)log n m a M =mnlog a M ;(4)log a M =log c Mlog c a =1log Ma(c >0,且c ≠1,M ≠1).知识点二 对数函数及其图象、性质 函数y =log a x (a >0,且a ≠1)叫做对数函数.(1)对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞);值域为R ; (2)对数函数y =log a x (a >0,且a ≠1)的图象过点(1,0); (3)当a >1时,y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =log a x 在(0,+∞)上单调递减;(4)直线y =1与函数y =log a x (a >0,且a ≠1)的图象交点为(a,1). (5)y =log a x 与y =a x 的图象关于y =x 对称. y =log a x 与y =1log ax 的图象关于x 轴对称.1.y =x 与y =log a xa是相等函数.( × )2.log a b =12log a b .( × )3.若a x >b ,则x >log a b .( × ) 4.y =log a (x +1)恒过定点(0,0).( √ )类型一 对数式的化简与求值 例1 (1)计算:(23)log (23)+-;(2)已知2lg x -y2=lg x +lg y ,求(322)log .x y- 考点 对数的运算 题点 对数的运算性质解 (1)方法一 利用对数定义求值: 设(23)log (23)x +-=,则(2+3)x =2-3=12+3=(2+3)-1,∴x =-1.方法二 利用对数的运算性质求解:1(2(2(23)3)3)log (23)log log (23) 1.23-==+=-++++- (2)由已知得lg ⎝⎛⎭⎪⎫x -y 22=lg xy , ∴⎝⎛⎭⎪⎫x -y 22=xy ,即x 2-6xy +y 2=0. ∴⎝⎛⎭⎫x y 2-6⎝⎛⎭⎫x y +1=0. ∴xy=3±2 2.∵⎩⎪⎨⎪⎧x -y >0,x >0,y >0,∴x y >1,∴xy =3+22,∴(3(3(3log log (3log 1.xy=+==---- 反思与感悟 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底,指数与对数互化. 跟踪训练1 (1)(lg 3)2-lg 9+1(lg 27+lg 8-lg 1 000)lg 0.3·lg 1.2=________.(2)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 考点 对数的运算 题点 指数对数的混合运算 答案 (1)-32 (2)2解析 (1)∵(lg 3)2-lg 9+1=(lg 3)2-2lg 3+1=1-lg 3,lg 27+lg 8-lg 1 000=32lg 3+3lg 2-32=32(lg 3-1)+3lg 2=32(lg 3+2lg 2-1), lg 0.3·lg 1.2=lg310·lg 1210=(lg 3-1)(lg 12-1) =(lg 3-1)(lg 3+2lg 2-1), ∴原式=-32.(2)∵f (ab )=lg(ab )=1,∴f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2. 类型二 对数函数图象的应用例2 已知函数f (x )=⎩⎪⎨⎪⎧|ln x |,0<x ≤e ,2-ln x ,x >e ,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),求abc 的取值范围.考点 对数函数的图象题点 指数、对数函数图象的应用 解 f (x )的图象如图:设f (a )=f (b )=f (c )=m , 不妨设a <b <c ,则直线y =m 与f (x )交点横坐标从左到右依次为a ,b ,c , 由图象易知0<a <1<b <e<c <e 2, ∴f (a )=|ln a |=-ln a ,f (b )=|ln b |=ln b .∴-ln a =ln b ,ln a +ln b =0,ln ab =ln 1,∴ab =1. ∴abc =c ∈(e ,e 2).反思与感悟 函数的图象直观形象地显示了函数的性质,因此涉及方程解的个数及不等式的解集等问题大都可以通过函数的图象解决,即利用数形结合思想,使问题简单化. 跟踪训练2 已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,试求a 的取值范围. 考点 对数函数的图象题点 指数、对数函数图象的应用 解 ∵f (x )=log a x ,则y =|f (x )|的图象如图.由图知,要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a ,亦当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时,a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). 类型三 对数函数的综合应用例3 已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点对称的点Q 在函数f (x )的图象上. (1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围. 考点 对数函数的综合问题题点 与最值有关的对数函数综合问题 解 (1)设P (x ,y )为g (x )图象上任意一点, 则Q (-x ,-y )是点P 关于原点的对称点, ∵Q (-x ,-y )在f (x )的图象上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x ). (2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F (x )=log a 1+x 1-x =log a ⎝ ⎛⎭⎪⎫-1+21-x ,x ∈[0,1),由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,∴F (x )min =F (0)=0. 故m ≤0即为所求.反思与感悟 指数函数、对数函数图象既是直接考查的对象,又是数形结合求交点,最值,解不等式的工具,所以要能熟练画出这两类函数图象,并会进行平移、伸缩,对称、翻折等变换.跟踪训练3 已知函数f (x )的定义域是(-1,1),对于任意的x ,y ∈(-1,1),有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ,且当x <0时,f (x )>0.(1)验证函数g (x )=ln 1-x1+x,x ∈(-1,1)是否满足上述这些条件;(2)你发现这样的函数f (x )还具有其他什么样的性质?试将函数的奇偶性、单调性方面的结论写出来,并加以证明. 考点 对数函数的综合问题题点 与奇偶性有关的对数函数的综合问题 解 (1)因为g (x )+g (y )=ln 1-x 1+x +ln 1-y1+y=ln ⎝⎛⎭⎪⎫1-x 1+x ·1-y 1+y =ln 1-x -y +xy1+x +y +xy , g ⎝ ⎛⎭⎪⎫x +y 1+xy =ln 1-x +y1+xy 1+x +y 1+xy=ln 1-x -y +xy1+x +y +xy , 所以g (x )+g (y )=g ⎝ ⎛⎭⎪⎫x +y 1+xy 成立.又当x <0时,1-x >1+x >0,所以1-x1+x >1,所以g (x )=ln 1-x1+x >0成立,综上g (x )=ln 1-x1+x满足这些条件.(2)发现这样的函数f (x )在(-1,1)上是奇函数. 将x =y =0代入条件,得f (0)+f (0)=f (0), 所以f (0)=0.将y =-x 代入条件得f (x )+f (-x )=f (0)=0⇒f (-x )=-f (x ), 所以函数f (x )在(-1,1)上是奇函数. 又发现这样的函数f (x )在(-1,1)上是减函数.因为f (x )-f (y )=f (x )+f (-y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ,当-1<x <y <1时,x -y1-xy <0,由条件知f ⎝ ⎛⎭⎪⎫x -y 1-xy >0,即f (x )-f (y )>0⇒f (x )>f (y ), 所以函数f (x )在(-1,1)上是减函数.1.若log x 7y =z ,则( ) A .y 7=x z B .y =x 7z C .y =7x zD .y =z 7x考点 对数式与指数式的互化 题点 对数式化为指数式 答案 B解析 由log x 7y =z ,得x z =7y ,∴⎝⎛⎭⎫7y 7=(x z )7,即y =x 7z .2.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2) 考点 对数函数的图象题点 同一坐标系下的指数函数与对数函数的图象 答案 B解析 当a >1,0<x ≤12时,log a x <0,不合题意.当0<a <1时,只需1214log 2a <,即log a a 2<log a 12,解得a >22,又a ∈(0,1),∴a ∈⎝⎛⎭⎫22,1.3.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( ) A .[-1,1] B.⎣⎡⎦⎤12,2 C .[1,2] D .[2,4] 考点 对数函数的定义域题点 与对数函数有关的抽象函数的定义域 答案 D解析 ∵-1≤x ≤1,∴2-1≤2x ≤2,即12≤2x ≤2.∴y =f (x )的定义域为⎣⎡⎦⎤12,2,即12≤log 2x ≤2, ∴2≤x ≤4.4.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是________.考点 对数不等式 题点 解对数不等式答案 (-∞,-1)∪(3,+∞)解析 当x 0≥2时,由log 2(x 0-1)>1,得log 2(x 0-1)>log 22,所以x 0-1>2,得x 0>3;当x 0<2时,由01112x ⎛⎫> ⎪⎝⎭-,得011122x -⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以x 0<-1,所以x 0的取值范围是(-∞,-1)∪ (3,+∞). 5.已知()2340,9a a >=则23log a =________. 考点 对数式与指数式的互化 题点 对数式与指数式的互化 答案 3解析 设23log a x =,则a =⎝⎛⎭⎫23x,又22233422,,933xa ⎡⎤⎛⎫⎛⎫∴=⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦=即22322,33x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∴23x =2,解得x =3.1.指数式a b =N 与对数式log a N =b 的关系以及这两种形式的互化是对数运算法则的关键. 2.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.3.注意对数恒等式、对数换底公式及等式log m n a b =n m ·log a b ,log a b =1log b a 在解题中的灵活应用.4.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N *,且n 为偶数).5.同底的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.6.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象.一、选择题1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a 考点 对数值大小比较 题点 指数、对数值大小比较 答案 B解析 ∵y =log 0.6x 在(0,+∞)上为减函数, ∴log 0.60.6<log 0.60.5,即a >1. 同理,ln 0.5<ln 1=0,即b <0. ∵0<0.60.5<0.60,即0<c <1,∴a >c >b .2.函数f (x )=ln(x 2+1)的图象大致是( )考点 对数函数的图象题点 同一坐标系下的对数函数与其他函数图象 答案 A解析 由函数解析式可知f (x )=f (-x ),即函数为偶函数,排除C ;由函数过(0,0)点,排除B ,D.3.已知a >0,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0 D .(b -1)(b -a )>0考点 对数不等式 题点 解对数不等式 答案 D解析 由a >0,b >0且a ≠1,b ≠1,及log a b >1=log a a 可得: 当a >1时,b >a >1,当0<a <1时,0<b <a <1, 代入验证只有D 满足题意.4.已知x ,y ,z 都是大于1的正数,m >0,且log x m =24,log y m =40,log xyz m =12,则log z m 的值为( )A.160 B .60 C.2003 D.3200 考点 对数的运算 题点 用代数式表示对数 答案 B解析 由已知得log m (xyz )=log m x +log m y +log m z =112,而log m x =124,log m y =140,故log m z =112-log m x -log m y =112-124-140=160,即log z m =60.5.函数f (x )=log a [(a -1)x +1]在定义域上( ) A .是增函数 B .是减函数 C .先增后减D .先减后增考点 对数函数的单调性题点 对数型复合函数的单调区间答案 A解析 ∵当a >1时,y =log a u ,u =(a -1)x +1都是增函数,当0<a <1时,y =log a u ,u =(a -1)x +1都是减函数,∴f (x )在定义域上为增函数.6.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ) A .[-1,2] B .[0,2] C .[1,+∞) D .[0,+∞)考点 对数不等式题点 解对数不等式答案 D解析 f (x )≤2等价于⎩⎪⎨⎪⎧ x ≤1,21-x ≤2或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2,解得0≤x ≤1或x >1.∴x 的取值范围是[0,+∞).7.(2017·西安模拟)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围答案 A解析 由函数图象可知,f (x )在R 上单调递增,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a<b <1. 8.两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出下列四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则是“同形”函数的是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )考点 对数函数的图象题点 对数函数的图象答案 A解析 因为f 4(x )=log 2(2x )=1+log 2x ,所以f 2(x )=log 2(x +2),沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )=log 2(2x )=1+log 2x ,根据“同形”函数的定义,f 2(x )与f 4(x )为“同形”函数.f 3(x )=log 2x 2=2log 2|x |与f 1(x )=2log 2(x +1)不“同形”,故选A.二、填空题9.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________. 考点 对数函数的图象题点 指数、对数函数图象的应用答案 23解析 由题意可知求b -a 的最小值即求区间[a ,b ]的长度的最小值,当f (x )=0时,x =1,当f (x )=1时,x =3或13,所以区间[a ,b ]的最短长度为1-13=23, 所以b -a 的最小值为23. 10.已知实数a ,b 满足log 12a =log 13b ,下列五个关系式:①a >b >1;②0<b <a <1;③b >a >1;④0<a <b <1;⑤a =b .其中可能成立的关系式序号为________.考点 对数函数的图象题点 指数、对数函数图象的应用答案 ②③⑤解析 由图易知,log 12a =log 13b 有且仅有3种情形:0<b <a <1或1<a <b 或a =b =1.11.已知0<a <1,0<b <1,若alog (3)b x -<1,则x 的取值范围是__________. 考点 对数不等式题点 解对数不等式答案 (3,4)解析 ∵0<a <1,∴a log (3)b x -<1=a 0等价于log b (x -3)>0=log b 1.∵0<b <1,∴⎩⎪⎨⎪⎧x -3>0,x -3<1,解得3<x <4. 三、解答题12.已知函数f (x )=2+log 2x ,x ∈[1,4].(1)求函数f (x )的值域;(2)设g (x )=[f (x )]2-f (x 2),求g (x )的最值及相应的x 的值.考点 对数函数的综合问题题点 与定义域、值域有关的对数函数综合问题解 (1)∵f (x )=2+log 2x 在[1,4]上是增函数,又f (1)=2+log 21=2,f (4)=2+log 24=2+2=4,∴函数f (x )的值域是[2,4].(2)g (x )=[f (x )]2-f (x 2)=4+4log 2x +(log 2x )2-(2+log 2x 2)=(log 2x )2+2log 2x +2=(log 2x +1)2+1. 由⎩⎪⎨⎪⎧1≤x ≤4,1≤x 2≤4,得1≤x ≤2, ∴g (x )的定义域是[1,2].∴0≤log 2x ≤1.∴当log 2x =0,即x =1时,g (x )有最小值g (1)=2;当log 2x =1,即x =2时,g (x )有最大值g (2)=5.13.已知函数f (x )=lg(a x -b x )(a >1>b >0).(1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;(3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题解 (1)由a x -b x >0,得⎝⎛⎭⎫a b x >1,且a >1>b >0,得a b>1,所以x >0, 即f (x )的定义域为(0,+∞).(2)任取x 1>x 2>0,a >1>b >0,则a 1x >a2x >1,0<b 1x <b 2x <1, 所以a 1x -b 1x >a2x -b 2x >0, 即lg(a 1x -b 1x )>lg(a2x -b 2x ).故f (x 1)>f (x 2). 所以f (x )在(0,+∞)上为增函数.假设函数y =f (x )的图象上存在不同的两点A (x 1,y 1),B (x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.故函数y =f (x )的图象上不存在不同的两点使过两点的直线平行于x 轴.(3)因为f (x )是增函数,所以当x ∈(1,+∞)时,f (x )>f (1),这样只需f (1)=lg(a -b )≥0,即当a ≥b +1时,f (x )在(1,+∞)上恒取正值.四、探究与拓展14.已知定义在R 上的偶函数f (x )在区间[0,+∞)上是单调减函数,若f (1)>f ⎝⎛⎭⎫lg 1x ,求x 的取值范围.考点 对数不等式题点 解对数不等式解 因为f (x )是定义在R 上的偶函数且在区间[0,+∞)上是单调减函数,所以f (x )在区间(-∞,0)上是单调增函数,所以不等式f (1)>f ⎝⎛⎭⎫lg 1x 可化为 lg 1x >1或lg 1x<-1, 所以lg 1x >lg 10或lg 1x <lg 110, 所以1x >10或0<1x <110, 所以0<x <110或x >10. 所以x 的取值范围为⎝⎛⎭⎫0,110∪(10,+∞). 15.已知函数f (x )=log 2(2x +1).(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围. 考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题(1)证明 因为函数f (x )=log 2(2x +1), 任取x 1<x 2,则f (x 1)-f (x 2)=log 2(21x +1)-log 2(22x +1) =log 221x +122x +1, 因为x 1<x 2,所以0<21x +122x +1<1, 所以log 221x +122x +1<0, 所以f (x 1)<f (x 2),所以函数f (x )在(-∞,+∞)内单调递增.(2)解 g (x )=m +f (x ),即g (x )-f (x )=m . 设h (x )=g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2⎝ ⎛⎭⎪⎫1-22x +1. 设1≤x 1<x 2≤2,则3≤21x +1<22x +1≤5, 13≥121x +1>122x +1≥15, -23≤-221x +1<-222x +1≤-25, 所以13≤1-221x +1<1-222x +1≤35, 所以log 213≤h (x 1)<h (x 2)≤log 235, 即h (x )在[1,2]上为增函数且值域为⎣⎡⎦⎤log 213,log 235. 要使g (x )-f (x )=m 有解,需m ∈⎣⎡⎦⎤log 213,log 235.。

高中数学 第四章 指数函数、对数函数与幂函数综合测试训练(含解析)新人教B版必修第二册-新人教B版高

高中数学 第四章 指数函数、对数函数与幂函数综合测试训练(含解析)新人教B版必修第二册-新人教B版高

第四章综合测试(时间:120分钟 满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若n ∈N ,a ∈R ,给出下列式子:①4-42n;②4-42n +1;③5a 4;④4a 5.其中恒有意义的式子的个数是( B )A .1B .2C .3D .4 [解析] 根据根指数是偶数时,被开方数非负,可知②无意义;当a <0时,④无意义;恒有意义的是①③.故选B .2.函数y =log 12x -3的定义域为( C )A .(-∞,18]B .[18,+∞)C .(0,18]D .(0,8][解析] 要使函数y =log 12x -3有意义,应满足log 12x -3≥0, ∴log 12x ≥3,∴⎩⎪⎨⎪⎧x >0x ≤⎝ ⎛⎭⎪⎫123=18,∴0<x ≤18,故选C .3.下列不等式中正确的是( C ) A .lg 0.1>lg 0.2 B .0.20.1<0.20.2C .0.20.1>lg 0.1D .0.10.2<lg 0.2[解析] lg 0.1<0,0.20.1>0,∴0.20.1>lg 0.1,故选C . 4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >0⎝ ⎛⎭⎪⎫12xx ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=( D ) A .-18B .18C .-8D .8[解析] f ⎝ ⎛⎭⎪⎫127=log 3127=log 33-3=-3,f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=f (-3)=⎝ ⎛⎭⎪⎫12-3=8,故选D .5.若a >b >1,0<c <1,则( C ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c[解析] 令a =4,b =2,c =12,则a c =412 =2,b c =212 =2,∴a c >b c,排除A ;ab c =42,ba c =4,∴ab c >ba c ,排除B ;log a c =log 412=-12,log b c =log 212=-1,∴log a c >log b c ,排除D ,故选C .6.已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图像是( C )[解析] 因为函数y =log 2x 的反函数是y =2x ,所以f (x )=2x .故f (1-x )=21-x,因为此函数在R 上是减函数,且过点(0,2).因此选C .7.下列函数中,满足“f (x +y )=f (x )f (y )”的增函数是( B ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x[解析] 对于函数f (x )=x 3,f (x +y )=(x +y )3,f (x )f (y )=x 3·y 3,而(x +y )3≠x 3y 3,所以f (x )=x 3不满足f (x +y )=f (x )f (y ),故A 错误; 对于函数f (x )=3x,f (x +y )=3x +y=3x ·3y =f (x )f (y ),因此f (x )=3x满足f (x +y )=f (x )f (y ),且f (x )=3x是增函数,故B 正确;对于函数f (x )=x 12 ,f (x +y )=(x +y )12 ,f (x )f (y )=x 12 y 12 =(xy )12 ,而(x +y )12 ≠(xy )12 ,所以f (x )=x 12 不满足f (x +y )=f (x )f (y ),故C错误;对于函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ·⎝ ⎛⎭⎪⎫12y=f (x )·f (y ),因此f (x )=⎝ ⎛⎭⎪⎫12x 满足f (x +y )=f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x不是增函数,故D 错误.8.设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f [f (a )]=2f (a )的a 的取值X 围是( C )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[解析] 由f [f (a )]=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知实数a ,b 满足等式3a=6b,给出下列四个关系式:①a =b ;②0<b <a ;③a <b <0;④b <0<A .其中可能成立的是( ABC )A .①B .②C .③D .④[解析] 在同一个坐标系中画出函数y =3x,y =6x的图象如图所示.由图像,可知当a =b =0时,3a=6b,故①可能成立;作出直线y =k ,如图所示,当k >1时,若3a=6b,则0<b <a ,故②可能成立;当0<k <1时,若3a=6b,则a <b <0,故③可能成立.故选ABC .10.对于0<a <1,下列四个不等式中成立的是( BD )A .log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a B .log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1aC .a1+a<a1+1aD .a1+a>a1+1a[解析] 因为0<a <1,所以a <1a ,从而1+a <1+1a,所以log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a .又因为0<a <1,所以a1+a>a1+1a.11.设函数f (x )=2x,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ACD ) A .f (x 1+x 2)=f (x 1)·f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2) C .f x 1-f x 2x 1-x 2>0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f x 1+f x 22[解析] 2x 1·2x 2=2x 1+x 2,所以A 成立,2x 1+2x 2≠2x 1·x 2,所以B 不成立,函数f (x )=2x,在R 上是单调递增函数,若x 1>x 2则f (x 1)>f (x 2),则f x 1-f x 2x 1-x 2>0,若x 1<x 2,则f (x 1)<f (x 2),则f x 1-f x 2x 1-x 2>0,故C 正确;f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22说明函数是凹函数,而函数f (x )=2x是凹函数,故ACD 正确.12.关于函数f (x )=|ln |2-x ||,下列描述正确的有( ABD ) A .函数f (x )在区间(1,2)上单调递增 B .函数y =f (x )的图像关于直线x =2对称 C .若x 1≠x 2,但f (x 1)=f (x 2),则x 1+x 2=4 D .函数f (x )有且仅有两个零点[解析] 函数f (x )=|ln |2-x ||的图像如图所示:由图可得:函数f (x )在区间(1,2)上单调递增,A 正确;函数y =f (x )的图像关于直线x =2对称,B 正确;若x 1≠x 2,但f (x 1)=f (x 2),则当x 1,x 2>2时,x 1+x 2>4,C 错误;函数f (x )有且仅有两个零点,D 正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.设函数f (x )=x -a (其中a 为常数)的反函数为f -1(x ),若函数f -1(x )的图像经过点(0,1),则方程f -1(x )=2的解为__1__.[解析] 由y =f (x )=x -a ,得x -a =y 2(y ≥0)把点(0,1)代入得a =1. 所以f -1(x )=x 2+1(x ≥0).由f -1(x )=2,得x 2+1=2,即x =1.14.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2log 32x-1,x ≥2,则f [f (2)] =__2__.[解析] 因为f (2)=log 3(22-1)=1, 所以f [f (2)]=f (1)=2e1-1=2.15.已知函数f (x )=b -2x2x +1为定义在区间[-2a,3a -1]上的奇函数,则a =__1__,f ⎝ ⎛⎭⎪⎫12=__22-3__.[解析] 因为f (x )是定义在[-2a,3a -1]上的奇函数. 所以定义域关于原点对称, 即-2a +3a -1=0,所以a =1, 因为函数f (x )=b -2x2x +1为奇函数, 所以f (-x )=b -2-x 2-x +1=b ·2x -11+2x =-b -2x1+2x ,即b ·2x-1=-b +2x,所以b =1, 所以f (x )=1-2x1+2x ,所以f ⎝ ⎛⎭⎪⎫12=1-212 1+212 =1-21+2=22-3.16.下列说法中,正确的是__①④__. ①任取a >0,均有3a >2a, ②当a >0,且a ≠1,有a 3>a 2, ③y =(3)-x是增函数,④在同一坐标系中,y =2x与y =2-x的图像关于y 轴对称. [解析] ∵幂函数y =x a ,当a >0时, 在(0,+∞)上是增函数, ∵3>2,∴3a>2a,故①正确;当a =0.1时,0.13<0.12,故②错; 函数y =(3)-x=⎝⎛⎭⎪⎫33x是减函数,故③错; 在同一坐标系中,y =2x 与y =2-x=(12)x 的图像关于y 轴对轴,故④正确.四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值. (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 ; (2)2lg 2+lg 31+12lg 0.36+13lg 8.[解析] (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 =94+1+94=112.(2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg 12=1.18.(本小题满分12分)已知函数f (x )=2x -1+a (a 为常数,且a ∈R )恒过点(1,2).(1)求a 的值;(2)若f (x )≥2x,求x 的取值X 围.[解析] (1)f (1)=20+a =1+a =2,解得a =1. (2)由f (x )=2x -1+1=2x 2+1≥2x ,得2x2≤1,即2x -1≤1=20,即x -1≤0,解得x ≤1,因此,实数x 的取值X 围是(-∞,1].19.(本小题满分12分)求函数y =(2x )2-2×2x+5,x ∈[-1,2]的最大值和最小值. [解析] 设2x=t ,因为x ∈[-1,2],所以2x=t ∈⎣⎢⎡⎦⎥⎤12,4则y =t 2-2t +5为二次函数,图像开口向上,对称轴为t =1, 当t =1时,y 取最小值4,当t =4时,y 取最大值13.20.(本小题满分12分)已知幂函数y =f (x )的图像过点(8,m )和(9,3). (1)求m 的值;(2)若函数g (x )=log a f (x )(a >0,a ≠1)在区间[16,36]上的最大值比最小值大1,某某数a 的值.[解析] (1)由题意,y =f (x )是幂函数,设f (x )=x α,图像过点(8,m )和(9,3)可得9α=3,所以α=12,故f (x )=x 12 ,所以m =f (8)=22,故m 的值为22.(2)函数g (x )=log a f (x ),即为g (x )=log a x , 因为x 在区间[16,36]上,所以x ∈[4,6], ①当0<a <1时,g (x )min =log a 6,g (x )max =log a 4, 由log a 4-log a 6=log a 23=1,解得a =23.②当a >1时,g (x )min =log a 4,g (x )max =log a 6,由log a 6-log a 4=log a 32=1,解得a =32,综上可得,实数a 的值为23或32.21.(本小题满分12分)一片森林原来的面积为a ,计算每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到森林面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已被砍伐了多少年? (3)今后最多还能砍伐多少年?[解析] (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110 .(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a , 即(12)m 10 =(12)12 ,m 10=12,解得m =5, 故到今年为止,该森林已被砍伐5年. (3)设从今年开始,以后最多能砍伐n 年,则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.22.(本小题满分12分)已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值X 围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,某某数a 的取值X 围. [解析] (1)函数f (x )是R 上的奇函数,则f (0)=0,求得a =0. 又此时f (x )=-x 是R 上的奇函数,所以a =0为所求. (2)函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0).故只要a ≥0即可.(3)由已知函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ).最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2⇒⎩⎪⎨⎪⎧a +12>0a +1≥4a +2.故-12<a ≤-13为所求.。

4.3.2 对数的运算 高中数学人教A版必修一

4.3.2 对数的运算 高中数学人教A版必修一
2.对于连等式可令其等于k(k>0),然后将指数式用对数式表示,再由换底公
式可将指数的倒数化为同底的对数,从而使问题得解.
训练 3 已知 3a=5b=c,且a1+b1=2,求 c 的值.
解 ∵3a=5b=c,∴c>0,
∴a=log3c,b=log5c,
∴1a=logc3,1b=logc5, ∴1a+b1=logc15. 由 logc15=2 得 c2=15,
二、换底公式 1.问题 假设lloogg2253=x,则 log25=xlog23,即 log25=log23x,从而有 3x=5,再将此 式化为对数式可得到什么结论? 提示 x=log35,从而 x=lloogg2253=log35.
logcb
2. 填 空 对 数 换 底 公 式 : logabl=og_ca_______ (a>0 , 且 a≠1 ; b>0 ; c>0 , 且
什么结论? 提示 (1)lg 10+lg 100=lg 1 000=3, (2)log39+log327=log3243=5, (3)log1241+log128=log122=-1. 每组中两式子的值均相等,两个正数的乘积的对数等于每个正数对数的和.
2.问题 计算下列各组式子的值: (1)lg 10-lg 100,lg 110;
y-loga3 z
z
=2loga|x|+12logay-13logaz.
角度2 用代数式表示对数
例3 已知log189=a,18b=5,用a,b表示log3645.
解 法一 ∵log189=a,18b=5,
∴log185=b,
于是 log3645=lloogg11884356=lloogg1188((198××52)) =log11+89+loglo18g2185=1+al+ogb18198=1+1a-+lbog189=a2+ -ba.

对数函数及其图象

对数函数及其图象

对数函数及其图象(训练案)编撰人:李斌 审定:高一备课组【使用说明及学法指导】1. 先复习课本,然后开始做导学案。

2.针对复习提纲,回顾并深化对数函数的图像及性质。

3.带“*”的C 层可以不做,带“附加”的B,C 层可以不做。

学习目标:掌握对数函数的性质,并能应用对数函数解决实际中的问题. 导学重点:应用性质解决问题导学难点:综合应用一、复习准备:对数函数的图象和性质?二、基础练习:1.根据对数函数的图象和性质填空.① 已知函数x y 2log =,则当0>x 时,∈y ;当1>x 时,∈y ; 当10<<x 时,∈y ;当4>x 时,∈y .② 已知函数x y 31log =,则当10<<x 时,∈y ;当1>x 时,∈y ;当5>x 时,∈y ;当20<<x 时,∈y ;当2>y 时,∈x .(小结:数形结合法求值域、解不等式)2.判断下列函数的奇偶性:)1ln()(2x x x f -+=3.(1)证明函数)1(log )(22+=x x f 在),0(+∞上是增函数。

(2)探究:函数)1(log )(22+=x x f 在)0,(-∞上是减函数还是增函数?(此题目的在于让学生熟悉函数单调性证明通法,同时熟悉上一节利用对数函数单调性比较同底数对数大小的方法)4. 求函数0.2()log (45)f x x =-+的单调区间.解法:先求定义域 → 设545()4u x x =-+<,讨论u 的单调性→ 讨论()u ϕ单调性→结论(小结:复合函数单调性的求法及规律:“同增异减” → 变底训练)三、巩固练习1.比较大小:log log (0a a e a π>≠和且a 1) ;2221log log (1)()2a a a R ++∈和 2.已知log (31)a a -恒为正数,求a 的取值范围.3.求函数2()lg(8)f x x =+的定义域及值域.(注意:函数值域的求法)4.函数x y a log =在[2,4]上的最大值比最小值大1,求a 的值;5. 求函数23log (610)y x x =++的最小值.(注意:利用函数单调性求函数最值的方法,复合函数最值的求法.)课堂小结:课后作业 1.求log (54)a y x =-的单调递增区间;2.已知)2(log ax y a -=在[0,1]上是x 的减函数,求a 的取值范围。

苏教版高一数学必修1课后训练:3.2对数函数-对数_含解析

苏教版高一数学必修1课后训练:3.2对数函数-对数_含解析

课后训练千里之行 始于足下 1.如果lg2=a ,lg3=b ,则lg12lg15等于________. 2.下列结论中,正确的序号是________. ①lg2·lg3=lg5;②lg 23=lg9;③5115log 22=;④若log a M +N =b ,则M +N =a b (a >0且a ≠1);⑤若log 2M +log 3N =log 2N +log 3M ,则M =N .3.(1)已知log a 2=m ,log a 3=n (a >0且a ≠1)则a 2m -n =________;(2)若a >0,2349a =,则23log a =________; (3)若5lg x =25,则x =________.4.已知lg (log 2x )=0,7312log [log (log )]0y =,则log x y =________.5.已知log 7log 56m m a =,log n 8=b log n 56(m 、n >0且m ≠1,n ≠1),则a +b =________,17a=________.6.(1)已知11.2a =1 000,0.011 2b =1 000,则11a b-=________. (2)若2a =5b =10,则11a b+=________. 7.求下列各式的值:(1)2log 525+log 264-2 011log π1; (2)log 155·log 1545+(log 153)2;(3)375111log log 258149log ⋅⋅; (4)lg20lg0.717()2⨯;(5)2lg 5lg8000(lg lg 0.06lg 6⋅++-;(6)28393(log 3log 9)(log 4log 8log 2)+++.8.2010年我国国民生产总值为a 亿元,如果年平均增长8%,那么经过多少年后国民生产总值是2010年的2倍?(lg2≈0.301 0,lg3≈0.477 1,lg1.08≈0.033 4,精确到1年)百尺竿头 更进一步(1)已知log 189=a,18b =5,用a ,b 表示log 3645.(2)已知a >0且a ≠1,若log 2a +log a 8=4,则①判断函数f (x )=x a +3的奇偶性;②计算3log 27log 64a 的值;③判断函数g (x )=a x 的单调性.参考答案与解析千里之行 1.21a bb a++- 解析:∵lg2=a ,lg3=b ,∴lg12lg3lg 4lg32lg 22.lg15lg3lg5lg31lg 21a bb a+++===++-+- 2.③⑤ 解析:由对数的运算性质知①②错;由对数恒等式知③正确;当log a (M +N )=b 时,有M +N =a b ,∴④错;由log 2M +log 3N =log 2N +log 3M ,得log 2M -log 2N =log 3M -log 3N ,即23log log M M N N =,上式只有当1MN=,即M =N 时成立,∴⑤正确.3.(1)43(2)3 (3)100 解析:(1)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3. ∴()22224.33m m nna aa -=== (2)法一:∵a >0,2349a =,∴42log .93a = ∴222log .33a=,即21log .33a =,∴231log 3.2log 3a a ==法二:∵a >0,22342.93a ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∴22322332log log 23a ⎛⎫== ⎪⎝⎭,∴23log 2a = ∴23log 3a =(3)∵5lg x =25=52.∴lg x =2,x =102=100.4.-3 解析:∵lg (log 2x )=0,∴log 2x =1,∴x =2,又∵7312log log log 0y ⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎝⎭⎣⎦, ∴312log log 1y ⎛⎫= ⎪⎝⎭,∴12log 3y =,∴31128y ⎛⎫== ⎪⎝⎭.∴3221log log log 238x y -===-. 5.1 56 解析:由换底公式得56log 7log 7log 56m m a ==.56log 8log 8log 56m m b ==,∴a +b =log 567+log 568=log 5656=1. ∵log 567=a ,∴71log 56a=. ∴7177log 5656a==. 6.(1)1 (2)1 解析:(1)法一:用指数解:由已知得111.21000a=.10.01121000b =,两式相除得:1111.2100010000.0112a b-==,∴111a b-=. 法二:用对数解.由题意,得a ×lg11.2=3, b ×lg0.011 2=3,∴()111lg11.2lg 0.011213a b -=-=. 法三:综合法解.∵11.2a =1 000,0.011 2b =1 000,∴a =log 11.21 000,b =log 0.011 21 000.∴100010001000100011.20.0112111111.2log 11.2log 0.0112log log 10001log 1000log 10000.0112a b -=-=-=== (2)法一:由2a =5b =10,得a =log 210,b =log 510, ∴251111lg 2lg 5lg101log 10log 10a b -=-=+==. 法二:对已知条件的各边取常用对数,得a lg2=b lg5=1,∴1lg 2a =,1lg5b=,∴11lg 2lg5lg101a b+=+==. 7.解:(1)原式=2log 552+log 226-2011×0=4+6-0=10.(2)原式=log 155(1+log 153)+(log 153)2=log 155+log 153(log 155+log 153)=log 155+log 153=log 1515=1.[或原式=(1-log 153)(1+log 153)+(log 153)2=1-(log 153)2+(log 153)2=1](3)原式111lglg lg2lg54lg32lg 7258149lg3lg 7lg5lg3lg 7lg5---=⋅⋅=⋅⋅=(-2)×(-4)×(-2)=-16.(4)设lg0.7lg20172x ⎛⎫=⨯ ⎪⎝⎭,则1lg lg 20lg 7lg 0.7lg 2x =⋅+⋅=(1+lg2)lg7+(lg7-1)(-lg2)=lg7+lg2=lg14.∴x =14,即lg0.7lg2017142⎛⎫⨯= ⎪⎝⎭.(5)原式=(1-lg2)(3+3lg2)+3lg 22+lg6-2-lg6=3(1-lg2)(1+lg2)+3lg 22-2=3(1-lg 22)+3lg 22-2=3-2=1.(6)原式2233323235915log 3log 32log 2log 2log 2log 3log 232322⎛⎫⎛⎫=+++=⋅= ⎪⎪⎝⎭⎝⎭. 8.解:设经过x 年后国民生产总值是2010年的2倍.经过1年,总产值为a (1+8%),经过2年,总产值为a (1+8%)2,……经过x 年,总产值为a (1+8%)x .由题意得a (1+8%)x =2a ,即1.08x =2.方法一:两边取常用对数,得lg1.08x =lg2,即()lg 20.30109lg1.080.0334x =≈≈年.方法二:用换底公式.∵1.08x =2,∴ ()1.08lg 2log 29lg1.08x ==≈年.答:约经过9年,国民生产总值是2010的两倍. 百尺竿头 解:(1)∵18b =5,∴log 185=b ,又∵log 189=a ,∴log 182=1-log 189=1-a . ∴18181836181818log 45log 5log 9log 45log 36log 18log 2112a b a ba a+++====++--.2)∵log a 8+log 2a =4,∴3log a 2+log 2a =4,∴222log 4log 30a a -+=,∴(log 2a -1)(log 2a -3)=0,即log 2a =1或log 2a =3,∴a =2或a =8.①当a =2时,f (x )=x 2+3是偶函数;当a =8时,f (x )=x 8+3也是偶函数. ∴f (x )是偶函数.②当a =2时,原式23lg 27lg 643lg36lg 2log 27log 6418lg 2lg3lg 2lg3=⋅=⨯=⨯=;当a =8时,原式83lg27lg643lg36lg8log27log646lg8lg3lg8lg3=⋅=⨯=⨯=.③∵g(x)=2x或g(x)=8x,且2与8都大于1,∴g(x)=a x在R上是单调增函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数
例1:求函数的定义域(1)()22log (1)
2
x f x x -=- (2)()21log (3)f x x =--
练习:求1
(0,1)1log ()
a y a a x a =>≠-+的定义域
例2:ln 2ln 3ln 5
,,235
a b c =
==,则( ) A .c b a << B .a b c << C .b a c << D .c a b <<
备用:(1)若函数()()log 0,1a f x x a a =>≠在区间]2,[a a 上的最大值是最小值的3倍,求a 的值。

(2)若log 9log 90m n <<,试求,m n 满足的条件
例3:(1)若函数2()48f x x kx =--在[5,8]是单调函数,求k 的取值范围
(2)判断函数2()28f x x x =--在[]1,a -的单调性,求出函数的最大值。

练习:(1)函数2()42f x ax x =+-在[]1,3-上为增函数,求a 的取值范围
(2)函数234y x x =--当[0,]x m ∈,值域为25
[4]4
--,,求m 的取值范围
例4:(1)求()22()log 45f x x x =+-的单调区间。

(2)函数y =22x x -的单调递减区间
(3)已知函数)(log )(22m mx x x f +-=的定义域是R ,并且在(-∞,1)上单调递减,求实数m 的取值范围
练习:(1)已知函数[]2()22,5,5f x x ax x =++∈-,求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数
(2)求函数213
2log (32)y x x =-+的单调区间
三、函数综合题
1.函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为
2.等式1)2(log )2(=++a a 成立的条件是 3.n
n ++1log
(n n -+1)=
4.已知x x f 26log )(=,那么)8(f 等于
5.若2lg (x -2y )=lg x +lg y ,求x
y 的值
6.函数()
1log 15.0-=x y 的定义域是
7.求函数x x y 2
12log log +=的定义域
8.若函数()()log 0,1a f x x a a =>≠在区间]2,[a a 上的最大值是最小值的3倍,求a 的值。

9.已知()1log 3x f x =+,()2log 2x g x =,试比较()f x 与()g x 的大小
10.已知函数f (x )=x 2+(lg a +2)x +lg b 满足f (-1)=-2,且对一切实数x ,都有f (x )≥2x 成立,求实数a 、b 的值.
11.已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是
12.已知函数()21f x -的定义域是()2,3,求()23f x +的定义域
13.已知⎩⎨⎧<-≥=0
,10
,1)(x x x f ,求不等式(2)(2)5x x f x ++⋅+≤的解集
14.设()()(),0ln ,0x e x g x x x ⎧≤⎪
=⎨>⎪⎩
则12g g ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭
15.已知函数)2(log )(ax x f a -=在[0,1]上是x 的减函数,则实数a 的取值范围是___________.
16.函数2()(1)3f x ax a x =--+满足(1)(1)f x f x -=+,求函数的最小值
17.函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,求a 的取值范围
18.函数2()45f x x x =-+在闭区间[]1,m -上有最大值10,求m 的取值范围
19.已知函数)(log )(22m mx x x f +-=的定义域是R ,并且在(-∞,1)上单调递减,则实数m 的取值范围是
20.若直线a y 2=与函数()1,01≠>-=a a a y x 的图像有两个公共点,则
a 的取值范围是 .
21.已知函数f (x )=lg (a x 2+2x +1)
(1)若f (x )的定义域是R ,求实数a 的取值范围及f (x )的值域; (2)若f (x )的值域是R ,求实数a 的取值范围及f (x )的定义域.
22.已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有
()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立,证明:(1)函数
()y f x =是R 上的减函数;(2)函数()y f x =是奇函数
23.定义在(0,)+∞上的函数对任意的,(0,x y ∈+∞,都有()()
(f x f y f x y +
=,
且当01x <<时,有()0f x >,判断()f x 在(0,)+∞上的单调性
24.已知函数()f x 的定义域为()1,1-,且同时满足下列条件:
()f x 是奇函数;()f x 在定义域上单调递减;2(1)(1)0,f a f a -+-<求a 的
取值范围。

相关文档
最新文档