第三届机械、控制与计算机工程国际学术会议(ICMCCE 2018)
华为MateBook X Pro14 使用指南说明书
Research on Hierarchical Interactive Teaching Model Based on Naive Bayesian ClassificationDongyan FanInformation faculty, Business College of Shanxi University, Taiyuan 030031, ChinaAbstract—The purpose of this research is improving the current inject classroom teaching mode that ignores individual differences and inefficiency of students. By studying classification algorithm in data mining and applying the classification method based on Naive Bayes algorithm, we designed and implemented scientific classification of students, and draw lessons from stratified and interactive teaching mode, so as to builded a new effective teaching mode. The results show that through scientific classification of students, real-time hierarchical interaction teaching effectively stimulate students' interest in learning, improve cooperation ability, and improve classroom teaching efficiency.Keywords—Naive Bayesian; student classification; hierarchical interactive; teaching modelI.I NTRODUCTIONUnder the background of big data era, the current teaching mode is not adapt to the cultivation of innovative talents, there are many problems, such as low efficiency of classroom, teachers' manipulation of teaching process, ignore the individual differences of students in knowledge transfer ability. Therefore, this study aimed at these problems, by studying classification algorithm in data mining and applying the classification method based on Naive Bayes algorithm, we design and implement scientific classification of students, and draw lessons from stratified and interactive teaching mode, so as to build a new effective teaching mode. The mode enable students to learn efficiently, so as to adapt to the trend of rapid development of new technology and cultivate innovative talents.II.R ESEARCH M ETHODThe research and practice of the hierarchical interactive teaching model based on the Naive Bayesian classification is based on the classification of students' differences. So there are two major tasks need to do: the approaches to the students' difference measurement and grouping and the design of hierarchical interactive teaching framework. Its method flow is shown in Figure I.FIGURE I. RESEARCH METHOD FLOWFirst of all, based on the samples, the naive Bayes algorithm according to the student's attribute value is used to test the students' differences. Then, according to the results to make a scientific difference classification to achieve effective grouping for students. At the same time, the design of the hierarchical interactive teaching framework is carried out by the two subjects (the student is the main body, the teacher is the leading part). Finally, the teaching effect is evaluated and analyzed.III.S TUDENT C LASSIFICATION D ESIGN B ASED ON N AIVEB AYESIANA.Naive Bayesian Theoretical PrincipleAt present, there are many kinds of algorithms in data mining, such as based on Bayes algorithm, decision tree algorithm, neural network algorithm, rough set algorithm, genetic algorithm, support vector machine algorithm and so on. In the practical application of many classification algorithms, the most widely used algorithm is Naive Bayesian algorithm model. Naive Bayes is a simple and effective classification model.From Bayes’ theorem recall that:()()()||P A B P BP B AP A= (1)Equation (1): P(A) and P(B) separate representation the probability of occurrenceof events A andevents B.()|P A B indicates the probability of occurrence of event A under the premise that event B occurs. ()|P A B is a priori probability, and its value is often easily obtained.()|P B A indicates the probability of occurrence of event B under the premise that event A occurs. ()|P B A is a posteriori probability, and its value is the result of the solution of the Bayesian formula.The classifier structure diagram based on the naive Bayes algorithm is shown in Figure II. It’s leaf node Am represents the m attribute, and the root node C represents the category. Suppose {},,D C A S=are training samples, it includes the studentcategory {}12,,iC C C C= and the student attribute {}12,,mA A A A= .Suppose {}12,,nS S S S= represents acollection of classified students, in whichnS represents nthstudent. Suppose {}12,,k mX a a a= is a student to be classified,International Conference on Computer Science, Electronics and Communication Engineering (CSECE 2018)in which each m a represents an attribute eigenvalue of the pending item k X .FIGURE II. THE CLASSIFIER STRUCTURE DIAGRAMB. Design the Individualized Attributes of StudentsThe student classification method based on the naive Bayes algorithm is used the information of the past students as the sample set , which is used to construct the naive Bayes classifier.Students are classified according to the information of the students' attributes. The students divided into the same category are not simply using the score as criterion of evaluation. Its are classified by comprehensive evaluation after combination of other attributes.The difference classification based on the naive Bayes algorithm is select the individual attributes of the students as shown in Figure III. The students which 8 attribute values similar in the two dimensions (character and learning style) are put into one category, while the 12 attributes values of the three dimensions of personal basic situation, learning interest and cognitive ability are different. The purpose of the classification is to carry out differential teaching to implicit dynamic stratification and heterogeneous cooperation for students'cognitive ability, learning interest and basic information.FIGURE III. INDIVIDUALIZED ATTRIBUTES OF STUDENTSC. Student Classification Design Based on Naive Bayesian The process based on the naive Bayes classification is shown in Figure IV.FIGURE IV. STUDENT CLASSIFICATION CYCLE FLOW CHARTBASED ON NAIVE BAYES ALGORITHM1)()i P C is set to indicate the frequency of the occurrence of the student category i C in the training sample concentration, that is the category probability. For sample data sets, there are different levels of students in each category, which avoids the discrimination of students.()()i i P C Count C n= (2)The function ()i Count C represents the number of students belonging to category i which is in the entire student sample collection of S .n represents the total number of the entire student sample collection of S .2)()|j j i P A C a = is set to represent the conditional probability of each characteristic attribute value of the student in the category.()()()|i C j j j j i i P A C Count A a a Count C ===(3)j j A a =indicates that the value of the j attribute is j a .Thefunction ()i C j j Count A a =represents the number of students which the attribute name is j A and attribute value is j a in the i student category.3) ()|k i P X C is set to represent the conditional probability of the students k X to be classified in the student category i C , m represents the number of attributes that describe student differences.()()1||mk i j j i j P X C P A C a ===∏ (4)4) ()j j P A a = is set to represent the probability of the student's attribute j A when the value is j a . ()()j j j j P A Count A a a n=== (5)The function ()j j Count A a = indicates the number when the value of attribute j is j a .5) ()k P X is set to indicate the probability that the student k X should be classified in the training sample concentration. ()()1mk j j j P X P A a ===∏ (6)6) ()|i k P C X is set to represent the conditional probability that the student k X should be classified to category i . ()()()()||k i i i k k P X C P C P C X P X =(7)7) ()max |k P C X is set to represent the maximum category probability of the student k X which should be classified to the student category .()()()(){}max 12|max |,|,,|k k k i k P C X P C X P C X P C X = (8) max C indicates the maximum category of conditionalprobability which is obtained by (8).Finally, (8) is used to calculate the maximum category probability of the students to be classified in the students category. That is the category of the students to be classified. At this point, one classification ends.IV. T HE D ESIGN OF THE H IERARCHICAL I NTERACTIVET EACHING F RAMEWORK The hierarchical interactive teaching model is an independent, inquiring and cooperative teaching model based on the classification of the naive Bayes algorithm. This model breaks the original classroom structure, and takes the interaction of teachers and students as the carrier, and also group autonomy, and let the students as the subject of the class. This model is guided by the task of the problem, and it is based on the students' self-study, and it aims at the completion of the task of the group. This model creates an ecological chain class based on group mutual learning to solve problems. It pays attention to the state of learning and the quality of life for every student. The design of the hierarchical interactive teaching model framework is shown in Figure V.FIGURE V. THE HIERARCHICAL INTERACTIVE TEACHING MODELFRAMEWORKThe four layers of the hierarchical interactive teaching model are closely related to each other, and support each other dynamically with the spiral. The five segments drive each other to form a whole, interlace and connect with each other. This teaching mode makes the classroom an active area for teachers and students to resonate with their ideology and to show their personality together.V.A NALYSIS OF T EACHING E FFECTIn this paper, the teaching effect is analyzed from two aspects by using the method of questionnaire and comparative experiment. First, the experimental class's comparative analysis before and after the experiment is carried out. Then, a comparative analysis between the experimental class and the contrast class is carried out.The comparative data of the experimental class before and after the experiment are shown in Figure VI. From Figure VI, it can be seen that 85.72% of the students have An attitude of approval towards the application of the hierarchical interactive teaching model based on the naive Bayes algorithm in the teaching. There are 70.13% of the students satisfied with the improved teaching effect. At the same time, it can be seen that the students' interest in learning and the ability to communicate and cooperate have improved obviously.FIGURE VI. THE COMPARATIVE DATA OF THE EXPERIMENTALCLASS BEFORE AND AFTER THE EXPERIMENT The comparison between the experimental class and the contrast class is shown in Figure VII. From Figure VII, we can see that students' satisfaction degree, teaching effect satisfaction and group learning atmosphere based on Naive Bayes algorithm classification are higher than those of the contrast class. At the same time, it can be seen that the students' interest in learning and the ability to communicate and cooperate have also been improved.FIGURE VII. THE COMPARISON BETWEEN THE EXPERIMENTALCLASS AND THE CONTRAST CLASSVI.C ONCLUSIONThe comprehensive analysis shows that, in the implementation of the hierarchical interactive teaching model based on the naive Bayes algorithm, the new teaching mode was accepted by the students , it was welcomed by the students. The new teaching mode can improve the ability of learning interest and collaboration of students. It has a very good teaching effect. Experiments show that the classification algorithm based on Naive Bayes has better feasibility and effectiveness in solving student classification problem.However, due to the limited personal time and ability, there are still some shortcomings in the study. In order to better achieve hierarchical interaction teaching mode based on Naive Bayes algorithm and improve teaching effect, we still need to further improve the limitation of applying naive Bayes algorithm, that is, suppose the attributes of students are independent.A CKNOWLEDGMENTThis work was supported by “Research and construction of the practice teaching system of information specialty(J2016138, The major project of teaching reform research in Shanxi Education Department)” and “The optimization and the platform construction of the practice teaching system of information specialty (SYJ201509, The major project of the research on teaching reform Business College of Shanxi University)”. Our special thanks are due to Prof. Ma Shangcai, for his helpful discussion with preparing the manuscript.R EFERENCES[1]Jonathan Rauh. Problems in Identifying Public and Private Organizations:A Demonstration Using a Simple Naive Bayesian Classification[J]. PublicOrganization Review,2015,15(1).[2]SangitaB, P., Deshmukh, S.R.. Use of Support Vector Machine, decisiontree and Naive Bayesian techniques for wind speed classification[P].Power and Energy Systems (ICPS), 2011 International Conference on,2011.[3]Yan Dong. Hierarchical interactive teaching mode and its practice andexploration of mathematics teaching in Senior High School [D].Southwest University,2016.[4]Chen Zhiqiang. Hierarchical interactive teaching mode and its practiceand exploration of mathematics teaching in Senior High School [D].Henan University,2016.[5]S. Mukherjee and N. Sharma. Intrusion detection using naïve Bayesclassifier with feature reduction[J].Procedia Technology,vol. 4, pp. 119–128, 2012.[6]L. Jiang, Z. Cai, D. Wang, and H. Zhang. Improving tree augmented naiveBayes for class probability estimation[J]. Knowledge-Based Systems, vol.26, pp. 239–245, 2012.[7]Sharma RK, Sugumaran V, Kumar H, Amarnath M. A comparative studyof naïve Bayes classifier and Bayes net classifier for fault diagnosis of roller bearing using sound signal[J].International Journal of Decision Support Systems. 2015 Jan 1; 1(1):115-29.[8]Hamse Y Mussa, John BO Mitchell,Robert C Glen.Full “Laplacianised”posterior naïve Bayesian algorithm[J]. Journal of Cheminformatics. 2013 5:37.[9]K. Magesh Kumar, P. Valarmathie. Domain and Intelligence BasedMultimedia Question Answering System[J]. International Journal of Evaluation and Research in Education, Vol. 5, No. 3, September 2016 : 227 – 234.[10][11]Zhijun Wang1, Li Chen, Terry Anderson. A Framework forInteraction and Cognitive Engagement in Connectivist Learning Contexts[J]. International Review of Research in Open and DistanceLearning, Vol. 15,No.2, Apr 2014:121-141.。
第三届世界工程资产管理及智能维修学术会议在京召开
。 。 j i
第三届世界工程资产 管理 及 智能维修学术会议在 京召开
由中国设备 管理协会 、中国工程院机械 与运载工程学
部 、美 国 自然科 学基 金智能维 护系统 产学研究 中心 f ) I MS 三方共 同主办 ,北京化工 大学等承办 的第三 届世界工程 资 产 管理 及智能维修学术会 议于20 年 1月2 日在北京 国际 08 0 8 会议 中心隆重开幕 。 大会主席 高金吉院士 主持 了本 届大会开 幕式 ,中国工 态智能维修 系统 ,系统研究 了基于风险 的监测 与动态智能 维修决策系统 ,通过开发研制基于S A O 的维修 和安全保 障集
,国外Βιβλιοθήκη 专 家 学,正 式 注 册 代 表与 国 内 代 表 相 比 相 差 不 多
,
2 0 0 8 年 10
月 3 0 日上 午 大 会协
同主 席 乔 马 修 主 持 了 大 会
成信息平 台实 现了基于风险 的动 态智能维修 ,并在 工程应
用中取得显著成效。
来 自美 国国家仪器公司的Jn Z u 了题为 ue h做
起革
新 :智能维 护系统与工程资 产管理的改革起 源》 的大会报
告 ,介绍 了机 械监控领域 的一些 最新趋势 ,并 提出了进一
步 革新 的推 动 步 骤 。
整性提供 了完整 的解决途径 ,那 就是在寿命周期概念 中的 最优工程实践 。在这 个基调下 ,如何使 设备产业受益 于最 新的知识管理方法成为 了我们唯一关注的焦点。 ”
告 ,探 讨 了传统可靠性 倡议 的影 响和与可持续性倡议 的相
关性关系问题 。 本次大会共 有来 自2 个 国家 的3 0 0 2 位代 表参 会 ( 其中国 外代 表 15 、国内代表 25 1名 0 名) ,分别 来 自国 内外 7 所 高 6 校 、多家科 研院所和8 个企业 。 8 第三届世 界工程资产管理及智 能维修学术 会议论 文集 共 收录来 自全世界2 个国家和地 区的论文2 1 ,其中国内 2 4篇 论文 14 ,国外论文 17 。 3篇 0篇
上海交通大学--各院系重要国际学术会议目录
交通大学各院系(学科)重要国际学术会议目录目录1.船工系 (5)2.国航系 (6)3.港工系 (8)4.微电子学院 (9)5.航空院 (12)6.化工学院 (14)7.机械与动力学院 (16)8.教育技术学院 (18)9.人文学院(科学史) (20)10.人文学院(历史学) (21)11.人文学院(中文学科) (22)12.软件学院 (23)13.外语学院 (27)14.信安学院 (29)15.药学院 (35)16.情报学 (36)17.档案学 (37)18.高教院 (38)19.Med-X (49)20.数学系 (56)21.电院 (58)22.生物工程、生物医药工程 (88)23.物理系 (91)24.管理学院 (94)25.塑性成形学科 (95)26.环境学院 (97)27.农生学院 (99)28.医学院 (102)船工系重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)国航系重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)港工系重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)微电子学院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)航空院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)化工学院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)机械与动力学院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)教育技术学院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)人文学院(科学史)重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)人文学院(历史学)重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)人文学院(中文学科)重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)软件学院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)外语学院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)信安学院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)药学院重要国际学术会议一、A类会议(本学科高水平国际会议)情报学重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)档案学重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)高教院重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)二、A类会议(本学科高水平国际会议)三、B类会议(学术水平较高、按一定时间间隔规范化、系列性召开的国际会议)Med-X 重要国际学术会议一、顶尖级国际会议(代表本学科领域最高水平的国际会议)。
第三届机器人与自动化工程国际会议(ICRAE 2018)
1994: 151–158.SAVRAN A, ALYÜZ N, DIBEKLIOĞLU H, et al. Bos-phorus database for 3D faceanalysis[C] //Proceedings of European Workshop on Biometrics and Identity Manage-ment. Springer Berlin Heidelberg, 2008: 47–56.[22]作者简介:林琴,女,1992年生,硕士研究生,主要研究方向为图像处理、模式识别、计算机视觉。
李卫军,男,1975年生,研究员,博士,主要研究方向为仿生图像处理技术、仿生模式识别理论与方法、近红外光谱定性分析技术、高维信息计算。
发表学术论文30余篇。
董肖莉,女,1985年生,助理研究员,主要研究方向为图像处理、模式识别及智能信息处理。
第三届机器人与自动化工程国际会议(ICRAE 2018)2018 3rd International Conference on Robotics and AutomationEngineering (ICRAE 2018)2018 3rd International Conference on Robotics and Automation Engineering (ICRAE 2018) will be held in Guang-zhou, China during November 17-19, 2018. ICRAE conference has been held successfully in Jeju Island, South Korea in 2016, East China University of Science and Technology, Shanghai, China in 2017, respectively. Topics of interest in-clude, but are not limited to:• Robot design, development and control• Reasoning about action for intelligent• Human-robots interfaces robots• Network robotics• Natural language dialogue with robots• Mobile robots and autonomous systems• Speech recognition & Signal• Human augmentation and shared reconstructioncontrol• Computer and microprocessor-based• Cybernetics control• Space and underwater robots• Hierarchical control• Intelligent transportation technologies• Instrumentation networks and softwareand systems• Real-time syst;ems control & Time series• Vehicle control applications and system modeling• Telerobotics and Teleoperation• Environmental monitoring and control &• Industrial networks and automation Information-based models for control• Intelligent warehouses• Time-frequency analysis• Modeling, simulation and architectures• Feature extraction• Vision, recognition and reconstruction• Discrete event systems & Hybrid• Virtual Reality & Image processing &dynamical systems & SystemSurveillance identification• Web-based control & Autonomous• Hybrid dynamical systemsagents• Adaptive signal processing and control• Petri nets (system design/verification• Nonlinear signals and systemswith nets, protocols and networks)Website:/cfp.html·542·智 能 系 统 学 报第 13 卷。
在第三届全国计算机仿真大奖赛决赛及颁奖典礼上的讲话
中 国系 统 仿 真 学 会 副理 事 长 肖田 元
尊敬的孙柏林将军、尊敬的王子才院士、各 专家、各往 来宾、各 同学:大家好! 位 位
我很荣幸也很 高 参加 由 兴 计算机仿真 》杂志社和青 岛恒星职业技术 学院共 同承办的 第三届全 国计算机仿真大奖 赛 。我还 受 中国 系 统仿真 学会理事长李伯虎 院士的委托 ,并代表 他向大奖赛的隆重召开表示热烈祝贺 ,并祝愿 本次 大
赛取得 圆满成功。
今天 大家回答的公共题是 关于“ 仿真技 术的通用性和战略性” ,这是一个很 大的命题 ,回答起 来不容 易,但是有很 多 同学回答得很不错 。刚才有位 同学说 ,是我提 出的 “ 仿真 已经成为人类认识世界的第三种 方法” ,这个说法不准确。大
家都知道 ,美国前 国家科学基金会主任 RtC le 有 比较 明确的说法,“ i o l a w l 过去认为科学通常 包含理论和实验 两方面的努
着科学技术 的进步 ,现在 仍然把 s l i i ao mu t n看成造假的只是语 言学家在相 声艺术当中说说而 已。仿真技术在我国国民经 济、国防建设 、 自然科学 、社会科 学等领域正发挥着越来越大的作 用,已成功地应 用于航空航天 、信 息、生物 、材料 、 能源、先进制造等 高新技术领 域和 工业 、农业、商业 、教育、军事、交通 、社 会、经济 、医学、生命 、生活服务等众 多
及仿真科 学技术知识,激发 广大仿真工作者 、教 师和学生的研 究热情 , 现一批仿真的优秀人 才,而且为我国仿真科学 发 技 术事业发展和促进有很好 的积极 的影响。所以,我祝愿 大奖赛越 办越好,越 办越成功 。 最后,再一次祝 贺第三届全 国计算机仿真 大奖赛隆重召开 , 祝愿 每支参赛队伍取得好成绩 ! 让我们共 同努力 , 为推
顶级学府专家在IPCCEMAC2013会议上发布最新电子技术研究成果
企业 带来的 负担 更为繁重 。在I P C AP E X展会 期 间 , I P C 将举 办多种形式 达 到法规要求 。
的传输 、调查 与数据交换 ,向客户 、公众与S E C的信 息提交 ,以及企业合规项 目的导入 等 内容 。 2 月2 0 日,Ab r a ms 总监主 持 召开 一场 轻松 的 冲 突矿物 小 组讨论会 ( B Z4 ),与He i m总监 、飞 思卡 尔半导体 公司 的A ma n d a Da v i d s o n 、黑莓 手机制造 商 RI M公司  ̄J o h n P l y l e r 等业 界专家 ,一起探 讨合 规工 具并解答来宾提 出的问题。 A b r a ms 女士说 : “ 冲突 矿物法 规 ( T-  ̄g A 1 7 页)
这 此活 动 ,旨在促 进学 术 界和 产业 界 的交 流 , 加速 最 新科 研成 果在 工业 领域 的应 用 ,推 动产 业 界
的创新和行业 的整体发展 。
I P CC E MA C2 0 1 3 主题演 讲会 和专题 会议 ,对听 众 免费 开放 ,在 线 报 名或 了解 更 多会 议 内容 ,请登
电于 上 乙坡 不
A1 7
E l e c t r o n i c s P r o c e s s T e c h n o l o g y
2 0 1 3 年3 月
顶级学府专家在I P C C E MA C 2 0 1 3 会议上发布最新电子技术研究成果
2 0 1 3 年3 月1 9 日一 2 0 日在上 海 国际博 览 中心慕 尼 黑 电子展 期 间 ,多位 顶级学 府 的专家们 ,将在 I P C- 国际 电子工业 联接协 会举 办的I P CC E MAC2 0 1 3 会 议
ISPEMI2018国际会议情况简介
ISPEMI 2018国际会议情况简介第十届精密工程测量与仪器国际学术会议(ISPEMI 2018)将于2018年8月8日至10日在昆明举办(8号全天注册报到、9号至10号会议)。
此次会议由国际测量与仪器委员会(ICMI)、国家自然科学基金委员会、中国计量测试学会等发起,哈尔滨工业大学主办,昆明理工大学等协办。
目前会议筹备情况如下:1. 会议论文集出版本次会议前期已经与SPIE签订协议,会议论文集将由SPIE出版,并全部由Ei检索。
同时部分优秀论文可被推荐至国际权威期刊。
2. 会议大会报告邀请会议组委会已经邀请测量与仪器技术领域有重大影响的国际著名专家学者,如英国牛津大学的Tony Wilson院士等,到会做大会特邀报告/担任大会主席。
另已邀请来自10余个国家和地区的几十位有重要突破性研究成果的专家学者参会作分会邀请报告。
3. 会议征文会议第一轮通知已于2018年1月通过邮件发出,目前已着手准备第二轮会议通知。
4. 会议地点在昆明理工大学的大力支持下,会议举办地址已经确定为昆明理工大学国际学术交流中心(昆明文汇商务会议酒店),酒店软、硬件环境完全满足会议需要。
5. 会议组织单位发起单位:国际测量与仪器委员会(ICMI)国家自然科学基金委员会中国计量测试学会中国仪器仪表学会承办单位:国际测量与仪器委员会中国计量测试学会计量仪器专业委员会哈尔滨工业大学协办单位:SPIE (负责会议论文集出版)昆明理工大学北京信息科技大学合肥工业大学6. 大会主席谭久彬院士哈尔滨工业大学7. 拟参会单位(依据往届会议信息统计)国际:英国牛津大学,英国伯明翰大学,英国Warwick大学,英国帝国理工大学,英国伦敦大学,德国柏林工业大学,德国不莱梅大学,德国亚森工业,瑞典Lund大学,匈牙利布达佩斯理工学院,波兰罗兹工业大学,波兰华沙工业大学,澳大利亚Swinburne大学,美国威斯康辛大学,美国加州理工学院,美国华盛顿大学圣路易斯分校, 日本东北大学,日本东京工业大学,日本大阪大学,日本东京农工大学,新加坡国立大学,新加坡南洋理工大学,韩国浦项工业大学,俄罗斯圣彼得堡光机与信息大学,俄罗斯圣彼得堡大学,莫斯科大学,新加坡国立大学,俄罗斯科学院新西伯利亚分院,德国联邦物理研究院(PTB),英国国家物理实验室(NPL),美国国家标准与技术研究院(NIST),俄罗斯门捷列夫计量院,日本国家计量院,瑞士国家计量院,韩国国家计量院,韩国科学技术院,新加坡国家计量院等。
全国本科高校教学基本状态数据库
全国本科高校教学基本状态数据库填报表格(2011)版全国高校教学基本状态数据库系统课题组二○一一年二月目录表Ⅰ学校基本情况 (1)表Ⅱ校训、办学思想 (2)表Ⅲ院系情况 (3)表Ⅳ学科专业情况 (3)表Ⅴ学校面积 (3)表Ⅵ学校发展规划 (4)表Ⅶ校友会与社会合作 (4)表1-1 校领导基本信息 (5)表1-2 教师队伍概况 (6)表1-3 学校聘请校外教师概况 (7)表1-4-1 高层次人才 (8)表1-4-2 高层次研究群体(团队) (8)表1-5 院(系)和其他教学单位专任教师情况 (9)表1-6 院(系)教师培训进修、交流情况 (10)表1-7 学校实验技术人员职称、学位、年龄 (11)表1-8 院(系)实验技术人员职称、学位、年龄 (12)表2-1 院(系)下属各专业情况 (13)表2-2 院(系)教学安排 (14)V10.8.2 2010年09月09日表2-3 体育项目 (14)表2-4 人才培养模式创新实验区 (14)表2-5 国家级教学基地 (15)表2-6 实验教学示范中心 (15)表2-7 本科实验教学实验室(中心) (15)表2-8 校外实习、实训基地 (15)表2-9-1 教材情况——编写教材概况 (16)表2-9-2 教材情况——使用教材概况 (16)表2-10-1 教学管理制度 (17)表2-10-2 教学管理文件目录 (17)表2-11 本科教学信息化 (18)表2-12 教学质量监控体系 (18)表2-13 教学管理组织机构(科室) (19)表2-14 校级教学管理人员 (19)表2-15 院(系)教学管理人员 (19)表2-16 教学管理人员培训及成果 (19)表2-17 教学质量监控人员 (20)表2-18 评教统计表 (20)表2-19 本科课程情况表 (20)表2-20 各专业专任教师职称、学位、年龄、学缘情况 (21)表2-21 教学事故 (22)表2-22-1 教师所获荣誉概况 (22)表2-22-2 院(系)教师个人所获荣誉 (23)V10.8.2 2010年09月09日表2-22-3 院(系)教学团队 (23)表2-23-1 课程建设 (24)表2-23-2 课程情况 (24)表2-23-3 精品课程 (24)表2-24 分专业实验、毕业综合训练情况 (25)表2-25 院系毕业综合训练指导教师情况 (25)表2-26-1 教学改革概况 (25)表2-26-2 教育教学研究与改革项目 (25)表2-26-3 教学成果奖 (26)表2-27 本科生教学效果 (27)表2-28-1 院(系)教学效果——本科生竞赛获奖情况 (28)表2-28-2 院(系)教学效果——本科生课外科技、文化获奖情况 (28)表2-28-3 院(系)教学效果——本科生文艺、体育竞赛获奖情况 (28)表2-28-4 院(系)教学效果——本科生社会实践团队获奖情况 (28)表2-28-5 院(系)教学效果——本科生社会实践个人获奖情况 (29)表2-28-6 院(系)教学效果——专利情况 (29)表2-28-7 院(系)教学效果——参加国际会议 (29)表2-29 学生交流情况 (29)表3-1 教学经费概况 (30)表3-2 学校教育经费支出 (30)表3-3 教育事业收入 (30)表3-4 当年捐赠情况 (31)表3-5 院(系)教育经费支出 (31)V10.8.2 2010年09月09日表4-1 固定资产情况 (32)表4-2 分院(系)教学科研仪器值 (32)表5-1 教学行政用房及教学设备 (33)表5-2 校内实习、实训场所 (33)表5-3 图书、期刊 (33)表5-4 校园网建设情况 (34)表5-5 生活用房(学生食堂、澡堂、宿舍) (34)表6-1 教风学风概况 (35)表6-2-1 学生管理组织机构(科室) (36)表6-2-2 校级学生管理人员 (36)表6-2-3 院(系)及相关单位思政教师信息表 (36)表6-3 就业管理人员 (36)表6-4 学生数量基本情况 (37)表6-5 普通本科分专业学生数 (38)表6-6 近一届本科生招生类别情况 (38)表6-7 国外及港澳台学生情况 (38)表6-8 近一届本科生录取标准及人数 (39)表6-9 各专业报到情况 (39)表6-10 本科生奖贷补 (39)表6-11-1 应届本科毕业生就业情况 (40)表6-11-2 院(系)应届本科毕业生就业情况 (40)表7-1 学生社团 (41)表7-2 课外活动、讲座 (41)V10.8.2 2010年09月09日表7-3 素质教育基地、职业资质培训等情况 (41)表8-1-1 科研机构概况 (42)表8-1-2 科研机构列表 (42)表8-2 教师科研情况 (43)表9-1 学科建设概况 (44)表9-2 博士后流动站 (44)表9-3 博士点、硕士点 (44)表9-4 重点学科 (44)特殊情况说明 (45)V10.8.2 2010年09月09日表Ⅰ学校基本情况1.学校名称(章)2.学校英文名称3.学校行政辖区名称代码续4.邮政编码7.校园网域名10.填报负责人11.校长(签章)5.学校办公电话-8.学校主页网址姓名电子信箱6.学校办公传真号码-9. 学校办公电子信箱续12.办学类型13.学校性质类别14.学校举办者普通高等学校民办的其他高等教育机构本科院校:大学学院□□□综合院校理工院校农业院校林业院校医药院校师范院校语言院校财经院校政法院校体育院校艺术院校民族院校□□□□□□□□□□□中央部门地方政府省部共建非地方政府民办15.学校层次16.招生批次设有研究生院的高校“985工程”院校“211工程”院校一般院校新建院校□□□□□第一批次招生第二批次招生A第二批次招生B第三批次招生A第三批次招生B□□□□□V10.8.2 2010年09月09日续17.学校升本情况学校升本时间升本前校名续18.学校地址编号校区名称地址邮政编码表Ⅱ校训、办学思想1.校训2.学校发展定位3.学校人才培养目标定位4.教育教学思想5.多媒体反映链接地址V10.8.2 2010年09月09日表Ⅲ院系所情况编号院系表Ⅳ学科专业情况编号院系专业专业结构与布局文件上传表Ⅴ学校面积单位:(平方米)1.占地面积2.总建筑面积总占地面积其中:绿化用地面积总计学校产权非学校产权其中:a.独立使用-b.共同使用-V10.8.2 2010年09月09日表Ⅵ学校发展规划学校发展规划发展战略规划文件上传学科建设和队伍建设规划文件上传校园建设规划文件上传表Ⅶ校友会与社会合作1.校友会(个)2.签订合作协议的机构(个)总数其中机构总数其中境内境外学术机构企业地方政府V10.8.2 2010年09月09日表1-1 校领导基本信息校领导基本信息编号姓名职务出生年月性别专业技术职务学历校内分管工作专业学习和工作简历(链接)V10.8.2 2010年09月09日表1-2 教师队伍概况单位:人类别教师数量总计其中:女性双师型具有行业背景具有工程背景职称教授副教授讲师助教无职称学位博士硕士学士无学位年龄35岁及以下36~45岁46~55岁56岁及以上学缘本校外校(境内)外校(境外)学校教师库链接链接地址V10.8.2 2010年09月09日表1-3 学校聘请校外教师概况单位:人类别教师数量总计其中:女性来源企业行业部门高校其他职称正高级副高级中级初级无职称年龄35岁及以下36~45岁46~55岁56岁及以上外聘教师库链接V10.8.2 2010年09月09日表1-4-1 高层次人才高层次人才编号姓名类型研究方向获得年份个人简介链接备注表1-4-2 高层次研究群体(团队)高层次研究群体(团队)编号研究方向负责人类型获得年份简介链接V10.8.2 2010年09月09日表1-5 院(系)和其他教学单位专任教师情况院(系)名称:单位:人数量总计其中:女性双师型具有行业背景具有工程背景职称正高级副高级中级初级无职称学位博士硕士学士无学位年龄35岁及以下36~45岁46~55岁56岁及以上学缘本校外校(境内)外校(境外)V10.8.2 2010年09月09日表1-6 院(系)教师培训进修、交流情况院(系)名称:1.教师培训进修2.交流教师(3个月及以上)(人次)境内(人次)境外(人次)到行业培训(人)攻读学位(人)教师培训情况说明来访出访国际交流教师名单及内容总数其中:3个月以总数其中:境内境外境内境外博士硕士文件上传V10.8.2 2010年09月09日表1-7 学校实验技术人员职称、学位、年龄单位:人教师数量总计职称正高级副高级中级初级无职称学位博士硕士学士无学位年龄35岁及以下36~45岁46~55岁56岁及以上V10.8.2 2010年09月09日表1-8 院(系)实验技术人员职称、学位、年龄单位:人院(系)名称:教师数量总计职称正高级副高级中级初级无职称学位博士硕士学士无学位年龄35岁及以下36~45岁46~55岁56岁及以上V10.8.2 2010年09月09日表2-1 院(系)下属各专业情况院(系)名称:专业名称:1.专业建设发展规划2.支撑学科名称3.优势专业(品牌专业、特色专业、示范专业、重点建设专业)4.专业设置时间 5.是否新办专业级别类型起始时间文件上传是□否□续6. 培养方案上传文件7.培养目标与服务面向文本框续8.专业培养计划学时与学分学时数(学时)学分数(分)总数其中总数其中课内教学实验教学集中性实践教学环节课内教学实验教学课外科技活动续9.各专业带头人姓名出生年月学历学位专业技术职称学缘参加教学工作时间V10.8.2 2010年09月09日表2-2 院(系)教学安排编号院(系)名称教学安排课表链接表2-3 体育项目1.中国大学生体育训练基地编号名称续2.大学生高水平运动项目编号名称续3.国家运动训练专业编号名称表2-4 人才培养模式创新实验区编号人才培养模式创新区名称级别设立年份V10.8.2 2010年09月09日表2-5 国家级教学基地国家级教学基地编号名称级别设立年份表2-6 实验教学示范中心实验教学示范中心编号名称级别设立年份表2-7 本科实验教学实验室(中心)本科实验教学实验室编号名称面向专业年度承担的实验教学人时数(人时)开放情况文件上传表2-8 校外实习、实训基地编号名称地址面向专业每次可接纳学生数(个)V10.8.2 2010年09月09日V10.8.2 2010年09月09日表2-9-1 教材情况——编写教材概况单位(册)编写情况 总数 其中国家级 省部级 规划教材 获奖教材近三年学校主编出版教材一览表文件上传表2-9-2 教材情况——使用教材概况1.使用规划教材、获奖教材情况(册)2.选用近三年出版的省部级以上(含)规划教材、指定教材、重点推荐、精品教材等优质教材的比例(%)总数其中国家级省部级规划教材获奖教材规划教材获奖教材表2-10-1 教学管理制度教学管理制度教学计划修订制度有□无□文件上传制定(修订)培养方案的原则意见有□无□文件上传教学工作基本规范有□无□文件上传实验教学管理制度有□无□文件上传新教师培训制度有□无□文件上传教学事故认定办法有□无□文件上传学生学籍管理细则有□无□文件上传学生学业指导手册有□无□文件上传学生违纪处理细则有□无□文件上传表2-10-2 教学管理文件目录教学管理文件校级文件上传链接地址院(系)名称院(系)1 文件上传院(系)2 文件上传V10.8.2 2010年09月09日表2-11 本科教学信息化本科教学信息化教学管理信息系统有□无□链接地址网络教学平台有□无□链接地址表2-12 教学质量监控体系教学质量监控体系教学质量保障体系建设基本情况有□无□文件上传教学工作定期检查制度有□无□文件上传教学督导机构和制度有□无□文件上传学生评教制度有□无□文件上传评教结果数据库地址课程教学评价体系有□无□文件上传实验教学评价体系有□无□文件上传实习教学评价体系有□无□文件上传毕业综合训练环节评价体系有□无□文件上传院(系)或专业本科教学工作评价制度有□无□文件上传学校年度教学工作分析报告有□无□文件上传学校开展教学自我评价及质量改进机制有□无□文件上传V10.8.2 2010年09月09日表2-13 教学管理组织机构(科室)机构名称编号部处下设科室表2-14 校级教学管理人员单位:人编号姓名性别出生年月所属部门行政职务专业技术职务专业学历学位表2-15 院(系)教学管理人员编号姓名性别出生年月所属部门行政职务专业技术职务专业学历学位表2-16 教学管理人员培训及成果教学管理人员培训教学管理人员成果培训计划培训实施情况教学成果奖(项)教学论文(篇)教育教学研究及实践成果一览表总数其中总数其中国家级省部级校级教学研究教学管理文件上传V10.8.2 2010年09月09日表2-17 教学质量监控人员编号姓名性别出生年月所属部门行政职务专业技术职务专业学历学位表2-18 评教统计表分类按课堂分数统计评教类型结果分析优(90分以上)良好(90-75分)中(75-60分)差(60分以下)理论课文件上传实践教学表2-19 本科课程情况表1.本科课程总门次(门次)2.主讲本科课程的教师总人数(人)其中由教授授课的课程门次(门次)由副教授授课的课程门次(门次)符合岗位资格(人)教授(人)副教授(人)V10.8.2 2010年09月09日表2-20 各专业专任教师职称、学位、年龄、学缘情况单位:人院(系)名称:专业名称数量总计其中:女性职称正高级副高级中级初级无职称学位博士硕士学士无学位年龄35岁及以下36~45岁46~55岁56岁及以上学缘本校外校(境内)外校(境外)V10.8.2 2010年09月09日表2-21 教学事故单位:次年度教学事故总数其中严重教学事故一般教学事故表2-22-1 教师所获荣誉概况1.教学名师(个)2.教学团队(个)3.全国师德先进个人累计数(个)4.教学成果奖(项)累计数其中累计数其中累计数其中国家级省部级国家级省部级校级国家级省部级续5.学生思政队伍工作成果奖(项)6.研究与创作(校级及以上文化体育创作、演出、比赛活动)获奖(项)7.其他奖励(项)累计数其中累计数其中国家级省部级国家级省部级国家级省部级市级校级文件上传文件上传V10.8.2 2010年09月09日表2-22-2 院(系)教师个人所获荣誉院(系):______________编号姓名所在单位类别获奖级别授予单位获奖年份个人简介链接备注表2-22-3 院(系)教学团队教学团队编号团队名称负责人主要成员级别获得年份团队简介链接V10.8.2 2010年09月09日表2-23-1 课程建设1.学校促进课程建设的政策、措施文件上传2.学校课程建设规划文件上传3.学校课程考核管理办法文件上传4.学校教材建设规划文件上传5.学校教材选用和评价制度文件上传表2-23-2 课程情况1.课程门数(门)2.课程门次(门次)总数其中总数其中:小班授课网上教学多媒体教学续3. 精品(优秀)课程(群)建设情况(项)4.双语课程(门)国家级省部级校级总数其中:国家双语教学示范双语教学课程名单文件上传表2-23-3 精品课程精品课程编号名称级别负责人获准时间备注V10.8.2 2010年09月09日表2-24 分专业实验、毕业综合训练情况1.实验情况2.毕业综合训练课题(个)有实验的课程(门)独立设置的实验课程(门)实验开出率(%)综合性、设计性实验教学(门)总数在实验、实习、工程实践和社会调查等社会实践中完成数表2-25 院系毕业综合训练指导教师情况院系名称指导毕业综合训练教师数量专任教师外聘教师表2-26-1 教学改革概况1.学校教学改革的总体思路与实施方案(含“质量工程”实施方案)文件上传2.教师发表教学研究论文、论著文件上传3.其他教学改革成果一览表文件上传4.教学改革成果的推广应用情况文本框表2-26-2 教育教学研究与改革项目教育教学研究与改革项目编号项目名称主持人级别立项时间验收时间经费(万元)V10.8.2 2010年09月09日表2-26-3 教学成果奖教学成果奖编号奖励名称主持人级别获奖时间授予单位V10.8.2 2010年09月09日表2-27 本科生教学效果1.学校组织、激励学生参加科技活动和学科竞赛活动的有关规定文件上传2.学生参加课外学术活动情况文本框3.学生参加各级各类学术活动立项一览表文件上传4.学生参加教师科研项目情况一览表文件上传5.学生发表论文、作品情况一览表文件上传续6.学科竞赛获奖(项)7.本科生课外科技、文化获奖(项)8.国家级或国际级文艺、体育竞赛获奖(项)总数其中总数其中总数其中国家级省部级国家级省部级国际级国家级省部级续9.学生发表学术论文(篇)10.学生发表作品数(篇、册)11.学生获准专利数(项)12.获取专业资格证书人数(人)13.英语等级考试14.体质合格率(%)15.参加国际会议(人次)英语四级考试累计通过率(%)英语六级考试累计通过率(%)续16.国家级或省部级社会实践获奖(项)国家级省部级团队个人V10.8.2 2010年09月09日表2-28-1 院(系)教学效果——本科生竞赛获奖情况院(系)名称:学科竞赛获奖情况编获奖项目奖励名称级别等级授予单位获奖者姓名指导教师获得年份号表2-28-2 院(系)教学效果——本科生课外科技、文化获奖情况院(系)名称:课外科技、文化获奖情况编号获奖项目奖励名称级别等级授予单位获奖者姓名指导教师获得年份表2-28-3 院(系)教学效果——本科生文艺、体育竞赛获奖情况院(系)名称:文艺、体育竞赛获奖情况编号获奖项目奖励名称级别等级或名次授予单位获奖者姓名指导教师获得年份表2-28-4 院(系)教学效果——本科生社会实践团队获奖情况院(系)名称:社会实践团队获奖情况编号团队名称奖励名称级别等级授予单位获奖者姓名指导教师获得年份V10.8.2 2010年09月09日表2-28-5 院(系)教学效果——本科生社会实践个人获奖情况院(系)名称:社会实践个人获奖情况编号奖励名称级别等级授予单位获奖者姓名指导教师获得年份表2-28-6 院(系)教学效果——专利情况院(系)名称:专利情况编号专利名称类别专利号姓名指导教师获得年份表2-28-7 院(系)教学效果——参加国际会议院(系)名称:参加国际会议编号参会学生姓名会议名称发表论文题目地点指导教师举办年份表2-29 学生交流情况交流学生数(个)总数其中本校到境外本校到境内境内到本校境外到本校V10.8.2 2010年09月09日表3-1 教学经费概况1.学校教育经费总额(万元)2.教学经费预算总额(万元)3.学校年度教学改革与建设专项经费(万元)4.学校年度教学经费分配办法文件上传5.学校年度财务决算报告文件上传表3-2 学校教育经费支出学校教育经费支出(万元)教学日常运行支出教学改革支出课程建设支出专业建设支出教材建设支出实践教学支出学生活动经费支出总数其中:校外表3-3 教育事业收入1. 经常性预算内教育事业费拨款2.学费收入(万元)3.社会捐赠收入(万元)4.其他教育事业收入(万元)国家(万元)地方(万元)本科生各类研究生高职高专网络与继续教育V10.8.2 2010年09月09日表3-4 当年捐赠情况编号捐赠机构或人员名称类别捐赠金额(万元)捐赠金额总计(万元)自动生成注:填写额度在1万元以上的捐赠;数值保留小数点后一位。
微电子机械系统研究领域的最新进展——IEEE MEMS 2018国际会议综述
微电子机械系统研究领域的最新进展—IEEE MEMS 2018国际会议综述宋宇,张海霞*(北京大学微米/纳米加工技术国家重点实验室,北京 100871)通讯作者:hxzhang@18年1月21日至25日在英国贝尔法斯特会展中心举行(见图1),吸引了来自世界各国相关领域的600余位专家学者,共同探讨微纳传感工艺等领域的最新进展与科学前沿。
此次会议的大会主席由来自瑞士电子与微技术中心(CSEM)的Michel Despont教授与爱尔兰都柏林城市大学的Jens Ducrée教授共同担任,并设置了最佳口头报告奖与最佳张贴报告奖,得到了国际电气与电子工程协会(IEEE)与IEEE机器人与自动化学会等多个国际组织的大力支持。
图1 MEMS 2018会议开幕式1 MEMS 2018会议技术概述MEMS 2018国际会议从1月21日至25日,历时五天,包括大会特邀报告、分专题口头报告以及张贴报告等内容,会议主题分为6大类,包括生物医学微机电系统、材料工艺与封装技术、执行器与能量微机电系统、电磁应用器件、物理传感器与微/纳流体等领域,几乎涵盖了微机电系统领域的所有研究方向。
本次会议共接收到来自全世界28个国家和地区的摘要投稿874篇,采用双盲审机制,经过技术委员会38名专家认真细致的评审工作,共有347篇文章被会议收录,其中86篇文章被选为大会口头报告,261篇文章被选为海报张贴报告,会议整体录用率为40%。
值得一提的是,本次会议共收录来自中国大陆的文章63篇,占到会议总收录文章数的20%左右,充分体现了我国在微机电系统领域的迅猛发展[1]。
按照MEMS会议的传统,MEMS 2018同样只设置一个主会场,会议流程则包括4个大会特邀报告、15个分专题口头报告和3个海报展示环节。
在大会开始环节,大会主席首先对本届MEMS 2018会议进行了全面的介绍,值得一提的是,会议参会人员数量达到了历年在欧洲举办该会议的第二高值,论文接受量与投稿量也保持了稳步提升,一系列数据也显示了微机电领域迅猛发展的态势。
中科院顶级会议介绍
综合类第 10 名
计算机类第 7 名 计算机类第 6 名
中文版 562 426 235 294 218
中文版 0.430 0.406 0.234 0.206 0.203
综合类第 11 名
网络通信领域
rank1 rank1 rank1 rank1
网络通信领域
无线网络领域顶级会议,录用率约为 10%,每年举行一次。 无线网络领域 偏重于建模和测量的重要国际会议,内容覆盖系统和网 络,录用率为 10%左右。
网络通信领域
4
MOBIHOC:
9
ACM International Symposium on Mobile Ad Hoc Networking and Co所限定的供硕士生选择的 EI 收录的本领域相关刊物 : 请登陆 /twice/coverage.jsp 查看。 附 2:计算所限定的供硕士生选择的相关刊物 : 序号 刊物名称(以期刊名称的拼音为序) 1 2 3 4 5 6 7 8 9 电子学报(英文版、中文版) 高技术通讯(英文版、中文版) 计算机辅助设计与图形学学报 计算机工程 计算机工程与应用 计算机集成制造系统 计算机科学 J COMPUT SCI & TECH 计算机学报 总被引频次 1676 540 945 1342 2165 819 712 141 1370 1308 785 1073 影响因子 0.450 0.294 0.692 0.232 0.280 0.855 0.280 0.330 0.921 0.806 0.329 0.428 影响因子学科内排名 电子类第 1 综合类第 22 名 计算机类第 5 名 计算机类第 19 名 计算机类第 14 名 计算机类第 3 名 计算机类第 14 名 计算机类第 12 名 计算机类第 1 名 计算机类第 4 名 计算机类第 13 名 计算机类第 8 名
控制科学领域期刊会议和重要人物
一 控制类中英文期刊(SCI,EI收录)
▪ 《控制理论与应用》是中国科学引文数据库首批统计源期刊之一,是 中文核心期刊。并被俄罗斯《文摘杂志》、英国《科学文摘》、美国 《工程索引》(EiCompendex)、美国《数学文摘》、德国《数学文 摘》、美国《剑桥科学文摘社网站(共8个网站)》等13种国际著名检 索系统收录。国内《中国学术期刊网(光盘版)》、《万方数据》、 《中国学术期刊文摘》及信息产业部《电子科技文摘》等也相继收录 本刊。
▪
9、我们的市场行为主要的导向因素,第一个是市场需求的导向,第二个是技术进步的导向,第三大导向是竞争对手的行为导向。21.8.821.8.8Sunday, August 08, 2021
▪
10、市场销售中最重要的字就是“问”。01:05:5401:05:5401:058/8/2021 1:05:54 AM
▪ 《自动化学报》刊载自动化科学与技术领域的高水平理论性和应用性 的科研成果,内容包括:1)自动控制;2)系统理论与系统工程;3)自 动化工程技术与应用;4)自动化系统计算机辅助技术;5)机器人;6) 人工智能与智能控制;7)模式识别与图像处理;8)信息处理与信息服 务;9)基于网络的自动化等。学报编辑委员会由世界各地自动化领域 的权威学者组成,编辑部设在中国科学院自动化研究所。
▪
11、现今,每个人都在谈论着创意,坦白讲,我害怕我们会假创意之名犯下一切过失。21.8.801:05:5401:05Aug-218-Aug-21
▪
12、在购买时,你可以用任何语言;但在销售时,你必须使用购买者的语言。01:05:5401:05:5401:05Sunday, August 08, 2021
一 控制类中英文期刊(SCI,EI收录)
湖南大学电气与信息工程学院高水平国际学术会议目录
高水平国际学术会议目录
电气与信息工程汇编
二O一七年一月
电气与信息工程学院高水平国际学术会议及顶级期刊统计表
序号
一级学科名称
会议/期刊级别
会议/期刊英文名称
英文名缩写
会议中文名称
备注(具体时间、地点、规模、基本简介、收录情况)
1
电气工程/电子科学与技术
顶级会议
IEEE International Electron Devices Meeting
17
电气工程
A类会议
IEEE International Conference on Power Electronics and Drive Systems
PEDS
IEEE 电力电子与驱动系统国际会议
IEEE POWER ELECTRONICS SOCIETY
时间:每年一次。
地点:不固定
基本简介:IEEE磁学协会是应用磁学领域最为著名的国际组织,已举办52年。其范围涉及磁性材料及器件的基础研究、开发、设计和应用的所有问题,在世界范围内有36个分会。国际磁学大会在国际电机电子工程师协会(IEEE)每年举办的数千个国际会议中排名前五,是对相关工业和学术界有最重要影响的顶级旗舰会议。
基本简介:国际电机会议(ICEM)已经确立了自己作为一个有影响力的和公认的国际盛会,是国际上针对电机方向的最悠久的会议,也是完全致力于电机的唯一重大国际会议。
收录情况:EI目前不收录,
21
电气工程
B类会议
International Conference on Electric Machines
收录情况:全部EI,部分SCI。
19
电气工程
Lower Limb Rehabilitation Exoskeleton 腿部康复外戴腿关节动力学
Design and analysis of Lower Limb Rehabilitation Exoskeleton knee jointactuatorChen Yuliang1 ,Cao Heng1 ,Zhu Jun1 ,Mo Songhai11.School of mechanical and dynamic engineering,East China University of Science and TechnologyShanghai, ChinaAbstract—In order to obtain a knee joint actuator with small volume, light weight and easy control, we analyzed the advantages and disadvantages of the knee joint actuators, the motion laws and motion forms of the human knee joints. We designed an exoskeleton knee actuator actuated by parallel four bar linkage. The motion of the knee joint of the exoskeleton adopts parallel four-bar linkage to ensure the linear motion of the knee joint while reducing the volume of the whole actuator. In this paper, we analyzed the kinematics of parallel four-bar linkage, and the motion characteristics of the mechanism, simulated the whole knee actuator, drew a diagram of the relation between the rotation angle of the knee joint, angular acceleration and screw displacement.Keywords—Exoskeleton;Parallel four-bar linkage; Knee; ADAMS simulationI.INTRODUCTIONRecently, the number of patients with hypertension, cardiovascular and cerebrovascular diseases is increasing, and the incidence of cardiovascular and cerebrovascular diseases is also increasing at a steady pace. According to incomplete statistics, there are as many as 250 cases of cardiovascular and cerebrovascular diseases in our country every year. About 80% of them have left different degrees of limb dyskinesia after treatment, mainly manifested as limited limb movement, atrophy and so on. By the end of 2017, there were 80 million 500 thousand disabled family workers in China, and the total number of disabled people was nearly 95 million. The emergence of the rehabilitative exoskeleton has helped many disabled people stand up again.The earliest exoskeleton was the prototype called "Hardiman" developed by General Company in 1960[1]1-2. In 2000, the Bleex lower limb weight-bearing exoskeleton robot appeared[2]2-3Amami Kanou team of University developed HAL lower limb exoskeleton to help patients with gait disorders to walk[1]4-5. The “InteHigent Walking Assistive Robot” of Sogang University helps the disabled and the elderly who walk inconveniently[1]5-6. The “Lokoomat” lower extremity exoskeleton mainly trains patients with lower extremity injury, dysfunction and walking inconvenience which developed by the Federal Institute of Technology in Zurich, Switzerland, and the Balgrist Medical Rehabilitation Center [1]8-9. In 2010, Elegs developed by Berkeley Biomimetic Technologies Inc. helped paraplegics get rid of wheelchairs completely and walk independently[7][8]. Wearable lower extremity exoskeleton robot designed by Yang Canjun team of Zhejiang University can help stroke patients perform some simple indoor rehabilitation training[1]11-12. Fourier X1, the first lower extremity exoskeleton robot launched by Fourier in 2017. At the same time, Fourier X1 is the first commercial robot in China, which can be intelligently adjusted by users.However, there are some common problems in the knee actuators of rehabilitative lower limb exoskeletons in China. For example, the knee joint actuator of the lower extremity exoskeleton robot developed by Yang Canjun team of Zhejiang University, which is driven by a common push rod mechanism, motor, through the ball screw, keep the nuts on the ball screw fixed, and the motion of the screw promotes the knee joint movement. However, its shortcomings are that the structure of the actuator is large, the motion is not smooth, the effect of force transmission is not good, and the linearity of linear motion and knee joint rotation is poor. The knee joint actuators of the wearable intelligent power assisted robot3rd Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2018)developed by Hefei intelligent are driven by hydraulics. The disadvantage is that the motion will be unstable when the load changes greatly, the transmission efficiency is low, and it is easy to leak.Therefore, it is necessary to develop a rehabilitation knee joint actuator with compact structure, smooth movement, high transmission efficiency, cleanliness and easy control.II.MOTION ANALYSIS OF KNEE JOINTThe knee joint is consisted of the medial and lateral femoral condyles, the medial and lateral tibial condyles and the patella. It is the largest and most complex joint in the human body and suffers more chance of injury. It belongs to the trochlear joint.The basic movement of the knee joint is flexion / extension motion, and the angle of active motion is 0 degrees ~140 degrees[2]10-12.In the range of motion cycle of walking, knee joint does not have a complete stretching process, and the maximum need for flexion is about 70 degrees.When the knee joint is fully straightened, the tibial intercondylar eminence is locked with the femoral intercondylar fossa, and the lateral collateral ligament is tense. Besides flexion and extension, the femoral and tibial joints can not complete other movements.When the knee joint flexes, the posterior part of both femoral condyles enters the articular fossa, the interlocking factor is relieved, the collateral ligament is relaxed, and the femoral-tibial joint can rotate slightly around the vertical axis.During knee joint movement, the meniscus can move backward when bending the knee and forward when stretching the knee. When crus rotates, the meniscus moves forward with the femoral condyle, one side slides forward and the other side slides backward.III.MECHANICAL STRUCTURE DESIGNA.Selection of Driving ModeIn the aspect of driving, not only ingenious design is needed to make the exoskeleton robot wear on human body as easy as possible without interference, but also sufficient driving force is required to achieve energy enhancement. This requires small size and large output of the driver. At present, the main driving modes are hydraulic drive, pneumatic drive and motor drive.Hydraulic drive has good dynamic performance. Under the same output power, the transmission process will not cause a greater impact on the mechanism, and has a certain overload protection function[3]. Its shortcomings are also prominent. Firstly, hydraulic oil is easily ignited, leaked and polluted. In many cases, there is no finished product, so it needs complex structural design, which takes a long time. The transmission efficiency is very low, its transmission accuracy is not high and the noise is high [9].Pneumatic drive is driven by air and other gases as energy transmission medium. It has many similarities with hydraulic drive, but also has some advantages that hydraulic drive does not have. It has low cost, green and pollution-free, little resistance in operation, high safety, and is not disturbed by high temperature. The disadvantage is that the gas density varies greatly, so the transmission stability is poor, and it is not easy to carry out accurate position control.Motor drive is the most common way, simple principle, good motor control performance, running noise is very small, motion accuracy is high, clean, these are very suitable for rehabilitation medical equipment. At present, the control theory of motor is very mature, which can realize the complex control of exoskeleton function[2]27-30. The encoder on the motor can output the motion state of the motor output shaft in real time, so the signal detection and processing in the process of motor driving is very convenient. Therefore, from all aspects of consideration, the final decision is to adopt motor driven mode.B.Mechanical structure of knee joint actuatorKnee joint is one of the joints with heavy load in daily life. It is indispensable for walking, sitting, lying, running and jumping in daily life.Every pound of weight gain, the knee area has to bear six times the weight, so the protection of the knee joint is necessary. In the rehabilitative lower extremity exoskeleton (as shown in Figure 1), the knee and hip joints are driven by a parallel four-bar linkage, and the principle is roughly the same.But knee actuators are more complex and representative, so it is very important to analyze knee actuators.执行器ActuatorFig.1. Rehabilitation of lower limb exoskeletonThe degree of freedom of the single knee actuator is 1,and the actuator moves in the sagittal plane of the human body.Therefore, the requirement of exoskeleton design in this paperis that the range of DOF meets the requirements of walkingand sitting in sagittal plane[5][6]. The joint torque meets thewalking torque requirement after weight reduction. Theactuator structure is flexible, and the structure is light. Theactuator structure is protected by limited position in the limitposition, which can avoid two times of injury. The prototypeof the knee joint actuator and the explosion map are shown inFigure 2. The main parameters are shown in TABLE Ⅰ.1234567891011121314151617Fig.2. Knee joint actuator prototype and explosion mapIn Fig.2, 1 the motor, 2 the coupling, 3 the locking nut, 4the bolt, 5, 7 and 8 the thrust bearings, 6 bearing covers, 9 thenut of the ball screw, 10 the nut sleeve, 11 the knee jointactuator frame, 12 the ball screw, 13, 14, 15 parallel four-barconnecting rods, 16 the knee joint shaft, 17 the knee jointrotating Block. In addition to the material of parallel fourconnecting rods is stainless steel, the remaining structuralmaterials are 7075 alloy aluminum.TABLE ⅠKnee joint actuator parametersball screw and a parallel four-bar linkage. The driving schemeof the knee joint actuator is shown in Fig. 3. The rotation ofthe motor drives the ball screw to rotate through the coupling.The nut on the ball screw moves in a straight line along theball screw, and the knee joint is driven by the parallel four-barlinkage mechanism.motor couplingThrustballbearingDeepgrooveballbearingBallscrewSelflubricating bearingFig.3. Actuator power drive schematic diagramIn order to reduce the vibration during the movement ofball screw and make the force and moment transfer stable andreliable, three bearings[10]3-280 (as shown in Fig. 3) are used tosupport the ball screw structure. At the same time, the axialforce and the radial force are larger, which can reduce theprocessing accuracy of the bearing seat and reduce the cost.锁紧螺母盖板Cover plateLock nutFig.4. Bearing installation drawingBearing positioning and fixing scheme is shown in Fig. 4. According to the installation sequence, the order from right to left is deep groove ball bearing, sleeve, thrust ball bearing Ⅱ, cover plate, thrust ball bearing Ⅰ and locking nut. Deep groove ball bearings are positioned by the step on the right side of the ball screw. The sleeve on the left side fixes the deep groove ball bearings and separates the deep groove ball bearings from the thrust ball bearings [10]280-467. The right fixed end of thrust ball bearing 2 moves with the ball screw, while the left fixed end is installed on the cover plate. The left side of thrust ball bearing Ⅰ is free end and the right side is fixed end. The installation method is similar to that of thrust ball bearing Ⅱ. Finally, the locking nut on the left holds the thrust ball bearing.IV. .KINEMATIC ANALYSISA. Linkage modelThe linkage mechanism of the knee actuator is a parallel four-bar linkage, as shown in Fig.5. The nut A on the ball screw moves on the ball screw, pushing the point B around the point C for circular motion.The quadrilateral BCDE is a parallelogram, so the point E is consistent with the motion of point B .φ1is the angle between the rod AB and the horizontal line.φ2 is the angle between the rod BC/DE and the horizontal line. S is the vertical distance between point A and point C . x 0 is the horizontal distance between the initial position of point A and the point C .x 1is the horizontal distance between the initial position of point A and the point D .The lengths of rods AB and rods BE are l 1and l 3.Thelength of rod BC and rod DE is l 2.Fig.5. Parallel four-bar linkageB. kinematic analysisThe origin of coordinates is set at the intersection point between the horizontal line of A and the vertical line of C (as shown in Fig.5). Then we can get the dynamic position expression of point A .x A =x 0−v A ·t (1)Where, x 0 is the initial position of nut A ,and v A is the speed of point A . Because the nut A is driven by the motor through the coupling and lead screw. Then, we have the following expressions:v A =n 0·ℎ (2)n 0 is the speed of the motor and h is the lead of the ballscrew.l 1cosφ1+l 2cosφ2=x A (3)l 1sinφ1+s =l 2sinφ2 (4)The formula (3) and the formula (4) can be obtainedseparately:cosφ1=x A −l 2cosφ2l 1(5)sinφ1=l 2sinφ2−sl 1(6)because cos 2φ1+sin 2φ1=1,we can obtain the following equation:x A 2+s 2+l 22−l 12=2l 2(x A cos φ2+s sin φ2) (7) Assume sin α=A √x 2+s 2cos α=√x 2+s 2formula(7) becomes the following: sin αcos φ2+cos αsin φ2=A 2222122l √x 2+s 2sin (α+φ2)=A 2222122l √x 2+s 2(8)φ2=π−sinA 2222122l √x A 2+s 2sin A √x A 2+s 2(9)The relationship between the speed of the nut movement and the rotation angle of the knee can be obtained through the formula (1) and the formula (9).V. ADAMS SIMULATION ANALYSIS The three-dimensional Solidworks model of the Rehabilitation Exoskeleton knee joint actuator is saved as the corresponding format and imported into ADAMS software. The material characteristic parameters of each part of the modelare set according to the actual material. By adding appropriate constraints and setting the appropriate speed of the motor, the motion curve of the knee joint actuator is close to that of the disabled. The lead of the ball screw is 2mm, the model set up is shown in Fig. 6.Fig.6. Knee actuator model in ADAMSThe driving input of the model is the input according to the walking cycle of the disabled. Because during normal walking, the rotation angle of the knee does not exceed 70 degrees. So the function of input speed of motor in ADAMS is as follows:STEP5(time , 0 , 0d , 1 , -2000d )+STEP5( time , 1 , 0d , 4 , 1500d )+STEP5( time , 4 , 0d , 7.5 , -10000d )+STEP5( time, 7.5 , 0d , 10 , 10500d ),The cycle is 10s [2]15-17. Using ADAMS software post-processing module to simulate and analyze theknee joint actuator. We can obtain the curves of rotation angle, angular velocity, angular acceleration of unilateral knee joint actuator and displacement, velocity and acceleration of screw nut, as shown in figs. 7, 8 and 9. The red solid line in the picture is the curve of the knee joint, and the blue dotted line is the curve of the nut.Fig.7. Knee joint actuator rotation angle and screw nut displacementFrom figs. 7, 8 and 9, we can be seen that the curve of knee joint rotation angle and screw nut displacement is almost the same, and the linearity is very good. So this provides a very good condition for controlling knee joint motion, that is, controlling the movement of nuts can control the knee joint angular motion. The angular velocity of the knee joint and the speedof the screw nut,the angular acceleration of the knee joint and the acceleration of the screw nut are relatively smooth, which will not make the users feel uncomfortable.Fig.8. Knee angular velocity and lead screw velocityFig.9. Knee angular acceleration and screw accelerationN u t d i s p l a c e m e n t (m m )Knee joint rotation angle (deg )Fig.10. Relationship between rotation angle of knee joint and screw nutdisplacementThe relationship between the rotation angle of the kneeand the displacement of the screw nut is shown in Fig.10. They have good linearity (solid lines represent the relationship between them, dashed lines represent the closest oblique line of the curve). This shows that the knee joint motion angle can be controlled accurately only by controlling the forward and backward rotation of the motor and the rotational speed of the motor. The control accuracy is effectively improved, and the basis for further control is further established.VI.CONCLUSIONIn this paper, we present a design of a rehabilitation knee joint actuator for lower limb exoskeleton based on parallel four-bar linkage.It can help the knee joint flexion / extension movement of the lower extremity disabled people.The actuator ball screw is driven by DC motor to facilitate subsequent control.The kinematics analysis of the parallel four-bar linkage is carried out, and we obtain the relationship between the rotation angle of the linkage and the displacement of the ball screw nut. Using ADAMS software to simulate the flexion/extension motion of the knee joint actuator of the lower extremity exoskeleton, the linear relationship between the motor speed and the knee joint rotation angle was further validated.We obtain the relationship between the displacement, velocity and acceleration of the screw nut and the rotation angle, angular velocity and angular acceleration of the knee joint.It provides a basis for controlling the knee joint of rehabilitation lower limb exoskeleton.ACKNOWLEDGMENTThis work was supported by the National Natural Science Foundation of China under Grant No. 91748110.REFERENCES[1]Jiashan. Kinetic analysis and motion planning of lower extremityexoskeletons [D]. Southeast University, 2016:1-116.[2]Chen Wei. Structural design and reliability analysis of bionic lowerextremity exoskeleton robot [D]. University of Electronic Science and Technology, 2015:9-41.[3]Pei Xiang, Li Qucheng, Jin Dingcan. Design and analysis of a seriesthree-degree-of-freedom hip joint mechanism [J]. Mechanical designand research, 2014:51-54.[4]Shi Xiaohua, Wang Hongbo, Sun Li. Structural design and dynamicanalysis of exoskeleton lower limb rehabilitation robot [J]. Journal of Mechanical Engineering, 2014 (03): 47-54.[5]Fang Mingzhou, Wang Yu, Zhu Jun. Research and Simulation ofheavy-duty exoskeleton robot mechanism of lower limbs [J]. Journal of East China University of Technology (Natural Science Edition), 2014:118-121.[6]Rao Lingjun, Xie Wei, Zhu Xiaobiao. Research and design of lowerextremity exoskeleton walking rehabilitation robot [J]. Mechanical design and research, 2012 (03): 31-33.[7]Huang R., Cheng H, Chen Q., et al. Interactive learning for sensitivityfactors of a human-powered augmentation lower exoskeleton.Ieee/rsjInternational Conference on Intelligent Robots and Systems. IEEE,2015:6409-6415.[8]Huang R., Cheng H., Guo H., et al. Hierarchical Interactive Learningfor a HUman-Powered Augmentation Lower Exoskeleton.IEEEInternational Conference on Robotics and Automation. IEEE,2016:257-263.[9]Zheng Jianrong. Introduction and improvement of ADAMS virtualprototyping technology. Beijing: Machinery Industry Press, 2001:93-185.[10]Cheng Daxian. Editor-in-chief. Mechanical Design Manual. FourthEdition. Beijing. Chemical Industry Publishing House, 2002:3-467.。
第三届中国智能计算大会会议纪要
第三届中国智能计算大会会议纪要由中国运筹学会智能计算分会主办、德州学院承办的第三届中国智能计算大会于2009年5月15日至19日在山东济南召开。
来自全国20多个省、直辖市、自治区的数十所高校或科研单位的120多位专家、学者参加了本次年会。
本届会议专家云集,学术报告精彩纷呈。
会议特邀世界著名学者美国辛辛那提大学Dan Ralescu教授作了大会报告,16位专家做了大会邀请报告,30多位学者做了分组报告。
交流报告内容涉及智能计算的理论与方法,包括神经网络;模糊算法、遗传算法、进化算法、启发式算法、猴群算法、蚁群算法、生态计算;模糊逻辑以及模糊控制等。
涉及应用专题的内容有:智能交通;车辆路径;系统可靠性;物流供应链;投资组合;环境监管;应急决策管理等相关领域。
邀请专家所作专题报告受到与会代表的欢迎与好评,并引发了热烈的讨论。
分组报告简短精悍,以提出问题,展开讨论的方式进行,与会代表感到收获很大。
会议论文集收录的100多篇论文体现了近年来我国运筹学工作者在智能计算与应用研究方面的一批新近成果,其中部分成果反应了我国智能计算的研究现状和发展趋势。
本次会议入选文章将全部进入中国期刊网和中国重要学术会议数据库。
本届会议会前成功举办了《不确定理论》高级研修班。
参加研修班的学员达100余人。
本次研修班受到广大学员的好评,起到了对运筹学的宣传和对从事运筹学研究的后备力量的培养作用。
这对运筹学在中国的发展以及运筹学会在高校和科研院所中影响一定回起到积极的作用。
会议期间,智能计算分会理事长彭锦教授主持召开了第一届理事会第三次会议,总结了一年来的运行情况,并对理事会的工作提出了新的希望和良好的建议。
本次大会期间还进行了中国运筹学会智能计算分会理事会增补选举(增补后的理事会组成人员名单见附录)。
在本届会议上,安徽工程科技学院、东北大学秦皇岛分校、清华大学、西安石油大学等几所高校竞相承办第四届中国智能计算大会,在此向这些申办代表及其单位表示由衷的谢意。
国内与国际控制学科知名会议
国内与国际控制学科知名会议⾃动控制【ICACC】全称:The International Conference on Advanced Computer Control⽹络评价:会议主题包括⼈机系统、数据库系统、混合动⼒系统、机器⼈与⾃动化、多媒体通信系统等【CCDC】全称:Chinese Control and Decision Conference⽹络评价:全国性⼤型学术会议,每年⼀届【IEEE ICCA】全称:IEEE International Conference on Control and Automation⽹络评价:控制及⾃动化领域的⼤型学术会议【ECC】全称:European Control Conference⽹络评价:欧洲控制论和⾃动化学界的重要学术会议【CT】全称:SIAM Conference on Control and Its Applications⽹络评价:⿎励⽆歧视地畅所欲⾔,为参会者营造宽松舒适的研讨环境,两年⼀届【ACC】全称:The American Control Conference⽹络评价:控制领域顶级会议【WCICA】全称:World Congress on Intelligent Control and Automation⽹络评价:两年⼀届,由IEEE控制系统学会、IEEE机器⼈与⾃动化学会、国家⾃然科学基⾦委、中国⾃动化协会和中国科学院⾃动化研究所提供技术⽀持【IFAC ADCHEM】全称:10th IFAC Symposium on Advanced Control of Chemical Processes⽹络评价:过程控制领域全球顶级盛会,⾸次在中国⼤陆召开【CCC】全称:The Chinese Control Conference⽹络评价:控制理论与技术领域的国际性学术会议,每年⼀届【CPCC】全称:Chinese Process Control Conference⽹络评价:由中国⾃动化学会过程控制专业委员会主办的国际性系列学术年会,每年⼀届【SMC】全称:The Annual Conference of the IEEE Industrial Electrics Society⽹络评价:每年⼀届【CAC】全称:The Chinese Congress of Automation⽹络评价:国内最⾼层次的⾃动化、信息与智能科学领域的⼤型综合性学术会议【CDC】全称:IEEE Conference on Decision and Control⽹络评价:控制领域顶级会议,每年⼀届机器⼈【ICRA】全称:IEEE International Conference on Robotics and Automation⽹络评价:机器⼈及⾃动化领域国际顶级会议【ICIEA】全称:IEEE Conference on Industrial Electronics and Applications⽹络评价:IEEE新加坡分会举办【IEEE/ASME AIM】全称:IEEE/ASME International Conference on Advanced Intelligent Mechatronics⽹络评价:每年⼀届【ICMA】全称:IEEE International Conference on Mechatronics and Automation⽹络评价:是世界上机电⼀体化、⾃动化领域的著名会议,在国际机器⼈及⾃动化领域具有重要的影响⼒【IROS】全称:IEEE/RSJ International Conference on Intelligent Robots and Systems⽹络评价:智能机器⼈系统领域国际顶级会议【Humanoids】全称:IEEE-RAS International Conference on Humanoid Robots⽹络评价:每年⼀届【ROBIO】全称:IEEE International Conference on Robotics and Biomimetics⽹络评价:国际机器⼈领域有影响⼒的学术会议之⼀,每年⼀届⼈⼯智能 & 模式识别 & 计算机视觉【AAAI】全称:AAAI Conference on Artificial Intelligence⽹络评价:全称:International Conference on Acoustics, Speech and Signal Processing⽹络评价:世界最⼤声学、语⾳与信号处理及应⽤顶级会议,每年⼀届【VALSE】全称:Vision And Learning Seminar⽹络评价:计算机视觉、模式识别、机器学习、多媒体技术等相关领域华⼈青年学者最具影响⼒的交流平台,每年⼀届【ICCV】全称:International Conference on Connected Vehicles⽹络评价:智能交通领域跨学科交流会议【NCIG】全称:International Conference on Image and Graphics⽹络评价:是中国图象图形学学会主办的最⾼级别的系列国内会议,每两年举办⼀届【ACII Asia】全称:The Asian Conference on Affective Computing and Intelligent Interaction⽹络评价:⾸次召开【PAKDD】全称:The Pacific-Asia Conference on Knowledge Discovery and Data Mining⽹络评价:数据挖掘领域知名会议【CVPR】全称:IEEE Conference on Computer Vision and Pattern Recognition⽹络评价:计算机视觉领域三⼤顶会之⼀,每年⼀届【COLT】全称:Annual Conference on Learning Theory⽹络评价:机器学习最好的会议之⼀,每年⼀届【WCCI】全称:IEEE World Congress on Computational Intelligence⽹络评价:智能计算领域顶级技术盛会,两年⼀届【ICML】全称:International Conference on Machine Learning⽹络评价:机器学习⽅⾯最好的会议之⼀,每年⼀届数据挖掘重要的国际会议之⼀,每年⼀届【IJCAI】全称:International Joint Conference on Artificial Intelligence⽹络评价:国际顶级⼈⼯智能联合⼤会,每年⼀届【CCBR】全称:Chinese Conference on Biometric Recognition⽹络评价:国内⽣物特征识别领域的学术盛会【SIGGRAPH】全称:Special Interest Group on Computer Graphics⽹络评价:计算机图形学领域最权威、影响⼒最⼤的国际会议,每年⼀届【KDD】全称:ACM SIGKDD Conference on Knowledge Discovery and Data Mining⽹络评价:知识发现与数据挖掘⽅⾯最好的会议,每年⼀届【ICPR】全称:International Conference on Pattern Recognition⽹络评价:模式识别领域权威会议,⾸次在中国举办【ICAC】全称:IEEE International Conference on Automation and Computing⽹络评价:英国旅英华⼈⾃动化与计算学会的年会。
中国矿业大学大学生课外科技竞赛项目分类分级汇总表
竞赛分类 科技创新类 科技创新类 科技创新类 科技创新类 课程学习类 科技创新类 科技创新类 专业技能类 就业创业类 专业技能类 科技创新类 科技创新类 科技创新类 科技创新类 科技创新类 科技创新类 课程学习类 科技创新类 课程学习类 专业技能类 科技创新类 科技创新类 科技创新类 科技创新类 科技创新类 课程学习类 课程学习类 其他类 科技创新类 课程学习类 科技创新类
附件3:中国矿业大学大学生课外科技竞赛项目分类分级汇总表 序号 竞赛名称 1 挑战杯全国大学生课外学术科技作品竞赛和创业计划大赛 2 全国大学生数学建模比赛 3 全国大学生电子设计大赛 4 全国大学生结构设计大赛 5 全国大学生机械创新设计大赛 6 全国周培源大学生力学竞赛 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 飞思卡尔杯智能汽车竞赛 ACM国际大学生程序设计竞赛(亚洲区赛) 国际数学建模比赛 全国大学生节能减排社会实践与科技竞赛 中国室内设计大赛 全国大学生交通科技大赛 全国软件人才开发设计与创业大赛 英特尔杯大学生电子设计竞赛嵌入式系统专题邀请赛 全国大学生信息安全大赛 中国机器人大赛暨RoboCup公开赛 全国水利创新设计大赛 全国大学生嵌入式设计大赛 全国大学生地质技能竞赛 全国大学生电子商务“创新、创意及创业”挑战赛 全国大学生设计大师奖设计大赛 全国大学生英语竞赛 全国大学生广告艺术大赛 “外研社杯”全国大学生英语辩论赛 “外研社杯”全国英语演讲比赛 亚太(全国)大学生机器人大赛 国际机器人足球联盟(FIRA)世界杯机器人足球大赛 “高教杯”全国大学生先进图形技能与创新大赛 全国高校城市规划专业本科生设计作业评优竞赛
序号 86 87 88 89 90 91 92 93 94
学科专业代码080202名称机械电子工程
学科、专业代码 080202 名称机械电子工程一、本学科主要研究方向及学术队伍
二、培养目标
三、研究生课程学习及学分的基本要求
总学分35 分
其中公共学位课必修 2 门共 5 学分专业(或专业基础)学位课必修 5 门共13 学分
非学位课须修7 门不少于12 学分
教学实践共 2 学分必修环节:论文选题(开题报告)共 1 学分
学术活动共 1 学分
发表论文共 1 学分
五、实践环节(教学实践或社会实践)基本要求(包括时间安排、内容、
工作量、考核方式)
六、学术活动(学术交流与学术报告)环节的基本要求(包括次数、内容、
七、文献阅读的基本要求
八、学位论文的基本要求。
新型全电扫地车XiaoqinYin的结构设计与动 mechanics分析说明书
3rd International Conference on Mechanical Engineering and Intelligent Systems (ICMEIS 2015)Structure Design and Kinematics Analysis for a New-type All-electricSweeperXiaoqin Yin1, a *Linji Zhu2,b1Institute of Intelligent Machines and Robotics, Jiangsu University, Zhenjiang 212013 China 2Institute of Intelligent Machines and Robotics, Jiangsu University, Zhenjiang 212013 Chinaa*****************,b*****************Keywords:small-sized all-electric sweepers; the third sweeping brush; Denavit-Hartenbergn method; Monte-Carlo principle.Abstract. This paper is meant to put forward and design the third sweeping brush structure which can clean curbstones, corners of walls and etc., optimizing the cleaning structure of the domestic small-sized all-electric cleaning vehicle. The new structure can expand the cleaning area the original sweepers cover, thus improving the cleaning efficiency and reducing human resources investment. To begin with, considering the functions and requirements of the third sweeping brush, the paper firstly designs several structures of some sweeping brushes and determine the ultimate structure type after analyzing their advantages and disadvantages. Next, using Denavit-Hartenbergn method, the paper establishes the kinematics models of the sweeping brush and solves its kinematics equation through homogeneous coordinate conversion. Finally, based on Monte-Carlo principle, the paper depicts the working space of the sweeping brush by using MATLAB on the basis of kinematic equation. The brushing dots are closely and equally distributed, therefore, the sweeping brush can meet the working requirements.IntroductionWith the constant development of society, the environmental problems are increasingly paid attention to. However, there are many problems lying in the manual cleaning, for example, flying dust, which exerts serious influence on the cleaners’ health and causes secondary pollution on the environment unavoidably[1-3]. Therefore, mechanized cleaning has gradually penetrated into people’s life.Compared to the good-sized sweepers, the small-sized one, as a new-type environmental protection equipment, is especially applicable for cleaning the densely-populated roads or the roads whose condition is complicated, such as streets, parks, campuses, squares, residential lots and etc.. Due to its flexible and convenient operation, the small-sized sweepers have great prospects for development[4,5]. However, there are distinct limitations existent in domestic small-sized sweeper is limited in their cleaning scope[6,7,8]. Hence, some human input is required to clean the curbstone, the areas below the public chairs, corners of walls and other hygienic dead angles. To solve this problem, the paper has designed a new-type sweeper structure. Specifically, on the basis of the two sweeping brushes, the third sweeping brush is added, whose length, angle of rotation and pose can be adjusted to achieve the function of hygienic dead angles cleaning.Structure Design of the Sweeping Third Brush(a) (b)Fig.1 typical structure of small-sized sweeperAs is shown in Fig.1(a), most of the small-sized all-electric sweepers on current domestic market are suction type. Their side-brushes, relatively fixed to the sweeper’s body, can rotate on its own axis. After the rotation, the rubbish can be gathered to suction nozzles which then suck them into the rubbish bin and complete the cleaning process [6,7]. However, the cleaning scope of the sweepers of this type is quite limited, for example, it cannot clean the curbstone, the areas below the public chairs, corners of walls and etc.. This paper, learning from the structure of the small-sized sweepers in Europe and America (as is shown in Fig.1(b), designs the third sweeping brush which is placed in the middle of the side-brushes. The main structure of the third sweeping brush is similar to human’s arm. Driven by its shoulder joint, it can rotate up and down(left and right); driven by its elbow joint, it can control the length of Its arm; driven by its wrist, it can adjust the pose of its disc brush. Because of the coordinating control, the third brush can clean the curbstone by elevating its arm, clean the areas below the public chairs by stretching its arm, clean the corners of walls by flipping certain angles and etc..To conclude, the structure of the third sweeping brush should be simple rather than too complicated under the premise of functioning perfectly. The functioning area should cover the width of the pavement on the curbstone and the control system can be combined with the original electric sweepers.Mechanism Selection of the Third Sweeping BrushThe third sweeping brush of the small-sized all-electric sweepers is similar to the human’s arm. The first three joints are used to send the wrist of the robot arm to the assigned position. Learning from the configuration of the industrial robot and considering the function and requirement of the third brush, this paper chooses the articulated manipulator as the main configuration of the third brush’s arm.The whole arm needs to swing in the plane of xoy,xoz,yoz and rotate around the axis z. Accordingto the calculation formula of open chain spatial degree of freedom ‘1Pi i F f ==∑’(F is the DOF ofmechanism and f i is the DOF of each joint) [9,10], the degree of freedom of brush is 4, so themechanisms of brush have designed in three plan as is shown in Fig.2(a) (b) (c)Fig.2 structure of the third brushAs is shown in Fig. 2(a), the first joint is rotary joint, which can make the sweeping brush swing in the horizontal plane. The second joint is hook hinge, which can further expand the working space of its forearm in the horizontal plane and make its forearm swing in a certain range in the vertical plane. The third joint, also the rotary joint, which is used to flip the angle of the brush disc during theworking, can make the sweeper function on the incline. When working, the brush disc, as a rotational input, can enlarge the cleaning areas of roads and clean the curbstones at both sides of roads, even the places below the public benches and the corners of walls. When stopping working, the third brush can be folded up to save space. Mainly composed of rotary joints and with simple structure and large functioning space, the robot arm is easy to control.As is shown in Fig. 2(b), the mechanism configuration is spherical coordinate robot arm. The first joint, composed of spherical joints whose three freedoms make the brush can swing in three planes, undertakes the main working responsibility of the brush. The second one is oratory joint, which can make the brush disc further function higher or lower. Although the feature of the mechanism is less joints, high accuracy of working and a wide up-and -down range of swing, the working ability of spherical joints limits the left-and-right swing angle of the mechanism and its three freedom is hard to control.As is shown in Fig. 2(c), the hook hinge, placed at the first joint, control the working condition of the brush in the both horizontal and vertical plane. The second joint can make the brush disc further function higher or lower. The third one can clean the sloping curbstones and roads by rotating around its forearm to adjust the pose of the brush discs. The left-and-right sweeping range of the brush is much smaller than project 2(a).All the structures and features of the three projects and the result of the comparison concerning cleaning and recycling process considered, Fig. 2(a) is the ultimate sweeping structure.Kinematic Analysis of the Third Sweeping BrushThe forward kinematic parse is gotten by using ‘Denavit-Hartenberg method’ [10,11,12] and the frame of axes for link rod is established as is shown in Fig.3. Hooke hinge can be seen as two rotary joints and the parameter of each joint is showing in Tab.1. In the Tab.1, αi -1 is the angle that z i -1 rotate around z i in the direction of x i -1 and a i -1 is the distance between z i -1 and z i in the direction of x i -1 and θi is the angle that x i -1 rotate around x i in the direction of z i -1 and d i is the distance between x i -1 and x i in the direction of z i -1. The four parameters determine the brush’s position. The final transformation matrix is gotten after transforming 4 times which showing in followings.),(Rot ),(Trans ),(Trans ),(Rot 111111)1(i i i i i i i i i i z d z a x x θα-------=MFig.3 Frame of axes of the third brushTab.1 D-H parameter of the third brushjoints iαi -1(°) a i -1 (mm) d i (mm) θi (°) angle range of joints(°) 10 0 0 θ1 -45~45 20 a 1 0 θ2 -45~45 390 0 0 θ3-20~30 4 0 a 3 0 θ4 -45~30θ1 and θ2 are the angles brush brushing in the horizontal plane around z-axis and the certain values showing in tab.1 are determined according the working requirements. Moreover θ3 and θ4 are the angles rotating around z-axis in vertical plane, whose values are also in Tab.1.Putting each value in Formula 1, the transformation matrix of each joint is gotten under followings.111101000000100001c s s c -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M 221221200000100001c s a s c -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M 332333000010000001c s s c -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦M 443443400000100001c s a s c -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M c i =cos θi ,s i =sin θiThe transformation matrix from 0 frame-of-axes to 4 is as following,12341234121131231234123412113123040112233434343300001c s c s s a c a c c s c s s c a s a s c s c a s -+⎡⎤⎢⎥--+⎢⎥==⎢⎥⎢⎥⎣⎦M M M M M sin(),cos()ij i j ij i j s c θθθθ=+=+ According to Fig.3, the coordinate of point p in 4 frame-of-axes is P 4=(a 4, 0, 0)T , which in 0 frame-of-axes is as following.1131234123400441133124123433434a c a c c a c c a s a c s a s c a s a s ++⎛⎫ ⎪=⋅=++ ⎪ ⎪+⎝⎭P M PIf knowing the parameters a i of the third brush and the driving angle θi , the position coordinate of point p in wrist joint can be solved. This progress is the analysis of forward kinematical parse, which is the basement of kinematic analysis of the third brush and the key to knowing the work space of the brush.The analysis of the third brush’s working spaceThe scale of the third brush’s working space determines its working range, thus it is an important indicator to evaluate its working performance. There are many ways to analyze the working space of robot arms, of which graphic method [13], numerical method and simulation [14] method are commonly used. The graphic method, used to depict the working space boundary of the robot arm, has strong visualization, but the drawing is quite complicated. The numerical method is used to calculate the coordinates of the feature points on the working curved surface of robot arm and then the point-cloud composed of the feature points of undergoes the process of boundary curve fitting. Then the curves composed of point-clouds can depict the working space boundary after surface fitting. The typical method of numerical method includes Monte Carlo method, iteration method and search method. The numerical method can be used to compute and address graphics and images to obtain the workspace with the assistance of computer. Therefore, it can depict the workspace intuitively. The simulation method is used to construct a model for the objects of study in the MATLAB and other drawing softwares. After that, drivers are added to the each joint and the coordinates of the output end are recorded through the position sensor. This method does not involve solving the equation of the robot movement, so it is applicable for the structure which is complicated and has a large number of DOF.This paper analyzes the workspace of the sweeping brush with the assistance of Monte-Carlo method. Monte-Carlo[15] is a method used to solve mathematic problems with the help of random numbers in accordance with some mathematic laws on the basis of probability statistics. When it is applied to obtain the workspace, the feature points p gather in the space where they may appear. Among the value range of each joint, the coordinates are came randomly. To solve the working space, all of the random points form a cloud chart and the boundary points are formed as the boundary lines which are also formed as the boundary surface.According to the parameter of the selected sweepers ,the values are set as a1=950mm,a3=600mm,a4=400mm.10000 random points are produced in MATLAB during the range of driving angles, which constitute the working space chart under the operation of forward kinematical parse in MATLAB. The graphic model and each plane of projection are showing in Fig.4, Fig.5, Fig.6, Fig.7.Fig.4 Graphic model of working space Fig.5 projection plane in surface xoyFig.6 projection plane in surface xoz Fig.7 projection plane in surface yoz From Figure4 to Figure7, it can be seen that the workspace of the sweeping brush is similar to a fan cylinder. The projection of the horizontal plane is part of a sector. The cleaning surface of the original sweeper is a rectangle whose width(about 1.8m) is the distance between two side-brushes. From Figure 5, it can be learned that the cleaning scope is obviously enlarged, compared to the original one, and more specifically, the width of the sweeping horizontal surface(about 3.5m) is three times as long as the width of the original one. The projection of H-perpendicular plane (xoz plane) and the V-perpendicular plane(yoz plane) presents the deviation of the numerical direction of the sweeping brush. Therefore, the third sweeping brush can function higher of lower flexibly to clean the curbstones whose height reach 600m, the places below the public benches or even the front and lateral sloping roads.SummaryThis paper designs and improves the third sweeping brush based on the structure of the original small-sized all-electric sweepers. Firstly, the main structure of the third brush is selected and designed and the problem of the positional forward solution is solved with D-H coordinate transformation method. Secondly, on the basis of that, the workspace of the brush is depicted with the numerical method, from where its cleaning ability and superiority can be clearly seen. Therefore, it provides the guidance for the research and development domestic small-sized all-electric sweepers.References[1] Mark. Leister, The development trend of global road sweeper, J. Special Vehicle. 2008 91-93.[2] Henan Ge, Current situation of national road sweeper industry and its development trends, J.Construction machinery, 11 (2004) 54-56. (In Chinese)[3] Wenxing Ma, The development of sweeper, Chemical industry press, Beijing, 2006, pp. 94-98. (In Chinese)[4] Jiangtao Lee, The development situation and trends of national sweeper, J. Construction machinery technology and management. 4 (2000) 16-17. (In Chinese)[5] Qiming Zhang, The development trends of road sweeper, J.Construction machinery and equipment. 8 25 (2008) 43-44. (In Chinese)[6] Leiqing Zhou, The situation and application of national sweeper, J. Municipal facilities management. 2008 (2) 78-79. (In Chinese)[7] Leiqing Zhou, The situation and application of national sweeper, J. Traffic and transportation. 2008 (5) 88-89. (In Chinese)[8] Shanmao Luo, Research and development of Chinese sweeper, J. Construction machinery technology and management. 2005 (5) 64-66. (In Chinese)[9] Youlun Xiong, Robot technology, Huazhong University of Science and Technology press,Wuhan, 1996. (In Chinese)[10] Chunlin Zhang, Advanced Kinematics and Dynamics of Mechanisms, Beijing Institute of Technology press , Beijing, 2006. (In Chinese)[11] Xiangfeng Ma. Robot Mechanism, Machinery industry press, Beijing, 1991. (In Chinese)[12] Tingli Yang, Theory and Application of Robot Mechanism Topology, Technology press,Beijing, 2012. (In Chinese)[13] Yi Cao, Xiujuan Lee, Wei Ning, Computation and Geometrical Error Analysis of a 3D’s work space, J. Mechanical science and technology. 2008 (2) 78-79. (In Chinese)[14] Yanjiang Zhao, A method for solving robot workspace based on matalab, J. Mechanical science and technology for aerospace engineering, 2009,12 (28) 1658-1660. (In Chinese)[15] Rastegar J, Fardanesh B, Manipulator Workspace Analysis Using the Monte Carlo Method, J. Mech. Mach.Theory, 1990, 25(2) 233-239.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1273–1287.
HUI J, BAKHSHAI A. A new adaptive control algorithm for maximum power point tracking for wind energy con-version systems[C]//2008 PESC Proceedings of the Power Electronics Specialist Conference. Rhodes, Greece, 2008: 4003–4007.
[14]
DAHBI A, NAIT-SAID N, NAIT-SAID M-S. A novel combined MPPT-pitch angle control for wide range vari-able speed wind turbine based on neural network[J]. Inter-national journal of hydrogen energy, 2016, 41(22): 9427–9442.
[15]
ZHANG Xinfang, XU Daping. Adaptive fuzzy control for variable speed variable pitch wind turbines[J]. IFAC power plants and power systems control, 2003, 36(20): 1031–1036.
[16]
BAGHERI P, Sun Qiao. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind tur-bines with unmodeled dynamics[J]. ISA transactions, 2016, 63: 233–241.
[17]
唐酿, 肖湘宁, 陈众. 基于Sugeno模糊推理的静止无功[18]
补偿器多模态切换方法[J]. 电网技术, 2011, 35(8):
140–143.
TANG Niang, XIAO Xiangning, CHEN Zhong. A meth-od of multi-mode switching for SVC based on sugeno
fuzzy inference[J]. Power system technology, 2011,
35(8): 140–143.
作者简介:
侯涛,男,1975年生,教授,博士,
主要研究方向为智能信息处理与智能
控制。
张强,男,1993年生,硕士研究
生,主要研究方向为风力发电与智能
控制。
第三届机械、控制与计算机工程国际学术会议(ICMCCE 2018)2018 3rd International Conference on Mechanical, Control and
Computer Engineering (ICMCCE 2018)
The previous First International Conference on Mechanical, Control and Computer Engineering (ICMCCE 2016) was successfully taken place on October 22-23, 2016 in Hangzhou, China. The second International Conference on Mechanical, Control and Computer Engineering (ICMCCE 2017) was successfully taken place on December 8-10, 2017 in Harbin, China. All accepted papers were published by Conference Publishing Services (CPS) and have been indexed by IEEE Xplore and submitted to Ei Compendex.
The 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE2018) will be held on September 14-16, 2018 in Huhhot Inner Mongolia, China. ICMCCE 2018 is to bring together innovative aca-demics and industrial experts in the field of mechanical, control and computer engineering to a common forum. The primary goal of the conference is to promote research and developmental activities in mechanical, control and computer engineering and another goal is to promote scientific information interchange between researchers, developers, engin-eers, students, and practitioners working all around the world. The conference will be held every year to make it an ideal platform for people to share views and experiences in mechanical, control and computer engineering and related areas.·632·智 能 系 统 学 报第 13 卷。