2017八年级数学不等式及其基本性质2.doc

合集下载

不等式的基本概念与性质

不等式的基本概念与性质

不等式的基本概念与性质在数学中,不等式是表示两个数或者两个代数式之间大小关系的数学表达式。

不等式通过使用不等于号(≠)、小于号(<)、小于等于号(≤)、大于号(>)和大于等于号(≥)等符号,来描述数值的相对大小关系。

不等式的概念和性质在数学中起到了重要的作用,对于解决实际问题和进行数学推理都具有重要意义。

一、不等式的基本概念1. 不等式的定义不等式是一个数学表达式,通过使用不等于号、小于号、小于等于号、大于号和大于等于号等符号来比较两个数或者两个代数式的大小关系。

2. 不等式的符号及其含义(1)≠:不相等。

表示两个数或两个代数式不相等。

(2)<:小于。

表示第一个数或者代数式小于第二个数或代数式。

(3)≤:小于等于。

表示第一个数或代数式小于等于第二个数或代数式。

(4)>:大于。

表示第一个数或代数式大于第二个数或代数式。

(5)≥:大于等于。

表示第一个数或代数式大于等于第二个数或代数式。

3. 不等式的解集不等式的解集是使得不等式成立的数的集合。

解集可以是无穷集合、有限集合或为空集。

二、不等式的性质1. 不等式的传递性如果a<b,b<c,那么a<c。

即如果两个数的大小关系成立,并且第二个数与第三个数的大小关系也成立,那么第一个数与第三个数之间的大小关系也成立。

2. 不等式的加减性如果a<b,那么a±c<b±c。

即不等式两边同时加上或减去同一个数,不等式的方向保持不变。

3. 不等式的乘除性(1)如果a<b,且c>0,那么ac<bc。

即不等式两边同时乘以一个正数,不等式的方向保持不变。

(2)如果a<b,且c<0,那么ac>bc。

即不等式两边同时乘以一个负数,不等式的方向发生改变。

4. 不等式的倒置性如果a<b,那么-b<-a。

即不等式两边取相反数,不等式的方向发生改变。

5. 不等式的平方性(1)如果a<b,且a、b≥0,那么a²<b²。

即两个非负数之间的不等关系,其平方的大小关系保持不变。

八年级 不等式知识点

八年级  不等式知识点

八年级不等式知识点在八年级数学中,不等式是一个非常重要的知识点。

学好不等式对于后续学习和生活中的应用都有着重要的意义。

本文将介绍八年级不等式的相关知识点及其应用。

一、不等式的定义不等式是描述两个数或多个数的大小关系的一种数学表达式,使用不等号 ">"、"<"、">="或"<="表示。

二、不等式的解及解法1.不等式的解:将一个不等式中的未知数确定一个范围,使得不等式成立的所有数的集合,称为不等式的解集。

2.不等式的解法:(1)直接图解法将不等式转化成一条直线,比较该直线和一条平行于x轴的直线的位置关系,来确定不等式解的范围。

(2)移项变形法通过移项或变形将不等式变为形如x≥a,x≤a,x>a或x<a的形式,再根据不等号的方向,确定解的范围。

(3)乘除变形法通过乘或除单边(或双边)保持不等式成立,使不等式变得更简单。

三、不等式的性质1.两边同加(或减)同一个数,不等式不变。

2.两边同乘(或除)同一个正数,不等式不变。

3.两边同乘(或除)同一个负数,不等式不变,但不等号方向要反转。

4.对于x > a, x < b,有x > (a + b) / 2。

四、一元一次不等式的应用不等式在现实世界中有着广泛应用。

以一元一次不等式举例,常见的应用有以下几种情况。

1.生活中的应用不等式可以帮助人们解决一系列实际问题,比如预算、购买商品折扣、求解面积和体积等。

2.经济学中的应用经济学中不等式有着广泛应用,如企业成本的控制、营销管理中的利润预测、经济增长方程的解等。

3.科学中的应用在科学研究中,不等式也有着广泛应用,如微生物生长数量的控制、化学反应动力学模型的建立、人口增长与资源限制的关系等。

五、结语通过本文的介绍,我们了解了八年级不等式的相关知识点及其应用。

学好不等式不仅可以帮助我们应对数学考试,更可以在日常生活和职业中应用数学知识,提高自身综合素质。

八年级《不等式及其基本性质》说课稿

八年级《不等式及其基本性质》说课稿

八年级《不等式及其基本性质》说课稿八年级《不等式及其基本性质》说课稿作为一名辛苦耕耘的教育工作者,就不得不需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。

那么写说课稿需要注意哪些问题呢?下面是小编收集整理的八年级《不等式及其基本性质》说课稿,希望能够帮助到大家。

《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。

今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。

同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:知识与技能:1. 感受生活中存在的不等关系,了解不等式的意义。

2. 掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:重点:不等式概念及其基本性质难点:不等式基本性质3教法与学法:1. 教学理念:“ 人人学有用的数学”2. 教学方法:观察法、引导发现法、讨论法.3. 教学手段:多媒体应用教学4. 学法指导:尝试,猜想,归纳,总结根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:一、复习导入新课上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。

1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.2.理解不等式性质与等式性质的联系与区别.3.提高观察、比较、归纳的.能力,渗透类比的思想方法.二、探求新知,讲授新课第一部分:学前练习1. -7 ≤ -5, 3+4>1+45+3≠12-5, x ≥ 8a+2>a+1, x+3 <6(1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?(2)这些符号两侧的代数式可随意交换位置吗?(3)什么叫不等式?目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。

八年级数学讲义不等式的基本性质及其解集

八年级数学讲义不等式的基本性质及其解集

不等式的基本性质及其解集一、不等式的性质1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变.c a b a +⇒> c a b a c b +⇒<+, c b +2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

若:0,>>c b a ,可得ac bc .3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.若ac c b a ⇒<>0, bc .二.不等式的解集1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集.2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体)3.不等式解集的表示方法. 1-≤x①用不等式表示。

如1-≤x 或x <-1等。

x <-1②用数轴表示.(注意实心圈与空心圈的区别)4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需要变号。

典型例题例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围.②不等式a x <2的解集为7<x ,求a 的值.例2.(1)如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围.(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.例3.(2007山东临沂)直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x的不等式k 1x +b >k 2x 的解为( )。

A 、x >-1 B 、x <-1 C 、x <-2 D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围.(2)若b a ,满足753=+b a ,求b a S 32-=的取值范围.例5.已知由小到大的十个正整数109321,,,,,a a a a a 的和是2003,那么5a 的最大值是多少?当5a 取得最大值时,写出10a 最小的这十个数.思考:1.已知a c c b a c b a 求,,0>>=++的取值范围.2.设c b a ,,均为正数,若ac b c b a b a c +<+<+,试确定c b a ,,三个数的大小.【经典练习】y k 2x1.如果关于x 的不等式b x a <-)1(的解集是1->a b x ,则有( ) A 、1>a B 、1<a C 、1≠a D 、a 为一切实数2.若m 为有理数,下列不等式关系不一定成立的是( )A 、m m +>+79B 、m m -<-43C 、m m 46>D 、0||4≥m3.下列四个结论:(1)4是不等式63>+x 的解;(2)4>x 是不等式63>+x 的解集;(3)3是不等式63≥+x 的解;(4)3≥x 是不等式63≥+x 的解集,其中正确的是( )A 、1个B 、2个C 、3个D 、4个4.满足不等式135->-x 的正整数值是方程[]a x x x =-----)15(4)21(5)2(4的解,则a 的值是( )A 、0B 、1C 、17D 、-175.不等式)52(4)83(714-<+-x x x 的负整数解是( )A 、-3,-2,-1,0B 、-4,-3,-2,-1C 、-2,-1D 、以上答案都不对6.已知032)2(2=--+-n b a a 中,b 为正数,则n 的取值范围是( )A 、2<nB 、3<nC 、4<nD 、5<n 7.如果b ax >,02<ac ,则xa b 8.(2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .9.若不等式a x <6的解集为3<x ,则a 的值为 .10.当a = 时,不等式x x 532≥-与x ax ≤+2同解.11.化简:若41<<x ,则化简22)1(4(-+-x )x 的结果是 . 12.当a 为何值时,方程)(23a x a x +-=+的解大于方程2)12(3)13(+=-x a x a 的解13.已知7321,,,a a a a 是彼此不相等的正整数,它们的和为159,求其中最小数a 的最大值.作业1.如果关于x 的方程7332+=-+x m x 的解为不大于2的非负数,那么( )(第8题图)A 、6=mB 、7,6,5=mC 、无解D 、75≤≤m2.如果关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,那么( ) A 、2>a B 、2<a C 、187<a D 、187>a 3.如果22,7235>+->-c a a ,那么( ) A 、c a c a +<- B 、a c a c +<- C 、ac ac -> D 、a a 23> 4.若b a b a ><>,0,0,那么b a b a --,,,的大小顺序是( )A 、b a a b >->>-B 、b a b a ->->>C 、a b a b ->->>D 、a b b a ->>->5.已知0)24(1832=-+++k y x x ,求当k 为何值时,y 的值是非负数?6.(1)关于x 的方程1223+=+m x 的解为正数,求m 的取值范围.(2)不等式a x <+32的正整数解恰为1,2,求m 的取值范围.思考:已知三个非负数z y x ,,满足132,523=-+=++z y x z y x ,若z y x m 73-+=,求m 的最大值及最小值。

不等式的基本性质(2)

不等式的基本性质(2)

课题:不等式的基天性质(2 课时 )教课目的:1.掌握作差比较大小的方法,并能证明一些不等式。

2.掌握不等式的性质,掌握它们的证明方法及其功能,能简单运用。

3.提升逻辑推理和分类议论的能力;培育条理思想的习惯和仔细谨慎的学习态度。

教课要点:作差比较大小的方法;不等式的性质。

教课难点:不等式的性质的运用教课过程:第1课时:问题情境:现有 A、B、 C、 D 四个长方体容器, A、 B 容器的底面积为 a2,高分别为 a、 b,C、D 容器的底面积为 b2,高分别为 a、b,此中 a≠ b。

甲先从四个容器中取两个容器盛水,乙用剩下的两个容器盛水。

问假如你是甲,能否必定能保证两个容器所盛水比乙的多剖析:依题意可知:A、B、C、 D 四个容器的容积分别为a3、 a2b、ab2、b3,甲有 6 种取法。

问题能够转变为比较容器两两和的大小。

研究比较大小的依照:我们知道,实数与数轴上的点是一一对应的。

在数轴上不一样的两点中,右侧的点表示的实数比左侧的点表示的实数大。

在右图中,点 A 表示实数 a,点 B 表示实数 b,点B A x A 在点 B 右侧,那么 a> b。

而 a-b 表示 a 减去 b 所得的差,因为 a> b,则差是一个正数,即a- b> 0。

命题:“若 a> b,则 a- b> 0”建立;抗命题“若a- b> 0,则 a> b”也正确。

近似地:若 a<b,则 a- b< 0;若 a= b,则 a- b=0。

抗命题也都正确。

结论: (1) “ a> b”?“ a- b> 0”(2)“a= b”?“ a- b= 0”(3)“a< b”?“ a- b< 0” ——以上三条即为比较大小的依照:“作差比较法” 。

正负数运算性质: (1) 正数加正数是正数; (2) 正数乘正数是正数; (3) 正数乘负数是负数; (4)负数乘负数是正数。

研究不等式的性质:性质 1:若 a> b, b> c,则 a>c (不等式的传达性)证明:∵ a> b∴ a-b>0∵b> c ∴ b- c> 0∴(a -b) + (b -c) = a- c> 0 ( 正负数运算性质 )则 a>c反省:证明要求步步有据。

八年级数学不等式的基本性质

八年级数学不等式的基本性质

第二节不等式的基本性质1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立.等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形.一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55ba -<B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( ) ①4a >3a ②4+a >3+a ③4-a >3-a A.①② B.①③ C.②③ D.①②③5.下列判断中,正确的个数为( ) ①若-a >b >0,则ab <0 ②若ab >0,则a >0,b >0 ③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -c A.2 B.3 C.4 D.5二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________ab .三、解答题11.指出下列各题中不等式变形的依据. (1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式. (1)x +7>9 (2)6x <5x -3(3)51x <52 (4)-32x >-113.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.< 三、11.略12.(1)x >2 (2)x <-3 (3)x <2 (4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b∴a -m ________b -m ( ) (2)∵a >2b ∴2a________b ( ) (3)∵3m >5n ∴-m ________-35n( ) (4)∵4a >5a∴a ________0( ) (5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( ) (2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( ) (5)3a 一定比2a 大.( )三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( ) A.m <p <0 B.m <p C.m <0,p <0 D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2y C.a -x <a -y D.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( ) A.|a |>|b | B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b | 四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9 (3)x +2≤-3 (4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)× (2)√ (3)× (4)× (5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2 (4)x≥5。

初二数学知识点-不等式讲解.doc

初二数学知识点-不等式讲解.doc

初二数学知识点-不等式讲解初中数学学习重在掌握知识点,只有掌握了知识点我们在解题的时候才能事半功倍,为了让大家掌握住初中学习的知识点,下面为大家带来初二数学知识点-不等式讲解,希望大家能够认真阅读。

考点一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法。

考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

八年级数学不等式的基本性质

八年级数学不等式的基本性质
感谢您的观看
乘法性质
定义
如果a>b>0,且c>d>0,那么ac>bc。
证明
假设a>b>0,且c>d>0,那么我们可以得到ac-bc=(a-b)c>0(因为a-b>0且c>0),即ac>bc。
除法性质
定义
如果a>b>0,且c>d>0,那么a/c>b/d。
证明
假设a>b>0,且c>d>0,那么我们可以得到a/c-b/d=(ad-bc)/(cd)>0(因为ad-bc>0且cd>0),即 a/c>b/d。
答案
$frac{9}{2} < frac{a^{2}}{b} < 3$
2. 题目
已知$- frac{1}{3} < a < frac{1}{2}$,则 $frac{1}{a}$的取值范围是____.
答案
$- 3 < frac{1}{a} < - frac{3}{4}$
THANKS FOR WATCHING
表示左右两边的数或量相 等。
02 不等式的性质
传递性
定义
如果a>b且b>c,那么a>c。
证明
假设a>b,b>c,那么我们可以得到a-b>0和b-c>0,从而推出a-c=(a-b)+(bc)>0,即a>c。
加法性质
定义
如果a>b,那么a+c>b+c。
证明
假设a>b,那么a-b>0,所以(a+c)-(b+c)=(a-b)>0,即a+c>b+c。

2.2不等式的基本性质(教案)

2.2不等式的基本性质(教案)
-难点2:乘法性质中负数的处理。当c<0时,乘法性质与加法性质不同,不等号的方向会改变。
-举例:若a>b且c<0,则ac<bc。需要通过具体的例子和练习,让学生掌握负数在乘法性质中的影响。
-难点3:将不等式性质应用于实际问题。学生需要能够从实际问题中抽象出不等关系,并正确应用基本性质。
-举例:在解决实际问题时,如购物预算问题,学生需要将预算限制转化为不等式,并利用性质进行求解。
2.2不等式的基本性质(教案)
一、教学内容
本节课选自八年级数学下册第二章“不等式与不等式组”中的2.2节“不等式的基本性质”。教学内容主要包括以下几点:
1.不等式的定义及其表示方法;
2.不等式的基本性质:
(1)传递性:如果a>b且b>c,那么a>c;
(2)对称性:如果a>b,那么b<a;
(3)加法性质:如果a>b,那么a+c>b+c(c为任意实数);
实践活动环节,分组讨论和实验操作进行得相当顺利。学生们能够将不等式的基本性质应用到解决实际问题中,这让我很欣慰。但在小组讨论中,我也注意到有的学生在表达自己的观点时不够自信,这可能是因为他们对知识点的掌握还不够熟练。我会在以后的课堂中多给予这些学生鼓励和支持。
学生小组讨论的环节让我看到了学生们的思维火花。他们在讨论不等式在实际生活中的应用时,提出了很多有趣的观点和问题。但在引导讨论的过程中,我发现自己对一些开放性问题的设计还不够精准,有时会导讨论更加高效。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示不等式的基本性质。

不等式及其基本性质

不等式及其基本性质

不等式及其基本性质教学容分析本节容主要有:不等式的概念、不等式的基本性质。

教材首先以实际问题为例,结合问题中的不等关系,引出不等式的概念;然后类比等式的基本性质,对不等式的基本性质进行了讨论,得出不等式的五条基本性质,并运用他们解简单的不等式。

解不等式就是求出对其中未知数的大小的限制,有了这样的目标,再加上对不等式性质的认识,解不等式的方法就能很自然地产生。

教学中可以类比方程、等式的性质来讨论不等式及其性质。

教学环境分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.根据如今我校实际教学环境及本节课的实际教学需要,我选择一体机多媒体教学系统辅助教学,另外借助一定的教学软件,如“几何画板”,“Powerpoint”等将有关教学容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握。

课时分配1课时教学目标知识与技能目标1.了解不等式的概念,探索并掌握不等式的基本性质。

2.经历由具体实例建立不等式模型的过程,渗透数形结合思想、类比思想。

3.运用不等式的基本性质对不等式进行变形.过程与方法目标1.以实际问题为例,结合问题中的不等关系,引出不等式的概念。

2.对不等式的性质进行讨论,得出不等式的五条基本性质。

3.类比方程、等式的性质来讨论不等式、不等式的性质。

情感、态度与价值观目标1.引导学生经历“把实际问题抽象为不等式”的过程,能够“列出不等式表示问题中的不等关系”,体会不等式是刻画描写现实世界中不等关系的一种有效的数学模型。

2.通过具体情景的创设,使学生在生活中发现数学问题,感受数学在生活中的重要应用,激发学生对数学学习的热情。

3.引导学生探究不等式的性质,培养学生独立思考的学习习惯。

4.通过合作交流,强化学生的合作互助意识。

八年级数学下册《不等式及其基本性质》教案、教学设计

八年级数学下册《不等式及其基本性质》教案、教学设计
3.主动思考,勇于提问,及时与同学和老师交流,共同提高。
4.小组合作任务中,充分发挥团队协作精神,互相帮助,共同进步。
五、作业布置
为了巩固本章节所学知识,培养学生的独立思考能力和解题技巧,特布置以下作业:
1.必做题:
a.请同学们完成课本第25页的练习题1、2、3,这些题目主要考查不等式的基本性质,有助于巩固课堂所学知识。
b.解决实际问题:根据教材第26页的例题,自行设计一道与生活相关的一元一次不等式问题,并求解。
c.结合数轴,分析并总结不等式性质在解一元一次不等式中的应用。
4.掌握一元一次不等式的解法,包括移项、合并同类项、除以正数等基本操作,并能够求解具体的一元一次不等式。
5.能够运用不等式的性质和一元一次不等式的解法解决实际生活中的问题,如比较大小、求解范围等。
(二)过程与方法
在本章节的教学过程中,学生将通过以下方法培养数学思维和解决问题的能力:
1.通过观察和操作数轴,引导学生发现不等式的性质,培养他们的观察力和归纳能力。
a.教师提出讨论问题,如:如何将实际问题转化为不等式?如何求解一元一次不等式?
b.学生分组讨论,共同解决问题,教师巡回指导;
c.各小组汇报讨论成果,分享解题方法;
d.教师点评,强调重点和难点。
4.教学目标:培养学生的合作意识和解决问题的能力。
(四)课堂练习
1.教学内容:设计不同难度的习题,巩固所学知识。
4.培养学生的合作精神,使他们学会倾听、尊重他人意见,形成团结互助的良好氛围。
5.通过解决实际生活中的问题,让学生体会数学在现实世界中的价值,增强他们的社会责任感和使命感。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了基本的代数运算和方程知识,对本章节的不等式及其基本性质有了初步的认识。在此基础上,他们对不等式的理解需要进一步深化,对不等式的应用和解决实际问题的能力有待提高。在教学过程中,需要注意的是:

八年级数学不等式的基本性质

八年级数学不等式的基本性质

ቤተ መጻሕፍቲ ባይዱ成立
成立
你今天这节 课有什么收 获呢?
我今天学到了 ……
P
9
习题1.2
完成下列填空:
2 3 , 2 5 ___3 5 ; 2 3,
1 1 2 ___3 ; 2 2
2 3 , 2 (1) ___ 3 (1) ; 2 3 , 2 (5) ___ 3 (5) ; 1 1 2 3 , 2 ( ) ___ 3 ( ) ; 2 2
;每日一淘 www.meiriyitao.co 每日一淘 ;
面の提示进行破解丶。"找到了丶"壹天之后,根汉终于是找到了,与这座魔化阵对应の段落丶"九鬼搬山阵!"这座魔化阵の全名叫九鬼搬山阵,最主要の阵眼,就是九只鬼厉之物の心脏丶另外再辅以,毒蛤蟆之血,曼陀罗之液,再加上蛟人之筯,弄出来の这么壹座邪阵丶那些阵纹当中,看到の手 筯脚筯の阵纹,就是壹种蛟人の手筯脚筯丶蛟人其实就是龙亭の壹个下属分支血脉,蛟人是可以化龙の,本身の数量在海域中也大量存在,而且因为蛟人の体质原因,他们の手筯脚筯の量,远比寻常人亭要多好几十倍丶所以这看上去用了数万米の蛟人之筯,但是应该量就在五十位蛟人の手脚 筯数量丶而九只鬼の心脏,鬼为何会有心脏呢,根汉仔细の看了看之后,发现这些心脏也有些古怪,这些心脏是千篇壹律の跳动着の丶这些鬼の心脏,应该是鬼尸の心脏丶所以这座九鬼搬山阵,其实是壹座鬼修能够布置出来の魔化之阵,主阵之人,应该是壹位鬼修丶在这奇幻之地の众亭当中, 竟然有壹位鬼修,是他们の大魔神,这件事情传出去,怕是也是会损害奇幻之地の名声丶而破解这九鬼搬山阵の办法,就是要找到毒蛤蟆之血,曼陀罗之液,然后加入进去,让这座法阵失去平衡丶"毒蛤蟆之血?咱这里倒是好像有壹些,不过这曼陀罗之液,咱是完全没有呀丶"

不等式及其基本性质

不等式及其基本性质

7.1不等式及其基本性质教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯.教学重点难点重点:寻找实际问题中的不等关系,建立数学模型;难点:弄清列不等式解决实际问题的思想方法,用去括号解一元一次不等式.教学过程我们已学过等式,不等式,现在我们来看两组式子,请同学们观察,哪些是等式?哪些是不等式?第一组:1+2=3; a+b=b+a; S = ab; 4+x = 7第二组:-7 < -5; 3+4 > 1+4; 2x ≤6,a+2 ≥0; 3≠4第一组都是等式,第二组都是不等式。

问:什么叫做等式?什么叫做不等式?答:表示相等关系的式子叫做等式;表示不等关系的式子叫做不等式。

在数学中,我们用等号“=”来表示相等关系,用不等号“>”、“<”或“≠”表示不等关系,其中“>”和“<”表示大小关系。

表示大小关系的不等式是我们本章所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的结果仍是等式。

如果在不等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1: (回答)用小于号“<”或大于号“>”填空。

(1)7 ___ 4; (2)- 2____6;(3)- 3_____ -2;(4)- 4_____-6练习2(口答)对练习1中四个不等式,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?大家再思考一下,在什么情况下不等号的方向就会发生改变呢?在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

八年级上册数学-不等式基本性质(二)

八年级上册数学-不等式基本性质(二)

x+2
3x
> y+2 >3y
x-2
-3x
y-2 >
-3y

x-y > 0
x+y
2y
>
例2.将下列不等式化成x>a或x<a的形式.
4 (1)2x>4;(2) - x > -1 5
解:(1)两边都除以2,得x>2;
(2)两边都除以
4 4 4 5 得 x ( ) 1 ( ) 即x < 5 5 5 4
不等式的基本性质(二)
不等式的基本性质(二)
一、教学目标
(1)使学生理解不等式的基本性质2、3. (2)能灵活运用不等式的基本性质将不等式进行变形。
二、教学重点难点
重点:不等式的基本性质2、3及其应用。 难点:不等式基本性质3的应用。
复习回顾
1.写出等式基本性质的数学表达式 2.写出不等式基本性质1的数学表达 式,这条性质怎样描述?
B. a>-a>b>-b
D. -a>b>-b>a
总结:
1.不等式的基本性质有3条,而等式的基本 性质只有两条. 2.注意不等式的基本性质3在应用的过程中 要改变不等号方向.
等式的性质
1、如果 a b , 那么 a c b c
不等式的性质
1、如果 a b 那么: a c b c 2、如果 a b , c0 a b 那么 ac bc ,

× ×
中考名题
3 1.若0<x<1,则x, x 2, ,的大小关系是 ( x
)
2
C
A.x < x < x

八年级数学不等式性质

八年级数学不等式性质
利用数轴
将不等式的解集在数轴上表示出来,更直观 地了解解集的范围。
观察图像
通过观察图像,确定不等式的解集。
验证解集
通过代入法验证解集的正确性。
实际应用
01
02
03
04
最大最小值问题
利用不等式求出某个量的最大 值或最小值。
比较大小
利用不等式比较两个量的大小 。
最优化问题
利用不等式解决最优化问题, 如最大利润、最小成本等。
线性规划问题
线性规划问题是不等式的一个重要应用领域。线性规划问题是指在一组线性约束条 件下,求一组变量的线性目标函数的最大或最小值。
解决线性规划问题时,我们需要找到满足约束条件的解,并确定这些解中的最大或 最小目标函数值。
常见的方法包括图解法和单纯形法等。
04
不等式的扩展知识
不等式的几何意义
数轴表示
常见的方法包括比较法、不等式性质法和导数法等 。
分段函数问题
分段函数是不等式的一个重要 应用领域。分段函数在不同区 间上具有不同的表达式,通过 不等式我们可以确定在不同区 间上函数的取值范围。
解决分段函数问题时,我们需 要根据函数的定义域和值域, 结合不等式的性质,确定函数 的取值范围。
常见的方法包括数形结合法、 分类讨论法和不等式性质法等 。
不等式在几何中的应用
利用不等式解决几何问题,如 求最短距离、最大面积等。
03
不等式的应用
最大值和最小值问题
最大值和最小值问题是不等式的一个重要应用领域 。通过不等式,我们可以确定某个量在给定条件下 的最大或最小可能值。
解决最大值和最小值问题时,我们需要找到满足不 等式条件的解,并确定这些解中的最大或最小值。

初二不等式知识点归纳总结

初二不等式知识点归纳总结

初二不等式知识点归纳总结在初中数学学习中,不等式是一个重要的内容,它是代数学的基础,也是进一步学习高等数学的基础。

因此,掌握不等式的相关知识点对于我们的数学学习是非常重要的。

下面,我将对初二不等式知识点进行归纳总结,希望可以帮助大家更好地理解和掌握不等式的概念和性质。

1. 不等式的基本概念不等式是数学中的一种比较关系,用符号“<”、“>”、“≤”、“≥”表示。

其中,“<”表示小于,“>”表示大于,“≤”表示小于等于,“≥”表示大于等于。

例如,a < b 表示 a 小于 b,a > b 表示 a 大于 b,a ≤ b 表示 a小于等于 b,a ≥ b 表示 a 大于等于 b。

2. 不等式的性质不等式具有一些基本的性质,这些性质可以帮助我们在解决不等式问题时进行推导和判断。

(1) 传递性:如果 a < b,且 b < c,那么 a < c。

(2) 加减性:如果 a < b,那么 a + c < b + c;如果 a < b,且 c > 0,那么 ac < bc。

(3) 倍加减性:如果 a < b,且 c > 0,那么 ac < bc;如果 a < b,且c < 0,那么 ac > bc。

(4) 倒置性:如果 a < b,那么 -a > -b。

3. 不等式的解集表示法不等式的解集表示了使不等式成立的所有实数的集合。

根据不等式的形式和条件,我们可以使用不同的表示方法来表示解集。

(1) 区间表示法:对于a ≤ x ≤ b 的不等式,解集表示为 [a, b]。

(2) 不等式表示法:对于a ≤ x < b 的不等式,解集表示为 [a, b)。

(3) 线段表示法:对于 a < x < b 的不等式,解集表示为 (a, b)。

(4) 不等式组表示法:对于a ≤ x ≤ b 或 a < x < b 的不等式组,解集表示为{x | a ≤ x ≤ b}。

数学北师大版八年级下册不等式的基本性质.2 不等式的 基本性质

数学北师大版八年级下册不等式的基本性质.2  不等式的  基本性质

2.2 不等式的基本性质僧楼中学毛建霞●教学目标教学知识点 1、探索并掌握不等式的基本性质;2、理解不等式与等式性质的联系与区别.能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法类推探究法(即与等式的基本性质类似地探究不等式的基本性质.)●教学过程一、创设问题情境,引入新课1、回忆等式的基本性质基本性质1:在等式两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式两边都乘以或除以同一个数(除数不为0),所得结果仍是等式.2、导入:不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?二、新课讲授1、不等式基本性质的推导举例:∵3<5∴3+2<5+2,3-2<5-2,3+a <5+a ,3-a <5-a 所以,基本性质1:在不等式两边都加上(或减去)同一个整式,不等号的方向不变。

举例:∵3<5 ∴3×2<5×2,3×21<5×21,3÷3<5÷3。

所以基本性质2、在不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

举例:①3<5,但3×(-2)>5×(-2)②3<5,但3×(-3)>5×(-3)③3<5,但3×(-31)>4×(-31),④3<5,但3÷(-2)>5÷(-2)基本性质3:在不等式两边同乘以(或除以)一个负数时,不等号的方向改变。

2、用不等式的基本性质解释 42l >162l 的正确性 3、例题讲解将下列不等式化成“x >a ”或“x <a ”的形式。

(1)x -5>-1; (2)-2x >3; (3)3x <-9.4、议一议 讨论下列式子的正确与错误.(1)如果a <b ,那么a+c <b+c; (2)如果a <b ,那么a -c <b -c;(3)如果a <b,那么ac <bc; (4)如果a <b,且c ≠0,那么c a <cb .5、等式和不等式的性质的区别和联系区别:等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.三、课堂练习1、课本随堂练习2、设a >b,用“<”或“>”号填空.(1)a+1 b+1; (2)a -3 b -3; (3)3a 3b;(4)4a 4b ; ;(5)-7a -7b ; (6)-7a -7b 四、课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.五、课后作业。

不等式的基本性质

不等式的基本性质

bds01_2. 1不等式的基本性质课题名称 2.1不等式的基本性质课时 1 课型新授一教学目标知识与技能:1. 了解不等式的基本性质.2. 会用不等式的基本性质作一些简单的判断.3. 巩固解一元一次不等式(组)的技能,并能正确地写出不等式(组)的解集过程与方法:1. 通过一些生活的实例和情境,使不等式性质更通俗易懂.2.对初中学过的一元一次不等式(组)进行回顾,作好新知识学习的铺垫和衔接.情感态度与价值观:1. 不等式的学习使学习认识自然的一种有效途径,从而更好地为科技创新服务.2.不等量在大千世界中无处不在,通过学习使学生从中发现规律、掌握规律,推动社会的进步与发展.二教学重点与难点教学重点:1. 不等式的基本性质,以及它的简单应用.教学难点:1. 一元一次不等式组的求解,并能用集合表示相应的解集.三教学方法参与式教学和启发式教学相结合. 四教学手段多媒体课件bds01、黑板等.五教学过程【新课导入】不等号的由来:现实世界中存在着大量的不等关系,如何用符号来表示呢? 为了寻求一套表示“大于”或“小于”的符号,数学家们曾绞尽脑汁.英国数学家哈里奥特(T. Harriot,1560—1621)首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号.与哈里奥特同时代的数学家们也创造了一些表示大小关系的符号,但都因书写起来十分繁琐而被淘汰.【英】哈里奥特(T. Harriot,1560—1621)当表达一个数(或量)大于或等于另一个数(或量)时,把“>”和“= ”有机地结合起来得到符号“≥”,读做“大于等于”,有时也称为“不小于”. 同样,把符号“≤”读做“小于等于”,有时也称为“不大于”.在现实世界里充满着大小关系:路程的长短、时间的多少、物体的轻重、温度的高低……,这些不等关系时刻围绕在我们的身旁,我们要去面对和处理这些不等关系,因此,处理不等关系与处理等量问题是同样重要的.如图:小陈在家电商场电视机专柜做营销,在他负责的专柜中有A、B、C三款电视机.不等关系举例:以下填写(大于;小于;等于)已知A款价格大于B款价格,1. 若B款价格大于C款价格,则A款价格大于C款价格;2. 若在促销活动中,A、B两款电视机同时降价200元,则降价后的A款价格大于降价后的B款价格;3. 若在促销活动中,A、B两款电视机同时打八折,则打折后的A款价格大于打折后的B款价格.【双基讲解】1. 不等式的三个基本性质(1)若A款价格大于B款价格,B款价格大于C款价格,则A款价格大于C款价格.不等式的传递性,亦即不等式性质1:若a>b,b>c,则a>c.2. 不等式的三个基本性质(2)若A、B两款电视机同时降价200元,则降价后的A款价格> 降价后的B款价格.不等式性质2:不等式的两边同时加上(或减去)同一个实数,不等号的方向不变.亦即:若a>b,则a+m>b+m.3. 不等式的三个基本性质(3)若A、B两款电视机同时打八折,则打折后的A款价格> 打折后的B款价格.不等式性质3:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;亦即:若a>b,m>0,则am>bm;不等式的两边同时乘以(或除以)同一个负数,不等号的方向要改变. 亦即:若a>b,m<0,则am<bm.练一练:用前面学习的不等式性质,看看下面不等式中的x应该是什么范围的数?(1) x-5>0 (2) 0. 5x<8让我们回顾一下:一元一次不等式、一元一次不等式组只含有一个未知数,并且未知数的次数是一次的不等式,叫做一元一次不等式.其解法的一般步骤是:去分母,去括号,移项,化成ax>b(或ax<b)的形式(其中a≠0),再根据性质3,得到不等式的解.由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组. 不等式组中所有不等式的解集的交集叫做这个不等式的解集. 其解法步骤是:先求出不等式组中每个不等式的解集,然后求出所有不等式解集的交集,就得到这个不等式组的解集.【示范例题】例1 解不等式1122xx->+,并将解集在数轴上表示出来.解去分母,得1122 x x⎛⎫->+⎪⎝⎭去括号,得x-1>2x+1 移项,得-x>2两边同乘以-1,得x< -2所以,原不等式的解集是 (),2-∞-. 例2 解不等式组536263x x x x-<-⎧⎨-≤-⎩,并将解集在数轴上表示出来.解 由原不等式组 536263x x x x -<-⎧⎨-≤-⎩得 2148x x >⎧⎨≤⎩即 122x x ⎧>⎪⎨⎪≤⎩所以,原不等式的解集是1,22⎛⎤ ⎥⎝⎦.【巩固练习】课堂练习2.11. 解下列不等式,并将解集在数轴上表示出来.(1) 2x-3>7 ; (2) 5332x x +>-. 2. 解下列不等式组,并将解集在数轴上表示出来.(1) 215312x x +>-⎧⎨->⎩; (2)3026x x x-<⎧⎨≤-⎩; (3) 932163x x ->⎧⎪-⎨>⎪⎩; (4) 1253351x x x x -<-⎧⎨->+⎩.六 课堂小结1. 不等式及其三个基本性质:性质1:若a >b , b >c ,则a >c ;性质2:若a >b ,则a +m >b +m ;性质3:若a >b ,m >0,则am >bm ;若a >b ,m <0,则am <bm .2. 一元一次不等式的解法.3. 一元一次不等式组的解法.七布置作业由老师根据学生的具体情况灵活布置八教学后记根据上课的具体情况,由老师书写教案编制人:王冬波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1不等式及其基本性质(2)
教学目标
1.掌握不等式的基本性质,并能利用不等式的基本性质对不等式进行变形;
2.通过观察、思考、探究、交流的学习过程,体验数学发现的乐趣。

一. 自学指导:
1. 认真看书25-26面的内容
2. 上节课学习了基本性质1和2,你能回忆出来吗?
3. 用“>” “<”或“=”填空:
24_25⨯⨯ 14_15⨯⨯ )1(4_)1(5-⨯-⨯ 04_05⨯⨯ )2(4_)2(5-⨯-⨯ 你发现了什么规律?(重点讨论)
二. 自学检测
1. 设a>b. 用“>” “<”填空:
(1)a+3______b+3 (2)a-b______0
(3) 3a -______2
b - (4)2007a______2007b 2. 如果a>b.那么下列结论不正确的是( )
A 、 a-2008 > b-2008
B 、 2008a > 2008b
C 、 2008a >2008
b D 、 -2008a > -2008b 3.比较大小正确的是( )
A .6+2>7+2
B 7-2<6-2
C 7)2(6)2(-⨯>-⨯
D 6×2<7×2
4.若x ≥y a<0 b>0.用不等号连接下列各式的两边。

(1)a x ______a
y (2)bx_____by (3)2x_____x+y (4)abx_____aby 5.教材P26练习第3题(在书上填)
三. 课堂检测
1.绝对值不大于2的整数有( )
A.3个
B.4个
C.5个
D.6个
2.若a>b.下列各不等式中正确的是( ) A.a-1<b-1 B.b a 8
181-<- C.8a<8b D.-a+1<-b-1 3.下列四个命题中,正确的有( )
①若a>b,则a+1>b+1 ②若a>b,则a-1>b-1 ③若a>b,则-2a<-2b ④若a>b,则2a<2b
4.根据不等式的基本性质,将下列不等式化成“x>a ”或“x<a ”的形式
(1)x-1<3 (2)53
<x (3)-4x>3 5、比较22-a 和32-a 的大小,并说明理由。

6、教材P27习题7.1第4-6题。

相关文档
最新文档