Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman Filter

合集下载

磁场流速对传感器用Cu电极电解过程及质量的影响

磁场流速对传感器用Cu电极电解过程及质量的影响

第31卷第2期 202丨年4月粉宋冶全工业P O W D E R M E T A L L U R G Y I N D U S T R YVol. 31,No.2,p52-56Apr. 2021DOI : 10.13228/j.boyuan.issn 1006-6543.20200137磁场流速对传感器用C u电极电解过程及质量的影响孙娟',孙栗2,金晗3(1.河南科技职业大学,河南周口466000; 2.国网浙江海宁市供电公司,浙江海宁314400;3.中原工学院能源与环境学院,河南郑州460000)摘要:在电解工艺制备铜的过程中加入磁场以达到协同强化效果,分析了磁场流速对传感器用C u电极电解过程及质量的影响。

结果表明:施加磁场后,形成了更复杂的铜电解反应。

当提高磁场流速后,铜阳极质量损失减小,最大阴极析出量出现于流速为0.25 m/s的情况下。

磁场流速对C u电极电解阶段的杂质离子产生着显著影响。

受到磁场作用后,杂质离子浓度减小,实际效果受到此磁场取向与流速的共同作用。

处于0.25 m/s磁场流速下,能够获得最大的阴极析出速率,从而减小电解液内的杂质离子浓度并降低铜损失。

处于垂直磁场中,在0〜0.75 m/s范围的电解液黏度基本恒定,并在0.25 m/s时达到最小值。

垂直磁场可以对电子传输发挥抑制作用,增强扩散效果。

随着流速的增大,阻碍了 Cir1扩散过程,在0.25 m/s速率下获得最大阴极析出量。

关键词:磁化电解;强磁场;铜电解;表面质量文献标志码:A 文章编号:1006-6543(2021)02-0052-05Effect of magnetic field velocity on electrolysis process and quality of Cuelectrode used in sensorSUN Juan1,SUN Li2,JIN Han3(1. Henan Vocational University of Science and Technology, Zhoukou 466000, China; 2. State Grid HainingPower Supply Company, Haining 314400, China; 3. School of Energy and Environment, Zhongyuan Universityof Technology, Zhengzhou 460000, China)A bstract:The effect of magnetic field velocity on the electrolytic process and the quality of Cu electrode used inthe sensor was analyzed.The results show that a more complex copper electrolysis reaction is formed by applying amagnetic field.After increasing the magnetic field velocity, the mass loss of copper anode decreased, and the maxi­mum cathode precipitation appeared at the flow rate of 0.25 m/s.The magnetic field velocity has a significant effecton the impurity ions in Cu electrode electrolysis stage.The concentration of impurity ions decreases after the mag­netic field is applied, and the actual effect is influenced by the magnetic field orientation and the flow velocity.Atthe magnetic field velocity of 0.25 m/s, the maximum cathode precipitation rate can be obtained, thus reducing theconcentration of impurity ions in the electrolyte and reducing the copper loss.In the vertical magnetic field, the elec­trolyte viscosity in the range of 0-0.75 m/s is basically constant, and reaches the minimum value at 0.25 m/s.Verti­cal magnetic field can inhibit electron transport and enhance diffusion.With the increase of flow rate, C u2'diffusionprocess was hindered, and the maximum cathode precipitation was obtained at the rate of 0.25 m/s.Key w ords:magnetization electrolysis; strong magnetic field; copper electrolysis; surface quality 现阶段,电解技术己经成为一种非常广泛的铜 制备工艺。

chapter 4 sliding mode control (1)

chapter 4 sliding mode control (1)

使得:(1)满足到达条件:切换面以外的相轨迹将于有限时间内到达切换面;
(2)切换面是滑动模态区,且滑动运动渐近稳定,动态品质良好。
• 说明1:上述系统的控制量按照一定逻辑切换,系统地
结构按照一定规律变化,对应的微分方程右端函数是 不连续的,因此传统的分析方法不适用。
• 说明2:我们关心上述微分方程的解的存在性及如何描
具有滑动模的变结构系统特性
1. 滑动模相轨迹限制在维数低于原系统的子空间内,描 述其运动的微分方程的阶数亦相应降低。在解决复杂 的高阶系统控制问题时,对离线分析和算法在线实现 都是非常有利的。 2. 在大多数实际应用情况下,滑动模的原点与控制量的 大小无关(只要控制量能保证实际滑动),仅由对象 特性及切换流形决定。根据这一特性,可以把系统设 计问题精确地分解为两个互不相关且比较简单的低维 问题,期望的滑动模的动态特性由所选择的切换流形 决定,而产生滑动模只需要有限的控制量。
4.1 Introduction
Modeling inaccuracies can have strong adverse effects on nonlinear control systems. One of the most important approaches to dealing with model uncertainty are robust control. The typical structure of a robust controller is
4.1 Introduction
上述系统满足广义变结构系统的定义,像这样的广义的
变结构系统还有很多,但我们要研究的是一类特殊的变
结构系统,其特殊之处在于,系统的控制中有切换,而 且在切换面上系统将会沿着固定的轨迹作滑动运动。

外周磁刺激 设备原理

外周磁刺激 设备原理

外周磁刺激设备原理外周磁刺激(Peripheral Magnetic Stimulation,PMS)是一种非侵入性的神经调节技术,通过磁场作用于人体外周神经系统,以改善和治疗一系列神经系统相关疾病。

其原理基于磁场的电磁感应作用,通过产生磁场来诱发神经元的兴奋或抑制,从而调节神经活动。

外周磁刺激设备由磁体、电磁线圈、电源和控制系统等组成。

磁体是产生磁场的核心部件,通常由永磁体或电磁体构成。

电磁线圈通过在电流作用下产生磁场,并将磁场传递到目标部位。

电源提供电流给电磁线圈,以激活磁场的产生。

控制系统用于调节和控制磁场的强度、频率和持续时间。

在外周磁刺激治疗中,磁场通过皮肤渗透到神经组织中,并在神经组织中诱发电流。

这些电流能够激活或抑制神经元的活动,从而影响神经系统的功能。

通过调节外周磁刺激设备的参数,可以精确地控制治疗的效果和深度。

外周磁刺激广泛应用于神经系统疾病的治疗,如帕金森病、抑郁症、焦虑症、失眠等。

在帕金森病的治疗中,外周磁刺激可以改善患者的肌肉僵硬、震颤和运动障碍等症状,提高生活质量。

在抑郁症和焦虑症的治疗中,外周磁刺激可以通过调节大脑神经元的活动,改善患者的情绪和心理状态。

而在失眠的治疗中,外周磁刺激可以调节大脑神经活动,帮助患者入睡并提高睡眠质量。

外周磁刺激的优势在于其非侵入性和无创性。

与传统的手术治疗相比,外周磁刺激不需要切开皮肤或插入电极等操作,减少了手术风险和恢复时间。

同时,外周磁刺激也没有药物治疗的副作用和耐药性问题,适用于长期治疗和康复护理。

然而,外周磁刺激也存在一些限制和挑战。

首先,由于外周磁刺激的作用范围较广,可能会影响到非目标神经组织,导致一些不良反应。

其次,外周磁刺激的治疗效果在个体之间存在差异,需要进行个体化的参数调整和治疗方案设计。

此外,外周磁刺激的长期效果和安全性还需要进一步的研究和验证。

总之,外周磁刺激作为一种新兴的神经调节技术,在神经系统疾病的治疗中展现出良好的应用前景。

super twisting sliding mode control讲解

super twisting sliding mode control讲解

super twisting sliding mode control讲解Super twisting sliding mode control is a robust control technique that has gained significant attention in thefield of control engineering. It is designed to address the problem of uncertainties and disturbances in a dynamic system, allowing for precise and stable control even in the presence of external factors that can affect system dynamics.超滑模控制是一种鲁棒控制技术,在控制工程领域得到了广泛关注。

它旨在解决动态系统中的不确定性和干扰问题,即使在存在可能影响系统动态的外部因素的情况下,也能实现精确稳定的控制。

The basic principle behind super twisting sliding mode control is to create a sliding surface that guarantees convergence towards the desired trajectory while ensuring fast error reduction. This sliding surface is created by combining two terms: a reaching term and a switching term. The reaching term adjusts the rate at which the error converges towards zero, while the switching term ensures rapid error reduction.超滑模控制的基本原理是创建一个滑动面,确保收敛到期望轨迹并实现快速误差减小。

Review of maglev train technologies

Review of maglev train technologies

Review of Maglev Train TechnologiesHyung-Woo Lee1,Ki-Chan Kim2,and Ju Lee2Korea Railroad Research Institute,Uiwang437-757,KoreaDepartment of Electrical Engineering,Hanyang University,Seoul133-791,KoreaThis paper reviews and summarizes Maglev train technologies from an electrical engineering point of view and assimilates the results of works over the past three decades carried out all over the world.Many researches and developments concerning the Maglev train have been accomplished;however,they are not always easy to understand.The purpose of this paper is to make the Maglev train technologies clear at a glance.Included are general understandings,technologies,and worldwide practical projects.Further research needs are also addressed.Index Terms—EDS,EMS,Maglev train,magnetic guidance,magnetic levitation,magnetic propulsion.I.I NTRODUCTIONA LONG with the increase of population and expansionin living zones,automobiles and air services cannot afford mass transit anymore.Accordingly,demands for in-novative means of public transportation have increased.In order to appropriately serve the public,such a new-generation transportation system must meet certain requirements such as rapidity,reliability,and safety.In addition,it should be convenient,environment-friendly,low maintenance,compact, light-weight,unattained,and suited to mass-transportation.The magnetic levitation(Maglev)train is one of the best candidates to satisfy those requirements.While a conventional train drives forward by using friction between wheels and rails,the Maglev train replaces wheels by electromagnets and levitates on the guideway,producing propulsion force electromechanically without any contact.The Maglev train can be reasonably dated from1934when Hermann Kemper of Germany patented it.Over the past few decades since then,development of the Maglev train went through the quickening period of the1960s,the maturity of the1970s–1980s,and the test period of the1990s,finally accomplishing practical public service in2003in Shanghai, China[1]–[4].Since the Maglev train looks to be a very promising solu-tion for the near future,many researchers have developed tech-nologies such as the modeling and analysis of linear electric machinery,superconductivity,permanent magnets,and so on [5]–[25].The Maglev train offers numerous advantages over the con-ventional wheel-on-rail system:1)elimination of wheel and track wear providing a consequent reduction in maintenance costs[26];2)distributed weight-load reduces the construction costs of the guideway;3)owing to its guideway,a Maglev train will never be derailed[96];4)the absence of wheels removes much noise and vibration;5)noncontact system prevents it from slipping and sliding in operation;6)achieves higher grades and curves in a smaller radius;7)accomplishes acceleration and de-celeration quickly;8)makes it possible to eliminate gear,cou-pling,axles,bearings,and so on;9)it is less susceptible toDigital Object Identifier10.1109/TMAG.2006.875842TABLE IC OMPARISON OF M AGLEV AND W HEEL-ON-R AIL SYSTEMS weather conditions.However,because there is no contact be-tween rails and wheels in the Maglev train,the traction mo-tors must provide not only propulsion but also braking forces by direct electromagnetic interaction with the rails.Secondly, the more weight,the more electric power is required to support the levitation force,and it is not suitable for freight.Thirdly, owing to the structure of the guideway,switching or branching off is currently difficult.Fourthly,it cannot be overlooked that the magneticfield generated from the strong electromagnets for levitation and propulsion has effects on the passenger compart-ment.Without proper magnetic shielding,the magneticfield in the passenger compartment will reach0.09T atfloor level and 0.04T at seat level.Suchfields are probably not harmful to human beings,but they may cause a certain amount of inconve-nience.Shielding for passenger protection can be accomplished in several ways such as by putting iron between them,using the Halbach magnet array that has a self-shielding characteristic, and so on.[27],[79].Table I shows the comparison of Maglev and wheel-on-rail systems.In all aspects,Maglev is superior to a conventional train.Table II represents the comparison of characteristics of the mass transportation systems provided by the Ministry of Trans-portation in Japan.It is appreciable from the tables that the ten-dency of global transportation is toward the Maglev train.Ac-cordingly,it is necessary to be concerned and understand all0018-9464/$20.00©2006IEEETABLE IIC OMPARISON OF C HARACTERISTICS OF THE M ASS T RANSPORTATION SYSTEMSparison of support,guidance,and propulsion.(a)Wheel-on-rail system.(b)Maglev system.technologies including magnetic levitation,guidance,propul-sion,power supply,and so on.II.T ECHNOLOGY A SPECTSState-of-the-art Maglev train technologies are investigated.Fig.1illustrates the difference between the conventional train and the Maglev train.While the conventional train uses a rotary motor for propulsion and depends on the rail for guidance and support,the Maglev train gets propulsion force from a linear motor and utilizes electromagnets for guidance and support.A.LevitationTypically,there are three types of levitation technologies:1)electromagnetic suspension;2)electrodynamic suspension;and 3)hybrid electromagnetic suspension.1)Electromagnetic Suspension (EMS):The levitation is ac-complished based on the magnetic attraction force between a guideway and electromagnets as shown in Fig.2.This method-ology is inherently unstable due to the characteristic of the mag-netic circuit [28].Therefore,precise air-gap control is indis-pensable in order to maintain the uniform air gap.Because EMS is usually used in small air gapslike 10mm,as the speed be-comes higher,maintaining control becomes dif ficult.However,EMS is easier than EDS technically (which will be mentioned in Section II)and it is able to levitate by itself in zero or low speeds (it is impossible with EDS type).In EMS,there are two types of levitation technologies:1)the levitation and guidance integrated type such as Korean UTM and Japanese HSST and 2)the levitation and guidance sepa-rated type such as German Transrapid.The latter is favorable for high-speed operation because levitation and guidancedoFig.2.Electromagnetic suspension.(a)Levitation and guidance integrated.(b)Levitation and guidanceseparated.Fig.3.Electrodynamic suspension.(a)Using permanent magnets.(b)Using superconducting magnets.not interfere with each other but the number of controllers in-creases.The former is favorable for low-cost and low-speed op-eration because the number of electromagnets and controllers is reduced and the guiding force is generated automatically by the difference of reluctance.The rating of electric power supply of the integrated type is smaller than that of the separated type,but as speed increases,the interference between levitation and guidance increases and it is dif ficult to control levitation and guidance simultaneously in the integrated type [29].In general,EMS technology employs the use of electromag-nets but nowadays,there are several reports concerning EMS technology using superconductivity,which is usually used for EDS technology [30]–[33].Development of the high-tempera-ture superconductor creates an economical and strong magnetic field as compared with the conventional electromagnets even though it has some problems such as with the cooling system.2)Electrodynamic Suspension (EDS):While EMS uses attraction force,EDS uses repulsive force for the levitation [34]–[46].When the magnets attached on board move for-ward on the inducing coils or conducting sheets located on the guideway,the induced currents flow through the coils or sheets and generate the magnetic field as shown in Fig.3.The repulsive force between this magnetic field and the magnets levitates the vehicle.EDS is so stable magnetically that it is unnecessary to control the air gap,which is around 100mm,and so is very reliable for the variation of the load.Therefore,EDS is highly suitable for high-speed operation and freight.However,this system needs suf ficient speed to acquire enough induced currents for levitation and so,a wheel like a rubber tire is used below a certain speed (around 100km/h).By the magnets,this EDS may be divided into two types such as the permanent magnet (PM)type and the supercon-ducting magnet (SCM)type.For the PM type,the structure is very simple because there is no need for electric power supply.The PM type is,however,used for small systems only because ofLEE et al.:REVIEW OF MAGLEV TRAIN TECHNOLOGIES1919Fig.4.Hybrid electromagneticsuspension.Fig.5.Concept of the linear motor from the rotary motor.the absence of high-powered PMs.Nowadays,a novel PM such as the Halbach Array,is introduced and considered for use in the Maglev train (Inductrack,USA).For the SCM type,the struc-ture is complex,in addition,quenching and evaporation of liquid helium,which are caused from the generated heat of the in-duced currents,may cause problems during operation [49]–[60].Hence,helium refrigerator is indispensable for making the SCM operate.Nevertheless,the SCM type holds the world record of 581km/h in 2003in Japan.3)Hybrid Electromagnetic Suspension (HEMS):In order to reduce the electric power consumption in EMS,permanent mag-nets are partly used with electromagnets as illustrated in Fig.4[61]–[67].In a certain steady-state air gap,the magnetic field from the PM is able to support the vehicle by itself and the elec-tric power for the electromagnets that control the air gap can be almost zero.However,HEMS requires a much bigger vari-ation of the current ’s amplitude as compared with EMS from the electromagnets ’point of view because the PM has the same permeability as the air [68].B.PropulsionThe Maglev train receives its propulsion force from a linear motor,which is different from a conventional rotary motor;it does not use the mechanical coupling for the rectilinear move-ment.Therefore,its structure is simple and robust as compared with the rotary motor [69]–[71].Fig.5shows the concept of the linear motor derived from the rotary motor.It is a conven-tional rotary motor whose stator,rotor and windings have been cut open,flattened,and placed on the guideway.Even though the operating principle is exactly the same as the rotary motor,the linear motor has a finite length of a primary or secondary part and it causes “end effect.”Moreover,the large air gap lowers the ef ficiency.However,the linear motor is superior to the rotary motor in the case of rectilinear motion,because of the less signi ficant amount of vibration and noise that are generated directlyfromFig.6.Linear induction motor (LPtype).Fig.7.Linear synchronous motor (LP type).the mechanical contact of components such as the screw,chain,and gearbox.1)Linear Induction Motor (LIM):The operating principle of the LIM is identical to the induction motor.Space-time variant magnetic fields are generated by the primary part across the air gap and induce the electromotive force (EMF)in the secondary part,a conducting sheet.This EMF generates the eddy currents,which interact with the air-gap flux and so produce the thrust force known as Lorenz ’s force.There are two types as follows.1)Short primary type (SP):stator coils are on board and con-ducting sheets are on the guideway.2)Long primary type (LP):stator coils are on the guideway and conducting sheets are on board as shown in Fig.6.For the LP type,construction cost is much higher than SP type but it does not need any current collector for operation.In high speeds,the LP type is usually used because transfer of energy using a current collector is dif ficult.In the case of the SP type,it is very easy to lay aluminum sheets on the guideway and thereby reduce construction costs.However,the SP type has low energy ef ficiency because of the drag force and leakage inductance caused from the end effect.Secondly,the SP type cannot exceed around 300km/h on ac-count of the current collector.Therefore,the SP type LIM is generally applied for the low –medium speed Maglev trains such as the Japanese HSST or Korean UTM.2)Linear Synchronous Motor (LSM):Unlike the LIM,the LSM has a magnetic source within itself as shown in Fig.7.In-teraction between the magnetic field and armature currents pro-duces the thrust force.The speed is controlled by the controller ’s frequency.According to the field location,there are two types equivalent to the LIM (LP and SP type).Furthermore,there are another two types according to the magnetic field.One of them utilizes the electromagnets with iron-core (German Transrapid)and the other uses the super-conducting magnets with air-core (Japanese MLX).High-speed Maglev trains prefer the LSM because it has a higher ef ficiency and power factor than the LIM.The economical ef ficiency of the electric power consumption is very important for high-speed operation.1920IEEE TRANSACTIONS ON MAGNETICS,VOL.42,NO.7,JULY2006Fig.8.Propulsion-guidance coils used in JapaneseMLU-002.Fig.9.Levitation-guidance coils used in Japanese MLX.Neither the LSM nor the LIM requires sensor techniques for their operation,and they are much alike in reliability and con-trollability but,as mentioned above,either one can be chosen based on speed,construction costs,and so on.C.GuidanceThe Maglev train is a noncontact system that requires a guiding force for the prevention of lateral displacement.As in the case of levitation,the guidance is accomplished electrome-chanically by magnetic repulsive force or magnetic attraction force [72]–[75].1)Using Magnetic Repulsive Force:As shown in Fig.8,by setting the propulsion coils on the left and right sides of the guideway and connecting the coils,the induced electromotive force (EMF)cancels out each other when the train runs in the center of the guideway.However,once a train runs nearer to one sidewall,currents flow through the coils by the EMF induced by the distance difference.This produces the guiding force.In the MLX,by connecting the corresponding levitation coils of both sidewalls as shown in Fig.9,these coils work as a guide system.When a train displaces laterally,circulating currents be-tween these two coils are induced and this produces the guiding force.In the case of the Transrapid,lateral guidance electromag-nets are attached in the side of the vehicle and reaction rails are on both sides of the guideway.Interaction between them keeps the vehicle centered laterally as shown in Fig.12.2)Using Magnetic Attraction Force:As indicated in Fig.14,magnetic attraction force is generated in the way to reduce the reluctance and increase the inductance when the vehicle dis-places laterally.Because energy tends to flow toward small re-luctance,this guides the vehicle centered laterally.Since guid-ance is integrated with levitation,the interference between them makes it dif ficult to run at high speeds.Therefore,guidance using attraction force is used for low –medium speed operation such as the HSST orUTM.Fig.10.LSM design of Transrapid.(Linear generator is inserted in the levita-tion electromagnets).D.Transfer of Energy to VehicleEven though all Maglev trains have batteries on their vehi-cles,electric power supply from the ground side is necessary for levitation,propulsion,on-board electrical equipment,bat-tery recharging,etc.The transfer of energy all along the track involves the use of a linear generator or a mechanical contact based on the operation speed.1)Low–Medium Speed Operation:At low speeds up to 100km/h,the Maglev train,generally,uses a mechanical contact such as a pantograph.As has been pointed out,this is the reason why the SP type-LIM Maglev train is used for low –medium speed.2)High-Speed Operation:At high speeds,the Maglev train can no longer obtain power from the ground side by using a me-chanical contact.Therefore,high-speed Maglev trains use their own way to deliver the power to the vehicle from the ground [76],[77].The German Transrapid train employs the use of a linear generator that is integrated into the levitation electro-magnets as demonstrated in Fig.10.The linear generator de-rives power from the traveling electromagnetic field when the vehicle is in motion.The frequency of the generator windings is six times greater than the motor synchronous frequency.The linear generator is mechanically contact-free,as aspect that is very positive for high-speed operation.However,fluctuation of the induced voltage due to the unevenness of the airgap,and small magnitude of the induced voltage because of the minia-turized inducing coils can be a problem.For MLX,beside a gas turbine generator,two linear gener-ators are considered.The first one utilizes exclusive supercon-ducting coils (500kA)and generator coils at the upper and lower sides as shown in Fig.11(a).The second one utilizes generator coils between superconducting coils and levitation-propulsion coils as shown in Fig.11(b).Because the first one concentrates in the nose and tail of the vehicle,it is called the concentra-tion-type.The second one is known as the distribution-type be-cause it is distributed along the vehicle[101].With speed,these coils generate a variable flux in the upper part of the levitation and guidance fixed coils.Consequently,the lower part (generator coils)sees a variable flux,which crosses the air gap.The variable flux is coupled with on board generatorLEE et al.:REVIEW OF MAGLEV TRAIN TECHNOLOGIES1921Fig.11.Two types of the linear generators used in MLX.(a)Concentration-type.(b)Distribution-type.coils.In other words,a dcflux created by the on-board super-conducting coils is transformed in an acflux,on-board,via a linear transformer[101].III.W ORLDWIDE M AGLEV T RAIN P ROJECTSSince the Maglev train has been studied and developed from the1960s,both German and Japanese Maglev trains have reached industrial levels and test tracks are experienced.In the 1990s,the USA Inductrack,the Swiss Swissmetro,and Korea’s UTM have been intensively studied and some component pro-totypes have been built.The Transrapid in Shanghai,China and the HSST(High Speed Surface Transport)in Nagoya,Japan, have been in public service since December2003and March 2005,respectively.Some projects(Pittsburgh or Baltimore in USA,Seoul in Korea,London in England,and so on)are awaiting approval,and the Munich project in Germany was approved in September2003with public service possible from 2009[78]–[114].Tables III and IV represent the types and characteristics of the Maglev trains“in operation”and“in ready to use”states,respec-tively.The EDS levitation-type Maglev trains such as the MLU, MLX,and Inductrack,especially,need lateral and vertical wheel bogies to guide the vehicle at low speeds(below100km/h). There is one further thing that we cannot ignore.The MLX has higher maximum speed than the Transrapid.For the Transrapid, the maximum synchronous frequency is300Hz,which corre-sponds to limit of the power inverter.Such a limited frequency corresponds to a synchronous speed of around500–550km/h.TABLE IIIC LASSIFICATION OF THE M AGLEV T RAIN IN OPERATIONTABLE IVC LASSIFICATION OF THE M AGLEV T RAIN(R EADY TO U SE)Fig.12.Transrapid[107].However,for the MLX,superconducting technology permits a higher pole pitch(1350mm)than the Transrapid(258mm)and1922IEEE TRANSACTIONS ON MAGNETICS,VOL.42,NO.7,JULY2006Fig.13.Guideway of MLX[104].Fig.14.HSST.a corresponding lower synchronous frequency,72Hz can make 700km/h,which is the speed goal of the Japanese train [101].It is also notable that the low –medium speed Maglev train em-ploys SP-LIM as its propulsion type.Figs.12–14illustrate the Transrapid,infrastructure of the MLX,and the HSST system,respectively.Fig.15represents the diagram of the development of the global Maglev trains in chronological order.IV .C ONCLUSIONThe Maglev train is considered for both urban transportation and intercity transportation systems.In the low –medium speed Maglev train,the operating routine is shorter than the high-speed train.Therefore,EMS technology and LIM is preferred from the construction cost viewpoint.However,in high-speed operation,EDS technology and LSM is preferred for controlla-bility and reliability.In addition,as along with the development of the high temperature superconductor and new type of perma-nent magnets,stronger magnetic energy that is more cost effec-tive will be used for the Maglev train.Authors are sure that this technology can be utilized for not only train application but also aircraft launching systems and spacecraft launchingsystems.Fig.15.Development diagram of the global Maglev train.The need for a new and better transportation system has en-couraged many countries to be interested in and attempt to de-velop the Maglev train.However,even though the Maglev train has been studied and developed for approximately half a cen-tury,only a few countries have the knowledge and expertise to do so.This review paper tried to describe the present complete system in detail and summarize foundational core technologies of the Maglev train from an electrical engineering point of view.It is certain that this review paper will be helpful for persons who are interested in this matter to assimilate the Maglev train tech-nologies including magnetic levitation,propulsion,guidance,and power supply system.It only remains to be said that besides core technologies,there is still the need to obtain a better understanding of how various factors may in fluence the system.For example,the dynamic be-havior of the vehicle with the in fluence of the guideway may cause the mechanical dynamic resonance phenomena;air vibra-tion rattles the windows of buildings near tunnel portals when a Maglev train enters or leaves a tunnel at high speed;the pas-senger safety issue is not considered fully;vehicle vibration generated from the rough guideway construction also remains.And furthermore,cost-effectiveness is still undecided.A CKNOWLEDGMENTThe authors would like to thank Dr.Y.Lee and Dr.S.Lee,Korea Railroad Research Institute (KRRI),for their support.R EFERENCES[1]S.Yamamura,“Magnetic levitation technology of tracked vehiclespresent status and prospects,”IEEE Trans.Magn.,vol.MAG-12,no.6,pp.874–878,Nov.1976.[2]P.Sinha,“Design of a magnetically levitated vehicle,”IEEE Trans.Magn.,vol.MAG-20,no.5,pp.1672–1674,Sep.1984.[3]D.Rogg,“General survey of the possible applications and developmenttendencies of magnetic levitation technology,”IEEE Trans.Magn.,vol.MAG-20,no.5,pp.1696–1701,Sep.1984.[4]A.R.Eastham and W.F.Hayes,“Maglev systems development status,”IEEE Aerosp.Electron.Syst.Mag.,vol.3,no.1,pp.21–30,Jan.1988.[5]E.Abel,J.Mahtani,and R.Rhodes,“Linear machine power require-ments and system comparisons,”IEEE Trans.Magn.,vol.14,no.5,pp.918–920,Sep.1978.LEE et al.:REVIEW OF MAGLEV TRAIN TECHNOLOGIES1923[6]J.Fujie,“An advanced arrangement of the combined propulsion,levi-tation and guidance system of superconducting Maglev,”IEEE Trans.Magn.,vol.35,no.5,pp.4049–4051,Sep.1999.[7]P.Burke,R.Turton,and G Slemon,“The calculation of eddy losses inguideway conductors and structural members of high-speed vehicles,”IEEE Trans.Magn.,vol.MAG-10,no.3,pp.462–465,Sep.1974. [8]B.-T.Ooi,“Electromechanical dynamics in superconducting levitationsystems,”IEEE Trans.Magn.,vol.MAG-11,no.5,pp.1495–1497, Sep.1975.[9]G.Bohn,“Calculation of frequency responses of electro-magneticlevitation magnets,”IEEE Trans.Magn.,vol.MAG-13,no.5,pp.1412–1414,Sep.1977.[10]S.Aoki,“3-dimensional magneticfield calculation of the levitationmagnet for HSST by thefinite element method,”IEEE Trans.Magn., vol.MAG-16,no.5,pp.725–727,Sep.1980.[11]R.Knowles,“Dynamic circuit and Fourier series methods for momentcalculation in electrodynamic repulsive magnetic levitation systems,”IEEE Trans.Magn.,vol.MAG-18,no.4,pp.953–960,Jul.1982. [12]J.Williams,R.Paul,and J Simkin,“Three-dimensionalfinite-elementmodelling of a superconducting suspension system,”IEEE Trans.Magn.,vol.MAG-19,no.6,pp.2615–2618,Nov.1983.[13]K.Hayafune and E.Masada,“Dynamics of the PM type linear syn-chronous motor for magnetically levitated carrier vehicle,”IEEE Trans.Magn.,vol.MAG-23,no.5,pp.2578–2580,Sep.1987.[14]T.Takahashi and K.Kurita,“Computation of eddy currents induced ina conducting sheet under moving magnets,”IEEE Trans.Magn.,vol.24,no.1,pp.197–200,Jan.1988.[15]M.Tsuchimoto,K.Miya,A.Yamashita,and M.Hashimoto,“An anal-ysis of eddy current and Lorentz force of thin plates under moving mag-nets,”IEEE Trans.Magn.,vol.28,no.2,pp.1434–1437,Mar.1992.[16]T.Saitoh,N.Maki,T.Kobayashi,M.Shibata,and T.Takizawa,“Elec-tromagnetic force and eddy current loss in dynamic behavior of a su-perconducting magnetically levitated vehicle,”IEEE Trans.Appl.Su-percond.,vol.3,no.1,pp.417–420,Mar.1993.[17]J.L.He,D.M.Rote,and H.T.Coffey,“Applications of the dynamiccircuit theory to Maglev suspension systems,”IEEE Trans.Magn.,vol.29,no.6,pp.4153–4164,Nov.1993.[18]H.Fukumoto,Y.Kameoka,K.Yoshioka,T.Takizawa,and T.Kobayashi,“Application of3D eddy current analysis on magnetically levitated vehicles,”IEEE Trans.Magn.,vol.29,no.2,pp.1878–1881, Mar.1993.[19]M.Andriollo,G.Martinelli,A.Morini,and A.Tortella,“FEM calcu-lation of the LSM propulsion force in EMS-MAGLEV trains,”IEEE Trans.Magn.,vol.32,no.5,pp.5064–5066,Sep.1996.[20]D.Albertz,S.Dappen,and G.Henneberger,“Calculation of the in-duced currents and forces for a hybrid magnetic levitation system,”IEEE Trans.Magn.,vol.33,no.2,pp.1263–1266,Mar.1997. [21]K.Yoshida,J.Lee,and Y.J.Kim,“3-D FEMfield analysis in con-trolled-PM LSM for Maglev vehicle,”IEEE Trans.Magn.,vol.33,no.2,pp.2207–2210,Mar.1997.[22]K.Davey,“Analysis of an electrodynamic Maglev system,”IEEETrans.Magn.,vol.35,no.5,pp.4259–4267,Sep.1999.[23]I.Takahashi and Y.Ide,“Decoupling control of thrust and attractiveforce of a LIM using a space vector control inverter,”IEEE Trans.Ind.Appl.,vol.29,no.1,pp.161–167,Jan.–Feb.1993.[24]D.Cho,Y.Kato,and D.Spilman,“Sliding mode and classical con-trollers in magnetic levitation systems,”IEEE Control Syst.Mag.,vol.13,no.1,pp.42–48,Feb.1993.[25]P.K.Sinha,F.B.Zhou,and R.S.Kutiyal,“Fault detection in elec-tromagnetic suspension systems with state estimation methods,”IEEE Trans.Magn.,vol.29,no.6,pp.2950–2952,Nov.1993.[26]J.F.Eastham,M.J.Balchin,P.C.Coles,and D.Rodger,“Comparisonof short primary linear machines for high speed maglev vehicles,”IEEE Trans.Magn.,vol.23,no.5,pp.2338–2343,Sep.1987.[27]J.F.Hoburg,“Modeling maglev passenger compartment static mag-neticfields from linear Halbach permanent-magnet arrays,”IEEE Trans.Magn.,vol.40,no.1,pp.59–64,Jan.2004.[28]E.Riches,“Will Maglev lift off?,”IEE Review,pp.427–430,Dec.1988.[29]S.Kusagawa,J.Baba,K.Shutoh,and E.Masada,“Multipurpose de-sign optimization of EMS-type magnetically levitated vehicle based on genetic algorithm,”IEEE Trans.Appl.Supercond.,vol.14,no.2,pp.1922–1925,Jun.2004.[30]J.R.Hull,“Attractive levitation for high-speed ground transport withlarge guideway clearance and alternating-gradient stabilization,”IEEE Trans.Magn.,vol.25,no.5,pp.3272–3274,Sep.1989.[31]W.Jiasu,W.Suyu,R.Zhongyou,D.Xiaogang,L.Guobin,L.Jisan,Z.Cuifang,H.Haiyu,D.Changyan,and Z.Dequi,“A scheme of Ma-glev vehicle using high Tc bulk superconducters,”IEEE Trans.Appl.Supercond.,vol.9,no.2,pp.904–907,Jun.1999.[32]M.Tsuchiya and H.Ohsaki,“Characteristics of electromagnetic forceof EMS-type maglev vehicle using bulk superconductors,”IEEE Trans.Magn.,vol.36,no.5,pp.3683–3685,Sep.2000.[33]G.Zhang,Y.Fang,F.Song,G.Zhu,and Z.Wang,“Optimal designand FEM analysis of the superconducting magnets of EMS-MAGLEV models using Bi-2223tapes,”IEEE Trans.Appl.Supercond.,vol.14, no.2,pp.1850–1853,Jun.2004.[34]J.Hogan and H.Fink,“Comparison and optimization of lift and dragforces on vehicles levitated by eddy current repulsion for various null and normalflux magnets with one or two tracks,”IEEE Trans.Magn., vol.11,no.2,pp.604–607,Mar.1975.[35]T.Iwahana,“Study of superconducting magnetic suspension and guid-ance characteristics on loop tracks,”IEEE Trans.Magn.,vol.11,no.6, pp.1704–1711,Nov.1975.[36]O.Tsukamoto,Y.Iwata,and S.Yamamura,“Analysis of ride qualityof repulsive type magnetically levitated vehicles,”IEEE Trans.Magn., vol.17,no.2,pp.1221–1233,Mar.1981.[37]R.J.Hill,“Teaching electrodynamic levitation theory,”IEEE Trans.Educ.,vol.33,no.4,pp.346–354,Nov.1990.[38]T.Sakamoto,A.R.Eastham,and G.E.Dawson,“Induced currents andforces for the split-guideway electrodynamic levitation system,”IEEE Trans.Magn.,vol.27,no.6,pp.5004–5006,Nov.1991.[39]J.L.He,Z.Wang,D.M.Rote,and S.Winkelman,“Investigation ofthe stability of AC repulsive-force levitation systems for low-speed ma-glev,”IEEE Trans.Magn.,vol.28,no.5,pp.3315–3317,Sep.1992.[40]E.E.Burkhardt,J.Schwartz,and S.Nakamae,“Analysis of super-conducting magnet(SCM)-ground coil interactions for EDS Maglev coil configurations,”IEEE Trans.Appl.Supercond.,vol.3,no.1,pp.430–433,Mar.1993.[41]E.Leung,M.Dew,G.Samavedam,and B.Gamble,“A study of twodistinct coil designs for a Maglev EDS application,”IEEE Trans.Magn.,vol.30,no.4,pp.2379–2382,Jul.1994.[42]I.-Y.A.Wang and I.Busch-Vishniac,“A new repulsive magnetic lev-itation approach using permanent magnets and air-core electromag-nets,”IEEE Trans.Magn.,vol.30,no.4,pp.1422–1432,Jul.1994.[43]M.Andriollo,G.Martinelli,A.Morini,and A.Scuttari,“Optimizationof the winding configuration in EDS-MAGLEV trains,”IEEE Trans.Magn.,vol.32,no.4,pp.2393–2398,Jul.1996.[44]D.-H.Kim,J.-K.Lee,S.-Y.Hahn,and G.Cha,“New levitation schemewith AC superconducting magnet for EDS MAGLEV system,”IEEE Trans.Magn.,vol.32,no.5,pp.5151–5153,Sep.1996.[45]K.R.Davey,“Electrodynamic Maglev coil design and analysis,”IEEETrans.Magn.,vol.33,no.5,pp.4227–4229,Sep.1997.[46]D.M.Rote and Y.Cai,“Review of dynamic stability of repulsive-forcemaglev suspension systems,”IEEE Trans.Magn.,vol.38,no.2,pp.1383–1390,Mar.2002.[47]J.de Boeij,M.Steinbuch,and H.M.Gutiérrez,“Mathematical modelof the5-DOF sled dynamics of an electrodynamic Maglev system witha passive sled,”IEEE Trans.Magn.,vol.41,no.1,pp.460–465,Jan.2005.[48]——,“Modeling the electromechanical interactions in a null-flux elec-trodynamic Maglev system,”IEEE Trans.Magn.,vol.41,no.1,pp.466–470,Jan.2005.[49]H.Tsuchishima and T.Herai,“Superconducting magnet and on-boardrefrigeration system on Japanese MAGLEV vehicle,”IEEE Trans.Magn.,vol.27,no.2,pp.2272–2275,Mar.1991.[50]M.E.Vermilyea and C.Minas,“A cryogen-free superconductingmagnet design for Maglev vehicle applications,”IEEE Trans.Appl.Supercond.,vol.3,no.1,pp.444–447,Mar.1993.[51]E.A.Scholle and J.Schwartz,“Power dissipation due to vibration-in-duced disturbances in maglev superconducting magnets,”IEEE Trans.Appl.Supercond.,vol.4,no.4,pp.205–210,Dec.1994.[52]M.Andriollo,G.Martinelli,A.Morini,and A.Scuttari,“Minimiza-tion of the induced current effects in the shields of SC coils in EDS-MAGLEV trains,”IEEE Trans.Appl.Supercond.,vol.5,no.2,pp.604–609,Jun.1995.[53]S.Yokoyama,K.Shimohata,T.Inaguchi,T.Takeuchi,T.Kim,S.Nakamura,S.Miyashita,and F.Uchikawa,“A conceptual design of a superconducting magnet for MAGLEV using a Bi-based high-Tc tape,”IEEE Trans.Appl.Supercond.,vol.5,no.2,pp.610–613,Jun.1995.[54]A.Ametani,R.Kato,H.Nishinaga,and M.Okai,“A study of transientinduced voltages on a Maglev train coil system,”IEEE Trans.Power Del.,vol.10,no.3,pp.1657–1662,Jul.1995.。

Sliding-Mode Control

Sliding-Mode Control
2 CASE 1: k 12 a 4
1, 2 0.5 j 3.4278
3 2 1
Unstable equilibrium point at the origin.
x2(t)
Discontinuous argument
Closed‐loop eigenvalues
1
a a 4k 2
x2(t)
3
New switching function
2
1
x1(t)
-0.5 0.5 1
Case 2: Saddle Point VSS System: Asymptotically Stable
9
-1
x2+3x1=0 x2+c1x1=0
(0<c1<3)
-2
-3
SLIDING MODE CONTROL (SMC)
-3 -4
CASE 2: k 12 பைடு நூலகம் a 2 4
1 3, 2 4
x 2( t)
4
Saddle point at the origin.
The green dashed line equation can defined as
x 2( t)
4
3
s (x) x 2 (t ) 1 x1 (t ) x 2 (t ) 3 x1 (t )
Importance of Switching Functions
e2
III. IV. c1<c2<c3
e2e(0) e1(0),
1 e2 e 2 ce2 ksign( s ) e
e1
0
2 1

A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM

A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 9, SEPTEMBER 2011
4069
A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM
detected by a resolver or by an absolute encoder. However, these sensors are expensive and very sensitive to environmental constraints such as vibration and temperature [2]. To overcome these problems, instead of using position sensors, a sensorless control method has been developed for control of the motor using the estimated values of the position and velocity of the rotor [3]–[12]. In a conventional sliding-mode observer (SMO), a low-pass filter and an additional position compensation of the rotor are used to reduce the chattering problem commonly found in SMOs using a signum function. Currently, a sigmoid function is used for the SMO as a switching function. The observer has fast responses and has a robustness inherent in the design parameters [13], [14]. In this observer, the chattering, which happens at the observer using the signum function, has been reduced significantly [15]. The stator resistance needs to be estimated by the Lypunov function intermediate equations so as to prove the stability of the observer. The stator resistance changes during motor operation, which deteriorates the control performance, unless it is compensated for in real time [8]. The cascade control method has been proposed for the achievement of an accurate tracking performance [16], and high-gain observers have been designed to estimate the states under a scalar disturbance [17]. A hybrid terminal SMO design method is proposed to achieve sensorless drive for a PMSM [18], and a tuning method is proposed in order to obtain high-speed and high-accuracy positioning systems [19]. The general schemes of sliding-mode control have been well surveyed recently [20]. Most of the observer designs focus on the fast response and high tracking accuracy. For the fast response, the use of a sigmoid function in a boundary layer is popular. However, the observer error cannot be guaranteed to converge to zero within the boundary layer [18], [21], [22], [24]. This paper proposes a new sensorless control algorithm for a PMSM based on the new SMO which uses a sigmoid function as a switching function with variable boundary layers. Using this SMO, the position and velocity of the rotor can be calculated from the estimated back EMF [25]. Also, to overcome the sensitivity of the parameter variations in the sensorless control and to improve the steady-state performance, the stator resistance is estimated using an adaptive control scheme. The superiority of the proposed algorithm has been proved by comparison with the conventional SMO through real experiments. This paper consists of five sections, including the introduction. Section II introduces the conventional SMO, and Section III proposes the new SMO. Section IV illustrates the experimental

Magnetic microstructures of high performance permanent magnetic materials - 副本

Magnetic microstructures of high performance permanent magnetic materials - 副本

轻敲模式
抬起模式
the process
high coercivity Nd-Fe-B sintered magnets
Evolution of magnetic domains for sintered Nd-Fe-B magnets upon temperature
materials
magnetic microstructures
Description of the contents
Text in here
b
Different crystals appear white or dark in color,Nevertheless, these crystals are still in single domain state
热压(Hot-press)和热变形 (Die-upset)。热压阶段将NdFe-B粉末压成高密度、各向同 性坯块。热变形阶段将Nd-FeB等轴晶转变为片状晶,片状 晶的堆垛方式为垂直压缩方向 ,c轴(易磁化轴) 沿着压力方 向排布,形成各向异性磁体, 从而大幅度提高磁体的磁性能 .
2:17-type Sm-Co sintered magnets
Summary
The thermal demagnetization process consists of four stages
Nd-Fe-B sintered magnets
The influence of temperature, fabrication procedure hotdeformed parameters Sm-Co
materials process environm ent
1、The Sm(Co,Fe,Cu,Zr)z (z = 7.0 -8.5) permanent magnets 2、 sintering at about 1200℃ for 0.5h, solidsolution treatment at about 1180℃ for 5 h, isothermal aging at 830℃ for 24 h, slow cooling at a rate of 0.7℃ /min to 400℃, and then soaking for 10 h

磁共振无线供电模块(witricity原理)

磁共振无线供电模块(witricity原理)

ED2M-V1.0 用户手册理论简介使用磁场的强耦合共振机制,我们实现了无辐射无线电力传输,小功率负载时传输距离达到了发射线圈半径的20倍!后续我们将进一步研究这种系统的实际应用和发展方向。

两个具有相同共振频率的共振物体能有效地交换能量,与此同时,非共振时则较少消耗能量。

在耦合共振系统(如声、电、磁、核)中,往往会有一个强耦合机制。

如果能在设计的系统中充分利用这种机制,能量转移预计将非常有效。

以这种方式进行的中距离能量传输几乎可以是全向的。

环境物体的干涉和能量损失均很小。

上述考虑适用于自然界各种共振现象。

在这里,我们采用了磁场共振。

由于大多数普通的材料不与磁场相互作用,磁场共振特别适合日常应用。

我们在兆级频率实现非辐射近场的磁耦合机制。

初看起来,这种能量转移使人想起了通常的磁感应,但是,请大家注意,通常的电磁感应在中距离应用中效率极低。

上述特定区域有效的中距离能量传输发生在强耦合共振时。

采用耦合模理论CMT 来描述这一物理系统,得到线性方程组如下:ED2M系统中核心部件为驱动模块-Driver,其功能为整个系统提供信号源,实现电能的转换并激励发射线圈A,以满足共振线圈阵列的要求。

为负载提供电能的Load由单铜环B和全波整流部分组成。

ED2M系统中另外四个组件——自共振线圈阵列,一个是源线圈阵列 S ,T,一个是受体线圈阵列 D ,R。

其中源线圈被恒定频率驱动,两个设备间具有耦合系数 k 。

能量被 D 接收后对负载做功。

源线圈阵列 S 通过电感耦合到信号发生电路;受体线圈通过电感耦合到负载。

自共振线圈阵列依靠调节S和T,D和R之间的距离达到共振。

系统工作示意图注: A 是半径6cm的单铜环,这是驱动电路的一部分。

该驱动电路,输出正弦波。

S 、T 和 D 、R 分别是独立的源和受体。

B 是带负载的铜环。

S 和 D 在一条线上。

硬件配置发射端发射端是整个系统的核心,包括驱动模块、发射线圈、源线圈阵列、电源插头;驱动模块外观尺寸:W*D*L=30.4*20.4*100mm;模块采用全密封形式,全面防水,可以达到较高的防护等级,以适应于多种应用场合。

Sliding-Mode Control of Boost-Type

Sliding-Mode Control of Boost-Type

Sliding-Mode Control of Boost-TypeUnity-Power-Factor PWM RectifiersJ.Fernando Silva,Member,IEEEAbstract—A robust sliding-mode controller,suitable for theoutput voltage control of voltage-sourced unity-power-factor three-phase pulsewidth modulation(PWM)rectifiers,presenting no steady-state errors,is described.This“just-in-time”switching controller controls the output voltage and the line input currents, while providing bidirectional powerflow,near-unity-power-factor operation,low harmonic content,fast dynamic response of the output voltage,and minimum switching frequency due to a new – space-vector current regulator.The voltage controller performance is compared with the behavior of the conventional proportional integral output voltage control,aided by PWM current-mode modulators,and with the nonrobust fast and slow manifold sliding-mode approach.The comparison shows that the proposed controller confers faster dynamics and does not present steady-state errors.Test results confirm that the performance of the controller is independent of system parameters and load and exceeds the performance of existing hysteretic current-mode control systems.Index Terms—AC–DC power conversion,current control, pulsewidth modulated power converters,variable-structure systems,voltage control.I.I NTRODUCTIONB OOST-TYPE three-phase rectifiers[1],[2](Fig.1)areuseful in industrial applications,such as variable-speed drives[3]and ac–dc power supplies for telecommunications equipment.They are capable of bidirectional powerflow, near-unity-power-factor operation,input currents with low harmonic content,and can behave as power-factor compen-sators.Also,the fast power semiconductors used[usually, MOSFET or insulated gate bipolar transistor(IGBT)],are free to switch at frequencies much higher than the mains frequency, enabling the voltage controller to provide an output voltage with fast dynamic response.This advantage can be enhanced with modern nonlinear control methods,such as sliding-mode control,as its application synthesizes pulsewidth modulation (PWM)circuits that can drive the semiconductors to switch “just in time,”thus providing the precise and timely needed control action.The controller for a PWM switching rectifier must sup-ply variable duty cycle to the semiconductors to ensure dc output voltage regulation,power factor control,line-current shaping and limiting.V oltage-sourced boost-type reversibleManuscript received October30,1997;revised November14,1998. Abstract published on the Internet March1,1999.This work was supported by JNICT under Contract PBICT/C/CEG/2397/95.The author is with CAUTL,Instituto Superior T´e cnico,Universi-dade T´e cnica de Lisboa,1049-001Lisbon,Portugal(e-mail:fernan-dos@alfa.ist.utl.pt).Publisher Item Identifier S0278-0046(99)04140-4.Fig.1.V oltage-sourced PWM rectifier with IGBT’s and test load.rectifiers,with conventional voltage-mode sinusoidal PWMgating,are nonminimum-phase systems when operated asrectifiers(powerflows from ac sources to dc load)andminimum phase systems when operated as inverters(powerflows from the dc active load to the ac sources).Control methods based on state-space average models,usinglinear regulators for the rectifier output voltage control,mustchange the modulation index slowly,to ensure stability,thuslosing response speed.Moreover,some PWM schemes,beingprogrammed off-line(or generated on-line,using modulatorswith a limited number of patterns),cannot take into accountthe real-time perturbations in line voltages or in the loadparameters.Consequently,the linear feedback control of therectifier output voltage becomes slow and difficult.Several linear control techniques have been proposed[1],[3],[4].Most use slow and system-parameter-dependent pro-portional integral(PI)regulators for the output voltage controlloop,which generate the amplitude of the reference currentfor the inner PWM input current control loops.Even usingsinusoidal PWM modulators to control the input currents withfast deadbeat controllers[19],or just with the steady-stateindirect way[21],delays and/or steady-state errors are stillpresent.Replacing the sinusoidal PWM modulator by hystereticcurrent-mode control of the input current loops[2]is the easi-est and most effective way to deal with the nonlinear behaviorof the boost rectifier,as the system order is reduced and thenonminimum phase behavior is cancelled out.Then,a linear PIregulator for the output voltage control can easily be obtained,having good performance for the nominal load.However,thePI regulator parameters are dependent on the load,systemparameters,and on the operating point.Responses,with loadsfar from the nominal one,are not good enough,presenting risetimes and damping factors depending on the load and on therectifier operating point.0278–0046/99$10.00©1999IEEEIn contrast with linear regulators,sliding-mode control is particularly interesting due to its known characteristics of robustness,system order reduction [6]–[8],[15],and appro-priateness to the ON –OFF behavior of power switches.This control theory,being the control equivalent of the management paradigm “just in time—JIT,”has already been successfully applied to position and speed control of electrical machines [5],[14],[16],inverters [9],[12],and even to the voltage control of line-commutated 12–pulse rectifiers [10],[20]with output psofometric filters [11].Some authors have treated the sliding-mode control of these PWM rectifiers [19],[23],just considering the slow and fast manifold approximation.Therefore,they control only the input currents in sliding mode (a method which is similar to current-mode control)and use a linear feedforward [23]or a discrete PI controller scheme [19](both dependent on system parameters)for the output voltage control.This approach yields robust input current controllers,but nonrobust output voltage con-trollers,since they are derived using rough approximations and linearizations.Futhermore,their robustness can only be improved using complex control processes.Oppositely,in this paper,the integral application of the sliding-mode theory to the PWM rectifiers provides a systematic approach to the robust control problem of these rectifiers,being also the framework to obtain an integrated design of the current and voltage controllers.Few attempts had been made [22]for the integral application of sliding-mode theory to control,as a whole system,both the dc output voltage of the PWM boost-type rectifier/inverter and the power-factor regulation,with steady-state error elimi-nation,line current shaping,and limiting.Therefore,after the modeling of the PWM boost rectifier in Section II,this paper considers these main aspects in Section III,presents anewspace-vector current regulator in Section IV,and shows test results in Section V.Concerning [22],this paper proposes a new overall power balance of the rectifier (neglecting onlythe switching losses)and anewspace-vector current regulator.The performance of the obtained sliding-mode controller is compared with conventional PI current-mode-based controllers and with sliding-mode controllers based on ideal slow and fast manifolds [19],[23].The results show that the performance of the designed controller is independent of system parameters and load,exhibits no steady-state errors,and presents the fastest dynamic behavior.II.M ODELINGTHEPWM B OOST R ECTIFIERThe states of the switches oftheif is ONand isOFFifif OFFandis ON .(1)This switching strategy,together with a small deadtime generator,will avoid internal shorts between the two switches of each bridge leg,as the switches will always be in comple-mentary states.Considering the displayed state variables on the circuit of Fig.1,neglecting switch delays,deadtimes,on-state semi-conductor voltage drops,snubber networks,and applying Kirchhoff laws,the following state-space model of the re-versible boost rectifier,in the three-phase reference frame,can beobtained:(2)where their resistance,androtatingreference frame synchronized with the mains in whichtheand currents to follow their reference values,,the quasi-first-order linear model [written in (4)]of the rectifier can be obtained from (3).(It is worthwhileto note that the valuesofare such that the and currents usually exhibit very fast dynamics compared with the dynamicsofFig.2.PI output voltage controller giving the reference currents for the PWM current-mode unity-power-factor rectifier.The limiter provides short-circuit-proof operation.The space-vector decoder is explained in Section IV.Thereference).Assuming a meandelayand the actualoutput).Usually,thegains (5)are obtained,if the PI zero is selected to cancel theload pole,and the two closed-loop poles of the resulting second-order system are placed to obtain the desireddampingfactorfor best the compromise between response speed andovershoot)),on therectifier operatingpoint.Therefore,the expected responsecan only be obtained with nominal load and input voltages.Also,the line current’s slow dynamics will be related to the proportional(,whileandare perturbationsandis obtained to achieve near-unity input power factor,whereas the output voltage mustobey.From the controllability canonical form (7)and knowing the strong relative degree of each output,it can be concluded that the slidingsurfacesand (8)where,(9)(6)where is the parameter related to the timeconstant of the desiredfirst-order response of the outputvoltage is increased,the responsespeed also increases.However,parameter is the inverse of thefilter cutofffrequency.Hence,this cutoff frequency must be lower thanthe neglected frequencies.Using the definition of the feedbackerror,from(3),and taking(10),weobtain(11)or,)and considering the dynamicsof expressed in(6)(13)Also,with ideal sliding-mode operation,the output voltagewill track perfectly thereference,.Therefore,from(4),in normal rectifier operation,and using theoverall power balance of the rectifier(neglecting only theswitchinglosses)(15)With these values,the switchingfunctionsand(17)where(18),or simple energyflow considerations(21),will give the switching strategyrelating the switching laws(20)with the switchingvariablesandTABLE IT WO-L EVEL AND T HREE-L EVEL C OMPARATOR R ESULTS,S HOWING C ORRESPONDING V ECTOR C HOICE,C ORRESPONDING k,AND V ECTOR C OMPONENT VOLTAGESFig.3.Sliding-mode PWM controller–modulator for the unity-power-factor three-phase PWM rectifier.frequency(close to12kHz with the IGBT’s used).The switchingvariables–)with a larger hysterisiswidth)with a narrower hysterisiswidth,,,whereas vector5must be chosen whenboth and currents are under their respective references,orfor(second and eleventh rows in Table I).Nearly all the positions of Table I can befilled using this kindof reasoning.(a)(d)(b)(e)(c)(f)Fig.6.Test results for unity-power-factor three-phase PWM rectifier.Response to a step increase of the output voltage reference from 270to 300V (t =0:005s).(a)Output voltage v c (sliding-mode control).(b)v c 0v c ref (sliding-mode control).(c)Input currents (sliding-mode control).(d)Output voltage v c (current-mode/PI control).(e)v c 0v c ref (current-mode/PI control).(f)Input currents (current-mode/PI control).The improvements of the presented table,over previous works [17],[18]are in the caseswherevector2,vector 3)andwhen ,(vector6,vector 5),with no needed extra calculations.Also,the vectors 0and 7are selected in order to minimize thenumber of switchings (if two of the three upper switches areon(g)(h)Fig.6.(Continued.)Test results for unity-power-factor three-phase PWM rectifier.Response to a step increase of the output voltage reference from 270to 300V (t =0:005s).(g)i q current (sliding-mode control).(h)i q current (current-mode/PI control).TABLE IIC OMPARISON R ESULTS OF T HREE C ONTROL M ETHODSFOR THEU NITY -P OWER -F ACTOR PWM RECTIFIERConsidered a minor drawback of sliding-mode controllers,the variable switching frequency might be removed,applying,for example,a triangular wave of adequate amplitude and con-stant frequency in the minus input of the hysterisis comparators [13](Fig.5).However,the “just-in-time”switching feature of variable-frequency sliding mode is partly lost,originating small steady-state errors,as the switching strategy (21)will occur around an operating point,often not centered on zero.V.T EST R ESULTSA test setup for the voltage-sourced boost-type three-phase rectifier of Fig.1with the test load was implemented using IGBT modules and the followingvalues:mH,,,and mH.The PI values where selectedtobe(forandand–and1%overshoot,0.01s response time)that are better than the current-mode dead-beat controller results (4%overshoot,0.1s response time)presented in [19].The comparison of the current-mode/PI controller with the proposed sliding-mode controller shows that this controller gives less errors and is faster (no overshoot,no overcurrents,0.004s response time)than the current-mode/PI controller (Figs.6–8).Also,it is less sensitive to load and line voltage changes (Figs.7and 8).Compared with the sliding-mode controller scheme proposed in [19],which claimed steady-state tracking error within 5%,this sliding-mode controller presents no steady-state errors and has the same response(a)(d)(b)(e)(c)(f)Fig.7.Test results for unity-power-factor three-phase PWM rectifier.Transition from rectifier to inverter:inversion of the load current from 10A to 010A obtained by switching off IGBT Sa in Fig.1at t=0:005s and using I a 20A with v c=300V.(a)Output voltage v c(sliding-mode control).(b)v c0v c ref(sliding-mode control).(c)Input currents(sliding-mode control).(d)Output voltage v c(current-mode/PI control).(e)v c0v c ref (current-mode/PI control).(f)Input currents(current-mode/PI control).speed.The input peak currents[Fig.6(c)]can be reduced,if desired,by choosing another tradeoff between responsespeed((a)(d)(b)(e)(c)(f)Fig.8.Test results for unity-power-factor three-phase PWM rectifier.Response to a40%fall in the input voltages(t=0:005s).(a)Output voltage v c (sliding-mode control).(b)v c0v c ref(sliding-mode control).(c)Input currents(sliding-mode control).(d)Output voltage v c(current-mode/PI control).(e)v c0v c ref(current-mode/PI control).(f)Input currents(current-mode/PI control).requiredconfirms the nonminimum phase behavior of the rectifier when outside the sliding mode.The closed-loop dynamics of the sliding-mode controller [19]depend on the choice of the slow manifold,but seem to be strongly dependent also on the load and output capacitor values.This is due to the fact that the sliding-mode controller [19]was derived considering only the fast manifold of the currents,and the slow manifold for the output voltage was obtained with a feedforward technique.Therefore,it does not include the error terms of(10).Oppositely,the closed-loop dynamics of the global sliding mode controller proposed here are imposed bythePWM modulator. Sliding-mode voltage controllers for the unity-power-factor three-phase PWM rectifier do not need to know the load model to obtain the desired output voltage.Also,the design of regulation and drive electronics for the power converter is completely integrated using a single theoretical approach, instead of the traditional way offirst creating a PWM modu-lator and then designing a linear controller for the association modulator/power converter.The performance obtained was very good in the presented results and compares favorably with current-mode control techniques or with fast and slow manifold sliding-mode ap-proaches.R EFERENCES[1] A.W.Green,J.T.Boys,and G.F.Gates,“3-phase voltage sourcereversible rectifier,”Proc.Inst.Elect.Eng.,vol.135,pt.B,no.6,pp.362–370,1988.[2] B.T.Ooi,J.C.Salmon,J.W.Dixon,and A.B.Kulkarni,“A three-phase controlled-current PWM converter with leading power factor,”IEEE Trans.Ind.Applicat.,vol.IA-23,pp.78–84,Jan./Feb.1987. [3]H.Kohlmeier and D.Schroder,“Control of a double voltage invertersystem coupling a three phase mains with an AC-drive,”in Conf.Rec.IEEE-IAS Annu.Meeting,1987,pp.593–599.[4]P.Doulai and G.Ledwich,“Coordinated three-phase hysteretic-controlscheme for active powerfiltering,”Proc.Inst.Elect.Eng.,vol.139,pt.B,no.5,pp.457–464,1992.[5]P.Feller and U.Benz,“Sliding mode position control of a DC motor,”in Proc.EPE Conf.,Aachen,Germany,1989,pp.325–432.[6]W.Gao and J.Hung,“Variable structure control of nonlinear systems:A new approach,”IEEE Trans.Ind.Electron.,vol.40,pp.45–55,Feb.1993.[7] A.Groef,P.Bosch,and H.Visser,“Multi-input variable structurecontrollers for electronic converters,”in Proc.EPE Conf.,Florence, Italy,Sept.1991,pp.1-001–1-006.[8]J.Hung,W.Gao,and J.Hung,“Variable structure control:A survey,”IEEE Trans.Ind.Electron.,vol.40,pp.2–22,Feb.1993.[9]M.Carpita and A.Ricerche,“Sliding mode controlled inverter withswitching techniques,”EPE J.,vol.4,no.3,pp.30–35,Sept.1994. [10]S.Pinto,“Rectificador dodecaf´a sico com duplofiltro LC:Modelos,comando e controlo,”Masters thesis,Instituto Superior T´e cnico,Uni-versidade T´e cnica de Lisboa,Lisbon,Portugal,May1995.[11]V.Pires,“Rectificador dodecaf´a sico paralelo associado a nova topologiadefiltragem psofom´e trica,”Masters thesis,Instituto Superior T´e cnico, Universidade T´e cnica de Lisboa,Lisbon,Portugal,May1995. [12]J.Fernando Silva,“Sliding mode control design of drive and regulationelectronics for power converters,”J.Circuits,Syst.,Comput.,vol.5,no.3,pp.355–371,Sept.1995.[13]J.Fernando Silva and S.Paulo,“Fixed frequency sliding mode modula-tor for current mode PWM inverters,”in Proc.IEEE PESC’93Seattle, WA,July1993,pp.623–629.[14] C.Su,T.Leung,and Y.Stepanenko,“Real-time implementation of re-gressor based sliding mode control algorithm for robotic manipulators,”IEEE Trans.Ind.Electron.,vol.40,pp.71–79,Feb.1993.[15]V.Utkin,“Discontinuous control systems:State of art in theory andapplications,”in Proc.IF AC,Munich,Germany,July1987,pp.75–94.[16],“Sliding mode control design principles and applications toelectric drives,”IEEE Trans.Ind.Electron.,vol.40,pp.23–36,Feb.1993.[17]M.Kazmierkowski and W.Sulkowski,“A novel vector control schemefor transistor PWM inverter-fed induction motor drive,”IEEE Trans.Ind.Electron.,vol.38,pp.41–47,Feb.1991.[18]J.Martins,J.Fernando Silva,and A.Pires,“A novel and simple currentcontroller for three-phase IGBT PWM power inverters,”in Proc.IEEE PESC’97,June1997,pp.1027–1032.[19] D.M.Vilathgamura,S.R.Wall,and R.D.Jackson,“V ariable struc-ture control of voltage sourced reversible rectifiers,”Proc.Inst.Elect.Eng.—Elect.Power Applicat.,vol.143,no.1,pp.18–24,1996. [20]S.Pinto and J.Fernando Silva,“Sliding mode voltage control of twelvepulse parallel rectifier with output double LCfilter,”in Proc.IEEE PESC’96,1996,vol.2,pp.1825–1831.[21]J.W.Dixon and B.T.Ooi,“Indirect current control of a unity powerfactor sinusoidal current boost type three-phase rectifier,”IEEE Trans.Ind.Electron.,vol.35,pp.508–515,Nov.1988.[22]J.Fernando Silva,“Sliding mode control of voltage sourced boost-typereversible rectifiers,”in Proc.IEEE ISIE’97,July1997,vol.2,pp.329–334.[23]K.Jezernik and B.Mohorko,“V ariable structure system control of unitypower factor boost converter,”in Proc.PEMC’96,Budapest,Hungary, Sept.1996,vol.3,pp.213–217.[24]W.S.Levine,The Control Handbook.Boca Raton,FL:CRC Press,1996,pp.911–912.[25] C.V.Jones,The Unified Theory of Electrical Machines.New York:Plenum,1967.J.Fernando Silva(M’92)received the Doctor de-gree in electrical and computer engineering(powerelectronics and control)from the Instituto SuperiorT´e cnico,Universidade T´e cnica de Lisboa,Lisbon,Portugal,in1990.He is currently an Associate Professor of PowerElectronics at the Instituto Superior T´e cnico,Uni-versidade T´e cnica de Lisboa,teaching power elec-tronics and control,and a Researcher in the Centrode Automatica da Universidade T´e cnica de Lisboa.His main research interests include power semi-conductor protection,converter modeling and simulation,predictive and sliding-mode control of power converters,multilevel inverters/rectifiers,and fuzzy control of inverters for electromechanical drives.。

多极射频联合强力磁脉冲在松弛皮肤及身体塑型的非侵入性治疗

多极射频联合强力磁脉冲在松弛皮肤及身体塑型的非侵入性治疗

Synergistic Multi-polar Radiofrequency and Pulsed Magnetic Fields in the Non-Invasive Treatment of Skin Laxity and Body Contouring.多极射频联合强力磁脉冲在松弛皮肤及身体塑形的非侵入性治疗---R.Stephen Mulholland,MD,Plastic Surgeon,Toronto Canada 射频一直是被用在紧肤、祛皱、消脂、塑型领域最常见和最主要的非侵入性技术,并且可以达到相对显著的结果。

目前的射频技术有单级射频、双极射频、三级射频,以及最新技术多极射频。

射频的作用原理是通过高频的电流穿透真皮和皮下组织,在对表皮层没有任何伤害的情况下,高频电流会带动带电离子的碰撞,这些带电离子的碰撞将动能转化为热能。

射频的作用不会依赖于皮肤的类型及组织的选择性吸收,主要是通过热能对不同的目标组织造成不同的生物刺激作用,从而产生不同的临床效果,真皮层的主要细胞成分是纤维母细胞和由胶原蛋白、弹性蛋白和蛋白聚糖组成的细胞外基质(ECM),射频的热量会导致胶原蛋白即刻收缩和甘油三酯的分解,射频的热能能够使胶原母细胞产生炎性反应,从而造成更多的新的弹性蛋白的产生和修复,如果能采用足够的频率、足够的持续时间的射频治疗,将对皮肤产生超生理的影响,那么真皮层将随着时间的推移,产生新的蛋白质和蛋白聚糖,增强皮肤的紧实程度,从而呈现出更平滑紧致、更年轻的皮肤状态。

射频热刺激能刺激脂肪组织产生热调节,增强脂肪酶的活性,促使脂肪细胞中甘油三酯分解为游离脂肪酸和甘油。

INTRODUCTION介绍大部分的外科整形手术和美容医学工作是致力于解决患者皮肤松弛或身体轮廓的问题,无论是过去还是现在,皮肤松弛一直是采用手术拉皮的方法,不管是整容手术还是腹部去脂,乳房提升,或是手臂整形,都会通过良好的切口来切除多余的皮肤,大部分都能够使病人得到满意的结果。

基于自抗扰与观测器的环形耦合多电机协调滑模控制

基于自抗扰与观测器的环形耦合多电机协调滑模控制

微电机MIROMOTORS第54卷第4期2021年 4月Vol. 54. No. 4Ape2021基于自抗扰的环形耦合多电机协调滑模控制贺志浩,于海生(青岛大学自动化学院,青岛266071)摘要:在多电机控制系统中,参数摄动和负载转矩变化会影响系统的跟踪精度和同步性能,且传统的补偿方法难以有效的 系统的同步误差。

针对以 ,采用电流 的 耦合结构,设置同步比例系数实 电机的协调运行,设计自抗对电机进行电流 同步误差,同时将非奇异快速终 模和扰动 用于单台电机的控制。

结果表明,所设计的控使系统的鲁棒性和精 有所提高;相比于固定增和PI 补偿,系统的同步误 ,抗 能力强,实 了高精度的多电机协调控制。

关键词:多电机协调控制; 耦合;自抗 ;非异快速终模;扰动观测器中图分类号:TM351; TP273文献标志码:A文章编号:1001-6848(2021)04-0048-08Coordinated Sliding Mode Control of Ring-coupled Multi-motorBased on Activd Disterdance Rejection and ObserverHE Zhihao ,YU Haisheng(Collegc of Automation,,Qingdao University ,Qingdao Shandong 266071,China )Abstract : In multi-motoi controt system ,the parameterr perturbation and load torque change could afect the tracking accuracy and synchronization performance of the system ,and the traditional compensation methods were diKicult to effectively suppress the synchronization erroi of the system. Aiming at the above problems , the ring coupling structure of cuirent compensation was adopted ,the synchronization ratio coefVcients weresel to realiae the coordinated operation of multiple motors ,the active dKturbanca rejection compensatoi wasdesigned to compensate the motoi current to reduce the synchronization erroi, and the non-singulai fast tei- minal sliding mode and disturbance observer were used foi the controt of a single motoi. The simulation re ­sults show that the designed controt strateay improves the /bustnas and tracking accuracy of the system ;Compared to the fixed gain compensation and PI compensation ,the system has small synchronization erro/,strong anti -interference abfity ,and realizes high-precision munUmotoi coordinated control.Key words : multi-motoi coordinated controt ; ring coupling ; active disturbance rejection compensation ; non-singulai fast terminal sliding mode ; disturbance obse/eio 引言着自动化程度的不断提高,多电机控制系统已被 用到各种领域中, 、 、 、流水线 、机 控 (17。

磁刺激仪技术要求

磁刺激仪技术要求

磁刺激仪技术要求The technology requirements for magnetic stimulation devices are crucial in ensuring their effectiveness and safety in medical applications. 磁刺激仪的技术要求在医疗应用中至关重要,可确保其有效性和安全性。

These devices are used to deliver magnetic pulses to specific areas of the body to stimulate nerve cells, muscles, or other tissues. 这些设备用于向身体特定部位传递磁脉冲,以刺激神经细胞、肌肉或其他组织。

The precision and accuracy of the magnetic stimulation are essential for achieving the desired therapeutic effects without causing harm to the patient. 磁刺激的精度和准确性对于实现期望的治疗效果而不伤害患者至关重要。

Therefore, the technical specifications of these devices must meet stringent standards to ensure their efficacy and safety. 因此,这些设备的技术规格必须符合严格的标准,以确保其疗效和安全性。

One of the key technical requirements for magnetic stimulation devices is the ability to precisely control the strength and duration of the magnetic pulses. 磁刺激仪的关键技术要求之一是精确控制磁脉冲的强度和持续时间。

永磁电磁混合型磁浮球的改进滑模控制方法

永磁电磁混合型磁浮球的改进滑模控制方法

第50 卷第 4 期2023年4 月Vol.50,No.4Apr. 2023湖南大学学报(自然科学版)Journal of Hunan University(Natural Sciences)永磁电磁混合型磁浮球的改进滑模控制方法杨杰1,2,3†,秦耀1,2,汪永壮1,2,张振利1,2(1.江西理工大学永磁磁浮与轨道交通研究院,江西赣州 341000;2.江西省磁悬浮技术重点实验室,江西赣州341000;3.中国科学院赣江创新研究院,江西赣州 341000)摘要:针对未知扰动引起永磁电磁混合悬浮系统控制性能下降问题,提出一种基于扩张状态观测器的改进滑模控制方法.首先,分析并搭建了永磁电磁混合悬浮型磁浮球控制实验台和系统理论模型;其次,引入了扩张状态观测器对系统扰动进行估计与控制补偿,采用积分滑模面和改进指数趋近律设计了改进滑模控制方法,削弱了滑模控制输出抖振,改善了磁浮球的动、静态性能,并分析了有无扩张状态观测器对扰动估计与补偿时的系统的稳定性和误差收敛大致范围;最后,通过半实物联合仿真技术对所提基于扩张状态观测器的改进滑模控制方法、改进滑模控制方法、传统滑模控制方法和比例-积分-微分控制方法进行对比实验.理论分析和实验结果表明:所提基于扩张状态观测器的改进滑模控制方法具有更强的稳定性和抗扰性,对外部磁场摄动具有更强的鲁棒性,在给定信号范围变化及突变时也具有更强的适应性.所提控制方法进一步提高了永磁电磁混合悬浮系统的控制性能,对于永磁电磁混合悬浮型磁浮球这一类非线性系统的控制也具有较好的参考价值.关键词:永磁电磁混合悬浮系统;磁浮球;改进滑模控制;扩张状态观测器;控制性能中图分类号:U125 文献标志码:AImproved Sliding Mode Control Method for Permanent MagnetElectromagnetic Hybrid Magnetic Levitation BallYANG Jie1,2,3†,QIN Yao1,2,WANG Yongzhuang1,2,ZHANG Zhenli1,2(1.Institute of Permanent Magnetic Levitation and Rail Transit Research, Jiangxi University of Science and Technology,Ganzhou 341000, China;2.Jiangxi Key Laboratory of Maglev Technology, Ganzhou 341000, China;3.Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China)Abstract:An improved sliding mode control method based on an extended state observer is proposed to address the problem of control performance degradation of the permanent electric magnetic suspension system caused by unknown perturbations. Firstly, the control experimental platform and theoretical model of the system are analyzed and built for the permanent electric magnetic suspension type magnetic floating ball. Secondly,an extended state∗收稿日期:2022-10-18基金项目:国家自然科学基金资助项目(62063009), National Natural Science Foundation of China(62063009);中国科学院赣江创新研究院资助项目(E255J001), Ganjiang Innovation Research Institute Project of Chinese Academy of Sciences (E255J001)作者简介:杨杰(1979—),男,安徽蚌埠人,江西理工大学教授,博士† 通信联系人,E-mail:*****************.cn文章编号:1674-2974(2023)04-0200-10DOI:10.16339/ki.hdxbzkb.2023230第 4 期杨杰等:永磁电磁混合型磁浮球的改进滑模控制方法observer is introduced to estimate and compensate the system disturbances, and an improved sliding mode control method is designed using an integral sliding mode surface and an improved exponential convergence law to weaken the sliding mode control output jitter and improve the dynamic and static performance of the magnetic floating ball,and to analyze the stability of the system and the approximate range of error convergence with and without the extended state observer to estimate and compensate the disturbances. Finally, the proposed improved sliding mode control method based on the extended state observer,the improved sliding mode control method,the traditional sliding mode control method and the proportional-integral-derivative control method are compared and experimented by the semi-physical joint simulation technique. The theoretical analysis and experimental results show that the proposed improved sliding mode control method based on extended state observer has stronger stability and immunity, more robustness to external magnetic field uptake, and more adaptability to changes and sudden changes in the given signal range. The proposed control method further improves the control performance of the permanent electric magnetic suspension system,and is also a good reference for the control of such nonlinear systems as permanent electric magnetic suspension type magnetic floating ball.Key words:permanent electric magnetic suspension system;magnetic floating ball;improved sliding mode con⁃trol;extended state observer;control performance永磁电磁混合悬浮(Permanent Electric Magnetic Suspension,PEMS)系统相比于常导电磁悬浮(Elec⁃tric Magnetic Suspension,EMS)系统,能够大幅度降低功率损耗,解决线圈能耗高而引起的发热问题[1-2];同时悬浮间隙较大,降低了对轨道建造精度的要求另一方面,由于永磁电磁混合悬浮系统中引入了串联的永磁体,导致系统存在一定不可控区域,控制难度增大.特别是电磁线圈的电磁特性因温漂或外部传感器检测水平等因素引起的噪声干扰,易导致系统产生响应超调、稳定性偏差等不足,存在撞击甚至“吸死”轨道的风险[3].传统比例-积分-微分(Proportional-Integral-Derivative,PID)控制方法存在积分饱和、超调量过大,以及微分作用对高频干扰过于敏感等问题[4],难以达到混合悬浮系统控制性能要求.现役磁悬浮列车普遍采用的是分段PID等方法使列车悬浮,能够局部缓解稳定性问题,但不能彻底解决[5-7].因此,设计一种适用于永磁电磁混合悬浮系统的控制方法具有实际意义.近年来,滑模变结构控制(Sliding Mode Control,SMC)因结构简单,对不确定性干扰具有良好的鲁棒性等特点[8],特别适用于非线性控制对象.在磁悬浮控制领域也得到了广泛应用.刘春芳等[9]针对单电磁悬浮系统,提出基于神经网络的模糊滑模控制方案,有效削弱了滑模输出抖振,跟踪性能良好,且对外部扰动具有很强的鲁棒性.王军晓等[10]针对复杂扰动下的磁浮球系统,提出了基于等价输入干扰滑模观测器的模型预测控制方法,提高了系统的动态性能,并且有效地抑制了系统复杂扰动.Chen等[11]基于单电磁铁最小悬浮单元,设计了滑模自适应状态反馈控制器,并通过仿真与PID控制器和滑模控制器进行对比来说明设计控制方法的优越性.这些方法大多以EMS系统为研究对象,通过对滑模控制的改进,从不同方面提高系统的控制性能.本文以PEMS系统为研究对象,搭建了PEMS型磁浮球控制实验台,并分析系统理论模型;引入扩张状态观测器(Extended State Observer,ESO)估计系统总扰动并进行控制补偿,解决未知干扰引起系统模型不准以及控制精度低的问题,采用积分滑模面和改进指数趋近律设计了改进滑模控制(ImprovedSliding Mode Control,ISMC)方法,削弱了滑模控制输出抖振,改善了磁浮球的动、静态性能;利用半实物仿真技术在实验台上进行实验,从系统稳定性、抗扰性和适应性方面进行实验,通过与ISMC、传统SMC 和PID控制方法的实验结果对比,验证所提基于扩张状态观测器的改进滑模控制(Extended State Observer-Improved Sliding Mode Control,ESO-ISMC)201湖南大学学报(自然科学版)2023 年方法的优越性.1 PEMS 型磁浮球系统结构与模型1.1 PEMS 型磁浮球系统结构通过在EMS 型磁浮球系统结构中引入永磁体,提高了系统的承载能力,增大悬浮间隙.针对混合悬浮球的结构特点,搭建PEMS 型磁浮球控制实验台,分析改进滑模控制方法对PEMS 系统的控制效果.实验台如图1所示,由顶端可拆卸的支撑框架、电磁力产生机构(铁制螺栓、铁制螺母和线圈构成)和磁浮球(永磁体和铁磁性小球构成)组成,电磁线圈通过螺栓和螺母安装在支撑框架顶部,可拆卸激光传感器安置在电磁力产生机构正下方,磁浮球悬浮时与激光传感器和电磁力产生机构在同一竖直线上.PEMS 型磁浮球系统控制结构如图2所示,参数见表1.控制器根据激光传感器检测值与设定值的误差,决定输出PWM 占空比,PWM 信号经过功率放大器控制电磁线圈产生磁场,电磁线圈产生的动态磁场与永磁体静态磁场相叠加,共同作用于磁浮球,使其稳定在设定位置.1.2 PEMS 型磁浮球系统模型建立由于PEMS 型磁浮球系统存在较多的不确定因素,为简化计算过程,进行如下假设:1)磁路中铁磁材料的磁导率无穷大并且磁势均匀地分布于气隙和永磁体上.2)忽略绕组和永磁体的漏磁通.3)对悬浮体受力分析时忽略其他的干扰力.基于以上假设,从动力学和电磁学理论角度建立PEMS 型磁浮球系统动态模型方程[12-14]:ìíîïïïïïïïïïïïïïïïïïïïïïïm d 2x ()t d t 2=mg -F ()x ,i u ()t =R m i ()t +L i d i ()t d t -2μ0NS []Ni ()t +H c h mp éëêêùûúú2x ()t +h mp μr 2d x ()t d t F ()x ,i =μ0S éëêêêêêêêêùûúúúúúúúúNi ()t +H c h mp 2x ()t +h mp μr 2 (1)式中:g 为重力加速度;F (x ,i )为悬浮物所受电磁力;x (t )为悬浮间隙;u (t )为线圈的电压;i (t )为线圈电流.磁浮球在平衡点(x 0,i 0)处的电磁力方程如式(2)所示:图1 PEMS 型磁浮球实验台Fig.1 PEMS magnetic levitation ball test bench图2 PEMS 型磁浮球系统控制结构Fig.2 Control structure of PEMS magnetic levitation ball system表1 PEMS 型磁浮球系统参数Tab.1 PEMS maglev system parameters符号m N R m S h mp u 0i 0H cu rx 0含义钢球质量/kg电磁铁线圈匝数/匝总电阻/Ω电磁铁磁极面积/mm 2永磁体厚度/mm 真空磁导率/(H·m -1)平衡点电流/A 永磁体矫顽力/(kA·m -1)永磁体相对磁导率平衡气隙/mm取值1.55001706.83104π×10-70800116202第 4 期杨杰等:永磁电磁混合型磁浮球的改进滑模控制方法F (x 0,i 0)=μ0S éëêêêêêêêêNi 0()t +H c h mp 2x 0()t +h mp μr ùûúúúúúúúú2(2)式中:x 0、i 0分别为磁浮球稳定悬浮时的悬浮间隙和线圈电流.将式(1)所表示的混合悬浮系统的动力学模型在平衡点(x 0,i 0)处进行Taylor 展开,可得到近似如下线性方程组:ìíîm Δx ()t =k x Δx ()t -k i Δi ()t Δu ()t =R m Δi ()t +L 0Δi ()t -k i Δx ()t (3)其中,L 0=μ0N 2S2x 0+h mp /μr,k x =4μ0S ()Ni 0+H c h mp 2()2x 0+h mp /μr3,k i =2μ0NS ()Ni 0+H c h mp()2x 0+h mp /μr2.根据式(3)可得到悬浮间隙Δx 对输入电压Δu 的传递函数为:ΔxΔu=-k i mL 0S 3+R m L 0S 2-k x RmmL 0(4)系统的特征方程为:S 3+R m L 0S 2-k x Rm mL 0=0(5)由Routh 判据可知:Routh 表第一列出现负值,则该系统为不稳定系统.一般情况下R m >>L 0,将表1中参数带入式(4),可实化输出气隙Δx 对输入电压Δu 的传递函数:Δx Δu =-k imR mS 2-k xm=-2.855S 2-204.6(6)针对式(6)所表示的二阶系统,选取系统状态变量x 1=x (t ),x 2=x (t ),控制输入为u =u (t ),系统输出为y =y (t ),则悬浮系统的状态方程可表示为:ìíîïïïx 1=x 2x 2=ax 1+bu y =x 1(7)其中,a =-k x m =-204.6,b =-ki mR m=-2.855.由秩判据判断系统能观能控性可知:系统能观且能控,可以通过设计反馈控制器和观测器使系统稳定.2 悬浮控制器设计与分析当悬浮系统受到较大干扰时,其模型会发生变化,此时,基本的控制律无法得到较好的控制效果,甚至出现磁浮球失控掉落或与电磁铁“吸死”现象.基于此,设计能够使磁浮球悬浮稳定并且能对扰动进行观测与控制补偿的复合控制器具有实际意义.2.1 ESO 设计与分析针对式(7)所表示的系统状态模型,假设系统的内外总扰动为f (t ,y ,y ),且可微.将系统总扰动扩展为一个新的状态量x 3,更新式(7)所表示系统的状态方程为:ìíîïïïïïx 1=x 2x 2=x 3+bux 3=f (t ,y ,y )y =x 1(8)式中:f (t ,y ,y )=x 3+d ,x 3=ax 1为已知扰动,d 为未知扰动.根据Luenberger 提出的观测器理论,对式(8)所表示的状态方程进行重构,扩张后系统的状态观测器可表示为[15]:ìíîïïïïε=z 1-y z 1=z 2-β01εz 2=z 3-β02ε+buz 3=-β03ε(9)式中: z 1,z 2,z 3分别是系统状态x 1,x 2,x 3的观测值;β01,β02,β03是观测器的增益参数.进一步求得观测器的特征方程为:det (λI -A )=λ3+β01λ2+β02λ+β03(10)根据系统稳定性判据,选取合适的观测器增益参数,使式(10)的特征根全部分布在复平面域的左半平面,即可设计稳定的状态观测器.一般通过将观测器的3个极点同一配置到实轴-ω0处,从而确定观测器增益,令:det (λI -A )=(λ+ω0)3(11)则有:β01=3ω0,β02=3ω20,β03=ω30(12)式中:ω0称为观测器带宽.根据式(9)和式(12)可计算出扰动观测值z 3的传递函数为[16]:z 3=ω30s 2(s +ω0)3y -bω30(s +ω0)3u (13)在本文所提控制方法中,重点分析ESO 的扰动203湖南大学学报(自然科学版)2023 年估计性能,根据式(8)和式(13),可得出ESO 的观测扰动z 3与实际扰动x 3的传递函数:z 3x 3=ω30(s +ω0)3(14)选取带宽ω0=50,150,⋯,650,可得频域特性曲线如图3所示.由图3可知,随着观测器带宽ω0的增加,观测器对系统总扰动的估计精度与速度均有所提高,但同时,高频带增益随之增加,系统噪声放大越明显,使得系统对噪声非常敏感,系统容易产生振荡现象,导致控制性能降低.2.2 ISMC 控制器设计与分析根据式(7)所表示的系统状态模型,x 1表示磁浮球的实际位置,设x r 为给定位置,由于x 1≈x r ≠0,所以需构造误差系统设计滑模函数,误差系统可表示为:ìíîïïïïδ1=x 1-x r δ2=δ1=x 2δ2=x 2=x 3+bu 0(15)式中:x 3=ax 1,为系统已知扰动.积分滑模面是一种新型滑模面,在传统线性滑模面的基础上引入磁浮球间隙误差的积分项,使系统状态在有限时间内迅速收敛至滑模面,加快了滑模控制的收敛速度,减小了稳态误差,并提高了系统控制信号的连续性[17-18].积分滑模面为:s =δ2+c 1δ1+c 2∫0t δ1d t(16)式中:s 为滑模面函数;c 1,c 2为滑模面参数;δ1,δ2为系统状态变量.在几种典型的趋近律中,指数趋近律能更好地削弱抖振[19],趋近律为:s =-εsgn (s )-ks(17)式中:ε,k 为趋近律参数,ε>0,k >0.由式(17)可以看出指数趋近律中存在等速趋近项-εsgn (s ),当s 接近0时,趋近速度为ε,因此,系统稳定时存在较大的抖振,当PEMS 型磁浮球系统受到不确定扰动时,易导致磁浮球间隙波动较大,增加磁浮球掉落或与电磁铁“吸死”风险.针对此问题,对趋近律改进如下:s =-ε|s |tanh (s /Δ)-ks (18)对比式(17)典型的指数趋近律,改进后的趋近律中等速趋近项-εsgn (s )中增加了滑模面的绝对值.当悬浮系统间隙误差较大时,即滑模面函数|s |较大,改进后趋近律会以更快的速度趋近滑模面;当悬浮系统间隙误差较小时,即滑模面函数|s |较小,改进后的趋近律以更慢的速度平滑进入滑模面,同时抖振振幅衰减,最终使系统稳定.采用双曲正切函数tanh (s /Δ)代替符号函数sgn(s ),可进一步削弱控制输出抖振,双曲正切函数具体形式为:tanh (s Δ)=e sΔ-e-s Δe s Δ+e -sΔ(19)式中:Δ越小,双曲正切函数在原点附近越陡峭,曲线接近符号函数图像.结合式(15)~式(19),ISMC 控制输出量u 0可表示为:u 0=-1b[ε|s |tanh (s )+ks +c 1δ2+ c 2δ1+x 3](20)验证ISMC 系统稳定性,定义Lyapunov 函数:V =12s 2(21)考虑系统未知扰动d ,联立式(16)~式(21)得:V =ss =s [δ2+c 1δ2+c 2δ1]=s [x 3+d +bu 0+c 1δ2+c 2δ1]= s [-ε|s |tanh (s )-ks +d ]≤ -ε|s |2-k |s |2+|sd |= -|s |[(ε+k )|s |-|d |](22)由式(22)可知,系统状态可以在有限时间内到达滑模面,当未知干扰d ≠0时,滑模变量不能达到零,即系统稳定时存在误差.定义D 为实际系统中未知扰动d 的上界,即D =max (d ),当t →+∞时,滑模(a )幅频特性曲线(b )相频特性曲线图3 系统扰动观测的频域特性曲线Fig.3 Frequency domain characteristic curve of systemdisturbance observation204第 4 期杨杰等:永磁电磁混合型磁浮球的改进滑模控制方法误差的最终界为[20]:|s|≤Dε+k(23)基于ESO中对系统总扰动的估计值z3,设计ESO-ISMC控制器,对磁浮球受到的扰动进行控制和补偿,可得到控制器最终控制输出量u:u=u0-z3b=-1b[ε|s|tanh(s)+ks+c1δ2+ c2δ1+x3+z3](24)同理,基于新的控制输出量u输出,利用Lyapu⁃nov函数对误差系统进行分析,可得:V=ss=s[δ2+c1δ2+c2δ1]=s[-ε|s|tanh(s)-ks+d+z3]≤-ε|s|2-k|s|2+|s||d+z3|= -|s|[(ε+k)|s|-|d+z3|](25)定义D为引入ESO后实际系统扰动的上界,即D=max(|d+z3|),z3≈-d,当t→+∞时,滑模误差的最终界为:|s|≤Dε+k(26)综上分析,相比式(23)和式(26)所表示ISMC和ESO-ISMC方法的滑模误差的最终界,由于D<<D,表明ESO-ISMC方法会使滑模误差的最终界大大减小,使系统具有更好的抗干扰性.3 控制系统的仿真及实验验证3.1 磁浮球系统控制仿真综合上述对PEMS型磁浮球系统模型的分析和悬浮控制器的设计,在Matlab/Simulink中搭建如图4所示的控制模型,验证ESO-ISMC方法的可行性,通过与传统SMC、ISMC和PID控制方法进行仿真,验证ESO-ISMC方法的优越性.设定PEMS型磁浮球系统的初始状态为x r=0 mm,悬浮给定位置为x r=16 mm,4种控制器仿真参数如表2所示.其中,传统SMC方法由令式(16)中积分项系数为零的线性滑模面和式(17)所示的指数趋近律构成;ISMC方法由式(16)所示的积分滑模面和式(18)所示的改进指数趋近律构成;ESO-ISMC方法就是在ISMC方法的基础上引入了扩张状态观测器.给定系统悬浮间隙为16 mm,在t=3 s时,跟踪幅值为4 mm的方波信号,4种控制方法作用下磁浮球响应曲线如图5所示.由图5可知:PID、SMC、ISMC和ESO-ISMC 4种控制方法均能使磁浮球到达给定位置稳定悬浮,若以曲线响应不超过给定值的±2%作为判定系统稳定的标准,PID控制作用下,系统最大超调2.69 mm,调节时间为0.15 s;SMC、ISMC和ESO-ISMC作用下,系统响应几乎无超调,SMC调节时间为0.012 s,且稳态时存在0.005 mm的抖振误差;而ISMC和ESO-ISMC表2 4种控制器仿真参数Tab.2 Simulation parameters of four control methods控制器PIDSMCISMCESO-ISMC参数K pK dc1kc1kΔc1kΔβ02数值-2 300-708603508603500.028603500.0230 000控制器PIDSMCISMCESO-ISMC参数K iNc2εc2ε―c2εβ01β03数值-10 5005001001 000100―1 0001003001 000 000图4 ESO-ISMC控制框图Fig.4 ESO-ISMC control block diagram图5 跟踪方波信号下磁浮球响应曲线Fig.5 Response curve of magnetic levitation ball under trackingsquare wave signal205湖南大学学报(自然科学版)2023 年方法中由于滑模面积分项及改进趋近律作用,上升时间更快,调节时间为0.011 s ,且最终稳态误差为零.由于实验台中电磁铁和永磁体产生的磁场相互作用,以及内/外环境的影响,系统在运行过程中存在一些不确定扰动,因此,在t =4 s 时对控制量突加幅值为2 V 的阶跃干扰量,在t =8 s 时消除干扰,测试系统的抗扰性能.系统受到干扰后,4种控制方法作用下磁浮球响应曲线如图6所示.由图6可知:PID 、SMC 、ISMC 和ESO-ISMC 4种控制方法都具有一定抗扰性.当系统受到阶跃干扰时,SMC 作用下,系统难以维持原稳态,新稳态与给定位置存在0.15 mm 的偏差;PID 控制作用下,系统产生7.32 mm 的超调量,调节时间为0.66 s ;ISMC 和ESO-ISMC 作用下,系统基本不受扰动影响,但ISMC 方法需要较长时间才能达到稳态误差为零,而ESO-ISMC 方法最大超调小于ISMC 方法,且能在较短时间内恢复到给定位置.相较于PID 、SMC 和ISMC 方法,ESO-ISMC 方法能使磁浮球在更短的时间内无超调到达给定位置,无抖振现象,且受到干扰时能快速恢复到原稳态,有效地解决了传统滑模无法在有限时间内收敛及固有抖振问题.3.2 磁浮球系统控制实验为了验证本文所提出的ESO-ISMC 方法的有效性,结合半实物仿真技术在PEMS 型磁浮球控制实验台上进行实验,控制实验台如图7所示.由于建模时对系统进行了一定的简化,会造成 仿真与实际模型存在一定的差异,导致仿真和实验 的控制器参数不完全一致,需要结合仿真参数对实 际系统控制参数进行调整优化,各悬浮控制器的实 验参数见表3.设计如下实验方案:1)稳定性与抗扰性实验.磁浮球在悬浮稳定情况下对系统突加和突减控制量为2 V 的阶跃干扰,对比4种控制方法的控制性能;2)鲁棒性实验.在磁浮球稳定悬浮的基础上施加外部磁场干扰,对比4种控制方法的控制性能;3)适应性实验.给定幅值为2 mm 的方波信号,对比4种控制方法的跟踪性能.3.2.1 稳定性与抗扰性实验给定悬浮间隙为17 mm ,在t =3 s 时,突加控制量为2 V 的阶跃干扰;在t =6 s 时,停止施加阶跃干扰,4种控制方法作用下磁浮球响应轨迹如图8所示.由图8可知:磁浮球处于稳定悬浮状态时,SMC 作用下,系统存在1.36 mm 的静差,且抖动较大;PID 作用下,系统的稳态误差为±0.13 mm ;ISMC 作用下,系统的稳态误差为±0.088 mm ;ESO-ISMC 作用下,系统的稳态误差为±0.023 mm ,相比于PID 控制减小了82.31%,相比于ISMC 减小了73.86%.系统受到2 V 的阶跃干扰后,SMC 作用下,系统达到一个新的平衡位置:18.56 mm ,直至扰动消除后图6 阶跃干扰下磁浮球响应曲线Fig.6 Response curve of magnetic levitation ball under stepinterference图7 PEMS 型磁浮球控制实验台Fig.7 PEMS maglev ball control test bed表3 4种控制器实验参数Tab.3 Experimental parameters of four control methods控制器PID SMC ISMCESO-ISMC参数K p K d c 1k c 1k Δc 1kΔβ02数值3 000903003003003000.023003000.0230 000控制器PID SMC ISMCESO-ISMC参数K i―c 2εc 2ε―c 2εβ01β03数值6 000―07020070―200703001 000 000206第 4 期杨杰等:永磁电磁混合型磁浮球的改进滑模控制方法才恢复到原稳态;PID 、ISMC 和ESO-ISMC 方法均能使系统在有限时间内恢复到原稳态.PID 控制作用下,系统最大超调量为2.98 mm ,调节时间为0.92 s ;ISMC 作用下,系统最大超调量为1.68 mm ,调节时间为0.61 s ;ESO-ISMC 作用下,系统最大超调量为1.61 mm ,调节时间为0.22 s ,相比于PID 控制方法超调量减小了45.97%,调节时间缩短了76.09%,相比于ISMC 控制方法超调量减小了4.17%,调节时间缩短了63.93%.3.2.2 鲁棒性实验由于系统通过磁力使磁浮球处于稳定悬浮状态,在t =3 s 时,在电磁力产生机构正上方加入永磁体,对磁浮球控制系统施加磁场干扰;在t =6 s 时,快速移除外加永磁体,测试系统鲁棒性.4种控制方法作用下磁浮球响应轨迹如图9所示.由图9可知:当系统开始受到外部磁场干扰时,SMC 作用下,系统到达一个新平衡位置,且抖动加剧,外部磁场消除后,系统无法恢复原稳态;PID 、ISMC 和ESO-ISMC 方法对外部磁场干扰均具有一定的鲁棒性.由于永磁体为人为施加,系统外加磁场变化存在差异,分析移除永磁体时系统变化情况,对描述系统鲁棒性更准确.PID 控制作用下,系统最大偏差量为0.65 mm ,调节时间为0.96 s ;ISMC 作用下,系统最大偏差量为0.94 mm ,调节时间为0.48 s ;ESO-ISMC 作用下,系统最大偏差量为0.46 mm ,调节时间为0.38 s ,相比于PID 控制方法偏差量减小了29.23%,调节时间缩短了60.42%,相比于ISMC 控制方法偏差量减小了51.06%,调节时间缩短了20.83%.3.2.3 适应性实验在t =3 s 时,对给定信号叠加幅值为2 mm 的方波信号,测试系统适应性.4种控制方法作用下磁浮球响应轨迹如图10所示.由图10可知:由于系统为“上拉式”结构,给定方波信号高低幅值切换时,磁浮球跟踪响应会产生惯性干扰,特别是在上升阶段,此时永磁体与铁芯更近,磁场非线性加剧,控制难度增大.SMC 作用下,系统仍存在跟踪及稳态误差,且抖振明显;PID 、ISMC 和ESO-ISMC 方法均能较好地跟踪输入信号,在惯性下磁浮球响应曲线表现为振荡衰减至收敛.PID 控制作用下,系统最大超调量为1.91 mm ,调节时间为0.92 s ;ISMC 作用下,系统最大超调量为1.46 mm ,调节时间为0.58 s ;ESO-ISMC 作用下,系统最大超调量为0.88 mm ,调节时间为0.092 s ,相比于PID 控制方法超调量减小了53.93%,调节时间缩短了90%,相比于ISMC 控制方法超调量减小了39.73%,调节时间缩短了84.13%.实验结果与上文对系统理论推导和仿真实验结果基本一致.通过稳定性与抗扰性实验、鲁棒性实验图10 方波信号输入下磁浮球响应轨迹图Fig.10 Magnetic levitation ball response track diagram undersquare wave signal input图8 含干扰定间隙信号输入下磁浮球响应轨迹图Fig.8 Magnetic levitation ball response track diagram under con⁃stant clearance signal input with interference图9 外部磁场干扰下磁浮球响应轨迹图Fig.9 Magnetic levitation ball response track diagram underexternal magnetic field interference207湖南大学学报(自然科学版)2023 年和适应性实验表明:ESO-ISMC控制方法具有更强的抗干扰能力;对于外部磁场发生变化时,具有更强的鲁棒性;在系统参数发生较大变化及受“惯性”等强扰动作用时,体现出更强的适应性,取得了较为理想的控制效果.4 结论本文基于对永磁电磁混合悬浮控制系统的研究,搭建了永磁电磁混合悬浮型磁浮球控制实验台,并对系统模型进行分析,结合系统运行时内外不确定干扰因素,完善了系统的数学模型,提出了基于扩张状态观测器的改进滑模控制方法,有效提高了系统的抗干扰能力、鲁棒性和适应性.通过理论分析与半实物联合仿真实验得到以下结论:1)基于对永磁电磁混合悬浮控制系统结构分析,结合现有的信息对系统模型进行完善,并分析了系统的稳定性、能观性和能控性,简化了控制器的设计,缩短了控制器参数整定的时间.2)结合积分滑模面和改进趋近律设计了滑模控制器,既削弱了滑模趋近律中因切换函数引起的系统输出抖振,又改善了系统的控制性能,并证明了有无观测器干扰补偿时系统的稳定性及大致收敛范围.3)实验结果表明,与传统滑模、改进滑模和PID 控制方法相比,所提出的基于扩张状态观测器的改进滑模控制方法不但提高了系统的稳定性和抗扰性,还对系统参数大范围变化和运行过程中受到的未知扰动具有更强的适应性和鲁棒性.4)由于滑模控制器中含有微分项和积分项,系统存在高频噪声干扰及控制饱和影响,易导致磁浮球掉落或与电磁铁“吸死”情况,使磁浮球系统无法在可控区域稳定悬浮.因此,下一步的研究工作是优化控制算法,降低高频噪声信号与积分饱和对系统的影响,进一步提高系统的控制性能.本文所提出的控制方法对于磁悬浮智能控制技术的实际应用具有重要的理论意义,也为进一步促进混合悬浮技术的工程化应用提供了较好的算法支撑,同时,对于永磁电磁混合悬浮这一类复杂的非线性系统的控制也具有较好的参考价值.参考文献[1]邓自刚,刘宗鑫,李海涛,等.磁悬浮列车发展现状与展望[J].西南交通大学学报,2022,57(3):455-474.DENG Z G,LIU Z X,LI H T,et al.Development status andprospect of maglev train[J].Journal of Southwest JiaotongUniversity,2022,57(3):455-474.(in Chinese)[2]罗炜宁,王强.磁悬浮列车未来发展与展望[J].硅谷,2013,6(5):2.LUO W N,WANG Q.Future development and prospect ofmaglev train [J].Silicon Valley,2013,6(5):2.(in Chinese)[3]龙鑫林,佘龙华,常文森.电磁永磁混合型EMS磁悬浮非线性控制算法研究[J].铁道学报,2011,33(9):36-39.LONG X L,SHE L H,CHANG W S.Study on nonlinear controlmethod for hybrid EMS maglev train[J].Journal of the ChinaRailway Society,2011,33(9):36-39.(in Chinese)[4]CHEN H,LI Z Q.Research on fuzzy mathematics in PID control [J].Applied Mechanics and Materials,2014,608/609:875-879.[5]周文博. 磁悬浮列车气隙悬浮系统网络化控制策略研究[D].兰州:兰州交通大学,2021.ZHOU W B. Research on networked control strategy of air gapsuspension system of maglev train [D]. Lanzhou:LanzhouJiaotong University, 2021.(in Chinese)[6]张小庆.混合多磁铁磁浮列车悬浮系统协调预测控制研究[D].北京:北京交通大学,2021.ZHANG X Q.Study on coordinated predictive control ofsuspension system of hybrid multi-magnet maglev train[D].Beijing:Beijing Jiaotong University,2021.(in Chinese)[7]倪一清,王素梅,陆洋.磁悬浮控制系统及控制方法:CN114312339A[P].2022-04-12.NI Y Q,WANG S M,LU Y. Magnetic levitation control systemand control method:CN114312339A[P]. 2022-04-12. (inChinese)[8]UTKIN V.Variable structure systems with sliding modes[J].IEEE Transactions on Automatic Control,1977,22(2):212-222.[9]刘春芳,胡雨薇.单电磁悬浮系统的神经网络模糊滑模控制[J].沈阳工业大学学报,2016,38(1):1-6.LIU C F,HU Y W.Neural network fuzzy sliding mode control forsingle electromagnetic levitation system[J].Journal of ShenyangUniversity of Technology,2016,38(1):1-6.(in Chinese)[10]王军晓,陈林杰,俞立.基于等价输入干扰滑模观测器的磁悬浮球系统模型预测控制[J].控制理论与应用,2021,38(1):137-146.WANG J X,CHEN L J,YU L.Model predictive control formagnetic levitation ball system based on equivalent inputdisturbance sliding mode observer[J].Control Theory &Applications,2021,38(1):137-146.(in Chinese)[11]CHEN C,XU J Q,JI W,et al.Sliding mode robust adaptive control of maglev vehicle’s nonlinear suspension system based onflexible track:design and experiment[J].IEEE Access,2019,7:41874-41884.[12]靖永志,冯伟,王森,等.基于自适应非奇异终端滑模的悬浮控制策略[J].西南交通大学学报,2022,57(3):566-573.JING Y Z,FENG W,WANG S,et al.Levitation control strategy208。

永磁体磁控溅射工艺

永磁体磁控溅射工艺

永磁体磁控溅射工艺英文回答:Magnetron sputtering is a widely used technique for depositing thin films onto various substrates. It is particularly useful for producing thin films with high purity and controlled thickness. The process involves bombarding a target material, typically a metal or alloy, with high-energy ions to dislodge atoms from its surface. These atoms then condense onto the substrate, forming athin film.One of the key advantages of magnetron sputtering is the use of permanent magnets to create a magnetic field near the target surface. This magnetic field enhances the sputtering process by confining the plasma and increasing the sputtering rate. It also helps to improve theuniformity of the deposited film. The use of permanent magnets eliminates the need for an external power supply to generate the magnetic field, making the process moreenergy-efficient.Furthermore, magnetron sputtering allows for precise control over the film properties, such as composition, thickness, and microstructure. By adjusting the sputtering parameters, such as the target material, gas pressure, and power density, one can tailor the film properties to meet specific requirements. This level of control is crucial for applications in industries such as electronics, optics, and coatings.One example of the application of magnetron sputtering is in the production of magnetic storage media, such as hard disk drives. The thin films deposited using this technique exhibit excellent magnetic properties, such as high coercivity and low remanence. These properties are essential for achieving high-density data storage and reliable data retrieval.中文回答:永磁体磁控溅射工艺是一种广泛应用于各种基底上薄膜沉积的技术。

低周波按摩仪原理

低周波按摩仪原理

低周波按摩仪原理Massage devices that utilize low frequency technology have become increasingly popular for their ability to alleviate muscle soreness and promote relaxation. 低频按摩设备已经越来越受欢迎,因为它们能够缓解肌肉酸痛,促进放松。

These devices work by emitting electrical pulses that stimulate the muscles, similar to the way a traditional massage would. 这些设备通过发射电脉冲来刺激肌肉,类似于传统按摩的方式。

The low frequency pulses are able to penetrate deep into the muscle tissue, providing relief and promoting circulation. 低频脉冲能够深入肌肉组织,提供缓解并促进血液循环。

This technology is based on the principle of electrical muscle stimulation (EMS), which has been used in physical therapy for decades. 这项技术基于电肌肉刺激(EMS)的原理,已经在物理治疗中使用了数十年。

By utilizing this technology in a portable and user-friendly device, individuals can now enjoy the benefits of EMS in the comfort of their own home. 通过在便携式和用户友好的设备中使用这项技术,个人现在可以在家中享受EMS的益处。

磁刺激仪技术要求

磁刺激仪技术要求

磁刺激仪技术要求磁刺激仪(Magnetic Stimulation Device)是一种用于神经科学研究和临床治疗的设备。

它利用磁场刺激大脑和神经系统,对神经元产生影响,从而观察和干预神经功能。

磁刺激仪的技术要求包括设备的稳定性、刺激效果、安全性、便携性和数据记录等方面。

本文将重点介绍磁刺激仪的技术要求。

1. 稳定性磁刺激仪在进行实验或治疗时,需要保持稳定的输出和刺激效果,以确保实验结果的准确性和治疗效果的稳定性。

因此,磁刺激仪的输出波形应该稳定,峰值电流应该可调,输出的脉冲频率和宽度应该准确可控。

2. 刺激效果磁刺激仪对神经元的刺激效果应该高效且可靠。

刺激的深度、面积和强度应该可以调节,以满足不同实验或治疗的需求。

同时还需要保证刺激的精准性和一致性。

3. 安全性磁刺激仪需要满足临床和实验室的安全标准,避免对被试者或患者造成伤害。

设备应具有过载保护功能,电磁辐射应该低于国际安全标准,同时设备应具有良好的散热和防护措施。

4. 便携性磁刺激仪在临床和实验室中需要具有一定的便携性,以满足不同环境下的使用需求。

设备应该小巧轻便,方便携带和移动,并且应该具有可充电或便携电池供电的功能。

5. 数据记录磁刺激仪需要具有数据记录和存储功能,以便后续分析和研究。

设备应该能够记录刺激时的参数和过程,以及对被试者或患者的生理反应,并能够将数据传输至电脑或云端进行存储和分析。

总之,磁刺激仪作为一种用于神经科学研究和临床治疗的设备,具有稳定性、刺激效果、安全性、便携性和数据记录等一系列技术要求。

随着科学技术的进步和临床需求的不断变化,磁刺激仪的技术要求也在不断提高,以满足更广泛的应用需求。

研究人员开发了用于检测磁场的超灵敏设备

研究人员开发了用于检测磁场的超灵敏设备

研究人员开发了用于检测磁场的超灵敏设备布朗大学的一个物理学家团队开发了一种新型的紧凑型超灵敏磁力计。

研究人员说,这种新设备可能在涉及弱磁场的各种应用中很有用。

“ 从我们的电子设备到跳动的心脏,几乎我们周围的所有事物都会产生磁场,我们可以利用这些磁场来获取有关所有这些系统的信息,”布朗物理系主任,《物理学》杂志的资深作者Gang Xiao说。

描述新设备的文件。

“我们发现了一类超灵敏的传感器,但是它们又小巧,制造便宜,消耗的功率也不大。

我们认为这些新型传感器可能有很多潜在的应用。

”在“ 应用物理学快报”上颁发的一篇论文中详细阐述了这种新设备。

布朗研究生Yiou Zhang 和博士后研究员Kang Wang是该研究的主要作者。

感应磁场的传统方法是通过所谓的霍尔效应。

当携带电流的导电材料与磁场接触时,该电流中的电子会在垂直于其流动标的目的上发生偏转。

这会产生一个小的垂直电压,霍尔传感器可以使用它来检测磁场的存在。

新设备利用表亲来应对霍尔效应(称为霍尔异常效应(AHE)),该效应发生在铁磁材料中。

霍尔效应是由于电子的电荷而产生的,而AHE是由于电子自旋(每个电子的微小磁矩)而产生的。

这种作用使具有不同自旋的电子沿不同标的目的分散,从而产生很小但可检测的电压。

新设备使用了由钴,铁和硼原子制成的超薄铁磁膜。

电子的自旋倾向于在薄膜的平面内摆列,这种特性称为平面内各向异性。

在高温炉中并在强磁场下处理薄膜后,电子的自旋发展为倾向于垂直于薄膜的趋势,即所谓的垂直各向异性。

当这两个各向异性具有相同的强度时,如果材料与外部磁场接触,则电子自旋很容易重新定向。

通过AHE电压可以检测到电子自旋的重新定向。

不需要很强的磁场就能翻转薄膜中的自旋,这使得该设备非常灵敏。

研究人员说,实际上,它的灵敏度比传统的霍尔效应传感器高20倍。

使设备正常工作的关键是钴-铁-硼薄膜的厚度。

太厚的薄膜需要更强的磁场来重新定向电子自旋,从而降低了灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran *Corresponding author.Email: enayattaghavi@Received October 20, 2011; accepted November 16, 2011.AbstractsThis paper presents an approach to control a magnetic levitation system with uncertainty in the dynamics and the measurements. First, Sliding Mode Controller (SMC) is applied to the magnetic levitation system. Then, Hybrid Extended Kalman Filter (HEKF) is used to increase the robustness of the magnetic levitation system to uncertainties. The efficiency of such combined control method is verified by simulation results and performance parameters.Key words: Magnetic levitation system; Sliding mode control; Hybrid extended kalman filterEnayatollah Taghavi Moghaddam, Jabbar Ganji (2011). Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman Filter. E n erg y S c i e nc e an d Te ch nol og y, 2(2), 35-42. Available from: URL: /index.php/est/article/view/j.est.1923847920110202.114 D O I :h t t p ://d x .d o i .o r g /10.3968/j.est.1923847920110202.114INTRODUCTIONMagnetic levitation systems are widely used in different fields of industrial applications such as high speed trains, so-called Maglev, frictionless bearings and magnetically suspended wind tunnels [1]-[4]. The magnetic levitation system is difficult to control since it is unstable in the open-loop form and the dynamics of the system is definedby a high order nonlinear equation. Therefore, the design of a highly efficient method to control the movable object of the system in order to be tracked in a desired position has a great deal of importance.A lot of research has been done for controlling the magnetic levitation system in recent years. In [5]-[6], the feedback linearization method has been proposed to design a controller for magnetic levitation system. Due to the use of a simplified dynamic model, only the nominal parameters of the system were considered in the design procedure, which has resulted in some problems for stability, accuracy and robustness of controller. The problems arise from variations of the parameters due to environmental conditions or thermal drifts. Nonlinear controllers [7, 8], robust linear controllers such as H∞, optimal control and µ-synthesis [9, 10], control based on phase space [11], neural network methods [12, 13] and fuzzy control [14] are other proposed approaches to control magnetic levitation systems. The proposed dynamic models for the magnetic levitation system usually have some uncertainties due to simplified dynamic equation and its parameters. Moreover, the position measurements of the levitated object are noisy and it leads to some difficulties in the feedback control systems. SMC is a powerful nonlinear control method as it has low sensitivity to the plant parameter variations and disturbances. This property moderates requirement of exact modeling [15]. One of the first studies for applying SMC to the magnetic levitation system was done in [16], which compared sliding mode controller with the classical controllers. The main drawbacks of the traditional SMC are extreme control efforts and reduced performance, especially in regions of the operating space where the model is accurate. An important issue in the SMC design is estimating the magnitudes of modeling uncertainty such that the SMC gain will ensure stability. Buckner [17] proposed a neural network approach for estimating the uncertainty bounds and used it to control a magnetic levitation system inISSN 1923-8460[PRINT] ISSN 1923-8479[ONLINE] Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman FilterEnayatollah Taghavi Moghaddam 1,*; Jabbar Ganji 1Energy Science and TechnologyV ol. 2, No. 2, 2011, pp. 35-42DOI:10.3968/j.est.1923847920110202.114sliding mode. In [18], a sliding mode controller is designed, in which a neural network is used to estimate the uncertain system dynamics online.In the SMC, the SMC gain depends on the uncertainty bounds and must be large enough to ensure closed-loop stability over the entire operating space. On the other hand, larger control gains increases chattering phenomenon. Hence, the SMC gain must be selected to compromise between the chattering and the robustness of the controller. In this paper, the combination of the SMC and HEKF (SMCHEKF) is proposed to control the magnetic levitation system. It is shown that this combined method increases the robustness of the magnetic levitation system to uncertainties of the dynamics and measurement system. As a result, the system performance and other drawbacks of the traditional control method are improved using this method.The rest of the paper is organized as follows. Section 2 presents the dynamic model for the system. Design of a sliding mode controller for the magnetic levitation system is considered in Section 3. The uncertainties of the dynamics and the measurement system are modeled in section 4, and their effects in the performance of the controller are studied. In section 5, HEKF is used to increase the robustness of the system. In section 5, Simulation results are given to evaluate the performance of the SMCHEKF. Concluding remarks are discussed in section 6.1. MAGNETIC LEVITATION DYNAMICSSliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman FilterFigure 1Experimental Set-up of Magnetic Levitation System The physical setup of a typical magnetic levitation system is shown in Fig. 1[13]. The plant consists of a coil that produces a magnetic field, a magnetic levitated body (which is a permanent magnet and can be moved along a grounded glass rod), and a laser-based measurement system to measure the magnet position. The controller produces an appropriate direct current to suspend magnetin a desired position by supplying the coil. The magnet is suspended by a repulsive magnetic force when the coil is supplied. The dynamic equation of system can be written as:(1)Where x r denotes the distance between the coil and the magnet, m is the mass of the magnet, c is the friction constant, g is the gravitational constant, F m is the magnetic force, and F L is the external force disturbance. The magnetic force can be modeled as [19]:(2)Where u is the control law. N , a and b can be determined by numerical modeling or experimental methods [18] (Typically 3<N <4.5). These parameters can be estimated by constant values in the desired region of operation. However, because of the intrinsic nonlinearity of the magnetic fields, these constants will vary when the dynamics goes out of parameter determination region. Replacing (2) into (1), we get:(3)Let the states of the system be chosen such that x 1=x r , x 2=x .r . The magnetic levitation dynamic can be rewritten as:(4)Where:U (t ) is the control law and X is the state vector. To separate the nominal system and the uncertainties (in which the external disturbance F L =0[13]), the dynamics equation can be rewritten as:(4)(5)Where the index of n presents the nominal part of the equation terms and L (X ; t ) is the lumped uncertainty:L (X ; t )=∆f +∆G U (t )+∆d (6)It is assumed that the bound of L is known as:L (X ; t )<K(7)Enayatollah Taghavi Moghaddam; Jabbar Ganji (2011).Energy Science and Technology, 2(2), 35-422. CONTROLLER DESIGN2.1 Sliding Mode ControlThe design of the sliding mode controller consists of two stages. The first is to define a sliding surface in the state variable space to ensure good control performance. The second is to design a control law to reach the state of the system on the desired predefined surface and to maintain its position on it. Let e =x 1-x ref be the tracking error (the error between the desired position x ref , and the true position x 1). The sliding surface is defined as [18]:(8)Where λ1 and λ2 are positive constants. The globally asymptotic stability of (8) is guaranteed when the following control law is applied to the magnetic levitation system [15]:(9)where sgn is the signum function.2.2 Stability AnalysisLyapunov function candidate is defined as [15]:(10)Differentiating V with respect to time and using (5) and (8), we get:(11)Substituting control law from (9) into (11) results in the following:(12)Considering the sign of the sliding surface, (8), and the bounding condition expressed in (7), the time derivative of the candidate Lyapunov function can be separated as:(13)Thus, the reaching condition [15] is satisfied. Beside the asymptotic stability, the SMC guaranties that the state trajectory of the system reaches the sliding surface in a finite time and stays on it, with any initial condition. Moreover, SMC law provides the system dynamic with an invariance property to the uncertainty, once the system dynamics are controlled in the sliding mode. Control gain (K ) is the trade-off parameter of control. The value of K depends on the uncertainty bounds and must be large enough, since the uncertainties (such as parameter variations and exact value of external load disturbance) are difficult to measure and appropriate reaching time is necessary. However, the un-modeled dynamics and the discontinuous control law result in undesirable oscillations with finite frequencies and amplitude in the control law, the so-called chattering. Larger control gains increase this phenomenon. Hence, K must be selected to compromise between the chattering and the robustness of the controller. Moreover, it is rather convenient to supply a smooth control law. Therefore, chattering reduction is very important.2.3 Results of SMCTwo common methods in chattering reduction are Dynamic Sliding Mode Control [20] and Boundary Layer Control (BLC)[15]. In BLC method, the control law is interpolated in a boundary layer as:B (t )={x |s (x , t )|≤φ}, φ>0 (14)where φ is the boundary layer thickness. Realizing such interpolation, the sgn function in the control law should be replaced with saturation function defined as:(15)The saturation function is a function with two criterions. Furthermore, it has discontinuities in its derivative that yield some problems in the realization of the extended kalman filter which is discussed in section IV. In the extended kalman filter, the Jacobian of the system (partial derivative of dynamic equations with respect to state variables) is needed. Thus, a trigonometric function tanh is proposed to replace with the sat function to reduce the chattering. In this case, we have a one-criterion, differentiable and smoother function. The replacement is performed as follows:(16)The thickness of the boundary layer (φ) is 0.1. The systemparameters are evaluated using a curve-fitting techniqueon the basis of the variation in the control law to provide a magnetic force equal to the magnet weight. The resulting parameters are[18]:m=0.121 kg, c = 2.69, a=1.65, b = 6.2n=4, λ1=10, λ2=30, K=15Figure 2Control Law and the Magnet Position Using Classic Control Law (Using sgn Function)K, λ1 and λ2 are selected to obtain the best performance of control, stability considerations and appropriate transient response. The control law and the magnet position using sgn(S⁄0.1) and the tanh(2.5πS), which is the smooth form of the sat(S⁄0.1), are shown in Fig. 2 and Fig. 3, respectively. The desired position for the magnet is 2cm, i.e. x ref=2cm. It can be seen from Fig. 3 that the chattering is eliminated effectively and the control law is smoothed using this method of BLC in comparison withFig.2.Figure 3Control Law and the Magnet Position Using Proposed BLC Method (Using tanh Function)3. EFFECT OF UNCERTAINTIES3.1 Uncertainties ModelingIn practical feedback control systems, the output is sampled by a measurement system. Then, it is applied to the controller, i.e. the output of the measurement system is the input for controller. Most of the measurement systems have some inaccuracies. For example, in the sensor-based measurement systems, which are commonly used in the engineering systems, there are several measurement noise sources. Also, sensors have basic limitations related to the associated physical medium, and typically the output quality is decreased. Therefore, analytical measurement models typically contain some random measurement noises or uncertainties[21]. These uncertainties result in some random noise in the control law. Because the control law is designed due to exact output of system, but the output is measured by an inaccurate measurement system. Controller uncertainties lead to uncertainties in the system output. Modeling such uncertainties, a term should be added to the control law and the system output. So, the dynamics can be modified as:(17)Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman FilterWhere y is the output of the sensor-based measurement system, ∆x and ∆u are uncertainties of magnet position and control law, respectively. There are no certain mathematical expressions for values of ∆x and ∆u . The measurements must be interpreted as a random process. Central Limit Theorem formally demonstrates that under certain general conditions, sum of independent random variables with any distribution approaches a normal distribution [22]. So, we can model the uncertainties of the magnetic levitation system as random variables. Let:(18)Where ω and ν are zero-mean, uncorrolated white noises. Rewrite (17) in a general form as:(19)Where N and σ indicate normal distribution and standard deviation of random processes, respectively. The standard deviation of ω is evaluated according to the simulation results. The standard deviation of ν depends on the accuracy of the measurements. Certainly, the standard deviation of the measurements depends on the measurement system’s accuracy.3.2 Results of Uncertainties EffectIt is assumed that the magnet position is measured by a sensor which RMS error is 0.1cm. Also, the following values are chosen as:σ1=0.005, σ2=0.1Two test cases have been examined to demonstrate the effect of uncertainties in the efficiency of the controller. In the first case, the measurement system is considered as an ideal system, i.e. ν=0. The simulation results of the control law and the position of magnet are presented in Fig. 4. Despite the fact that the tracking is done due to SMC robustness property, it can be seen from the figure that the accuracy is degraded in comparison with ideal dynamics and measurements (shown in Fig. 3). Larger control gains can improve the degraded tracking performance, but the chattering will be increased significantly. In the second case, both uncertainties of the dynamics and the measurements are taken into account at the same time, i.e. ν, ω≠0. Then the system is simulated. Certainly, the second case is more reasonable from a practical point of view. Simulation results are shown in Fig. 5. It can be seen from the figure that the system has large oscillations. Thus, it is impossible for the magnet to reach the desired position, even though larger control gains are used. So, the SMC has no performance in this case, because SMC is designed based on precise state of dynamics, i.e. the uncertainty of the measurements is not considered. To solve around this problem, HEKF is applied to themagnetic levitation system.Figure 4Control Law and the Magnet Position in the Case of Noisy Dynamic and Precise MeasurementsFigure 5Control Law and the Magnet Position in the Case of Noisy Dynamic and Noisy Measurements Dynamic andNoisy MeasurementsEnayatollah Taghavi Moghaddam; Jabbar Ganji (2011).Energy Science and Technology, 2(2), 35-424. SMCHEKF4.1 Hybrid Extended Kalman FilterKalman filter is a mathematical tool which acts as an estimator for what is called Linear Quadratic problem, which is the problem of estimating instant states of a linear dynamic system perturbed by white noise [23]. Extensions of the kalman are needed for using kalman filter in the nonlinear systems. A kalman filter that linearizes about current estimated state is called an extended kalman filter. The EKF is selected due to following reasons:• It has a state space basis and uses all of the prior information about the internal model construction.• I t c o n s i d e r s b o t h t h e p r o c e s s a n d t h e measurement noise simultaneously.• The estimation is statistically optimum with respect to any quadratic function of estimation error.Real industrial systems have continuous-time dynamics and a discrete-time measurement system. So, we have a continuous process, which is sampled at a predefined rate. This is the most common situation in practice. HEKF considers such systems. For a nonlinear system with the following state space model:(20)Where f and h are nonlinear functions, ω(t ) is a continuous-time white noise with covariance Q , v k is a discrete-time white noise sequence with covariance R k . Between sampling intervals, measurements have infinite covariance (R =∞)[24]. So, HEKF time update equations are formulated as:(21)(22)Where ω0 is the nominal process noise, that is, ω0=0 since the ω(t ) is a zero-mean white noise. Pis the error covariance matrix of estimation. is the state estimate. u is the control input. The Jacobians are:(23)After solving the equations (20) and (21), at each measurement instant, Kalman gain, estimation, and the error covariance are updated as [24]:(24)(25)(26)Superscripts+ and - denote posteriori estimate and priori estimate, respectively. v 0 is the nominal measurement noise value, that is, v 0=0 since v k is a discrete-time zero-mean white noise.4.2 Results of SMCHEKFFigure6Block Diagram Scheme of the Proposed Control Method (SMCHEKF)Figure 7Control Law and the Magnet Position of the SMCHEKFThe block diagram of the SMCHEKF is shown in Fig. 6. As it is illustrated, the noisy measurements of the magnet position are estimated. Then sliding mode controller is applied to get the state of the system to track the desired state x ref . The magnet position and the control law of the proposed control method (SMCHEKF) Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman Filterare shown in Fig. 7. SMCHEKF reaches to desired position after a time less than 0.5s. The sample rate of measurements is 1ms. Simulations show efficiency of the method for controlling magnetic levitation system. Another test has been done to confirm the performance of SMCHEKF. The sum of squared error is defined as[17]:(27)Figure 8Error Covariance (Trace of Matrix P) and Error Estimation of SMCHEKFwhere e(kT) presents the tracking error, t=KT is calculated from 0 to 10 seconds, and T=2.65 ms is the sample rate. The value of SSTE is 15.387 mm2 which is a suitable Estimation error and Estimation error covariance (trace of the matrix P) for SMCHEKF is presented in Fig. 8. As time progresses, more measurements are processed, and the error covariance decreases that eventually reaches the steady state. Root Mean Square (RMS) of tracking error and estimation of HEKF in the first 10 seconds of simulation are 1.02 mm and 0.91 mm, respectively. These results, altogether, confirm the proposed SMCHEKF’s significant performance. 5. CONCLUSIONThis paper considers the control problem of magnetic levitation systems that includes uncertainty in both the dynamics and the measurements. A sliding mode controller is used to set the levitated object in a reference (desired) position. Then, it is shown that sliding mode control cannot perform the tracking when there are uncertainties in dynamics and measurements simultaneously. Therefore, uncertainties were modeled as white noises. HEKF is proposed to estimate the system state by noisy measurements. Then, the estimated position of magnet is applied to the sliding mode controller and the performance of SMCHEKF is verified successfully.REFERENCES[1] Rote , D. M., & Cai , Y. (2002). Review of DynamicStability of Repulsive-Force Maglev Suspension System.IEEE Trans. Magn., 38(2), 1383–1390.[2] Hajjaji, A. E., & Ouladsine, M. (2001). Modeling andNonlinear Control of Magnetic Levitation Systems. IEEE Trans. Ind. Electron., 48(4), 831–838.[3] Ono, M., Koga, S., & Ohtsuki, H. (2002). Japan’sSuperconducting Maglev Train. IEEE Instrum. Meas.Mag., 5(1), 9–15.[4] Allaire , P., & Sinha, A. (1998). Robust Sliding ModeControl of a Planar Rigid Rotor System on Magnetic Bearings(pp. 577–586). Proc. 6th International Symposium on Magnetic Bearings, (Massachusetts). [5] Trumper, D. L., Olson, M., & Subrahmanyan, P. K. (1997).Linearizing Control of Magnetic Suspension Systems.IEEE Transactions on Control Systems Technology, (4), 427–438.[6] Barie, W., & Chiasson, J. (1996). Linear and NonlinearState-Space Controllers for Magnetic Levitation.International Journal of Systems Science, 27(11), 1153–1163.[7] Huang, C. M., Yen, J. Y., & Chen, M.-S. (2000). AdaptiveNonlinear Control of Repulsive Maglev Suspension Systems. Control Engineering Practice, 8(5), 1357–1367.[8] Yang , Z. J., & Tateish, M. (1998). Robust nonlinearcontrol of a magnetic levitation system via back step-ping approach. Proc. 37th SICE Annual Conference (SICE’98) (pp.1063–1066). Chiba, Japan.[9] Fujita, M., Matsumura, F., & Uchida, K. (1990).Experiments on the H∞ disturbance attenuation control ofa magnetic suspension system. Proc. 29th IEEE Conferenceon Decision and Control ( pp. 2773–2778). Hawaii. [10] Fujita, M., Namerikawa, T., Matsumura, F., & Uchida,K. (1995). µ-synthesis of an Electromagnetic Suspension System. IEEE Trans. Automatic Control, 40(3), 530–536.[11] Zhao, F., Loh, S. C., & May, J. A.( 1999). Phase-SpaceNonlinear Control Toolbox: The Maglev Experience, 5th International Hybrid Systems. Workshop (P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, eds.).Enayatollah Taghavi Moghaddam; Jabbar Ganji (2011).Energy Science and Technology, 2(2), 35-42Lecture Notes in Computer Science, 1567, 429–444 [12] Chen, C. H. (2009). Nonlinear System Control UsingAdaptive Neural Fuzzy Networks Based on a Modified Differential Evolution. IEEE Trans on, Systems, MAN, and Cybernetics-Part C: Applications and Reviews, 39(4), 459-473.[13] Lin, F. J., Teng, L. T., & Shieh, P. H. (2005). Hybridcontroller with recurrent neural network for magnetic levitation system. IEEE Trans. Magn., 41(7), 2260–2269.[14] Li, T. H. S., Kuo, C.L., & Guo, N.R. (2007). Design of anEP-Based Fuzzy Sliding Mode Control for a Magnetic Ball Suspension System. Chaos, Solutions and Fractals, 33, 1523-1531.[15] Slotine , J.J., & Li, W. (1990). Applied Nonlinear Control.New Jersey: Prentice Hall.[16] Cho, D., Kato, Y., & Spilman, D. (1993). Sliding Modeand Classical Controllers in Magnetic Levitation Systems.IEEE Control Systems Magazine, 13(1), 42–48.[17] Buckner, G. D. (2001). Intelligent Bounds on ModelingUncertainties: Applications to Sliding Mode Control of a Magnetic Levitation System. IEEE InternationalConference on Systems, Man, and Cybernetics, 1, 81–86.[18] Lin, F. j., & Teng, L. T. (2007). Intelligent Sliding ModeControl Using RBFN for Magnetic Levitation System.IEEE Trans on Industrial Electronics, 54(3), 1752-1762. [19] Moon, F. C. (1994). S uperconducting Levitation:Applications to Bearings and Magnetic Transportation.New York: Wiley.[20] Al-muthairi, N. F., & Zribi, M. (2004). Sliding ModeControl of a Magnetic Levitation System. Mathmatical Problems in Engineering, 2, 93-107.[21] Welch,G., & Bishop, G.(2001). An introduction to theKalman filter. Course 8. In Proceedings of the ACM SIGGRAPH Conference, Los Angeles.[22] Papoulis, A. (1991). Probability, Random Variables andStochastic Processes (Third Edition). Singapore: McGraw-hill.[23] Grewal, S., & Andrews, P. (2001). Kalman FilteringTheory and Practice Using Matlab, (2nd Edition). Wiley.[24] Simon, D. (2006). Optimal State Estimation Kalman, H∞,and Nonlinear Approaches. New Jersey: Wiley.Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman Filter。

相关文档
最新文档