【数学】1.2.2《函数的和、差、积、商的导数》推导
函数的和、差、积、商的求导法则
即
(tan x ) sec 2 x .
同理可得 (cot x ) csc 2 x .
例5 求 y sec x 的导数 .
解
1 y (sec x ) ( ) cos x (cos x ) sin x sec x tan x . 2 2 cos x cos x
机动 目录
1
( x 3 4 cos x sin 1) x ( 3 x 2 4 sin x )
上页
下页
返回
结束
例4 求 y tan x 的导数 . 解
sin x y (tan x ) ( ) cos x
(sin x ) cos x sin x(cos x ) cos 2 x 1 cos 2 x sin2 x sec2 x cos 2 x cos 2 x
( 3) [
i 1
n
f1 ( x ) f 2 ( x ) f n ( x ) f i ( x )] f1 ( x ) f 2 ( x ) f n( x )
f i( x ) f k ( x );
i 1 k 1 k i
n
n
二、高阶导数的概念
问题: 变速直线运动的加速度.
y 2 cos x cos x ln x 2 sin x ( sin x ) ln x 1 2 sin x cos x x 1 2 cos 2 x ln x sin 2 x . x
1 例3. y (1 x ) (3 ) , x3
2
解:
x x0
x x0
二阶导函数记作
d 2 y d 2 f ( x) f ( x ), y , 2 或 . 2 dx dx
大学数学微积分公式推导
大学数学微积分公式推导微积分是数学的重要分支,运用于各个科学领域和工程学中。
微积分公式的推导过程对于研究和理解微积分的基本概念和方法非常重要。
本文将从基本的微分和积分开始,推导一些常见的微积分公式。
1. 导数公式推导1.1 基本函数的导数1.1.1 常数函数的导数推导常数函数f(x) = C的导数为f'(x) = 0。
1.1.2 幂函数的导数推导幂函数f(x) = x^n的导数为f'(x) = n * x^(n-1)。
1.1.3 指数函数的导数推导指数函数f(x) = a^x的导数为f'(x) = a^x * ln(a)。
1.1.4 对数函数的导数推导对数函数f(x) = ln(x)的导数为f'(x) = 1 / x。
1.2 导数的基本性质1.2.1 和差法则若f(x)和g(x)都可导,则(f(x) ± g(x))' = f'(x) ± g'(x)。
1.2.2 数乘法则若f(x)可导,k是常数,则(k * f(x))' = k * f'(x)。
1.2.3 乘法法则若f(x)和g(x)都可导,则(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。
1.2.4 商法则若f(x)和g(x)都可导且g(x) ≠ 0,则(f(x) / g(x))' = (f'(x) * g(x) -f(x) * g'(x)) / (g(x))^2。
2. 积分公式推导2.1 基本函数的不定积分2.1.1 幂函数的不定积分推导幂函数f(x) = x^n的不定积分为F(x) = (1 / (n + 1)) * x^(n + 1) + C。
2.1.2 正弦函数的不定积分推导正弦函数f(x) = sin(x)的不定积分为F(x) = -cos(x) + C。
函数的求导法则
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx
求 dy . 例10 y = ln sin x, dx
解 dy =(ln sin x)′= 1 ⋅(sin x)′ = 1 ⋅cosx=cot x . dx sin x sin x dy 3 2 , 求 例11 y = 1−2x . . dx 1 dy −4x 1 (1−2x2)− 2 ⋅(1−2x2)′ = 2)3 ]′ = 解 3 =[( −2x 1 . 3 ( −2x2)2 dx 3 3 1 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y=f(u), u=ϕ(v), v=ψ(x), 则
详细证明 首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx 例8 y=ex3 , 求 dy . 9 dx 解 函数 y=ex3可看作是由y=e u, u=x3复合而成的, 因此
dy dy du u 2 = ⋅ =e ⋅3x =3x2ex3 . dx du dx dy 例9 y =sin 2x2 , 求 . 10 1+ x dx 解 函数 y =sin 2x 是由 y=sin u , u = 2x 复合而成的, 1+ x2 1+ x2 dy dy du 2(1+ x2) −(2x)2 2(1− x2) = ⋅ =cosu⋅ = ⋅cos 2x2 . 因此 dx du dx (1+ x2)2 (1+ x2)2 1+ x
u(x) u′(x)v(x) −u(x)v′(x) >>> [ ]′ = . 2(x) v(x) v
1.2.2导数公式及运算法则
2.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量
的导数,乘以中间变量对自变量的导数,即 yx′= yu′·ux′,
并且在利用复数的求导法则求导数后,最后结果要把中间 变量换成自变量的函数.复合函数,可以是一个中间变量, 也可以是两个或多个中间变量,应该按照复合次序从外向 内逐层求导.
2.函数 y=21(ex+e-x)的导数是(
)
A.12(ex-e-x) B.21(ex+e-x)
C.ex-e-x D.ex+e-x 解析 y′=21ex+e-x′=12[(ex)′+(e-x)′]=
21(ex-e-x). 3.[2017·泉州高二检测]函数 f(x)=π2x2 的导数是( )
A.f′(x)=4πx B.f′(x)=2πx
C.f′(x)=2π2x D.f′(x)=2πx2+2π2x
解析 由 f(x)=π2x2 得 f′(x)=2π2x,故选 C.
loga
xf
' ( x)
x
1 ln
a
(a
0且aΒιβλιοθήκη 1)f (x) ln xf '(x) 1 x
导数可以进行四则运算吗?
探究新知 一.导数的运算法则
设两个函数分别为f(x)和g(x)
法则
[f(x)±g(x)]′=f′(x)±g′(x)
语言法叙则述 两[个f(x函)g数(x的)]'=和f('或(x差)g()x的)+导f数(x),g'等(x)于
随堂达标自测
1.下列函数不是复合函数的是( )
A.y=-x3-1x+1 C.y=ln1x
1.2.2导数运算法则1
我们今后可以直接使用的基本初等函数的导数公式 n n 1
公式2.若f ( x) x , 则f '( x) nx ; 公式 ,则 '( xf) '( x0; 公式1. 3.若 若f f( (x x) ) c sin xf, 则 ) cos x;
n n 1 公式 2. 若 f ( x ) x , 则 f '( x ) nx ; x; 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin 公式1.若f ( x) c, 则f '( x) 0; x 公式 3. 若 f ( x ) sin x, 则 f x'( x )a xcos x ; n, 则 n 1a 公式 5. 若 f ( x ) a f '( ) ln ( 公式2.若f ( x) x , 则f '( x) nx ; a 0); 公式 4.若 若f f( (x x) ) e cos x,f则 f '( x)e x x sin x; 公式6. , 则 '( x ) 3. sin x, 则f '( x) ;cos x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 1 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin x;( a 0, 且a 1); 公式7.若f ( x) log x , 则 f '( x ) a 公式6.若f ( x) e xx, 则 f '( x) e xx; x ln a 公式5.若f ( x) a , 则f '( x) a ln a( a 0); 1 1 x x ln x则 ,则 f'('( x'( ) 公式7. ,则 f) ) ( a 0, 且a 1); 6.若f ( x) log e , x x e ;; a xf x x ln a 1 公式8.若f ( x) log a x, 则f '( x) 1 ( a 0, 且a 1); 公式8.若f ( x) ln x, 则f '( x) ; x ln a x 1 公式8.若f ( x) ln x, 则f '( x) ;
1.2.2 导数的运算法则(一)
1.2.2 导数的运算法则(一)知识要点1,两个函数的和(或差)的导数,等于这两个函数的导数的 ,即()()'u x v x ±=⎡⎤⎣⎦2,两个函数的积的导数,等于 ,加上 ,即()()'u x v x ⋅=⎡⎤⎣⎦ 。
特别地,()'cu x =⎡⎤⎣⎦ (其中c 为常数)。
3,两个函数的商的导数,等于 减去 ,再除以 。
即知识点一,直接求导例1,求下列函数的导数(1)23cos y x x x =+ (2)1x y x=+ (3)tan y x = (4)lg x y x e =-变式训练1,求下列函数的导数(1)23y x =(2)5314353y x x x =-++(2)2sin cos y x x x =+ (4)ln 1x y x =+知识点二,先变形再求导例2,求下列函数的导数(1)y =(2)cos 2sin cos x y x x =+(3))22sin cos 22x x y =- 变式训练2,求下列函数的导数 (1)2311y x x x x ⎛⎫=++ ⎪⎝⎭ (2)44sin cos 44x x y =+知识点三,导数的综合应用例3,已知函数21nx y x ⎛⎫= ⎪+⎝⎭过点11,9P ⎛⎫ ⎪⎝⎭,求函数在点P 处的切线方程。
变式训练3,某质点的运动规律是322s t t t =-+,求其最小速度m v水平基础题1.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒2.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -23.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角4.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________.5.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x-1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x. 水平提升题6.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22B .π2C .2π2 D.12(2+π)2 7.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x8.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数9.曲线y =cos x 在点P ⎝⎛⎭⎫π3,12处的切线的斜率为______.10.已知函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.11.已知两条曲线y =sin x 、y =cos x ,是否存有这两条曲线的一个公共点,使在这个点处,两条曲线的切线互相垂直?并说明理由.12.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. 提升拓展题13.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0;(2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.14,求下列函数()f x 的导数(其中是可导函数)1(1)(2)y f y f x ⎛⎫== ⎪⎝⎭知识要点1,和(或差) ()()''u x v x ±2,第一个函数的导数乘第二个函数 第一个函数乘第二个函数的导数()()()()''u x v x u x v x ⋅+⋅ ()'cu x3,分子的导数与分母的积 分母的导数与分子的积 分母的平方()()()()()()()()()2'''0f x g x f x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦典型例题例1,答案:(1)'6cos sin y x x x x =+-(2)()21'1y x =+(3)21'cos y x=(4)1'ln10x y e x =- 变式训练1,(1)'6y x =(2)42'43y x x =-+(3)()2'21sin cos y x x x x =-+(4)()2ln 1'1x x x y x x -+=+例2,答案:(1)21y x==- ()22'1y x =-(2)cos 2cos sin sin cos x y x x x x==-+ 'sin cos y x x =--(3))212sin cos 4sin 222x x y x x =-=--1'1cos 2y x x =-- 变式训练2,(1)232'3y x x =-(2)1'sin 4y x =-例3,答案:因为1921n ⎛⎫= ⎪+⎝⎭,所以2n =,221x y x ⎛⎫= ⎪+⎝⎭()32'21x y x =+,12'|27x y == 所以切线方程为22710x y -+=变式训练3,53m v = 作业练习1.[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.2.[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.3.[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.4.[答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.5.[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x 4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x ; (4)∵y =1+x 1-x +1-x 1+x=(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.6.[答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22. 7.[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x ,f 2(x )=f 1′(x )=(cos x )′=-sin x ,f 3(x )=f 2′(x )=(-sin x )′=-cos x ,f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.8.[答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数.9.[答案] -32[解析] ∵y ′=(cos x )′=-sin x ,∴切线斜率k =y ′|x =π3=-sin π3=-32. 10.[答案] f (x )=-52x -12e x +1 [解析] 由题意可知,f ′(x )|x =-1=-3,∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e , 故f (x )=-52x -12e x +1. 11.[解析] 因为y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的,∴两条曲线不存有公共点,使在这个点处的两条切线互相垂直.12.[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4.② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 的方程为y =0或y =4x -4.13.则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0,由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧ f ′(1)=3a +2b =-3f ′(2)=12a +4b =0, 解得⎩⎪⎨⎪⎧a =1b =-3, 所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数,则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧ a =2b =2c =1, 所以f (x )=2x 2+2x +1.14,()()()2112222211111(1)'''''(2)''''11'11''1222'y f f f x x x x x y f f f x x f x x f --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==•=-• ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤==•⎢⎥⎣⎦=•++=•+•=解:。
第二节函数的和、差、积、商的求导法则
(loga
x)
1 (a y )
1 a y ln a
1. x ln a
特别地
(ln x) 1 . x
10/21
三、常数和基本初等函数的导数公式
(1) (C ) 0;
(2) ( x ) x 1 ( 0);
(3) (sinx) cos x;
(4) (cos x) sin x;
(5) (tan x) sec2 x;
v( x0 x) v( x0 ) x
lim
u( x0
x) x
u( x0 )
v( x0 )
u( x0 )
v( x0
x) x
v( x0 )
x 0
v( x0 x) v( x0 )
u( x0 )
v( x0 ) u( x0 ) [v( x0 )]2
v( x0 )
f ( x) 在 x0 处可导且(3)成立.
(1) [u( x) v( x)] / x x0 u( x0 ) v( x0 );
(2) [u( x) v( x)] / x x0 u( x0 ) v( x0 ) u( x0 ) v( x0 );
(
3)
[
u( v(
x) x)
]
/
x
x
0
u( x0 ) v( x0 ) u( x0 ) v( x0 ) v2( x0 )
8/21
例5 求 y arcsin x 的导数.
解
y sin x 在
Ix
(
2
,
2
)
内单调、可导
,
且 (sin x) cos x 0, 在 I y (1,1) 内有
(arcsin y) 1 (sin x)
高中数学同步教学课件 函数的和差积商求导法则
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∵f(x)=14x2+sinπ2+x=14x2+cos x, ∴f′(x)=12x-sin x. 易知 f′(x)=12x-sin x 是奇函数,其图象关于原点对称,故排除 B,D. 由 f′π6=1π2-12<0,排除 C,故选 A.
A项中,(ax2+bx+c)′=a(x2)′+b(x)′,故正确;
B项中,(sin x-2x2)′=(sin x)′-2(x2)′,故错误;
C
项中,sixn2
x′=sin
x′x2-sin x22
xx2′ ,故错误;
D项中,(cos xsin x)′=(cos x)′sin x+cos x·(sin x)′,故正确.
四
随堂演练
1.已知 f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值为
19
16
A. 3
B. 3
13 C. 3
√D.130
∵f′(x)=3ax2+6x, ∴f′(-1)=3a-6=4, ∴a=130.
1234
2.设函数y=-2exsin x,则y′等于
A.-2excos x
B.-2exsin x
推广式:(f1(x)±f2(x)±…±fn(x))′ =f′1 (x)±f′2 (x)±…±f′n (x). 注意点:
对
于
(logax)′
=
1 xln
a
,
我
们可
以
先
换
底
再
求
导:
(logax)′
=
ln ln
ax ′
=
1 ln a·(ln
x)′=xln1
导数的四则运算法则
导数的四则运算法则3.2.3 导数的四则运算法则教学目的:1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数(2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数3.能够综合运用各种法则求函数的导数教学重点:用定义推导函数的和、差、积、商的求导法则教学难点:函数的积、商的求导法则的推导(教学过程:一、复习引入:常见函数的导数公式:nn,1xxC',0;(k,b为常数) ; ()'kxbk,,()'ln(0,0)aaaaa,,,且(x)',nx111xxxeaa,,,,且(ln)'x, (log)'log(0,0)()'ee,aaxxxaln; (sinx)',cosx(cosx)',,sinx二、讲解新课:2引例求的导数. yxx,,法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即fxgxfxgx()()''()'(),,,,,cfxcfx()'()',法则2常数与函数的积的导数,等于常数与函数的积的导数( ,,法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以fxgxfxgxfxgx()()''()()()'(),,第二个函数的导数,即 ,,证明:令yfxgx,()(),则,y,fxx(),,gxx(),,-fxgx()(),,,fxx()gxx(),,fx()gxx(),,fx()gxx(),,fxgx()()-+-,- 1 -fxxfx()(),,,gxxgx()(),,,,y + ,gxx(),,fx(),x,x,x,x,0因为在点x处可导,所以它在点x处连续,于是当时,,gx()gxxgx()(),,,fxxfx()(),,,gxxgx()(),,,,ylimlimlim从而+ ,gxx(),,fx(),x,0,x,0,x,0,x,x,x, ,,fxgxfxgx'()()()'()法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即',,fxfxgxfxgx()'()()()'(),,,(()0)gx ,,2gxgx()(),,三、讲解范例:例1 求下列函数的导数:5432(1)求多项式函数f(x)=2x+3x-4x+5x-6x+7的导数;2 (2)求的导数. yxx,,,(23)(32)2t,1例2 求下列函数的导数: ?st(), ? hxxx()sin,t例3 求函数(1)y=sin2x;(2)y=tanx的导数。
第二章 导数与微分 第二节 函数的和、差、积、商的求导法则
证明略证明略二例题分析的导数tan的导数cossincossincoscossincosseccossec的导数tanseccossincotcsc内容小结1和差积商的求导法则2重要结论cotcsctansec
函数的和、 第二节 函数的和、差、积、商的求导法则
一、和、差பைடு நூலகம்积、商的求导法则
定理2.1 如 函 u(x), v(x)在 x处 导 则 定理 果 数 点 可 , 它
u u′v − uv′ (3) ( )′ = . 2 v v
证明(略)
二、例题分析
求y = x 4 − cos x + 3 x + ln 5的导数 例1:
解:
y′ = ( x 4 )′ − (cos x)′ + (3 x )′ + (ln 5)′
= 4 x + sin x + 3 ln 3
3 x
例2: 求 y = 2 x sin x 的导数 . 解:
即 (tan x)′ = sec2 x.
同理可得
(cot x)′ = − csc2 x.
例4:求 y = sec x 的导数 . 解
1 y ′ = (sec x )′ = ( )′ cos x − (cos x )′ sin x = sec x tan x . = = 2 2 cos x cos x
(1) (u ± v)′ = u′ ± v′
证明(略) 此法则可推广到任意有限项的情形. 例如,
(2)
(uv)′ = u′v + u v′
证: 设 f (x) = u(x)v(x) , 则有
u(x + h)v(x + h) − u(x)v(x) f (x + h) − f (x) = lim f ′(x) = lim h→0 h→0 h h
函数的和、差、积、商的求导法则
f '(x) 1
'( y)
或者记为dy 1 dx dx
dy
注意:1、这里反函数的记法,并不把自变量按习惯记作x.
2、反函数关系是相互的。
即:x ( y)是 y f ( x)的反函数, y f ( x)也是 x ( y)的反函数。
6
例1 y a x的反函数x loga y在(0, )内单调连续 且x R相应的y (0, )
1 x2
8
二、复合函数的导数
函数u ( x)在x处可导,y f (u)在与x相应的点u处可导,
则:复合函数y f ( x)在x处可导,且
y' f '(u) '( x)
或者 dy dy du dx du dx
由 于y f (u)在 点u处 可 导 , 故lim y f '(u) u0 u
dx
x lna 2
4
例6:g( x)
( x 2 1)2 x2
求:g '( x)
解: 由于:g( x) x 2 2 x 2
先化简函数表达式, 大大方便了计算。
所以:g '( x)
2x 2x3
2 x3
(x4
1)
5
第三节 反函数的导数 复合函数的求导法则
一、反函数求导法则
设:x ( y)单调连续并在点y可导,且'( y) 0 x ( y)的反函数y f ( x)在对应点x处可导,则
x)'
1 x lna
.
(a
0, a
1)
解: log a
x' ln x '
lna
1 (ln x)' ln a
1 x lna
《函数的和、差、积、商的导数》 知识清单
《函数的和、差、积、商的导数》知识清单在数学的世界里,函数的导数是一个极其重要的概念,它帮助我们理解函数的变化率和单调性等重要性质。
而对于函数的运算,如和、差、积、商,它们的导数也有着特定的规律和计算方法。
下面就让我们一起来详细了解一下。
一、函数的和与差的导数1、定理如果函数\(u(x)\)和\(v(x)\)都可导,那么它们的和\(u(x) + v(x)\)与差\(u(x) v(x)\)的导数分别为:\((u(x) + v(x))'= u'(x) + v'(x)\)\((u(x) v(x))'= u'(x) v'(x)\)2、解释与理解这个定理其实很好理解。
想象一下有两个物体在做直线运动,速度分别由函数\(u(x)\)和\(v(x)\)描述。
那么它们一起运动时(相当于函数的和)的速度变化率,就是各自速度变化率的相加;而它们反向运动时(相当于函数的差)的速度变化率,就是各自速度变化率的相减。
例如,有函数\(f(x) = x^2 + 3x\),其中\(u(x) = x^2\),\(v(x) = 3x\)。
\(u'(x) = 2x\),\(v'(x) = 3\),所以\(f'(x) =(x^2 + 3x)'= 2x + 3\)。
再比如,函数\(g(x) = x^3 2x^2\),其中\(u(x) = x^3\),\(v(x) = 2x^2\)。
\(u'(x) = 3x^2\),\(v'(x) = 4x\),所以\(g'(x) =(x^3 2x^2)'= 3x^2 4x\)。
二、函数的积的导数1、定理如果函数\(u(x)\)和\(v(x)\)都可导,那么它们的积\(u(x) \cdot v(x)\)的导数为:\((u(x) \cdot v(x))'= u'(x) \cdot v(x) + u(x) \cdot v'(x)\)2、解释与理解这个公式可以通过对乘积进行微小变化的分析来理解。
第一章1.2.2 基本初等函数的导数公式及导数的运算法则(二)
1.2.2 基本初等函数的导数公式及导数的运算法则(二)[学习目标] 1.理解函数的和、差、积、商的求导法则.2.掌握求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.知识点一 导数运算法则思考 (1)函数g (x )=c ·f (x )(c 为常数)的导数是什么?(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)可导吗?反之如何?(3)导数的和(差)运算法则对三个或三个以上的函数求导成立吗?答案 (1)g ′(x )=cf ′(x ).(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)必可导.若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x)+g (x )=sin x +cos x 在x =0处可导.(3)导数的和(差)运算法则对三个或三个以上的函数求导仍然成立.两个函数和(差)的导数运算法则可以推广到有限个函数的情况,即[f 1(x )±f 2(x )±f 3(x )±…±f n (x )]′=f ′1(x )±f ′2(x )±f ′3(x )±…±f ′n (x ).知识点二 复合函数的导数思考 设函数y =f (u ),u =g (v ),v =φ(x ),如何求函数y =f (g (φ(x )))的导数? 答案 y ′x =y ′u ·u ′v ·v ′x .题型一 导数运算法则的应用例1 求下列函数的导数:(1)y =15x 5+23x 3;(2)y =lg x -e x ;(3)y =1x·cos x ;(4)y =x -sin x 2·cos x 2. 解 (1)y ′=⎝⎛⎭⎫15x 5+23x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫23x 3′ =x 4+2x 2.(2)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (3)方法一 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫1x ′cos x +1x (cos x )′ =12()x -'cos x -1x sin x =-1232x -cos x -1xsin x =-cos x 2x 3-1x sin x =-cos x 2x x -1xsin x =-cos x +2x sin x 2x x. 方法二 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x (x )′(x )2=121sin cos 2x x x x--⋅=-x sin x +cos x2x x =-cos x +2x sin x 2x x . (4)∵y =x -sin x 2·cos x 2=x -12sin x , ∴y ′=⎝⎛⎭⎫x -12sin x ′=1-12cos x . 反思与感悟 在对较复杂函数求导时,应利用代数或三角恒等变形对已知函数解析式进行化简变形,如:把乘积的形式展开,分式形式变为和或差的形式,根式化为分数指数幂等,化简后再求导,这样可以减少计算量.跟踪训练1 求下列函数的导数:(1)y =x 4-3x 2-5x +6;(2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1. 解 (1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-(3x 2)′-(5x )′+6′=4x 3-6x -5.(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin xcos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2 x=(sin x +x cos x )cos x +x sin 2 xcos 2 x=sin x cos x +xcos 2 x .(3)方法一 y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+x 2+3x +2=3x 2+12x +11.方法二 ∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11.(4)方法一 y ′=⎝ ⎛⎭⎪⎫x -1x +1′ =(x -1)′(x +1)-(x -1)(x +1)′(x +1)2=x +1-(x -1)(x +1)2=2(x +1)2. 方法二 ∵y =x -1x +1=x +1-2x +1=1-2x +1, ∴y ′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′ =-2′(x +1)-2(x +1)′(x +1)2=2(x +1)2. 题型二 复合函数求导法则的应用例2 求下列函数的导数:(1)y =(1+cos 2x )3;(2)y =sin 2 1x; (3)y =11-2x2;(4)y =(2x 2-3)1+x 2. 解 (1)y =(1+cos 2x )3=(2cos 2x )3=8cos 6xy ′=48cos 5x ·(cos x )′=48cos 5x ·(-sin x ),=-48sin x cos 5x .(2)令y =u 2,u =sin 1x ,再令u =sin v ,v =1x, ∴y ′x =y ′u ·u ′v ·v ′x =(u 2)′·(sin v )′·⎝⎛⎭⎫1x ′ =2u ·cos v ·0-1x 2=2sin 1x ·cos 1x ·-1x 2=-1x 2·sin 2x. (3)设y =12u -,u =1-2x 2,则y ′=12()u -' (1-2x 2)′=321()2u --·(-4x )=3221(12)2x --- (-4x ) =3222(12)x x --.(4)令y =u v ,u =2x 2-3,v =1+x 2, 令v =w ,w =1+x 2.v ′x =v ′w ·w ′x =(w )′(1+x 2)′=12122x -⋅w=2x21+x 2=x 1+x 2,∴y ′=(u v )′=u ′v +u v ′=(2x 2-3)′·1+x 2+(2x 2-3)·x 1+x 2 =4x 1+x 2+2x 3-3x1+x 2=6x 3+x 1+x 2.反思与感悟 求复合函数的导数的步骤跟踪训练2 求下列函数的导数:(1)y =(2x +1)5;(2)y =1(1-3x )4; (3)y =31-3x ;(4)y =x ·2x -1;(5)y =lg(2x 2+3x +1);(6)y =sin 2⎝⎛⎭⎫2x +π3. 解 (1)设u =2x +1,则y =u 5,∴y ′x =y ′u ·u ′x =(u 5)′·(2x +1)′=5u 4·2=10u 4=10(2x +1)4.(2)设u =1-3x ,则y =u -4,∴y ′x =y ′u ·u ′x =(u -4)′·(1-3x )′=-4u -5·(-3)=12u -5=12(1-3x )-5=12(1-3x )5. (3)设u =1-3x ,则y =13u ,∴y ′x =y ′u ·u ′x =13·23u -·(1-3x )′=13·13(1-3x )2·(-3)=-13(1-3x )2. (4)y ′=x ′·2x -1+x ·(2x -1)′.设t =2x -1,u =2x -1,则t =12u ,t ′x =t ′u ·u ′x =12·12u -·(2x -1)′ =12×12x -1×2=12x -1. ∴y ′=2x -1+x 2x -1=3x -12x -1.(5)设u =2x 2+3x +1,则y =lg u ,∴y ′x =y ′u ·u ′x =1u ln 10×(2x 2+3x +1)′ =4x +3(2x 2+3x +1)ln 10. (6)设u =sin ⎝⎛⎭⎫2x +π3,v =2x +π3, 则y =u 2,u =sin v ,∴y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·⎝⎛⎭⎫2x +π3′ =2sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3·2 =4sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. 题型三 导数几何意义的应用例3 (1)曲线y =x (3ln x +1)在点(1,1)处的切线方程是 .(2)已知函数f (x )=k +ln x e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 .答案 (1)4x -y -3=0 (2)1解析 (1)利用求导法则与求导公式可得y ′=(3ln x +1)+x ×3x=3ln x +4. ∴k 切=y ′|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0.(2)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞). 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.反思与感悟 涉及导数几何意义的问题,可根据导数公式和运算法则,快速求得函数的导数,代入曲线切点处横坐标即可求得曲线在该点处的切线斜率,这样比利用导数定义要快捷得多. 跟踪训练3 (1)若曲线y =x 3+ax 在(0,0)处的切线方程为2x -y =0,则实数a 的值为 .(2)若函数f (x )=e x x在x =a 处的导数值与函数值互为相反数,则a 的值为 . 答案 (1)2 (2)12解析 (1)曲线y =x 3+ax 的切线斜率k =y ′=3x 2+a ,又曲线在坐标原点处的切线方程为2x -y =0,∴3×02+a =2,故a =2.(2)∵f (x )=e x x ,∴f (a )=e a a. 又∵f ′(x )=⎝⎛⎭⎫e x x ′=e x ·x -e x x 2,∴f ′(a )=e a ·a -e a a 2.由题意知f (a )+f ′(a )=0,∴e a a +e a ·a -e a a 2=0,∴2a -1=0,∴a =12.因对复合函数的层次划分不清导致求导时出现错误例4 求函数y =sin n x cos nx 的导数.错解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·cos nx +sin n x ·(-sin nx )=n sin n -1x ·cos nx -sin n x sin nx .错因分析 在第二步中,忽略了对中间变量sin x 和nx 进行求导.正解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·(sin x )′·cos nx +sin n x ·(-sin nx )·(nx )′=n sin n -1x ·cos x ·cos nx -sin n x ·(sin nx )·n=n sin n -1x (cos x cos nx -sin x sin nx )=n sin n -1 x cos [(n +1)x ].防范措施 在求解复合函数的导数时,不能机械地套用公式,应理清层次,逐层正确使用求导法则求解.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( )A.193B.103C.133D.163答案 B解析 因f ′(x )=3ax 2+6x ,且f ′(-1)=3a -6=4,解得a =103,故选B. 2.函数y =12(e x +e -x )的导数是( ) A.12(e x -e -x ) B.12(e x +e -x ) C.e x -e -x D.e x +e -x 答案 A解析 y ′=⎣⎡⎦⎤12(e x +e -x )′=12(e x -e -x ),故选A. 3.f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB.-11+xC.1(1+x )2D.-1(1+x )2答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1,得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 4.已知函数f (x )=a sin x +bx 3+4(a ∈R ,b ∈R ),f ′(x )为f (x )的导函数,则f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)的值为 .答案 8解析 f ′(x )=a cos x +3bx 2,∴f ′(-x )=a cos (-x )+3b (-x )2=f ′(x ).∴f ′(x )为偶函数.∴f ′(2 015)-f ′(-2 015)=0.f (2 014)+f (-2 014)=a sin 2 014+b ·2 0143+4+a sin(-2 014)+b ·(-2 014)3+4=8. ∴f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)=8.5.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = . 答案 8解析 因y =x +ln x ,故y ′=1+1x,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵直线y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时,曲线变为直线y =2x +1,与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y 得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式,对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、选择题1.曲线y =x e x-1在点(1,1)处切线的斜率等于( ) A.2e B.eC.2D.1答案 C 解析 y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为y ′|x =1=2.2.当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0等于( ) A.aB.±aC.-aD.a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A.2B.12C.-12D.-2 答案 D解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知函数f (x )的导函数f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A.2B.-2C.94D.-94答案 D解析 ∵f (x )=x 2+3xf ′(2)+ln x ,∴f ′(x )=2x +3f ′(2)+1x. 令x =2,得f ′(2)=4+3f ′(2)+12,即2f ′(2)=-92,∴f ′(2)=-94,故选D. 5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.[0,π4) B.[π4,π2) C.(π2,3π4] D.[3π4,π) 答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x ∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t+2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π). 6.设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R 且为常数),曲线y =f (x )与直线y =32x 在点(0,0)相切,则a +b 的值为( )A.-1B.1C.0D.2答案 A解析 由y =f (x )过点(0,0)得b =-1,∴f (x )=ln(x +1)+x +1+ax -1, ∴f ′(x )=1x +1+12x +1+a , 又∵曲线y =f (x )与直线y =32x 在点(0,0)相切,即曲线y =f (x )在点(0,0)处切线的斜率为32, ∴f ′(0)=32,即1+12+a =32, ∴a =0,故a +b =-1,选A.二、填空题7.下列各函数的导数:①(x )′=12x -12;②(a x )′=a x ln x ;③(sin 2x )′=cos 2x ;④(x x +1)′=1(x +1)2.其中正确的有 . 答案 ①④解析 (x )′=12()x '=1212x -,①正确;(a x )′=a x ln a ,②错误;(sin 2x )′=cos 2x ·(2x )′=2cos 2x ,③错误;(xx +1)′=x ′·(x +1)-x ·(x +1)′(x +1)2=x +1-x (x +1)2=1(x +1)2,④正确. 8.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是 . 答案 (-ln 2,2)解析 设P (x 0,y 0),∵y =e -x ,∴y ′=-e -x ,∴点P 处的切线斜率为k =-e -x 0=-2,∴-x 0=ln 2,∴x 0=-ln 2,∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2).9.曲线y =e -5x +2在点(0,3)处的切线方程为 .答案 5x +y -3=0解析 因为y ′=e -5x (-5x )′=-5e -5x ,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0),即5x +y -3=0.10.已知f (x )=13x 3+3xf ′(0),则f ′(1)= . 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0,∴f ′(1)=12+3f ′(0)=1.三、解答题11.求下列函数的导数:(1)y =(2x -1)4;(2)y =11-2x; (3)y =sin(-2x +π3);(4)y =102x +3. 解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3.(2)y =11-2x =12(12)x --可看作y =12u-,u =1-2x 的复合函数, 则y x ′=y u ′·u x ′=(-12)32u -·(-2)=32(12)x --=1(1-2x )1-2x. (3)原函数可看作y =sin u ,u =-2x +π3的复合函数, 则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3) =-2cos(2x -π3). (4)原函数可看作y =10u ,u =2x +3的复合函数,则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程.解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3,∴切线方程为y =(3x 20-3)x +16,又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16,即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0.13.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12,① 又f ′(x )=a +b x2,∴f ′(2)=74,② 由①②得⎩⎨⎧ 2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3. 故f (x )=x -3x . (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0||2x 0=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。
2.2导数的运算法则
注
x 1 2 1 法二 y x 1 x 1 2 1 2 y (1) ( ) 2 2 x 1 (1 x ) ( x 1) 2
在进行求导运算中, 尽量先化简再求导, 这样使求导过程简单, 且也能提高结果的准 确性.
8
函数的求导法则
二、复合函数的求导法则
例 求 y x 3 2 x 2 sin x 的导数 . 解
y 3 x 2 4 x cos x.
4
函数的求导法则
例 求 y tan x 的导数 .
sin x 解 y (tan x ) cos x
uv uv u 2 v v
9
函数的求导法则
推广 设 y f (u), u (v ), v ( x ),
则复合函数y f { [ ( x )]}的导数为 dy dy du dv × × . dx du dv dx 例 求函数 y ln sin x 的导数.
解 y lnu, u sin x .
1
2
首页
上页
下页
返回
函数的求导法则
一、函数的和、差、积、商的求导法则
定理1 并且
如果函数u( x ), v( x )在点 x处可导,
在点 x处也可导,
则它们的和、差、积、商
(1) [ u( x ) v( x )] u( x ) v( x ); , R.
即 (sec x ) sec x tan x 同理可得 (csc x ) csc x cot x
7
函数的求导法则
x 1 求 y 的导数 . x 1
v ( x ) 1 2 v( x ) v ( x)
高中数学第三章导数及其应用3.2.2函数的和、差、积、商的导数2111数学
探究 活动 (tànjiū)
第五页,共二十一页。
思考
(sīkǎo)
已知f (x),g(x),怎样求
f (x)g(x)呢?
猜想
(cāixiǎng)
f(x ) g (x )f(x ) g (x )
第六页,共二十一页。
证明(zhèngmíng)
f (x) g (x) f (x) g(x).
第二十页,共二十一页。
内容(nèiróng)总结
1.2.2 函数的和、差、积、商的导数。1.2.2 函数的和、差、积、商的导数。(1)C =0(C为常数
(chángshù))。(2)(xa) =axa-1(a为常数(chángshù))。(3)(ax) =αxlna(a>0,且a≠1)。(4)
No (logax) = logae= (a>0,且a≠1)。2.求下列函数的导数.。法则3
问题3 已知f (x) f ( ) sin x cos x,
2
求f
(
).
4
第十八页,共二十一页。
回顾(huígù) 小结 函数(hánshù)的和差积商的导数求导法则.
第十九页,共二十一页。
课外作业
1.课本(kèběn)习题
2.补充:已知点P(1, 1),点Q(2, 4) 是曲线yx2上两点,求与直线PQ 平行的曲线yx2的切线方程.
练习
(liànxí)
课本(kèběn)P22练习1~5.
小结(xiǎojié):函数的四则运算的求导法则.
第十五页,共二十一页。
拓展(tuò zhǎn) 研究
问题 1 (wèntí)
求下列函数的导数:
(1) y x 1; x 1
(2) y sin 4 x cos4 x ;
高中数学 第1章 导数及其应用 1.2.1 常见函数的导数 1.2.2 函数的和、差、积、商的导数优
1.2 导数的运算常见函数的导数 1.2.2 函数的和、差、积、商的导数5分钟训练 (预习类训练,可用于课前)1.f(x)=0的导数是( )A.0B.1C.不存在D.不确定答案:A解析:f(x)=0是常数,常数的导数是0.2.函数y=sinx 的导数为( )A.sinxB.cosxC.-cosxD.-sinx答案:B解析:由常用函数的导数公式可知(sinx)′=cosx.3.函数y=3x-4的导数是( )A.3B.-4C.-1D.12答案:A解析:由函数导数的运算法则知y′=3.4.函数y=x-(2x-1)2的导数是_____________.解析:y=x-4x 2+4x-1=-4x 2+5x-1.∴y′=-8x+5.答案:5-8x10分钟训练 (强化类训练,可用于课中) 1.y=32x 的导数是( )A.3x 2B.13x 2C.3131--x D.3132-x 答案:D解析:∵y=32x =32x , ∴y′=(32x )′=23132-x =2331-x . 2.y=cosx 在x=6π处切线的斜率为( ) A.23B.23- C.-12D.12 答案:C解析:y′6|π=x =-sin 6π=21-. 3.函数y=sinxcosx 的导数是( )A.sin 2xB.cos 2xC.sin2xD.cos2x答案:D解析:y′=(sinxcosx)′=(sinx)′cosx+sinx(cosx)′=cos 2x-sin 2x=cos2x.4.函数y=x 2·cosx 的导数为___________.解析:y′=(x 2·cosx)′=(x 2)′·cosx+x 2·(cosx )′=2x·cosx -x 2·sinx.答案:2x·cosx -x 2·sinx5.过原点作曲线y=e x 的切线,则切点的坐标为___________,切线的斜率为___________.解析:将e x 求导知(e x )′=e x .设切点坐标为(x 0,0x e ),则过该切点的直线的斜率为0x e .∴直线方程为y-0x e =0x e (x-x 0).∴y -0x e =0x e ·x -x 0·0x e .∵直线过原点,∴(0,0)符合上述方程.∴x 0·0x e =0x e .∴x 0=1.∴切点为(1,e),斜率为e.答案:(1,e) e6.求下列函数的导数.(1)y=x 4-3x 2-5x+6;(2)y=x·tanx; (3)y=11+-x x ; (4)y=(x+1)(x+2)(x+3).解:(1)y′=(x 4-3x 2-5x+6)′=(x 4)′-3(x 2)′-5x′+6′=4x 3-6x-5. (2)y′=(x·tanx)′=(xx x cos sin •)′ =x x x x x x x 2cos )'(cos sin cos )'sin (-• =xx x x x x x 22cos sin cos )cos (sin +•+ =xx x x x x x 222cos sin cos cos sin ++• =xxx x x x 222cos sin cos 2sin 21++ =xx x 2cos 222sin +. (3)解法一:y′=(11+-x x )′ =2)1()'1)(1()1()'1(++--+-x x x x x=2)1()1()1(+--+x x x =)1(2+x .解法二:y=112+-x , y′=(112+-x )′=(12+-x )′ =2)1()'1(2)1()'2(++-+-x x x =2)1(2+x .(4)解法一:y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)=(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x+2)=3x 2+12x+11.解法二:y=x 3+6x 2+11x+6,∴y′=3x 2+12x+11.30分钟训练 (巩固类训练,可用于课后)1.若y=sint,则y′|t=6π等于( )A.1B.-1C.0D.cost答案:A解析:y′|t=6π=cos6π=1.2.曲线y=2x 3-6x 上切线平行于x 轴的点的坐标是…( )A.(-1,4)B.(1,-4)C.(-1,-4)或(1,4)D.(-1,4)或(1,-4)答案:D解析:y′=(2x 3-6x)′=6x 2-6,由y′=0,得x=1或x=-1.代入y=2x 3-6x,得y=-4或y=4.即所求点的坐标为(1,-4)或(-1,4).3.曲线f(x)=x 3+x-2在P 0点处的切线平行于直线y=4x-1,则P 0点的坐标为( )A.(1,0)或(-1,-4)B.(0,1)C.(-1,0)D.(1,4)答案:A4.设y=-2e x sinx,则y′等于( )A.-2e x cosxB.-2e x sinxC.2e x sinxD.-2e x (sinx+cosx)答案:D解析:y′=-2(e x sinx+e x cosx)=-2e x (sinx+cosx).5.设f(x)=x(x-1)(x-2)…(x-100),则f′(0)等于…( )A.100B.0C.100×99×98×…×3×2×1D.1答案:C解析:∵f(x)=x(x -1)(x-2)…(x-100),∴f′(x)=(x -1)(x-2)…(x-100)+x·[(x-1)·(x -2)…(x-100)]′.∴f′(0)=(-1)(-2)…(-100)=100×99×98×…×3×2×1.6.曲线y=x 3在点(a,a 3)(a≠0)处的切线与x 轴、直线x=a 所围成的三角形的面积为61,则a=_______________.解析:∵y=x 3,∴y′=3x 2.∴y=x 3在(a,a 3)点的切线斜率k 为3a 2.∴切线方程为y-a 3=3a 2(x-a),y=3a 2x-2a 3.令3a 2x-2a 3=0,得x=32a,即y=3a 2x-2a 3与x 轴交点横坐标为32a. 令x=a,得y=3a 2×a -2a 3=a 3,即y=3a 2x-2a 3与x=a 交点纵坐标为a 3.∴S △=21×(a 32-a)×a 3=61.∴a=±1. 答案:±1 7.已知直线l 是曲线y=31x 3+x 的切线中倾斜角最小的切线,则l 的方程是_______________. 解析:∵y′=x 2+1≥1,∴过点(0,0)且斜率为1的切线倾斜角最小.∴直线l 的方程是y=x.答案:y=x8.已知f(x)=x 2+ax+b,g(x)=x 2+cx+d,又f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).解:由f(2x+1)=4g(x),得4x 2+2(a+2)x+(a+b+1)=4x 2+4cx+4d.于是有⎩⎨⎧=++=+)2(,41)1(,22d b a c a由f′(x)=g′(x),得2x+a=2x+c,∴a=c.③由f(5)=30,得25+5a+b=30.④∴由①③可得a=c=2.由④得b=-5,再由②得d=21-. ∴g(x)=x 2+2x 21-. 故g(4)=16+821-=247. 9.设直线l 1与曲线y=x 相切于P,直线l 2过P 且垂直于l 1,若l 2交x 轴于Q 点,又作PK 垂直于x 轴于K,求KQ 的长.解:先确定l 2的斜率,再写出方程,设P(x 0,y 0),则1l k =y′| x=x0=021x . 由l 2和l 1垂直,故2l k =-20x ,于是l 2:y-y 0=-20x (x-x 0),令y=0,则-y 0=-20x (x Q -x 0),即-0x =-20x (x Q -x 0).解得x Q =21+x 0.易得x K =x 0. ∴|KQ|=|x Q -x K |=21. 10.已知抛物线C 1:y=x 2+2x 和C 2:y=-x 2+a.如果直线l 同时是C 1和C 2的切线,称l 是C 1和C 2的公切线,公切线上两个切点之间的线段称为公切线段.(1)a 取什么值时,C 1和C 2有且仅有一条公切线?写出此公切线的方程.(2)若C 1和C 2有两条公切线,证明相应的两条公切线段互相平分.答案:(1)解:函数y=x 2+2x 的导数y′=2x+2,曲线C 1在点P(x 1,x 12+2x 1)的切线方程是y-(x 12+2x 1)=(2x 1+2)(x-x 1),即y=(2x 1+2)x-x 12.①函数y=-x 2+a 的导数y′=-2x,曲线C 2在点Q(x 2,-x 22+a)的切线方程是y-(-x 22+a)=-2x 2(x-x 2),即y=-2x 2x+x 22+a.② 如果直线l 是过P 和Q 的公切线,则①式和②式都是l 的方程,⎩⎨⎧+=--=+,,1222121a x x x x 消去x 2得方程2x 12+2x 1+1+a=0,此方程Δ=4-4×2(1+a).由Δ=0,得a=21-,解得x 1=21-,此时P 与Q 重合,即当a=21-时,C 1和C 2有且仅有一条公切线. 由①得公切线方程为y=x-41. (2)证明:由(1)可知当a<21-时,C 1和C 2有两条公切线,设一条公切线上切点为P(x 1,y 1)、Q(x 2,y 2),其中P 在C 1上,Q 在C 2上,则有x 1+x 2=-1,y 1+y 2=x 12+2x 1+(-x 22+a)=x 12+2x 1-(x 1+1)2+a=-1+a,线段PQ 的中点为(21-,21a +-). 同理,另一条公切线段P′Q′的中点也是(21-,21a +-),所以公切线段PQ 和P′Q′互相平分.。
高等数学-函数和、差、积、商的求导 法则
(1 + )2
+ + −
=
(1 + )2
12
03 函数商的求导法则
例4 已知() =
1−
′
,求 ( ).
1+
2
2
续解 即
=
.
2
(1 + )
2
7
02 函数积的求导法则
例2 设 = 3 ,求 ′ .
解
′ = ( 3 )′ + 3 ( )′
=
3 2
+
3
1
⋅
= 3 2 + 2 .
8
本节内容
01 函数和、差的求导法则
02 函数积的求导法则
03 函数商的求导法则
9
03 函数商的求导法则
′ () = ′ ()() + () ′ ().
简记为
()′ = ′ + ′ .
6
02 函数积的求导法则
注 (1)当() = (为常数)时, () ′ = ′ ().
(2)乘积的求导法则也可以推广到任意有限个函数乘积
的情形.例如,()′ = ′ + ′ + ′ .
定理2.5 如果函数 = ()及 = ()在点处可导且
() ≠ 0,那么函数() =
′ () =
简记为
′
特别地,当 ≠ 0时,
()
在点处也可导,且
()
′ ()()−() ′ ()
.
2
[()]
=
′ − ′
.
函数的和、差、积、商的导数PPT教学课件
x)'
2x sin x x2 cos x sin 2 x
3. 求
y
x x2
3 3
在点x
3处的导数
解:y' 1 (x2 3) (x 3) 2x (x2 3)2
x2 6x 3 (x2 3)2
当x 3时, f (3) 32 6 3 3 1
(32 3)2
6
例:求曲线y=x3+3x-8在x=2 处的切线的方程.
互斥、对立事件概率的求法
两互斥事件的并事件的概率,等于这两个事件 的 概 率 的 和 , 即 P(A∪B) = P(A) + P(B) ; 两 对 立事件的概率的和为1,即P(A)+P(Ω\A)=1, 故P(A)=1-P(Ω\A).把复杂事件转化为互斥事 件和对立事件,利用公式求概率.
例3 某射手在一次射击中命中9环的概率 是0.28,8环的概率是0.19,不够8环的概率 是0.29,计算这个射手在一次射击中命中9环 或10环的概率. 【思路点拨】 在一次射击中,命中9环、8 环、不够8环彼此互斥,可用概率的加法公 式求解.
3.用两种方法求y (2x2 3)(3x 2)
的导数
解:法一:y (2x2 3)(3x 2) (2x2 3)(3x 2)
4x(3x 2) (2x2 3) 3
18x2 8x 9
法二:y (6x3 4x2 9x 6)
18x2 8x 9
法则4 :两个函数的商的导数,等于分 子的导数与分母的积,减去分母的导数 与分子的积,再除以分母的平方,即:
(2)连续投掷一枚硬币两次.基本事件为:两 次都是正面朝上,一次正面朝上一次反面朝
上,一次反面朝上一次正面朝上,两次都是
反面朝上; (3)同时投掷两枚完全相同的骰子,所有可能 的结果记为:(1,1),(1,2),(1,3),(1,4), (1,5),(1,6),(2,2),(2,3),(2,4),(2,5), (2,6),(3,3),(3,4),(3,5),(3,6),(4,4), (4,5),(4,6),(5,5),(5,6),(6,6)共21个基本 事件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ f ( x) g ( x)] f ( x) g ( x).
法则2:
[Cf ( x)] Cf ( x).(C为常数)
例1. (1)求函数f ( x) x sin x的导数.
2
解:f ( x) ( x sin x)
2
( x ) (sin x) 2 x cos x
3.利用导数定义求 的导数. ( x
2
2
x) 2 x 1
g ( x) x
2
2
yx x
2
f ( x) x
4.结论:( x 2 猜想:
f ( x) g ( x) x x
x) ( x ) ( x).
[ f ( x) g ( x)] f ( x) g( x)
f ( x) f ( x) g ( x) f ( x) g ( x) [ ] 2 g ( x) g ( x)
其中g ( x) 0
t 1 例3:)求函数s (t ) (1 t 的导数.
2
( 2)求函数y t an x的导数
cos x (3 )求函数y 的导数 x
x (4)求函数f(x) x 的导数. e x
3 63 3 1 当x 3时, f (3) 2 2 (3 3) 6
2
x 6x 3 2 2 ( x 3)
2
例4:求曲线y=x3+3x-8在x=2 处的切线的方程.
解 : f ( x) ( x 3 x 8) 3 x 3
3 2
'
(7)(sinx ) cosx
'
(8)(cosx) sinx
'
2、由定义求导数(三步法)
步骤:
(1) 求增量 y f ( x x ) f ( x );
y f ( x x ) f ( x ) ( 2) 算比值 ; x x
y (3) 当x 0, 常数 x
证明猜想
证明:令
f ( x) g ( x)
y f ( x) g ( x).
f ( x) g ( x).
y f ( x x) g ( x x) f ( x) g ( x)
f ( x x) f ( x) g ( x x) g ( x)
f (2) 3 2 3 y 6 15( x 2),即 15x y 24 0
(2) f ( x) (2 x ln x) (2 x) ln x (2 x)(ln x) 2 ln x 2
3.用两种方法求y (2x
的导数
2
3)(3x 2)
2 2 解: 法一:y (2x 3)(3x 2) (2x 3)(3x 2)
加上第一个函数乘以第二个函数
的导数
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x).
例2:)求函数h( x) x sin x的导数. (1 (2)求函数f ( x) 2 x ln x的导数.
解 : (1)h( x) ( x sin x) x sin x x(sin x) sin x x cos x
解 : (2) f ( x) (
x x
e
) x
x
xe x(e ) e xe 1 x x x 2 2x (e ) e e
x
练 习
1.求 y 2x 3x 5x 4 的导数
3
2
解 : y (2 x 3x 5x 4)
3 2
6x 6x 5
2
3 2 (2)求函数g ( x) x x 6 x 2的导数. 2
3
3 2 解:g ( x) ( x x 6 x) 2 3 2 3 ( x ) ( x ) (6 x) 3 x 2 3 x 6 2
3
法则3:两个函数的积的导数,等于
第一个函数的导数 乘 以第二个函数
2
x 3. y 的导数 sin x
2
( x ) sin x x (sin x) 解:y 2 sin x
2 ' 2 '
'
2 x sin x x cos x 2 sin x
2
x3 4. 求 y 2 在点x 3处的导数 x 3 2 1 ( x 3) ( x 3) 2 x ' 解:y 2 2 ( x 3)
y f ( x x) f ( x) g ( x x) g ( x) x x
f ( x x) f ( x) g ( x x) g ( x)
x x
f ( x) g ( x)
法则1: 两个函数的和(或差)的 导数,等于这两个函数的导数的和 (或差),即:
4 x ( 3 x 2) ( 2 x 3) 3
2
18 x 8 x 9 3 2 法二: y (6 x 4 x 9 x 6)
2
18 x 8 x 9
2
法则4 :两个函数的商的导数,等于分
子的导数与分母的积,减去分母的导数 与分子的积,再除以分母的平方,即:
3.2.2 函数的 和、差、积、商的导数
知识回顾:
基本求导公式:
(1)C 0(C为常数)
(为常数)
(2)( x ) x
x ' x
'
1
(3)(a ) a lna(a 0, 且a 1)
1 (4)(log a x ) (a 0, 且a 1) xlna 1 ' x ' x (6)(lnx) (5)(e ) e x