一元线性回归模型

合集下载

第三章 一元线性回归模型

第三章  一元线性回归模型

第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。

为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。

y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。

定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。

其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。

误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。

在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。

给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。

一元线性回归模型

一元线性回归模型

几个常用结果以及注释 1. Σei =0
2. Σei
Xi=0
3.样本回归方程过( X , Y )点 样本回归方程过( 4.截距为0的一元线性回归模型参数估 计式 一元线性回归模型参数估计举例( P23页)
四、估计量的统计学性质
1. 线性性:b , b 都是Yi的线性函数。
0 1
∑ x y = ∑ x (Y Y ) = ∑ x Y b = ∑ x ∑ x ∑ x ∑ xY = ∑ x x 令: K = 则: b = ∑ K Y 是 Y ∑ x
4.线性回归模型 的普遍性
在实际经济分析中,由于经济变量之间的关系 在实际经济分析中 由于经济变量之间的关系 往往是非常复杂的,所以直接的精确线性模型是较 往往是非常复杂的 所以直接的精确线性模型是较 所以直接的精确线性模型 少的。 少的。 但是,由于第一,线性模型比较容易研究;第 但是,由于第一,线性模型比较容易研究; 二,现实经济分析中许多非线性问题可以经过简 单的数学处理转化为线性模型;第三, 单的数学处理转化为线性模型;第三,非线性模 型的分析基础是线性模型。 型的分析基础是线性模型。 所以,我们研究的思路是先学习线性回归模型, 所以,我们研究的思路是先学习线性回归模型, 然后学习非线性问题。 然后学习非线性问题。
表示 Xi ,Yi…… 离差形式用小写字母表示 xi ,yi……
三、举例说明
计量经济学模型为什么引入随机扰动项ui ? 例题:需求模型 如前所述需求量Q受到商品价格P、当期 收入Yt 、其它商品价格P1 、前期收入Y t-1 、 经济政策G 、……等因素影响。所以, Q=f(P、 Y t 、P1、Y t-1、G……)
i i i i i 1 2 2 2 i i i i i 2 i i i 2 1 i i i

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。
在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函
数为: E (Y |X i)01 X i
它是一个线性函数。其中,0,1是未知
第二章 经典单方程计量经济学模型: 一元线性回归模型
§2.1 回归分析概述 §2.2 一元线性回归模型的基本假设 §2.3 一元线性回归模型的参数估计 §2.4 一元线性回归模型的统计检验 §2.5 一元线性回归模型的预测 §2.6 一元线性回归建模实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
1430 1650 1870 2112
1485 1716 1947 2200
2002
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
一个抽样
由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的。即以X的给定值为条 件的Y的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入Xi,可得消费支出Y的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值 ,见表2.1.2.
相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。
具有相关关系的变量有时存在因果关系,
这时,我们可以通过回归分析来研究它们
之间的具体依存关系。
课堂思考题

数据分析知识:数据分析中的一元线性回归模型

数据分析知识:数据分析中的一元线性回归模型

数据分析知识:数据分析中的一元线性回归模型一元线性回归模型是一种建立变量之间关系的常见方法,其中一个变量(自变量)被用来预测另一个变量(因变量)。

这种模型可以提供有关两个变量关系的数量量化和可视化信息。

在数据分析中,一元线性回归模型被广泛应用于数据建模、预测、探索因果关系等领域。

一元线性回归模型的基本形式为y = a + bx,其中y是因变量,x 是自变量,a是截距,b是斜率。

这个方程表示了自变量对因变量的影响。

斜率b表示每增加一个单位自变量,因变量y会增加多少,截距a 则是因变量在自变量为零时的取值。

通过收集x和y之间的数据并运行线性回归模型,可以得到最佳拟合线的斜率和截距,从而得到x和y 之间的关系。

线性回归模型的优点在于它非常直观和易于理解,并且可以为数据提供定量的关系描述。

此外,线性回归模型还可以用于预测未来的数据趋势,以及评估不同变量对数据的影响。

例如,一元线性回归模型可以用于预测销售额随着广告投资增加的变化情况,或者研究气温和销售量之间的关系。

该模型基于许多假设,如自变量和因变量之间存在线性关系,数据无误差,误差服从正态分布等。

这些假设条件可能并不总是适用于与数据分析相关的所有情况,因此有时需要使用其他模型,如非线性回归或多元回归模型。

应用一元线性回归模型主要有以下几个步骤:(1)确定自变量和因变量。

根据研究或问题确定需要分析的两个变量。

(2)数据收集。

为了开展一元线性回归模型,必须收集有关自变量和因变量的数据。

实际应用中,数据可以从不同来源获得,如调查、实验或社交媒体。

(3)数据清理和准备。

在应用模型之前,必须对数据进行清理和准备以满足模型假设的条件。

如果数据存在缺失值或异常值,则需要进行处理。

此外,数据需要进一步进行标准化和缩放。

(4)应用模型。

使用适当的统计软件分析数据并应用线性回归模型。

每个软件都有所不同,但通常包括输入自变量和因变量、选择线性回归模型、运行分析和结果呈现等步骤。

21一元线性回归模型.ppt

21一元线性回归模型.ppt

同理,p(Y= ? /X=260)=1/7
条件均值(条件期望 ) :
对Y的每一条件概率分布,我们能算出它 的均值 :
记做E(Y/X=Xi)
[简写为E(Y/Xi) ]
并读为“在X取特定Xi值时的Y的期望值”。
计算方法:
将表2.1中的有关列乘以表2.2中的相应列 的条件概率,然后对这些乘积求和便是。
第二章 一元线性回归模型
§2.1 一元线性回归模型概念基础 回归是计量经济学的主要工具 一、“回归”一词的历史渊源
Francis Galton F.加尔顿
回归一词最先由F.加尔顿 (FrancisC,alton)引入
加尔顿的普遍回归定律还被他的朋友 K.皮尔逊(KartPearson)证实
Karl Pearson K.皮尔逊
综合来看,回归分析一般可以用来:
(1) 通过已知变量的值来估计因变量的均值。
(2)对独立性进行假设检验―――根据经济理 论建立适当的假设。
例如,对于需求函数,你可以检验假设:需求的 价格弹性为-1.0;即需求曲线具有单一的价格 弹性。也就是说,在其他影响需求的因素保持 不变的情况下,如果商品的价格上涨1%,平 均而言,商品的需求量将减少1%。
P (
1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Y/ 1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Xi ) 1/7
1/6
1/7
1/7
1/7
1/7
1/7
Y的条 48 46 44 42 40 38 36 34 32 30
件均值
E(Y/X=Xi) Y的条件均值
·
·
·
· ·

计量经济学第二篇一元线性回归模型

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

一元回归线性模型

一元回归线性模型

一元回归线性模型
一元线性回归模型,又称为简单线性回归模型,是机器学习中常
用的回归模型,它是利用一个自变量X来预测因变量Y的结果。

一元
线性回归模型将样本数据映射为一条直线,如y=ax+b,其中a是斜率,b是截距,也就是说,一元线性回归模型中的参数是斜率和截距,而拟
合的直线就是根据样本数据估计出来的最佳拟合直线。

目标函数是求解参数 a 和 b,使得误差平方和最小,具体来说,
目标函数的表达式为:J(a,b)=Σi(yi-f(xi))^2,其中f(x)=ax+b,yi为观测值,xi为观测值对应的自变量。

对于一元线性回归模型,求解参数 a 和 b 的最优方法要么是直
接用梯度下降法求解,要么是用最小二乘法求解。

梯度下降法求解时,需构造损失函数,使用梯度下降法迭代更新参数,直到获得最优结果;而最小二乘法求解时,通过求解参数关于损失函数的导数,便可解出
模型参数,从而得到最优结果。

一元线性回归模型在实际应用中有很多优点,其中最重要的就是
它易于拟合和解释,它求解简单,可以很大程度上减少了计算复杂度,而且可以很好地预测因变量的值,也可以用来检验变量之间的关系。

8.2.1一元线性回归模型

8.2.1一元线性回归模型
E(e) 0, D(e) 2. (1)
确定儿子身高Y 吗?
e 不能,因为随机误差 不可事先设定.
四、模型理解
• 当父亲身高为 xi ,对应的儿子身高 yi 不是唯一
确定的,而是有很多可能的取值,记作
yi bxi a e
它们的均值为:
E( yi ) E(bxi a e) bE(xi ) E(a) E(e) bxi a 0 bxi a.
(2)销售量与广告费用之间的关系能否用一元线性回归模
型 Y bx a e,
来刻画?
E(e) 0, D(e) 2.
(3)请说明模型中 bx a与e分别表示什么?本题中 e 的具
体含义是什么?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 174 170 173 169 182 172 180 172 168 166 182 173 164 180 176 176 170 170 185 176 178 174 170 168 178 172 165 182
儿子身高 父亲身高
176 176 170 170 185 176 178 174 170 168 178 172 165 182
问题1 由这组样本数据能否推断儿子的身高
与父亲的身高有关系?关系的相关程度如 何?是函数关系还是线性相关关系?为什 么?
(1)散点图
(2)相关系数 r 0.886
选择性必修三8.2.1 ggb文件.ggb (命令行)
问题8 • 一元线性回归模型有何作用?
当父亲身高为 xi 时可以通过
E( yi ) bxi a
了解儿子身高的总体情况,从而预测儿子的 身高.
问题9
• 产生随机误差的原因有哪些? • (1)除父亲身高外其他可能影响儿子身高

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——⼀元线性回归⽬录1. ⼀元线性回归模型的数学形式2. 回归参数β0 , β1的估计3. 最⼩⼆乘估计的性质 线性性 ⽆偏性 最⼩⽅差性⼀、⼀元线性回归模型的数学形式 ⼀元线性回归是描述两个变量之间相关关系的最简单的回归模型。

⾃变量与因变量间的线性关系的数学结构通常⽤式(1)的形式:y = β0 + β1x + ε (1)其中两个变量y与x之间的关系⽤两部分描述。

⼀部分是由于x的变化引起y线性变化的部分,即β0+ β1x,另⼀部分是由其他⼀切随机因素引起的,记为ε。

该式确切的表达了变量x与y之间密切关系,但密切的程度⼜没有到x唯⼀确定y的这种特殊关系。

式(1)称为变量y对x的⼀元线性回归理论模型。

⼀般称y为被解释变量(因变量),x为解释变量(⾃变量),β0和β1是未知参数,成β0为回归常数,β1为回归系数。

ε表⽰其他随机因素的影响。

⼀般假定ε是不可观测的随机误差,它是⼀个随机变量,通常假定ε满⾜:(2)对式(1)两边求期望,得E(y) = β0 + β1x, (3)称式(3)为回归⽅程。

E(ε) = 0 可以理解为ε对 y 的总体影响期望为 0,也就是说在给定 x 下,由x确定的线性部分β0 + β1x 已经确定,现在只有ε对 y 产⽣影响,在 x = x0,ε = 0即除x以外其他⼀切因素对 y 的影响为0时,设 y = y0,经过多次采样,y 的值在 y0 上下波动(因为采样中ε不恒等于0),若 E(ε) = 0 则说明综合多次采样的结果,ε对 y 的综合影响为0,则可以很好的分析 x 对 y 的影响(因为其他⼀切因素的综合影响为0,但要保证样本量不能太少);若 E(ε) = c ≠ 0,即ε对 y 的综合影响是⼀个不为0的常数,则E(y) = β0 + β1x + E(ε),那么 E(ε) 这个常数可以直接被β0 捕获,从⽽变为公式(3);若 E(ε) = 变量,则说明ε在不同的 x 下对 y 的影响不同,那么说明存在其他变量也对 y 有显著作⽤。

一元线性回归模型

一元线性回归模型

一.一元线性回归模型1. 一元线性回归模型的基本假设有哪些?违背假设是否能估计?为什么? 答:①E(i V |i X )=0 随机项i V 的数学期望为0 ②Var(i V |i X )=E{[i V —E(i V )]2}=E (2i V )=2u σ③COV(i V ,j V )=E{[i V —E(i V )][j V —E(j V )]}=0 i V ,j V 相互独立不相关 ④COV(i V ,i X )=0 解释变量i X 与误差项i V 同期独立无关 ⑤i V ~N(0,2u σ) i X ,i V 服从正态分布的随机变量 违背的话可以估计 但是要对原数据适当的处理 2. 方差分析表与参数估计表的结构变差来源 平方和 自由度 均方F统计量回归 残差 ESS RSS 12n - ESS22e RSS n S -= 1(2)ESSF RSSn =-总变差 TSS1n -21y TSS n S -=―2R =ESS TSS =1—RSSTSS=2212211[()()]()()ni i i n niii i x x y y x x y y ===----∑∑∑TSS=21()nii yy =-∑ ESS=21ˆ()ni yy =-∑ RSS=21ˆ()ni i y y =-∑ Eviews 输出结果 参数估计值 估计值标准差 F 检验 Variable Coefficient Std. Error t-Statistic Prob.C (0β) (S(0ˆβ)) 0β<对0β显著 X 1β>非线性不通过R-squared Adjusted R-squaredProb(F-statistic) >方程本身不是线性的 结论:该案例结果不理想 无论从个别还是总体上原因:(1) 0β,1β个别检验不通过 (2)F 检验远远超过期望的值(>5%or>10%) (3) 2R =拟合度特别差<50%(注:2R >80%or>70%认为拟合度好)3. 回归方程的标准记法ˆi y=0β+1βi x Se=(S(0ˆβ)) (S(1ˆβ)) 22211ˆ()ˆ22nni i i i uey yn n σ==-==--∑∑2221121ˆ()2()ni u i nii e s n x x σβ===--∑∑222211ˆ()[]()Xn ii x s nx x βσ==+-∑ 111ˆˆ()t s ββ= *代表显著性大小 **代表1%下显著 *代表5%下显著 无*代表5%下不显著 4. t 检验与F 检验的步骤(1) t 检验:01:0H β=11:0H β≠Next 111ˆˆ()t s ββ=~t(n-2) Next 查t 分布表临界值2(2)t n α- α取1%或5% Next 当|t|≥2(2)t n α-拒绝原假设10β≠说明y 对x 的一元线性相关显著当|t|<2(2)t n α-不拒绝原假设10β≠说明y 对x 的一元线性相关不显著(2) F 检验:01:0H β=11:0H β≠ Next 12ESSF RSS n =-(上:回归 下:残差)=?(假设=100)Next 查F α(1,n-2) Next 当100≥F α(1,n-2)拒绝0H 说明y 对x 的一元线性相关显著当100<F α(1,n-2)不拒绝0H 说明y 对x 的一元线性相关不显著(注:统计软件用P 值进行检验P>α等价F<F α(1,n-2)此时不拒绝0H 当P<αF>F α(1,n-2)此时拒绝0H ) 二.多元线性回归模型1. 基本假设:(1) 随机误差项i V 的条件期望值为0 即E(i V |1i X …ki X )=0 (2) 随机误差项i V 的条件方差相同Var(i V |1i X …ki X )=2u σ (3) i V 之间无序列相关COV(i V ,j V )=0 (4) i V ~N(0,2u σ)(5)各种解释变量之间不存在显著的线性相关关系 2.矩阵表达式12ˆˆˆ.ˆn y y y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 11112211...1.....1...k k n kn x x x x x x x ⎫⎛⎪⎪ =⎪ ⎪ ⎝⎭0ˆˆ.ˆk βββ⎛⎫ ⎪= ⎪ ⎪⎝⎭ 1ˆ()()x x x y β-''= 参见P51 例3-1 3随机误差项u 的方差2u σ的最小二乘估计量221ˆ1nii X en k σ==--∑=21ˆ()1niii y yn k =---∑随机误差项i U 同方差且无序列相关 则方差协方差矩阵Var-COV(u)=E(uu ')=)(112.,...n n u E u u u u ⎛⎫⎪ ⎪ ⎪⎝⎭=2u σI4.方差分析表变差来源 平方和 自由度 均方F统计量回归 残差 ESSRSS 12n - ESS22e RSS n S -= 1(2)ESSF RSSn =-总变差 TSS1n -21y TSS n S -=―2R =ESS TSS TSS=21()n i i y y =-∑ ESS=21ˆ()n i y y =-∑ RSS=21ˆ()ni i y y =-∑ 221111(1)11RSSn n k R R TSS n k n ---=-=----- 222211ˆ()ˆ11nniiii i u ey ySe n k n k σ==-===----∑∑5. P69 8(1) 0β1β3β的个别检验不通过,2β的个别检验通过 (2)F 检验通过 对结果不满意三.违背古典假定的计量经济模型 2. 自相关D-W 检验 (1)d< L d ,u 存在一阶正自相关(2)d>4-L d ,u 存在一阶负自相关 (3)u d <d<4-u d ,不存在自相关(4)L d <d<u d ,或4-u d <d<4-L d 时,u 是否存在自相关,不能确定 4.异方差的white 检验(以二元线性模型为例) 二元线性回归模型:01122i i i i y x x u βββ=+++ ① 异方差与解释变量12,x x 的一般线性关系为:2i σ=0α+11i x α+22i x α+231i x α+242i x α+512i i x x α+i V ②<1>运用OLS 估计的式① <2>计算残差序列i并求2i<3>做2i对1i x ,2i x ,21i x ,22i x ,12i i x x 的辅助回归,即222011223142312ˆˆˆˆˆˆˆi i i i i i i e x x x x x x αααααα=+++++ ③其中2ˆi e 为2i e 的估计<4>计算估计量2nR ,n 为样本容量2R 为辅助回归的可决定系数<5>在不存在异方差的原假设下2nR 服从自由度为5的2χ分布,给定显著性水平α查2χ分布表得临界值2αχ(5) 如果2nR >2αχ(5)则拒绝原假设,表明模型中随机误差存在异方差 5.杜宾二步法:第一步求出自相关系数的估计值ˆ第二步利用ˆ进行广义差分变换 对差分模型利用OLS 求的参数0β和1β的估计值0ˆβ和1ˆβ 6.方差扩大因子检验多元回归模型中多重共线性:1x =f(x2,x3….xk) x2=f(x1,x3…xk) …xj=(x1,x2...1j x -…xk) xk=f(x1,x2….1k x -)对每个回归方程求其决定系数分别为12R ,22R (2)j R (2)k R ,在决定系数中寻求最大而接近者,比如2x R 最大,则可判定解释变量Xj 与其他解释变量的一个或多个相关程度高,因此就使回归方程式y=f(x1,x2….xk)表现高度多重共线性,计量经济学中检验多重共线性时,往往称(1-2j R )为自变量Xj 的容忍度,其倒数为方差扩大因子,记为211j jVIF R =- 当模型中全部k 个自变量所对应的方差扩大因子平均数远远大于1时就表明存在严重的多重共线性。

第二章 一元线性回归模型

第二章   一元线性回归模型

__
__
2
/n
★样本相关系数r是总体相关系数 的一致估计
相关系数有以下特点:
• • • • 相关系数的取值在-1与1之间。 (2)当r=0时,线性无关。 (3)若r>0 ,正相关,若r<0 ,负相关。 (4)当0<|r|<1时,存在一定的线性相关 关系, 越接近于1,相关程度越高。 • (5)当|r|=1时,表明x与y完全线性相关 (线性函数),若r=1,称x与y完全正相关; 若r=-1,称x与y完全负相关。 • 多个变量之间的线性相关程度,可用复相 关系数和偏相关系数去度量。
●假定解释变量X在重复抽样中取固定值。 但与扰动项u是不相关的。(从变量X角度看是外生的)
注意: 解释变量非随机在自然科学的实验研究中相对
Yi 1 2 X i ui
●假定解释变量X是非随机的,或者虽然X是随机的,
容易满足,经济领域中变量的观测是被动不可控的, X非随机的假定并不一定都满足。
E( y xi ) 0 1xi
11
• 可以看出,虽然每个家庭的消费支出存在差 异,但平均来说,家庭消费支出是随家庭可 支配收入的递增而递增的。当x取各种值时, y的条件均值的轨迹接近一条直线,该直线称 为y对x的回归直线。(回归曲线)。 • 把y的条件均值表示为x的某种函数,可写 为:
E( y xi ) 0 1xi
Var ( y xi ) 2
Cov( yi , y j ) 0
y | xi ~ N (0 1xi , )
2
22
第三节 参数估计
• 一、样本回归方程
• 对于
yi 0 1 xi ui
• 在满足古典假定下,两边求条件均值,得到总体 回归函数:

第2章一元线性回归模型

第2章一元线性回归模型

布图上的点接近于一条曲线时,称为非线性相关。简单相关按
符号又可分为 正相关 (见图2.3.4 )、负相关 (见图2.3.8 )和零 相关 (见图2.3.6 )。两个变量趋于在同一个方向变化时,即同
增或同减,称为变量之间存在正相关;当两个变量趋于在相反
方向变化时,即当一个变量增加,另一个变量减少时,称为变 量之间存在负相关;当两个变量的变化相互没有关系时,称为
4、普通最小二乘法
为什么要使用OLS? (1)OLS的应用相对简便; (2)以最小化残差平方和为目标在理论很合理; (3)OLS估计量有很多有用的性质。 1)估计的回归线通过Y和X的均值。下列等式总是
ˆ ˆX 严格成立的:设下,可以证明,OLS是 “最优”的估计方法。
2.2.2 最小二乘估计量的性质
一个用于考察总体的估计量,可从如下几个方面考察其
优劣性: (1)线性。即它是否是另一个随机变量的线性函数;
(2)无偏性。即它的均值或期望是否等于总体的真实值;
(3)有效性。即它是否在所有的线性无偏估计量中具有 最小方差; (4)渐近无偏性。 即样本容量趋于无穷大时,它的均值 序列趋于总体的真值; (5)一致性。即样本容量趋于无穷大时,它是否依概率 收敛于总体的真值;
1.总变差的分解
ˆ b ˆX ˆ b Yt的估计值位于估计的回归线 Y t 0 1 t 上,Y围绕其均值的变异 (Y Y )可被分解为两部分:
ˆ Y ) (1) (Y t
ˆ) (2) (Yt Y t
样本回归函数:
3.相关系数检验
(1)变量相关的定义和分类
相关:指两个或两个以上变量间相互关系的程度或强度。
2 2 ˆ e ( Y Y ) i i OLS 最小化 i i 1 i 1

一元线性回归模型及其假设条件

一元线性回归模型及其假设条件

§4.2 一元线性回归模型及其假设条件1.理论模型y=a+bx+εX 是解释变量,又称为自变量,它是确定性变量,是可以控制的。

是已知的。

Y 是被解释变量,又称因变量,它是一个随机性变量。

是已知的。

A,b 是待定的参数。

是未知的。

2.实际中应用的模型x b a yˆˆˆ+= ,bˆ,x 是已知的,y ˆ是未知的。

回归预测方程:x b a y += a ,b 称为回归系数。

若已知自变量x 的值,则通过预测方程可以预测出因变量y 的值,并给出预测值的置信区间。

3.假设条件满足条件:(1)E (ε)=0;(2)D (εi )=σ2;(3)Cov (εi ,εj )=0,i ≠j ; (4) Cov (εi ,εj )=0 。

条件(1)表示平均干扰为0;条件(2)表示随机干扰项等方差;条件(3)表示随机干扰项不存在序列相关;条件(4)表示干扰项与解释变量无关。

在假定条件(4)成立的情况下,随机变量y ~N (a+bx ,σ2)。

一般情况下,ε~N (0,σ2)。

4.需要得到的结果a ˆ,b ˆ,σ2§4.3 模型参数的估计1.估计原理回归系数的精确求估方法有最小二乘法、最大似然法等多种,我们这里介绍最小二乘法。

估计误差或残差:y y e i i i -=,x b a y i +=,e e y y ii i i x b a ++=+= (5.3—1)误差e i 的大小,是衡量a 、b 好坏的重要标志,换句话讲,模型拟合是否成功,就看残差是否达到要求。

可以看出,同一组数据,对于不同的a 、b 有不同的e i ,所以,我们的问题是如何选取a 、b 使所有的e i 都尽可能地小,通常用总误差来衡量。

衡量总误差的准则有:最大绝对误差最小、绝对误差的总和最小、误差的平方和最小等。

我们的准则取:误差的平方和最小。

最小二乘法:令 ()()∑∑---∑======n i ni n i i x b a y y y e i i i i Q 112212 (5.3—2)使Q 达到最小以估计出a 、b的方法称为最小二乘法。

第二节一元线性回归分析

第二节一元线性回归分析

第二节一元线性回归分析本节主要内容:回归是分析变量之间关系类型的方法,按照变量之间的关系,回归分析分为:线性回归分析和非线性回归分析。

本节研究的是线性回归,即如何通过统计模型反映两个变量之间的线性依存关系.回归分析的主要内容:1.从样本数据出发,确定变量之间的数学关系式;2.估计回归模型参数;3.对确定的关系式进行各种统计检验,并从影响某一特定变量的诸多变量中找出影响显著的变量。

一、一元线性回归模型:一元线性模型是指两个变量x、y之间的直线因果关系。

理论回归模型:理论回归模型中的参数是未知的,但是在观察中我们通常用样本观察值估计参数值,通常用分别表示的估计值,即称回归估计模型:回归估计模型:二、模型参数估计:用最小二乘法估计:【例3】实测某地四周岁至十一岁女孩的七个年龄组的平均身高(单位:厘米)如下表所示某地女孩身高的实测数据建立身高与年龄的线性回归方程。

根据上面公式求出b0=80。

84,b1=4。

68。

三.回归系数的含义(2)回归方程中的两个回归系数,其中b0为回归直线的启动值,在相关图上变现为x=0时,纵轴上的一个点,称为y截距;b1是回归直线的斜率,它是自变量(x)每变动一个单位量时,因变量(y)的平均变化量。

(3)回归系数b1的取值有正负号。

如果b1为正值,则表示两个变量为正相关关系,如果b1为负值,则表示两个变量为负相关关系。

[例题·判断题]回归系数b的符号与相关系数r的符号,可以相同也可以不同.( )答案:错误解析:回归系数b的符号与相关系数r的符号是相同的=a+bx,b<0,则x与y之间的相关系数( )[例题·判断题]在回归直线yca。

r=0 b.r=1 c。

0<r〈1 d.—1<r〈0答案:d解析:b〈0,则x与y之间的相关系数为负即—1〈r〈0[例题·单选题]回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )a。

线性相关还是非线性相关 b.正相关还是负相关c。

8.2.1一元线性回归模型(共13张PPT)

8.2.1一元线性回归模型(共13张PPT)

2. 在一元线性回归模型(1)中,参数b的含义是什么?
Y = bx + a + e ,
(1)
E(e) = 0, D(e) = σ2.
解:在一元线性回归模型(1)中,参数b为斜率参 数,参数b的含义是父亲的身高每增加1cm,儿子的身高 平均增加bcm.
3. 将图中的点按父亲身 高的大小次序用折线连 起来,所得到的图像是 一个折线图,可以用这 条折线图表示儿子身高 和父亲身高之间的关系 吗?
(1)
E(e) = 0, D(e) = σ2.
我们称(1)式为Y关于x的一元线性回归模型.
其中,Y称为因变量或响应变量,x称为自变量或解释
变量;a和b为模型的未知参数,a称为截距参数,b称为斜
率参数;e是Y与bx+a之间的随机误差.
模型中的Y也是随机变量,其值虽然不能由变量x的值
确定,但是却能表示为bx+a与e的和(叠加),前一部分由 x
而对于父亲身高为 xi 的某一名男大学生,他的身高yi 并不一定为b xi +a,它仅是该子总体的一个观测值,这个 观测值与均值有一个误差项ei=yi -(bxi +a).
思考? 你能结合具体实例解释产生模型(1)中随机误 差项的原因吗?
在研究儿子身高与父亲身高的关系时,产生随机误差 e的原因有:
8.2一元线性回归模型及其应用
通过前面的学习我们已经了解到,根据成对样本数据 的散点图和样本相关系数,可以推断两个变量是否存在相 关关系、是正相关还是负相关,以及线性相关程度的强弱 等.
进一步地,如果能像建立函数模型刻画两个变量之间 的确定性关系那样,通过建立适当的统计模型刻画两个随 机变量的相关关系,那么我们就可以利用这个模型研究两 个变量之间的随机关系,并通过模型进行预测.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1 n ˆ xi )2 = 1 ( Lyy − bLxy ). ˆ ˆ 即 σ = ∑ ( yi − a − b ˆ n i =1 n
2
n σ 2. 而σ 的无偏估计是 ˆ n−2
2
∴σ ˆ
*2
n 1 2 ˆ σ = ( Lyy − bLxy ). = ˆ n−2 n−2
ex1. 设有一组观察值如下,求回归方程 设有一组观察值如下,求回归方程.
ˆ ˆ ˆ 对于x0可得 y0 = a + bx0 , 称其为 Y0的点预测.
( 2) Y0的区间估计 : 选取 T =
σ* ˆ
ˆ Y0 − y0 ~ t ( n − 2) 2 1 ( x0 − x ) 1+ + n Lxx
对于任意给定的 0 < α < 1, 有 P { T < tα ( n − 2)} = 1 − α .
研究变量间的相关关系,确定回归函数, 研究变量间的相关关系,确定回归函数,由此预测和控 制变量的变化范围等就是回归分析。 制变量的变化范围等就是回归分析。 研究两个变量间的相关关系,称为一元回归分析; 研究两个变量间的相关关系,称为一元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 若回归函数为线性函数,则称为线性回归分析。 若回归函数为线性函数,则称为线性回归分析。
所以y与 之间显著地存在线性关系 之间显著地存在线性关系. 所以 与x之间显著地存在线性关系
四、一元线性回归模型的应用—预测与控制 一元线性回归模型的应用 预测与控制 1. 预测问题
(根据 = a + bx + ε , 研究 = x0时如何估计 0 ) Y x Y
(1) Y0的点估计 :
ˆ ˆ ˆ ˆ ˆ 由n组观察值可得 y = a + bx , 从而 Y = a + bx + ε .
2 2 i =1 2 i =1 i =1
n
n
n
ˆ ˆ ˆ = b ∑ ( xi − x )2 = b 2 Lxx = bLxy .
i =1
n
ˆ Q = Lyy − U = Lyy − b 2 Lxx .
H 假设 0 : b = 0,
U ∵F = ~ F(1, n − 2), Q (n − 2) U 则否定域为 F = > F (1, n − 2). α Q (n − 2)
4.分数指数函数 y = de , 1 令 ln y = y′, = x′, ln d = a , 则y′ = a + bx′. x
5.对数函数 y = a + b lg x ,
令 lg x = x′则y = a + bx′.
b x
1 6.生产函数 y = , −x a + be 1 令 = y ′ , e − x = x ′ , 则 y ′ = a + bx ′ . y
xi : 165 yi : 187
5 5
123 126
150 171
123 为近似的线性关系 由散点图可见, 与 为近似的线性关系 为近似的线性关系.
∵ ∑ xi = 702, ∑ yi = 758, ∑ x = 99864, ∑ xi yi = 108396
See Figure. y ⋅ ⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅ ⋅
y
x o o 这里的直线和曲线y=f(x)可以作为相关变量观察结果的 这里的直线和曲线y=f(x)可以作为相关变量观察结果的 一种近似描述,这样的函数称为回归函数。 一种近似描述,这样的函数称为回归函数。

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅ ⋅ ⋅ x
ˆ ˆ ˆ ˆ 即 a + bx − δ ( x ) < Y < a + bx + δ ( x ).
可见,预测问题就是已知 x得出Y的范围即求得y1, y2 .
2. 控制问题 (控制是预测的反问题 控制是预测的反问题). 控制是预测的反问题
即要使变量 Y在区间( y1 , y2 )内取值,
y1 = a + bx1 − σ * Zα ˆ ˆ ˆ 2 由 ˆ x2 + σ * Zα ˆ ˆ y2 = a + b 2
α = 005, n = 5, 查表得 F0.05 (1,3) = 10.13,
∴ 否定域为 F > 10.13.
ˆ U = bLxy = 1.5138 × 1972.8 = 2986.4246,
Q = Lyy − U = 2999.2 − 2986.4246 = 12.7754,
U 2986.4246 ∴F = = × 3 = 701.29104 ∈ 否定域. 12.7754 Q 3
求出x1和x2 , 作为x控制区间的两端点.
8.2 可线性化的一元回归模型
1 b 1.双曲线 = a + , x y 1 1 令 = y ′ , = x ′ , 则 y ′ = a + bx ′. y x
2.幂函数 y = dx b ,
令 ln y = y′, ln x = x′, ln d = a , 则y′ = a + bx′. 3.指数函数 y = de bx , 令 ln y = y′, ln d = a , 则y′ = a + bx .
满足 : 或 或
(1) max ei 最小;
i
( 2)∑ ei 最小;
i
( 3)∑ ei2最小.
i
而 ∑ e = ∑ ( yi − a − bxi )2
2 i i
n
求 Q(a , b ) = ∑ ( yi − a − bxi )2的最小值 ,即可求得 a , b.
i =1
i =1 n

n ∂Q = −2∑ ( yi − a − bxi ) = 0 i =1 ∂a n ∂Q = −2∑ ( yi − a − bxi ) xi = 0 i =1 ∂b
解得
a = y − bx
b = i =1 n
n
∑ x i y i − nx y
i =1
n
∑ x − nx
2 i
2
= i =1
∑ ( xi − x )( yi − y )
i =1
n
( xi − x )2 ∑
n
记Lxx = ∑ ( xi − x ) = ∑ xi2 − nx 2
2
n
Lyy = ∑ ( yi − y )2 = ∑ yi2 − ny 2 Lxy = ∑ ( xi − x )( yi − y ) = ∑ xi yi − nxy
从而解得, 从而解得,
2
ˆ y0 − t α σ * ˆ
2
1 ( x0 − x ) 2 1 ( x0 − x ) 2 ˆ 1+ + < Y0 < y0 + tα σ * 1 + + ˆ n Lxx n Lxx 2
ˆ ˆ 即 y0 − δ ( x0 ) < Y0 < y0 + δ ( x0 ).
ˆ ˆ 将x0换成 x , 则得 Y的置信区间为 y − δ ( x ) < Y < y + δ ( x ).
二、回归系数的最小二乘估计
ˆ ˆ ˆ ˆ ˆ 设a , b的估计值为 a , b , 则y = a + bx .
1. 下面通过观察值 xi , yi )来计算ˆ, b. ( a ˆ
ˆ 为方便起见 , 记y = a + bx .
ˆ 对于每个观察值 ( xi , yi ), 相应地可得 yi = a + bxi . ˆ 要使得 y = a + bx是最好的, 就是要使残量 (差) : ˆ e i = y i − yi
Chapter 8(1) 一元线性回归模型
8.1 一元线性回归模型
回归分析是数据处理中常用的一种方法。 回归分析是数据处理中常用的一种方法。在此着重 讨论应用最普遍的线性回归,并简单介绍非线性回归。 讨论应用最普遍的线性回归,并简单介绍非线性回归。 变量与变量之间的关系大致分为两类: 变量与变量之间的关系大致分为两类: (1)确定性关系; )确定性关系; 相关关系。 (2)非确定性关系 相关关系。 )非确定性关系—相关关系 相关关系虽有不确定性,但是在大量的观察下, 相关关系虽有不确定性,但是在大量的观察下,则 会呈现一定的规律性。 会呈现一定的规律性。 通常通过散点图来进行统计。 通常通过散点图来进行统计。 散点图来进行统计
i =1 i =1 i =1 n i =1 n
i =1 n
i =1 n
a = y − bx 则有 Lxy b = L xx
ˆ ˆ ˆ ∴ y = a + bx
为经验回归直线方程 .
2. 通过矩法估计来计算σ 2 .
∵ σ = E (ε )是ε的二阶原点矩 ,
2 2
1 n 2 1 n ˆ ∴ σ = ∑ ε i = ∑ ( yi − a − bxi )2 . n i =1 n i =1
假设 0 : b = 0, H
则否定域为 T = ˆ b
σ ˆ
*
⋅ Lxx > tα (n − 2).
2
2. F检验法 检验法
yi 之间总的差异可用离差 平方和 Lyy来描述 .
ˆ ˆ Lyy = ∑ ( yi − y ) = ∑ [( yi − yi ) + ( yi − y )]2
2 n n i =1 n i =1 n
ˆ ˆ ˆ ˆ = ∑ ( yi − yi ) + ∑ ( yi − y ) + 2∑ ( yi − yi )( yi − y )
相关文档
最新文档