新人教版精选九年级期末数学模拟试卷
2023年人教版九年级数学(下册)期末模拟试卷及答案
2023年人教版九年级数学(下册)期末模拟试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .302.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,13.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.已知12a b +=,则代数式223a b +﹣的值是( ) A .2 B .-2 C .-4 D .132- 7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C. D.8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A2B.2C.4 D.2二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.因式分解:(x+2)x ﹣x ﹣2=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于______.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、D5、D6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、32、(x+2)(x ﹣1)3、-124、40°.5、)6、12三、解答题(本大题共6小题,共72分)1、4x =2、-11x +,-14. 3、(1)略;(2)略;(3)10.4、(1)略;(2).5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
人教版九年级数学上册期末模拟考试(参考答案)
人教版九年级数学上册期末模拟考试(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( ) A .3B .13C .13-D .3-2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( ) A .12 B .10C .8或10D .63.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D .4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( ) A .平均数B .中位数C .众数D .方差5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( ) A .2B .22﹣2C .22+2D .227.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0) D .(-32,0) 二、填空题(本大题共6小题,每小题3分,共18分)181__________. 2.分解因式:33a b ab -=___________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x . (1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、D5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、ab(a+b)(a﹣b).3、24、12 5.5、12.6、454353 x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、2x=2、(1)k﹥34;(2)k=2.3、(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P112-),P2(352,2),P3,2),P412-).4、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为25、(1)50;(2)见解析;(3)16.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
人教版初三数学期末模拟试题(带解析)
人教版初三数学期末模拟试题(带解析)一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长度为()A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = 2/xC. y = 5x + 1D. y = x/23. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个等差数列的前三项分别是2, 5, 8,那么它的第10项是()A. 29B. 30C. 31D. 325. 若|a| = 5,则a的值为()A. 5或5B. 5C. 5D. 0二、判断题(每题1分,共5分)1. 任何两个等边三角形都是相似的。
()2. 一元二次方程的解可以是两个相等的实数根。
()3. 在同一平面内,平行线的斜率是相同的。
()4. 对角线互相垂直的四边形一定是菱形。
()5. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)1. 若一个三角形的两边长分别是5和12,且这两边的夹角是90度,那么这个三角形的周长是______。
2. 函数y = 2x + 3的图象与y轴的交点是______。
3. 一个正六边形的每个内角是______度。
4. 若一个数的算术平方根是4,那么这个数是______。
5. 若|a 3| = 2,那么a的值为______或______。
四、简答题(每题2分,共10分)1. 解释什么是等差数列,并给出一个例子。
2. 简述直角三角形的勾股定理。
3. 什么是函数的单调性?给出一个例子。
4. 解释平行线的性质。
5. 什么是绝对值?给出一个例子。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的对角线长度。
2. 若一个等差数列的第一项是3,公差是2,求它的第5项。
3. 解方程2x 5 = 3。
4. 计算下列表达式的值:|3| + |5| |2|。
2022年人教版九年级数学上册期末模拟考试(带答案)
2022年人教版九年级数学上册期末模拟考试(带答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.式子有意义, 则实数a的取值范围是()A. a≥-1B. a≠2C. a≥-1且a≠2D. a>22.已知是二元一次方程组的解, 则的算术平方根为()A. ±2B.C. 2D. 43. 下列计算正确的是()A. a2+a3=a5B.C. (x2)3=x5D. m5÷m3=m24.如图, 数轴上的点A, B, O, C, D分别表示数-2, -1, 0, 1, 2, 则表示数的点P应落在A. 线段AB上B. 线段BO上C. 线段OC上D. 线段CD上5.关于x的不等式的解集为x>3, 那么a的取值范围为()A. a>3B. a<3C. a≥3D. a≤36.用配方法解方程时, 配方后所得的方程为()A. B. C. D.7.如图, 点B, C, D在⊙O上, 若∠BCD=130°, 则∠BOD的度数是()A. 50° B. 60° C. 80° D. 100°8.如图, 直线a∥b, 将一个直角三角尺按如图所示的位置摆放, 若∠1=58°, 则∠2的度数为()A. 30°B. 32°C. 42°D. 58°9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 抛物线的对称轴是.下列结论:①;②;③;④, 正确的有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: ______________.2. 分解因式: 2x2﹣8=_______.3. 函数中自变量x的取值范围是__________.4. (2017启正单元考)如图, 在△ABC中, ED∥BC, ∠ABC和∠ACB的平分线分别交ED于点G、F, 若FG=4, ED=8, 求EB+DC=________.5. 如图, 正方形纸片的边长为12, 是边上一点, 连接. 折叠该纸片, 使点落在上的点, 并使折痕经过点, 得到折痕, 点在上. 若, 则的长为__________.6. 如图, 在Rt△ABC中, ∠ACB=90°, AC=5cm, BC=12cm, 将△ABC绕点B顺时针旋转60°, 得到△BDE, 连接DC交AB于点F, 则△ACF与△BDF的周长之和为_______cm.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 先化简, 再求值: , 其中.3. 如图, 在中, , , D是AB边上一点点D与A, B不重合, 连结CD, 将线段CD绕点C按逆时针方向旋转得到线段CE, 连结DE交BC于点F, 连接BE.求证: ≌;当时, 求的度数.4. 如图, 已知⊙O为Rt△ABC的内切圆, 切点分别为D, E, F, 且∠C=90°, AB=13, BC=12.(1)求BF的长;(2)求⊙O的半径r.5. 随着社会的发展, 通过微信朋友圈发布自己每天行走的步数已经成为一种时尚. “健身达人”小陈为了了解他的好友的运动情况. 随机抽取了部分好友进行调查, 把他们6月1日那天行走的情况分为四个类别: A(0~5000步)(说明: “0~5000”表示大于等于0, 小于等于5000, 下同), B(5001~10000步), C(10001~15000步), D(15000步以上), 统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中, 一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中, “A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人, 请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6. 一商店销售某种商品, 平均每天可售出20件, 每件盈利40元.为了扩大销售、增加盈利, 该店采取了降价措施, 在每件盈利不少于25元的前提下, 经过一段时间销售, 发现销售单价每降低1元, 平均每天可多售出2件.(1)若降价3元, 则平均每天销售数量为________件;(2)当每件商品降价多少元时, 该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.D4.B5.D6.D7、D8、B9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.a52.2(x+2)(x﹣2)3.4.125.6.42.三、解答题(本大题共6小题, 共72分)1.2、.3. 略;.4、(1)BF=10;(2)r=2.5.(1)30;(2)①补图见解析;②120;③70人.6、(1)26;(2)每件商品降价10元时, 该商店每天销售利润为1200元.。
新人教版九年级数学下册期末测试卷及答案【精品】
新人教版九年级数学下册期末测试卷及答案【精品】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.10.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-52,0) D.(-32,0)二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________.2.分解因式:2x3﹣6x2+4x=__________.3.函数2y x=-x的取值范围是__________.4.(2017启正单元考)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:23121 x x=+-2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、B5、C6、C7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x(x﹣1)(x﹣2).3、2x≥4、125、12.6、5三、解答题(本大题共6小题,共72分)1、x=52、(1)k≤58;(2)k=﹣1.3、(1)y=﹣x2+2x+3;(2)P (97,127);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.4、(1)二次函数的表达式为:213222y x x=--;(2)4;(3)2或2911.5、(1)34;(2)1256、(1)120件;(2)150元.。
新人教版九年级数学上册期末模拟考试(参考答案)
新人教版九年级数学上册期末模拟考试(参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.比较2, , 的大小, 正确的是()A. B.C. D.2. 用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A. y=(x﹣4)2+7B. y=(x+4)2+7C. y=(x﹣4)2﹣25D. y=(x+4)2﹣253.下列结论中, 矩形具有而菱形不一定具有的性质是()A. 内角和为360°B. 对角线互相平分C. 对角线相等D. 对角线互相垂直4.直线不经过第二象限, 则关于的方程实数解的个数是().A. 0个B. 1个C. 2个D. 1个或2个5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书, 每个同学都把自己的图书向本组其他成员赠送一本, 某组共互赠了210本图书, 如果设该组共有x名同学, 那么依题意, 可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=2106.关于x的方程(为常数)根的情况下, 下列结论中正确的是()A. 两个正根 B. 两个负根C. 一个正根, 一个负根D. 无实数根7.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, 已知是的角平分线, 是的垂直平分线, , , 则的长为()A. 6B. 5C. 4D.9.如图, △ABC中, AD是BC边上的高, AE、BF分别是∠BAC、∠ABC的平分线, ∠BAC=50°, ∠ABC=60°, 则∠EAD+∠ACD=()A. 75°B. 80°C. 85°D. 90°10.如图, 矩形的对角线, 交于点, , , 过点作, 交于点, 过点作, 垂足为, 则的值为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: =____________.2. 分解因式: ___________.3. 已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方, 则实数k的取值范围是__________.4. 如图, 已知△ABC的周长是21, OB, OC分别平分∠ABC和∠ACB, OD⊥BC于D, 且OD=4, △ABC的面积是__________.5.图1是我国古代建筑中的一种窗格, 其中冰裂纹图案象征着坚冰出现裂纹并开始消溶, 形状无一定规则, 代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形, 则∠1+∠2+∠3+∠4+∠5=__________度.6. 如图,菱形ABCD顶点A在例函数y= (x>0)的图象上, 函.y= (k>3, x>0)的图象关于直线AC对称, 且经过点B.D两点, 若AB=2, ∠DAB=30°, 则k 的值为______.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 先化简, 再求值(+m﹣2)÷;其中m=+1.3. 如图, 已知点A(﹣1, 0), B(3, 0), C(0, 1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P, 使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上, 是否存在一点Q, 使∠BQC=∠BAC?若存在, 求出Q点坐标;若不存在, 说明理由.4. 如图, AB为⊙O的直径, C为⊙O上一点, ∠ABC的平分线交⊙O于点D, DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系, 并说明理由;(2)过点D作DF⊥AB于点F, 若BE=3 , DF=3, 求图中阴影部分的面积.5. 元旦期间, 某超市开展有奖促销活动, 凡在超市购物的顾客均有转动圆盘的机会(如图), 如果规定当圆盘停下来时指针指向8就中一等奖, 指向2或6就中二等奖, 指向1或3或5就中纪念奖, 指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动, 估计获得一等奖的人数是多少?6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、C4、D5、B6、C7、B8、D9、A10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.ab(a+b)(a﹣b).3.k<44、425.360°.6.6+2三、解答题(本大题共6小题, 共72分)1.x=32. ,原式=.3.(1)抛物线的解析式为y=﹣x2+ x+1;(2)点P的坐标为(1, )或(2, 1);(3)存在, 理由略.4、(1)DE与⊙O相切, 理由略;(2)阴影部分的面积为2π﹣.5.(1) ;(2)1256、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一、选择题(共40分)1.我市积极开展“全民参与垃圾分类,共享环保低碳生活”宣传活动.生活垃圾应按照厨余垃圾、可回收垃圾、有害垃圾、其它垃圾进行分类,分别投入相应标识的收集容器内.下面有关垃圾分类的图标,是中心对称图形的是()A.B.C.D.2.一元二次方程x2=2x的根为()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2 3.同时抛出两枚骰子,下列事件为随机事件的是()A.向上一面的点数之和等于1B.向上一面的点数之和大于1C.向上一面的点数之和等于12D.向上一面的点数之和大于124.已知点P(a,2)和Q(﹣5,b)关于原点对称,则a+b的值为()A.1B.﹣1C.3D.﹣35.已知平行四边形ABCD,以对角线交点O为圆心作圆,下列结论一定成立的是()A.若点A在⊙O上,则点B在⊙O上B.若点B在⊙O上,则点C在⊙O内C.若点C在⊙O上,则点A在⊙O内D.若点D在⊙O上,则点B在⊙O上6.如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,若AD:AB=2:3,则△ADE和△ABC的面积之比等于()A.2:3B.4:9C.4:5D.7.如图,已知抛物线y=ax2+c与直线y=kx+m交于A(﹣3,y1),B(1,y2)两点,则关于x的不等式ax2+c≥﹣kx+m的解集是()A.x≤﹣3或x≥1B.x≤﹣1或x≥3C.﹣3≤x≤1D.﹣1≤x≤3 8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°9.如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是()A.20B.30C.40D.随点O位置而变化10.如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积是()A.2B.C.4D.6二、填空题(共24分)11.抛物线y=3(x﹣1)2+8的顶点坐标为.12.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为.13.一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,1个白球,1个黑球,搅匀后,从中随机摸出1个球,则摸到一个红球的概率为.14.一个扇形的半径为4,圆心角为90°,则此扇形的弧长为.15.如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED的度数为.(用含有α的式子表示)16.抛物线y=x2﹣2tx+2t2+1的顶点为P.现给出以下结论:①该抛物线的开口向下;②y的最小值为1;③当﹣2<x<1时,y随x的增大而增大,则t>﹣2;④若P(t,p),Q(m,n)是该抛物线上不同的两点,则n>p;⑤该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2>2t,则y1>y2.其中正确的是.(写出所有正确结论的序号)三、解答题(共86分)17.解方程:x2﹣2x﹣1=0.18.已知关于x的方程x2+4x﹣m=0有两个不相等的实数根,求m的取值范围.19.如图,CD是⊙O的直径,AC是⊙O的切线,弦DE∥OA,AE的延长线与CD的延长线交于B.求证:AB是⊙O的切线.20.我市疫情防控指挥部积极组织接种新冠疫苗活动,为了宣传新冠疫苗接种的重要性,某小区管理部门准备在已经接种疫苗的居民中征集志愿者.现有3男2女共5名居民报名,要从这5人中随机挑选2人,请利用画树状图或列表的方法,求恰好抽到一男和一女的概率.21.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E.(1)依题意补全图形;(2)点F是边AC中点,求证:四边形BEDF是平行四边形.22.如图,在平面直角坐标系中,四边形OABC为矩形,C,A两点分别在x轴的正半轴上和y轴的正半轴上,D为线段AB的中点,反比例函数的图象经过点B.(1)当点C坐标为(1,0)时,求点D的坐标;(用含k的代数式表示)(2)若一次函数y=﹣3x+k的图象经过C,D两点,求k的值.23.某商城将每件成本为50元的工艺品,以60元的单价出售时,每天的销售量是400件,已知在每件涨价幅度不超过14元的情况下,若每件涨价1元,则每天就会少售出10件.(1)若商城想每天获得6000元的利润,应涨价多少元?(2)求商城销售工艺品所获得的最大利润.24.如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD=∠CBE,求证:BG2=GE•GD.25.在平面直角坐标系xOy中,抛物线y=m(m≠0)的顶点为Q.(1)求点Q的坐标;(用含m的代数式表示)(2)抛物线与x轴只有一个公共点,经过点(1,2)的直线与抛物线交于A,B两点(点A在点B的左侧);①当直线AB过原点时,求线段AB的长;②判断△AQB的形状,并说明理由.参考答案一、选择题(共40分)1.解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项C能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;故选:C.2.解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得x1=0,x2=2,故选:C.3.解:A、两枚骰子向上一面的点数之和等于1是不可能事件,故本选项不符合题意;B、两枚骰子向上一面的点数之和大于1是必然事件,故本选项不符合题意;C、两枚骰子向上一面的点数之和等于12是随机事件,故本选项符合题意;D、两枚骰子向上一面的点数之和大于12是不可能事件,故本选项不符合题意;故选:C.4.解:由点P(a,2)和Q(﹣5,b)关于原点对称,得a=5,b=﹣2.a+b=5﹣2=3.故选:C.5.解:∵四边形ABCD是平行四边形,对角线交点为O,∴OA=OC,OB=OD.A、若点A在⊙O上,则点C在⊙O上,但是点B不一定在圆上,因为OA与OB不一定相等,不符合题意;B、若OB>OC时,当点B在⊙O上,则点C在⊙O内,不符合题意;C、若点C在⊙O上,则点A也在⊙O上,不符合题意;D、若点D在⊙O上,则点B在⊙O上,符合题意.故选:D.6.解:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴=()2=.故选:B.7.解:∵y=kx+m与y=﹣kx+m的图象关于y轴对称,∴直线y=﹣kx+m与抛物线y=ax2+c的交点A′、B′与点A、B也关于y轴对称,如图所示:∵A(﹣3,y1),B(1,y2),∴A′(3,y1),B′(﹣1,y2),根据函数图象得:不等式ax2+c≥﹣kx+m的解集是﹣1≤x≤3,故选:D.8.解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=∠EOF=60°,故选:B.9.解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠F AC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO+OD)×AF=FD×AF=10,∴FD×AF=20,DM=cos30°DE=x,DF=2DM=x,EM=sin30°DE=,∴S正六边形ABCDEF=S矩形AFDC+S△EFD+S△ABC=AF×FD+2S△EFD=x•x+2×x•x=x2+x2=x2=(AF×FD)=30,故选:B.10.解:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△OBP=S△AOB,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB,∵点B在反比例函数y=的图象上,∴S△OBE=×4=2,∴S△OBP=S△AOB=2S△OBE=4.故选:C.二、填空题(共24分)11.解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).12.解:∵AD∥BE∥CF,∴=,∵AB=3,BC=6,DE=2,∴EF===4,故答案为:4.13.解:根据题意知,从中随机摸出1个球共有4种等可能结果,其中摸到一个红球的有2种结果,所以摸到一个红球的概率为=,故答案为:.14.解:扇形弧长为:=2π,故答案为:2π.15.解:∵∠ABC=∠ADE,∠ABC+∠ABE=180°,∴∠ABE+∠ADE=180°,∴∠BAD+∠BED=180°,∵将△ABC绕点A顺时针旋转角α,得到△ADE,∴∠BAD=α,∴∠BED=180°﹣α.故答案为:180°﹣α.16.解:∵a=1>0,∴抛物线y=x2﹣2tx+2t2+1的开口方向向上,∴①的结论不正确;∵y=x2﹣2tx+2t2+1=(x﹣t)2+t2+1,∴y的最小值为t2+1,∴②的结论不正确;∵当﹣2<x<1时,y随x的增大而增大,∴t≥﹣2,∴③的结论不正确;∵y=x2﹣2tx+2t2+1=(x﹣t)2+t2+1,∴抛物线的对称轴为直线x=t,∴P(t,p)为抛物线的顶点,∵抛物线y=x2﹣2tx+2t2+1的开口方向向上,∴点P(t,p)最低,∴若P(t,p),Q(m,n)是该抛物线上不同的两点,则n>p,∴④的结论正确;∵x1+x2>2t,∴点A(x1,y1),B(x2,y2)可能均在抛物线的对称轴的右侧,∵抛物线y=x2﹣2tx+2t2+1的开口方向向上,在抛物线的对称轴的右侧的图象上y随x 的增大而增大,∴y1<y2.∴⑤的结论不正确,综上,正确的结论有:④.故答案为:④.三、解答题(共86分)17.解:解法一:∵a=1,b=﹣2,c=﹣1∴b2﹣4ac=4﹣4×1×(﹣1)=8>0∴∴,;解法二:∵x2﹣2x﹣1=0,则x2﹣2x+1=2∴(x﹣1)2=2,开方得:,∴,.18.解:∵x2+4x﹣m=0有两个不相等的实数根,∴Δ=42﹣4×1×(﹣m)=16+4m>0,解得m>﹣4.19.证明:连接OE,∵OD=OE,∴∠ODE=∠OED,∵DE∥AO,∴∠COA=∠ODE,∠AOE=∠OED,∴∠COA=∠AOE,∵在△ACO和△AEO中,∴△ACO≌△AEO(SAS),∴∠AEO=∠ACO,∵AC⊥CD,∴∠ACO=90°,∴∠AEO=90°,∵OE为半径,∴直线AB是⊙O的切线.20.解:画树状图如图:共有20种等可能的结果,恰好抽到一男和一女的结果有12种,∴恰好抽到一男和一女的概率为=.21.(1)解:如图,△DEC即为所求.(2)证明:在Rt△ABC中,∠ABC=90°,∠ACB=30°,∴AC=2AB,∵点F是边AC中点,∴AC=2BF,∴BF=AB,由旋转可知,DE=AB,∠BAC=60°,∠CDE=90°,CB=CE,∴DE=FB,△BCE是等边三角形,∴∠CEB=∠CBE=60°,∵BF=CF,∴∠CBF=30°,∴∠EBF=30°,∴∠DEB+∠EBF=90°+60°+30°=180°,∴DE∥FB,∴四边形BEDF是平行四边形.22.解:(1)∵四边形OABC为矩形,C,A两点分别在x轴的正半轴上和y轴的正半轴上,点C坐标为(1,0),∴B点的横坐标为1,∵反比例函数的图象经过点B,∴B(1,k),∵D为线段AB的中点,∴D(,k);(2)在y=﹣3x+k中,令y=0,则﹣3x+k=0,∴C(,0),∴B(,3),∴A(0,3),∵点D为AB的中点,∴点D(,3),∵点D在直线y=﹣3x+k上,∴3=﹣3×+k,∴k=6,∴k的值为6.23.解:(1)设每件工艺品涨m元,根据题意得:(60+m﹣50)(400﹣10m)=6000,解得m=10或m=20,∵20>14,∴m=20不符合题意,舍去,∴m=10,答:每件工艺品涨10元;(2)设商城销售工艺品所获得的利润为w元,每件工艺品涨x元,根据题意得:w=(60+x﹣50)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250,∵﹣10<0,x≤14,∴当x=14时,w取最大值,最大值为﹣10×(14﹣15)2+6250=6240(元),答:商城销售工艺品所获得的最大利润为6240元.24.(1)证明:∵AG平分∠BAC,∴∠BAG=∠F AC,又∵∠G=∠C,∴△ABG∽△AFC;(2)解:由(1)知,△ABG∽△AFC,∵AC=AF=b,∴AB=AG=a,∴FG=AG﹣AF=a﹣b;(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,∴∠BAG=∠CBG,∵∠ABD=∠CBE,∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,又∵∠DGB=∠BGE,∴△DGB∽△BGE,∴=,∴BG2=GE•GD.25.解:(1)∵y=m=(x+m)2﹣m2﹣m,∴抛物线的顶点Q坐标为(﹣m,﹣m2﹣m);(2)∵抛物线与x轴只有一个公共点,∴Δ=m2﹣4××(﹣m)=m2+m=0,解得m1=0(舍去),m2=﹣1,∴y=x2﹣x+,①∵直线AB过原点,∴设直线AB解析式为y=kx,将(1,2)代入y=kx得:k=2,∴直线AB解析式为y=2x,联立方程组,解得或,∴A(3﹣2,6﹣4),B(3+2,6+4),∴AB==4;②∵Q(﹣1,0),∴AQ2=(3﹣2+1)2+(6﹣4)2=80﹣56,BQ2=(3+2)2+(6+4)2=80+56,AB2=(4)=160,∴AB2=AQ2+BQ2,∴△AQB是直角三角形.。
人教版九年级数学期末模拟试卷(三)
人教版九年级数学期末模拟试卷(三)一、单选题1.如图,用剪刀沿虚线将一个正六边形纸片剪掉一个三角形,发现剩下的纸片的周长比原来的纸片的周长小,能正确解释这一现象的数学( )A .两点确定一条直线B .经过一点只有一条直线C .垂线段最短D .两点之间,线段最短2.下列各式正确的是( ) A .16=±4B .2(3)-=3C .64-=﹣8D .43﹣4=33.已知实数a 和b 在数轴上的位置关系如图所示,则结论错误是( )A .a >bB .a ﹣4>b ﹣4C .﹣4a >﹣4bD .44a b>4.()()3a b a ---化简后,正确结果( ) A .﹣b ﹣3B .b +3C .3﹣bD .b ﹣35.据3月9日《四川日报》报道,一款对新冠病毒具有消杀功能的纳米喷雾剂被四川大学的科学家研制出来,该喷雾剂不仅可以使用在口罩上,减少白色塑料的环境污染以及降低病毒二次传染,还可以用于公共卫生的大规模新冠病毒消杀.其中一种组成物——“植物多酚”分子直径为32纳米(1纳米=0.000000001米),32纳米用科学记数法表示正确的是( ) A .92810-⨯米 B .83.210⨯﹣米 C .103.210⨯﹣米D .93.210⨯﹣米6.方孔铜钱应天圆地方之说,古代入们认为天是圆的(圆形),地是方的(正方形),所以秦朝以后铸钱大多以“外圆内方”为型.如图中是一枚清代的“乾隆通宝”,“外圆”直径为a ,内方边长为b ,则这枚钱币的面积可以表示为( )A .πa 2﹣b 2B .222a b π-C .224a b π-D .228a b π-7.为推广和普及冰雪运动,某中学举办“青春梦想,活力飞Young ”冬奥知识竞赛.为了了解全校2800名学生的竞赛成绩,从中抽取了100名学生的竞赛成绩进行统计分析,以下说法正确的是( )A .抽取的100名学生是总体的一个样本B .每名学生的竞赛成绩是个体C .全校2800名学生是总体D .100名学生是样本容量8.如图,关于四边形ABCD 的4个结论正确的是( ) ①它两组对边分别相等; ②它是矩形;③它是平行四边形; ④它有一个角是直角.A .由①推出③,由③和④推出②B .由④推出②,由②推出①,由①推出③C .由②推出④,由④推出①D .由③推出④,由①和④推出② 9.在△ABC 中,AB =AC >BC ,小明按照下面的方法作图:①以B 为圆心BC 为半径画弧,交AC 于点D ;②分别以C 、D 为圆心大于12CD 为半径画弧,两弧交于点M ;③作射线BM,交AC于点E.根据小明画出的图形,判断下列说法正确的是()A.E是AC中点B.∠ABE=∠CBEC.BE⊥AC D.△ABC的内心一定在线段BE上10.如图,将边长6cm的正方形纸片沿虚线剪开,剪成两个全等梯形.已知裁剪线与正方形的一边夹角为60°,则梯形纸片中较短的底边长为()A.(3﹣3)cm B.(3﹣23)cm C.(6﹣3)cm D.(6﹣23)cm11.关于x的分式方程1122mx x+=--有增根,则(1)m﹣=()A.﹣1 B.1 C.2 D.512.如图1,小明在路灯下笔直的向远离路灯方向行走,将其抽象成如图2所示的几何图形.已知路灯灯泡距地面的距离AB等于4米,小明CD身高1.5米,小明距离路灯灯泡的正下方距离BC等于4米,当小明走到E点时,发现影子长度增加2米,则小明走过的距离CE等于()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间13.已知,如图,⊙O的半径为6,正六边形ABCDEF与⊙O相切于点C、F,则CF的长度是()A.2πB.3πC.4πD.5π14.如图是反比例函数y1=2x和y2=4x-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象交于A、B两点,点P(﹣5.5,0)在x轴上,则△P AB的面积为()A.3 B.6 C.8.25 D.16.515.已知,二次函数2y ax bx c=++图象如图所示,则下列结论正确的有()①abc<0;②2a+b=0;③4a+2b+c>0;④a+b≥m(am+b)(其中,m为任意实数)A.1个B.2个C.3个D.4个16.如图,现有A、B、C三点,在数轴上分别表示﹣2、0、4,三点在数轴上同时开始运动,点A向左运动,运动速度是2/s,点B、C都是向右运动,运动速度分别是3/s、4/s,甲、乙两名同学提出不同的观点.甲:5AC﹣6AB的值不变;乙:5BC﹣10AB的值不变.则下列选项中,正确的是()A.甲正确,乙错误B.乙正确,甲错误C.甲乙均正确D.甲乙均错误二、填空题17.已知2m=8n=4,则m=_____,2m+3n=_____.18.一个几何体的三视图如图所示,则这个几何体是_____;它的侧面积是_____cm2.19.已知,如图,Rt△ABC中,∠ABC=90°,∠BAC=60°,A(1,0),AB=2.(1)点C坐标为_____.(2)若y轴上存在点M,使得∠AMB=∠BCA,则这样的点有_____个.三、解答题20.已知关于x的不等式155a xa x-<-.(1)当a=2022时,求此不等式解集.(2)a为何值,该不等式有解,并求出其解集.21.现有甲乙两个矩形,其边长如图所示(a>0),周长分别为C甲和C乙,面积分别为S甲和S乙.(1)用含a的代数式表示C甲=;C乙=;S甲=;S乙=.(2)通过观察,小明发现“甲、乙两个矩形的周长相等,与a值无关”;小亮发现“a值越大,甲、乙两个矩形的面积之差越大”.你认为两位同学的结论都正确吗?如果不正确,请对错误同学的结论说明理由.22.为了宣传冬奥精神,普及青少年冬奥小知识,让学生知道更多的冬奥知识,某中学举行了一次“冬奥知识竞赛”,为了解这次竞赛成绩情况,抽取部分学生成绩(成绩取整数,满分为100分)作为样本,并将结果分为A、B、C、D四类,其中60分及以下为D类,61~80分为C类,81~99分为B类,100分为A类,绘制了如下的条形统计图和扇形统计图,请结合此图回答下列问题:(1)请把图1中条形统计图补充完整;(2)此样本数据的中位数落在范围内;(3)若这次竞赛成绩100分的学生可获奖,全校共1000名学生,请估计全校获奖人数约为人;(4)若甲、乙、丙、丁四名同学都为满分,现需要选取2名同学代表学校去参加全市比赛,请用树状图或表格分析甲和丙同学同时被选中的概率.23.如图,在平面直角坐标系中,点A(﹣5,m),B(m﹣3,m),其中m>0,直线y=kx﹣1与y轴相交于C点.(1)求点C坐标.(2)若m=2,①求△ABC的面积;②若点A和点B在直线y=kx﹣1的两侧,求k的取值范围;(3)当k=﹣1时,直线y=kx﹣1与线段AB的交点为P点(不与A点、B点重合),且AP<2,求m的取值范围.24.如图1,在等腰△ABC中,AB=AC=12,以AB为直径的⊙O交BC于点D,交AC于点E,点M为AC边上一点.(1)若40BAC∠︒=.求BD的长度;(2)如图2,连接DM,当DM⊥AC时,求证:DM是⊙O的切线;(3)如图3,在(2)的条件下,延长MD,交AB的延长线于N,若DN=8,求MC的长.25.新型建材(即新型建筑材料)是区别于传统的砖瓦、灰砂石等建材的建筑材料新品种,行业内将新型建筑材料的范围作了明确的界定,即新型建筑材料主要包括新型墙体材料、新型防水保温隔热密封材料和装饰装修材料三大类,某开发商承建一精密实验室,要求全部使用新型建筑材料,经调查发现:新型建筑材料总成本包括装饰装修材料成本、新型墙体材料成本和新型防水保温隔热密封材料成本,其中装饰装修材料成本固定不变为100万元,新型墙体材料成本与建筑面积x(m2)成正比,新型防水保温隔热密封材料成本与建筑面积x(m2)的平方成正比,在建筑过程中,设新型建筑材料总成本为y(万元),获得如下数据:x(单位:m2)20 50y(单位:万元)240 600(1)求新型建筑材料总成本为y(万元)与建筑面积x(m2)的函数表达式;(2)在建筑过型中,开发商测算出此时每平方米的平均成本为12万元,求此时完成的建筑面积;(3)设建设该厂房每平方米的毛利润为Q(万元)且有Q=kx+b(k≠0),已知当x=50时,Q为12.5万元,且此时开发商总纯利润W最大,求k、b的值.(纯利润=毛利润﹣成本)26.如图1,等腰直角三角形ABC中,∠A=90°,AB=AC=102cm,D为AB边上一点,tan∠ACD=15,点P由C点出发,以2cm/s的速度向终点B运动,连接PD,将PD绕点D逆时针旋转90°,得到线段DQ,连接PQ.(1)填空:BC=,BD=;(2)点P运动几秒,DQ最短;(3)如图2,当Q点运动到直线AB下方时,连接BQ,若S△BDQ=8,求tan∠BDQ;(4)在点P运动过程中,若∠BPQ=15°,请直接写出BP的长.。
新人教版九年级数学下册期末测试卷(附答案)
新人教版九年级数学下册期末测试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为()A.2±D.2±B.2C.22.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC.若|a|>a,则a≤0 D.若|a|>|b|,则a>b.4.某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(-10%)(+15%)万元B.(1-10%)(1+15%)万元C.(-10%+15%)万元D.(1-10%+15%)万元5.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.分解因式:x 3﹣16x =_____________.3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________. 5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、C6、B7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、x (x +4)(x –4).3、54、125.5、360°.6、245三、解答题(本大题共6小题,共72分)1、x =52、3x3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-. 4、(1)2(2)略5、()117、20;()22次、2次;()372;()4120人.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
2022年部编人教版九年级数学上册期末模拟考试及答案2
2022年部编人教版九年级数学上册期末模拟考试及答案2班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间2.已知是二元一次方程组的解, 则的算术平方根为()A. ±2B.C. 2D. 43.如果, 那么代数式的值为()A. B. C. D.4. 一次函数y=kx﹣1的图象经过点P, 且y的值随x值的增大而增大, 则点P 的坐标可以为()A. (﹣5, 3)B. (1, ﹣3)C. (2, 2)D. (5, ﹣1)5.已知am=3, an=4, 则am+n的值为()A. 7B. 12C.D.6. 函数的自变量x的取值范围是()A. , 且B.C.D. , 且7.如图, 点B、F、C、E在一条直线上, AB∥ED, AC∥FD, 那么添加下列一个条件后, 仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC8.如图, 是函数上两点, 为一动点, 作轴, 轴, 下列说法正确的是( )①;②;③若, 则平分;④若, 则A. ①③B. ②③C. ②④D. ③④9.根据圆规作图的痕迹, 可用直尺成功找到三角形外心的是()A. B.C. D.10.如图, 小巷左右两侧是竖直的墙, 一架梯子斜靠在左墙时, 梯子底端到左墙角的距离为0.7米, 顶端距离地面2.4米, 如果保持梯子底端位置不动, 将梯子斜靠在右墙时, 顶端距离地面2米, 那么小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的平方根是__________.2. 因式分解: _______.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4. 如图, 把三角板的斜边紧靠直尺平移, 一个顶点从刻度“5”平移到刻度“10”, 则顶点C平移的距离CC'=_________.5. 如图,已知AB是⊙O的直径,AB=2,C.D是圆周上的点,且∠CDB=30°,则BC的长为______.6. 如图, 在菱形中, 对角线交于点, 过点作于点, 已知BO=4, S菱形ABCD=24, 则__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1, x2满足x12+x22=11, 求k的值.3. 在□ABCD, 过点D作DE⊥AB于点E, 点F在边CD上, DF=BE, 连接AF, BF.(1)求证: 四边形BFDE是矩形;(2)若CF=3, BF=4, DF=5, 求证:AF平分∠DAB.4. 如图, 点A, B, C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上, AB∥x轴, ∠ABC=135°, 且AB=4.(1)填空: 抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2, 当2m﹣5≤x≤2m﹣2时, y的最大值为2, 求m的值.5. 为了提高学生阅读能力, 我区某校倡议八年级学生利用双休日加强课外阅读, 为了解同学们阅读的情况, 学校随机抽查了部分同学周末阅读时间, 并且得到数据绘制了不完整的统计图, 根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时, 中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人, 试估计周末阅读时间不低于1.5小时的人数.6. 某学校为了改善办学条件, 计划购置一批电子白板和台式电脑. 经招投标, 购买一台电子白板比购买2台台式电脑多3000元, 购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况, 购买电子白板和台式电脑的总台数为24, 并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.A4.C5.B6.A7、C8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.±32.a(a+3)(a-3)3、增大.4.55.16.三、解答题(本大题共6小题, 共72分)1.原方程无解.2、(1)k≤;(2)k=﹣1.3.(1)略(2)略4.(1)(m, 2m﹣5);(2)S△ABC =﹣;(3)m的值为或10+2 .5、(1)补全的条形统计图如图所示, 见解析, 被调查的学生周末阅读时间的众数是1.5小时, 中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1)购买一台电子白板需9000元, 一台台式电脑需3000元;(2)购买电子白板6台, 台式电脑18台最省钱.。
2022年部编人教版九年级数学上册期末模拟考试【及参考答案】
2022年部编人教版九年级数学上册期末模拟考试【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是( )A .5B .15C .15-D .-52.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-35.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,⊙O 中,半径OC ⊥弦AB 于点D ,点E 在⊙O 上,∠E=22.5°,AB=4,则半径OB 等于( )A.2B.2 C.22D.39.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.10.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.11二、填空题(本大题共6小题,每小题3分,共18分)164____________.2.分解因式:2x2﹣8=_______.3.若a,b都是实数,b12aa-﹣2,则a b的值为__________.-214.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿△为直角三角形时,BE的长为________. AE折叠,使点B落在点B'处,当CEB'5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作P.当P 与正方形ABCD 的边相切时,BP 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241x -+1=11x x -+2.先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、B5、B6、C7、D8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2(x+2)(x ﹣2)3、44、3或32.5、406、3或三、解答题(本大题共6小题,共72分)1、无解.2、3.3、(1)略(2)64、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)60,10;(2)96°;(3)1020;(4)236、(1)100,50;(2)10.。
2022年人教版九年级数学上册期末模拟考试及完整答案
2022年人教版九年级数学上册期末模拟考试及完整答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.式子有意义, 则实数a的取值范围是()A. a≥-1B. a≠2C. a≥-1且a≠2D. a>22.某种植基地2016年蔬菜产量为80吨, 预计2018年蔬菜产量达到100吨, 求蔬菜产量的年平均增长率, 设蔬菜产量的年平均增长率为x, 则可列方程为()A. 80(1+x)2=100B. 100(1﹣x)2=80C. 80(1+2x)=100D. 80(1+x2)=1003.若, 则x, y的值为()A. B. C. D.4.直线不经过第二象限, 则关于的方程实数解的个数是().A. 0个B. 1个C. 2个D. 1个或2个5.关于x的不等式组的解集为x<3, 那么m的取值范围为()A. m=3B. m>3C. m<3D. m≥36.不等式组的解集是, 那么m的取值范围()A. B. C. D.7.老师设计了接力游戏, 用合作的方式完成分式化简, 规则是:每人只能看到前一人给的式子, 并进行一步计算, 再将结果传递给下一人, 最后完成化简.过程如图所示:接力中, 自己负责的一步出现错误的是()A. 只有乙B. 甲和丁C. 乙和丙D. 乙和丁8.如图所示, 四边形ABCD为⊙O的内接四边形, ∠BCD=120°, 则∠BOD的大小是()A. 80°B. 120°C. 100°D. 90°9.如图将直尺与含30°角的三角尺摆放在一起, 若, 则的度数是()A. B. C. D.10.如图, 直线L上有三个正方形a, b, c, 若a, c的面积分别为1和9, 则b的面积为()A. 8B. 9C. 10D. 11二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是__________.2. 因式分解: a3-a=_____________.3. 若实数a, b满足(4a+4b)(4a+4b-2)-8=0, 则a+b=__________.4. 如图, 已知△ABC的周长是21, OB, OC分别平分∠ABC和∠ACB, OD⊥BC于D, 且OD=4, △ABC的面积是__________.5.如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B、D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图, 在矩形ABCD中, AB=4, AD=3, 以顶点D为圆心作半径为r的圆, 若要求另外三个顶点A, B, C中至少有一个点在圆内, 且至少有一个点在圆外,则r的取值范围是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知二次函数y=﹣x2+bx+c的图象经过A(0, 3), B(﹣4, ﹣)两点.(1)求b, c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点, 求公共点的坐标;若没有, 请说明情况.3. 如图, 在平面直角坐标系中, 一次函数和的图象相交于点, 反比例函数的图象经过点.(1)求反比例函数的表达式;(2)设一次函数的图象与反比例函数的图象的另一个交点为, 连接, 求的面积.4. 如图, 已知P是⊙O外一点, PO交圆O于点C, OC=CP=2, 弦AB⊥OC,劣弧AB的度数为120°, 连接PB.(1)求BC的长;(2)求证: PB是⊙O的切线.5. 为了了解某校初中各年级学生每天的平均睡眠时间(单位: h, 精确到1h), 抽样调查了部分学生, 并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息, 回答下列问题:(1)求出扇形统计图中百分数a的值为, 所抽查的学生人数为. (2)求出平均睡眠时间为8小时的人数, 并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名, 请你估计睡眠不足(少于8小时)的学生数.6. 随着粤港澳大湾区建设的加速推进, 广东省正加速布局以5G等为代表的战略性新兴产业, 据统计, 目前广东5G基站的数量约1.5万座, 计划到2020年底, 全省5G基站数是目前的4倍, 到2022年底, 全省5G基站数量将达到17.34万座.(1)计划到2020年底, 全省5G基站的数量是多少万座?;(2)按照计划, 求2020年底到2022年底, 全省5G基站数量的年平均增长率.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.A3.D4.D5.D6.A7、D8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.a(a-1)(a + 1)3.- 或14.425.136. .三、解答题(本大题共6小题, 共72分)1.无解2、(1);(2)公共点的坐标是(﹣2, 0)或(8, 0)3.(1)反比例函数的表达式为;(2)的面积为.4.(1)2(2)略5、(1)45%, 60;(2)见解析18;(3)7, 7.2;(4)7806、(1)到2020年底, 全省5G基站的数量是6万座;(2)2020年底到2022年底, 全省5G基站数量的年平均增长率为.。
2022年部编人教版九年级数学(上册)期末摸底测试及答案
2022年部编人教版九年级数学(上册)期末摸底测试及答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 一5的绝对值是()A. 5B.C.D. -52.已知抛物线经过和两点, 则n的值为()A. ﹣2B. ﹣4C. 2D. 43. 下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是14.对于反比例函数, 下列说法不正确的是A. 图象分布在第二、四象限B.当时, 随的增大而增大C. 图象经过点(1,-2)D. 若点, 都在图象上, 且, 则5.实数在数轴上的对应点的位置如图所示.若实数满足, 则的值可以是()A. 2B. -1C. -2D. -36.在平面直角坐标系中, 抛物线经过变换后得到抛物线, 则这个变换可以是()A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移8个单位7.如图, 等边三角形ABC中, AD⊥BC, 垂足为D, 点E在线段AD上, ∠EBC=45°, 则∠ACE等于()A. 15°B. 30°C. 45°D. 60°8.如图, AD, CE分别是△ABC的中线和角平分线.若AB=AC, ∠CAD=20°, 则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.10.如图, 点P是矩形ABCD的对角线AC上一点, 过点P作EF∥BC, 分别交AB, CD于E、F, 连接PB、PD.若AE=2, PF=8.则图中阴影部分的面积为()A. 10B. 12C. 16D. 18二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是____________.2. 因式分解: _________.3. 若代数式1﹣8x与9x﹣3的值互为相反数, 则x=__________.4. 如图, △ABC中, ∠BAC=90°, ∠B=30°, BC边上有一点P(不与点B, C 重合), I为△APC的内心, 若∠AIC的取值范围为m°<∠AIC<n°, 则m+n=__________.5. 如图, 已知正方形DEFG的顶点D.E在△ABC的边BC上, 顶点G、F分别在边AB.AC上. 如果BC=4, △ABC的面积是6, 那么这个正方形的边长是__________.6. 如图是一张矩形纸片, 点E在AB边上, 把沿直线CE对折, 使点B落在对角线AC上的点F处, 连接DF. 若点E, F, D在同一条直线上, AE=2, 则DF=_____, BE=__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知A-B=7a2-7ab, 且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0, 求A的值.3. 如图, 一次函数的图象与反比例函数的图象相交于、两点, 其中点的坐标为, 点的坐标为.(1)根据图象, 直接写出满足的的取值范围;(2)求这两个函数的表达式;(3)点在线段上, 且, 求点的坐标.4. 如图, AB是圆O的直径, O为圆心, AD.BD是半圆的弦, 且∠PDA=∠PBD. 延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线, 并说明理由;(2)如果∠BED=60°, PD= , 求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF, 点F正好在圆O上, 如图2, 求证:四边形DFBE为菱形.5. 为了解某校九年级男生1000米跑的水平, 从中随机抽取部分男生进行测试, 并把测试成绩分为D.C.B.A四个等次绘制成如图所示的不完整的统计图, 请你依图解答下列问题:(1)a= , b= , c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中, 随机选取两名男生参加全市中学生1000米跑比赛, 请用列表法或画树状图法, 求甲、乙两名男生同时被选中的概率.6. 某商场举办抽奖活动, 规则如下: 在不透明的袋子中有2个红球和2个黑球, 这些球除颜色外都相同, 顾客每次摸出一个球, 若摸到红球, 则获得1份奖品, 若摸到黑球, 则没有奖品.(1)如果小芳只有一次摸球机会, 那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回), 求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、A2、B3、D4、D5、B6、B7、A8、B9、D10、C二、填空题(本大题共6小题, 每小题3分,共18分) 1、32、2(3)a a3、24.255.5、1276.2 ﹣1三、解答题(本大题共6小题, 共72分)1.x=-32.(1)3a2-ab+7;(2)12.3、(1) 或 ;(2) , ;(3)4.(1)略;(2)1;(3)略.5、(1)2.45、20;(2)72;(3)6.(1) ;(2)概率P=。
2023年人教版九年级数学下册期末模拟考试【参考答案】
2023年人教版九年级数学下册期末模拟考试【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1是同类二次根式的是( )A B C D 2.如果y,那么y x 的算术平方根是( )A .2B .3C .9D .±33.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=9.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D,若⊙P的半径为5,点A的坐标是(0,8),则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)10.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若ABC60∠=,BAC80∠=,则1∠的度数为()A.50B.40C.30D.20二、填空题(本大题共6小题,每小题3分,共18分)1.计算:18322-+=____________.2.分解因式:4ax 2-ay 2=____________.3.若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为_____.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、D5、B6、C7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、02、a(2x+y)(2x-y)3、-1或2或14、140°5、360°.6、454353 x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、x3=-2、-11x+,-14.3、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)略;(2)略.5、(1)200、81°;(2)补图见解析;(3)1 36、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.。
2023年人教版九年级数学下册期末模拟考试【加答案】
2023年人教版九年级数学下册期末模拟考试【加答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列实数中的无理数是()A B C D.22 72.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B C.2 D.43.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<04.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1 B.1 C.3 D.-35.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103 6.用配方法解方程2x2x10--=时,配方后所得的方程为()A.2x10+=()B.2x10-=()C.2x12+=()D.2x12-=()7.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°8.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.31π+B.32C.2342π+D.231π+9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC二、填空题(本大题共6小题,每小题3分,共18分)1364的平方根为__________.2.因式分解:a 3-a =_____________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).5.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).6.如图,在平面直角坐标系中,抛物线()28203y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M .P 为抛物线的顶点.若直线OP交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2312xx x--=-2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、B5、C6、D7、A8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±22、a(a-1)(a + 1)3、20204、a+8b5、) 120016、2三、解答题(本大题共6小题,共72分)1、x=45.2、(1)k≤58;(2)k=﹣1.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)略;(2)112.5°.5、(1)2、45、20;(2)72;(3)1 66、(1)35元/盒;(2)20%.。
新人教版九年级数学下册期末模拟考试(附答案)
新人教版九年级数学下册期末模拟考试(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见 D.全校学生家长的意见3.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.434.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形6.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.2 2 C.2D.27.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,已知AB是O的直径,点P在BA的延长线上,PD与O相切于点D,过点B作PD的垂线交PD的延长线于点C,若O的半径为4,6BC ,则PA的长为()A.4 B.23C.3 D.2.510.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:x 3﹣16x =_____________.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为__________米.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF (1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠=︒,求FGC∠的度数.ACB∠=︒,28ABC5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、C5、B6、B7、C8、B9、A 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、x (x +4)(x –4).3、7或-14、85、56、3三、解答题(本大题共6小题,共72分)1、x=12、22m m-+ 1.3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)78°.5、解:(1)200. (2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
最新部编人教版九年级数学下册期末模拟考试及参考答案
最新部编人教版九年级数学下册期末模拟考试及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .63米B .6米C .33米D .3米10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.分解因式:3x -x=__________.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、D6、C7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+1)(x-1)3、84、25、-36、4 9三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.23、(1)相切,略;(2)4、河宽为17米5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
人教版2022-2023学年九年级数学上册期末模拟测试题(附答案)
2022-2023学年九年级数学上册期末模拟测试题(附答案)一、选择题.(共24分)1.下列图形中,属于中心对称图形的是()A.角B.等边三角形C.平行四边形D.正五边形2.在一个不透明的袋子中装有3个黑球,4个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率是()A.B.C.D.3.如图,AB是⊙O的直径,AC,BC是⊙O的弦,若∠A=20°,则∠B的度数为()A.70°B.90°C.40°D.60°4.若x=﹣1是一元二次方程ax2+bx+c=0的根,则下列式子成立的是()A.a+b+c=0B.a﹣b+c=0C.a+b﹣c=0D.﹣a+b+c=0 5.若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是()A.a<1B.a≤1C.a≤1且a≠0D.a<1且a≠0 6.将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变7.如图,OA为⊙O的半径,弦BC⊥OA于点P.若BC=8,AP=2,则⊙O的直径长为()A.6B.5C.10D.28.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④二、填空题(共24分)9.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.10.如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为.11.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)12.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为.13.假设飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)满足函数关系式y=50t﹣t2,则经过后,飞机停止滑行.14.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O 的半径是.三.解答题.(共72分)15.解下列方程:(1)9x2﹣81=0;(2)x2+2x﹣3=0.16.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.17.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.18.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,求这种药品下降的百分率.19.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0.﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)求A,B两点的坐标,并根据图象直接写出当y<0时,自变量x的取值范围.20.已知如图,扇形AOB的圆心角为120°,半径OA为6cm.(1)求扇形AOB的弧长和扇形面积;(2)若把扇形纸片AOB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.21.如图,在Rt△ABC中,∠BAC=90°以AB为直径的⊙O与BC相交于点E.在AC上取一点D,使得DE=AD.求证:DE是⊙O的切线.22.毛泽东故居景区有一商店销售一种纪念品,这种商品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于20元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?参考答案一、选择题.(共24分)1.解:A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C.是中心对称图形,故此选项符合题意;D.不是中心对称图形,故此选项不合题意;故选:C.2.解:∵在一个不透明的袋子中装有4个白球和3个黑球(球除颜色外其他都相同),∴搅匀后从中任意摸出1个球,摸到白球的概率为=,故选:B.3.解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=20°,∴∠B=90°﹣∠A=70°,故选:A.4.解:∵x=﹣1是一元二次方程ax2+bx+c=0的根,∴a﹣b+c=0,故选:B.5.解:∵一元二次方程ax2+2x+1=0有两个不相等的实数根,∴a≠0,Δ=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1且a≠0,故选:D.6.解:A、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,a不变,开口方向不变,故不符合题意.B、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,顶点的横坐标不变,对称轴不变,故不符合题意.C、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,抛物线的开口方向不变,对称轴不变,则y随x的变化情况不变,故不符合题意.D、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,与y轴的交点也向下平移两个单位,故符合题意.故选:D.7.解:如图,连接OB,设OB=OA=x.∵OA⊥BC,∴PB=PC=BC=4,在Rt△OPB中,OB2=OP2+PB2,∴x2=(x﹣2)2+42,∴x=5,∴⊙O的直径为10.故选:C.8.解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴的距离与点(3,y2)离对称轴的距离相等,∴y1=y2,所以④不正确.故选:A.二、填空题(共24分)9.解:点(﹣2,4)关于原点对称的点的坐标为(2,﹣4).故答案为:(2,﹣4).10.解:∵∠BAC=54°,∴∠BOC=2∠BAC=108°,故答案为:108°.11.解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.12.解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(4,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣42+2×4+m=0解得m=8 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+8=0,②解②得x1=4,x2=﹣2,故答案为x1=4,x2=﹣2.13.解:由题意可知:滑行距离达到最大值时,飞机停止滑行,y=50t﹣t2=﹣(t﹣25)2+252,当t=25时,y可取得最大值,即经过25s后,飞机停止滑行.故答案为:25s.14.解:分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=4+9=13(cm),∴半径r=6.5cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=9﹣4=5(cm),∴半径r=2.5cm.综上所述,圆O的半径为6.5cm或2.5cm.故答案为:6.5cm或2.5cm.三.解答题.(共72分)15.解:(1)9x2﹣81=0,x2=9,∴x=±3,∴x1=3,x2=﹣3;(2)x2+2x﹣3=0,(x+3)(x﹣1)=0,∴x+3=0或x﹣1=0,∴x1=﹣3,x2=1.16.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据图形可知:旋转中心的坐标为:(﹣3,0).17.解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.18.解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这种药品下降的百分率是10%.19.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴二次函数的解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y<0时,自变量x的取值范围是﹣1<x<3.20.解:(1)扇形AOB的弧长==4π(cm);扇形AOB的扇形面积==12π(cm2);(2)如图,设圆锥底面圆的半径为r,所以2πr=4π,解得r=2,在Rt△OHC中,HC=2,OC=6,所以OH==4(cm).21.证明:如图,连接OE、OD,在△OED和△OAD中,,∴△OED≌△OAD(SAS),∴∠OED=∠BAC=90°,∴OE⊥DE,∵OE是⊙O的半径,∴DE是⊙O的切线.22.解:(1)设y与x的函数解析式为y=kx+b,将(12,28)、(15,25)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤20);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤20,∴当x=20时,W取得最大值,最大值为200,答:每件销售价为20元时,每天的销售利润最大,最大利润是200元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选九年级期末数学模拟试卷四
一.选择题(7×3=21分)
1.
有意义的x 的取值范围是( )
A .x ≤1
B x ≤1 且x ≠-2
C x ≠-2
D x <1 且x ≠-2
2.若3x =-,
则1等于( )
A 、1.
B 、1-
C 、 3
D 、3-
3.下列图形中,既是轴对称图形,又是中心对称图形的是( )
4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )
A 、△ABC 的三条中线的交点
B 、△AB
C 三边的中垂线的交点
C 、△ABC 三条角平分线的交点
D 、△ABC 三条高所在直线的交点
第5题图 第5题图
5、如图,
将△ABC 绕点C 顺时针旋转40°得△A ′CB ′,若AC ⊥A ′B ′,则∠BAC 等于( ) A 、50° B 、60° C 、70° D 、80°
6.在图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点.甲虫沿弧
A DA1、A1EA2、A2FA3、A3G
B 路线爬行,乙虫沿路线弧ACB 爬行,则下列结论正确的是( )
A 、甲先到
B 点 B 、乙先到B 点 C
7.如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC 设点A 的坐标为),(b a 则点A 的坐标为( )
(A )),(b a -- (B ))1.(---b a
(C ))1,(+--b a (D ))2,(---b a
二、填空题(本题共11个小题,每小题3分,共33 8.已知2x =2
46x x --的值为______________
9.直线y=x+3上有一点P (m-5,2m ),则P 点关于原点的对称点P ′的坐标为_______
10.一元二次方程()22x x x -=-的根是___________.
11.点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为
1y 2y (填“>”、“<”、“=”) A B C D 第4题图
12.如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF=________ 度.
第12题
第14题第15题
13.如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧 BC___________
14.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为___________.
15.如图,粮仓的顶部是圆锥形状,这个圆锥底面圆的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是____________元(结果保留整数).
16.将△ABC绕点B逆时针旋转到△A′BC′使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为__________ cm2.
第16题第17题第18题
17将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为_______________ .
18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线
..BC上的点F处,则F、C两点的距离为_____________ .
三、解答题
19.(8分)先化简,再求值:
2
32
()
111
x x x
x x x
-
-÷
+--
,其中x=。
20.(9分)在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同。
小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y。
(1)计算由x、y确定的点(x,y)在函数6
y x
=-+图象上的概率;
(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平
第13题图
21、(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,-1).
①把△ABC 向上平移5个单位后得到对应的△111A B C ,画出△111A B C ,并写出C 1的坐标; ②以原点O 为对称中心,再画出与△111A B C 关于原点O 对称的△222A B C ,并写出点2C 的坐标.
22(10分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AB=8cm ,AD=24cm ,BC=26cm ,AB 为⊙O 的直径.动点P 从A 点开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以3cm/s 的速度运动,P 、Q 两点同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为 t s ,求:
(1)t 分别为何值时,四边形PQCD 为平行四边形、等腰梯形?
(2)t 分别为何值时,直线PQ 与⊙O 相交、相切、相离?
23. (10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A 、B 、C .
(1)请完成如下操作:①以点O 为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D ,并连接AD 、CD .
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C__________ ;D (____________);
②⊙D 的半径=_______________ (结果保留根号);
③若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的底面的面积为________ ;(结果保留π) ④若E (7,0),试判断直线EC 与⊙D 的位置关系,并说明你的理由
24.(11分)某商店将进货为30元的书包以40元售出,平均每月能售出600个。
调查表明:这种书包的售价每日上涨1元,其销售量就减少10个。
(1)请写出每月售出书包的利润y(元)与每个书包涨价x(元)之间的函数关系式
(2)设某月的利润为10 000元,10 000元的利润是否为该月最大利润?如果是,请说明理由;如果不是请求出最大利润,并指出此时书包的售价应定为多少元?
(3)请你分析并回答售价在什么范围内商家就可获得利润.
25.(10分)已知抛物线y=ax2+bx+c经过A(3,0),B(2,-3),C(0,3 )三点.
(1)求抛物线的解析式和图象的对称轴;
(2)在对称轴上是否存在一点P,使得△ABP中PA=PB?若存在,求出点P的坐标,若不存在,说明理由。