Stochastic Resonance in Ion Channels Characterized by Information Theory
Quantum spin liquid emerging in 2D correlated Dirac fermions
白噪声作用下欠阻尼随机双稳系统中的随机共振
第18卷第3期复杂系统与复杂性科学Vol.18No.3 2021年9月COMPLEX SYSTEMS AND COMPLEXITY SCIENCE Sep.2021文章编号:16723813(2021)03 006007;DOI:10.13306/j.1672-3813.2021.03.009白噪声作用下欠阻尼随机双稳系统中的随机共振朱福成1,郭锋2(1.绵阳职业技术学院,四川绵阳621000;.西南科技大学信息工程学院,四川绵阳621000)摘要:基于两态理论,利用绝热近似条件,根据随机势能的统计特性,推导出系统输出信噪比(SNR)的数学表达式。
研究结果表明SNR随阻尼系数、加性噪声强度、以及系统参数的变化出现随机共振现象。
随着随机势能相关长度的增大SNR的最大值单调减小;随着随机势能幅度的增大SNR的最大值单调增加。
数值仿真结果表明系统输出信噪比与理论结果相符。
关键词:随机共振;欠阻尼双稳系统;随机势能;白噪声中图分类号:TN911.7文献标识码:AStochastic Resonance for an Under d amped StochasticBistable System Subject to White NoiseZHU Fucheng1,GUO Feng2(1.Mianyang Polytechnic,Mianyang621000,China; 2.School of Information Engineering ofSouthwest University of Science and Technology,Mianyang621010,China)Abstract:Based on the two-state theory,under the adiabatic approximation con-ition,applyingthe properties of the stochastic potential,the system output signal-to-noise ratio(SNR)is ob-taine-•It is shown that the SR phenomenon can be found as SNR varies with the damping coefficient,with the additive noise strength,as well as with the system parameters.With the increaseof the correlation length of stochastic potential,the maximum value of SNR decreases monotonically;while with the increase of the amplitude of the stochastic potential,the maximum value ofSNR increases monotonically.Numerical simulation results show that the output SNR of thesystem is consistent with the theoretical results.Key words:stochastic resonance;un-er-ampe-bistable system;stochastic potential;white noise0引言随机共振是一种出现在随机动力系统中的非线性现象,即在弱周期力的作用下,由噪声诱导的系统势井间的跳跃同步行为」1]。
Stochastic Resonance in Washboard Potentials
a r X i v :c o n d -m a t /9902216v 1 [c o n d -m a t .s t a t -m e c h ] 16 F eb 1999Stochastic Resonance in Washboard PotentialsDebasis Dan 1a ,Mangal.C.Mahato 2,A.M.Jayannavar 1b1.Institute of Physics,Sachivalaya Marg,Bhubaneswar 751005,India.2.Department of Physics,Guru Ghasidas University,Bilaspur 495009,IndiaABSTRACTWe study the mobility of an overdamped particle in a periodic potential tilted by a constant force.Themobility exhibits a stochastic resonance in inhomogeneous systems with space dependent friction coefficient.The result indicates that the presence of oscillating external field is not essential for the observability of stochastic resonance,at least in the inhomogenous medium.I.INTRODUCTIONStochastic Resonance(S.R)is an important phenomena with considerable implica-tions in all branches of science [1].The enhanced response of a nonlinear system to input signals at the expense of and as a function of noise is termed as Stochastic Resonance.It is generally accepted that SR can be observed provided certain essential conditions are ful-filled.Attempts are being continually made to reduce the number and stringency of these constraints for the realization of the phenomenon.The simplest and the minimal (currently accepted)conditions under which conventional SR can be observed are,the presence of a)a bistable system,b)a tunable Gaussian white noise and c)a time varying periodic signal (force).Recently,Hu [2]suggested that the last ingredient may hopefully be replaced by a constant force and,by implication,SR may be observed,e.g,in the drift velocity (mo-bility)of an overdamped Brownian particle in a tilted periodic potential as a function of noise strength.Unfortunately the suggestion was proved to be incorrect [3–5].However,the drift velocity of Brownian particles in a tilted periodic(washboard)potential only in the underdamped situation where friction acts as surrogate to the external periodic drive.In the present work we show that SR can be observed in the mobility of even an overdamped Brownian particle in a tilted periodic potential(without the presence of oscillatingfield)but in the presence of a space-dependent periodic friction coefficient(i.e.,in an inhomogeneous medium).The space dependence of friction coefficient does not affect the equilibrium prop-erties such as the equilibrium probability distribution.However,it does affect the dynam-ical(nonequilibrium)properties of the system(such as the relaxation rates).The space dependence of frictionη(q)can be microscopically modeled through the nonlinear(space-dependent)coupling between the particle degrees of freedom and the thermal bath(char-acterized by its equilibrium temperature)[7–9].In this work wefind that the mobility of overdamped particles in a sinusoidal potential subject to a sinusoidal friction coefficient but with a phase differenceφshows a peak as a function of noise strength(temperature of the bath)in the presence of only a constant forcefield F.By properly choosingφwe obtain this SR behaviour in the mobility(defined as drift velocity divided by F)even for a small constant external forcefield(when the barrier for the particle motion in the tilted periodic potential remainsfinite).The motion of an overdamped particle,in a periodic potential V(q)and subjected to a space-dependent friction coefficientη(q)and an additional constant force F,at temperature T,is described by the Fokker-Planck equation[7,8,10,11].∂P∂q 1∂q+(V′(q)−F)P](1)One can calculate[6,8,12]the probability current j,for the potential function V(q)with V(q+2π)=V(q),ask B T(1−exp(δ))j=dxk B TV(q)−F q=.The mobility(defined[6]as the ratio of the drift velocity,k B Tdq dt F.We take V(q)=−sin(q)and η(q)=η0(1−λsin(q+φ)),with0≤λ<1.Clearly,j→0as F→0,but the mobilityµremainsfinite as F→0,for nonzero temperature T.However,for F≤1as T→0,µ→0. Also,as F,T→∞,µ→1For smallerφit is harder to observe the peaks as they become still broader.However,asφis increased the peaks become sharper.Fig.1shows the mobilityµ(in dimensionless units η0µ)as a function of T(in dimensionless units)forφ=0.9πandλ=0.9.Here the peaks are larger for F<1than for F>1.Fig.2,shows the mobilityµas a function of T for φ=1.44π,λ=0.9.It can be seen that the peaks are almostflat for0<F<1,but are prominent for the intermediate temperature range.From Fig.3,we do not observe S.R for any F>0.But thefigure prominently shows that for F>1and for small T,the mobility decreases instead of increasing with temperature.This in itself is a novel feature. The above mentioned features result from a subtle combined effect of the periodic space dependent friction and the periodic potential in the presence of a constant applied force. The effect can be observed only when there is a phase difference between the potential and the frictional profile;the phase difference makes the mobility asymmetric with respect to the reversal of thefield F.The mobility shows many other interesting features as a function of other parameters,F,λandφ.[14]III.CONCLUSIONWe observe the occurrence of stochastic resonance in the the mobility of an over-damped Brownian particle in a sinusoidal potential tilted by a constant force and subjected to a Gaussian white noise but,of course,in an inhomogeneous system with space-dependent friction coefficient.Thus the time dependent external oscillatingfield,which is generally con-sidered as an essential ingredient for the observability of SR can be replaced by a constant forcefield concomitant with a space-dependent(periodic)friction coefficient of a spatially extended periodic system.We would like to point out here that the correct high friction Langevin equation in the space dependent frictional medium involves a multiplicative noisealong with a temperature drift term[7,8].IV.ACKNOWLEDGEMENTM.C.M thanks the Institute of Physics,Bhubaneswar,forfinancial assistance and hospitality.M.C.M and A.M.J acknowledge partialfinancial support from theB.R.N.S project,D.A.E,India.REFERENCES[14]D.Dan,M.C.Mahato and A.M.Jayannavar,unpublished.FIGURE CAPTIONS.Fig.1.Mobilityη0µas a function of temperature T forφ=0.9πandλ=0.9for various values of F.The inset is inserted to highlight the peaks.Fig.2.Mobilityη0µversus T forφ=1.44π,λ=0.9for various values of F.The inset highlights the peaks.Fig.3.Mobilityη0µversus T forφ=1.6π,λ=0.9for various values of F.The inset highlights the minima.。
Stochastic Resonance
(3)相关系数:
SSR:Decoding
SSR线性译码:
SSR:Decoding
恒量译码--如果信号和噪声方差都未知的情况
SSR:Decoding
矩匹配线性译码--基于对信号方差以及输入输出间相关系数的可知
得到:
SSR:Decoding源自维纳最佳线性解码--基于对信号方差以及输入输出间相关系数的可知
Stochastic Resonance
----
随机共振(SR)
李群伟
随机共振的经典定义:非线性系统、弱的驱动信号和适量的内部或外部噪声: 在一定条件下,三者的相互协作使得噪声在一定程度上能够对信号起到增强的作用, 这种反常的现象被定义为随机共振。
传统的随机共振系统在信号处理领域主要分为双稳系统和阈值系统。 其主要特性也就是系统性能在有附加非零噪声时要好于没有噪声附加的情况。
SSR:Encoding
SSR:Decoding
对于每一个输出值Y,SSR解码理论同传统理论类似,即是任何输出值 对应一个重构值 ,那么N个不同的输出值Y对应了N个不同的重构值,即
SSR:Decoding
对SSR解码的性能分析:(1)均方误差
SSR:Decoding
(2)信噪比:
SSR:Decoding
SSR:Decoding
2.最大似然译码--
也是对上式函数求导,因为不考虑先验分布,结果只是一个 估计值,但在实际中,这个估计值也是比较好的。
SSR:Decoding
3.均方误差最小译码:
SSR:Decoding
注:线性和非线性 译码的比较 (高斯信号和噪声)
Future work: 1.介于所有的SR研究中都会有关于寻找最有噪声的问题,那么当SSR 模型为视作量化器时,怎么样的噪声强度能使得其性能最优化? 2.当和传统量化器相比时,SSR效应量化器能够有多好? 3.将均方误差的解码方法应用在单边分布的信号和噪声,如瑞利分布, 或者指数分布。 4.将均方误差的解码方法应用在混合分布的信号和噪声。 5.除了均方误差,考虑另一些偏差的度量参数,如绝对误差。
2Stochastic averaging of quasi-generalized Hamiltonian systems
ABSTRACT
A stochastic averaging method for generalized Hamiltonian systems (GHS) subject to light dampings and weak stochastic excitations is proposed. First, the GHS are briefly reviewed and classified into five classes, i.e., non-integrable GHS, completely integrable and non-resonant GHS, completely integrable and resonant GHS, partially integrable and non-resonant GHS and partially integrable and resonant GHS. Then, the averaged Itoˆ and FPK equations and the drift and diffusion coefficients for the five classes of quasi-GHS are derived. Finally, the stochastic averaging for a nine-dimensional quasi-partially integrable GHS is given to illustrate the application of the proposed procedure, and the results are confirmed by using those from Monte Carlo simulation.
血清同型半胱氨酸及心肌酶水平与精神分裂症的相关性研究
血清同型半胱氨酸及心肌酶水平与精神分裂症的相关性研究发布时间:2022-07-29T12:28:18.817Z 来源:《中国医学人文》2022年3月3期作者:孔培超[导读]血清同型半胱氨酸及心肌酶水平与精神分裂症的相关性研究孔培超(佛山市第三人民医院;广东佛山 528041)摘要:目的探讨精神分裂症患者血清同型半胱氨酸(HCY)及心肌酶水平的相关性,为临床对于精神分裂症诊治和病情观察提供参考价值。
方法选取2020年7月到2021年6月在我院住院治疗的50例精神分裂症患者作为观察组,另选50例同期在我院健康体检者作为对照组,所有研究对象均进行HCY及心肌酶水平检测,并用阳性及阴性症状量表(PANSS)对观察组患者进行病情评估。
结果观察组HCY、天冬氨酸氨基转移酶(AST)、乳酸脱氢酶(LDH)、肌酸磷酸激酶(CK)、肌酸激酶同工酶(CK-MB)水平均显著高于对照组,差异具有统计学意义(P<0.05);观察组患者血清HCY、CK、CK-MB水平与PANSS评分均呈正相关(P<0.05)。
结论精神分裂症患者血清HCY、AST、LDH、CK、CK-MB水平升高,HCY、CK、CK-MB水平与精神分裂症病情严重程度呈正相关。
关键词:精神分裂症;同型半胱氨酸;心肌酶;相关性研究Correlation between levels of serum homocysteine and myocardial enzyme and schizophrenia Abstract: Objective To explore the correlation of serum homocysteine (HCY) and myocardial enzyme levels in schizophrenia patients, and to provide a reference value for the clinical diagnosis and treatment and observation of schizophrenia. Methods 50 patients with schizophrenia hospitalized in our hospital from July 2020 to June 2021 were selected as the observation group, and 50 patients were examined in our hospital as the control group. All study subjects were tested for HCY and myocardial enzyme level, and the observation group were evaluated with the positive and negative symptom scale (PANSS).Results The levels of Hcy, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine phosphokinase (CK) and creatine kinase isoenzyme (CK-MB) in the observation group were significantly higher than those in the control group (P<0.05). he levels of serum Hcy, CK and CK-MB in the observation group were positively correlated with PANSS score (P<0.05).Conclusion The serum levels of HCY, AST, LDH, CK, and CK-MB were increased, and the HCY, CK, and CK-MB levels were positively associated with the severity of schizophrenia. Key words: schizophrenia; homocysteine; myocardial enzyme; correlation study精神分裂症是目前临床尚未明确病因、发病机制的一种常见精神疾病,青壮年患者较为常见,临床症状主要为意识、情感、智能、知觉等方面出现功能障碍,个体差异大、病情反复[1]。
常用分析化学专业英语词汇
常用分析化学专业英语词汇absorbance 吸光度absorbent 吸附剂absorption curve 吸收曲线absorption peak 吸收峰absorptivity 吸收系数accident error 偶然误差accuracy 准确度acid-base titration 酸碱滴定acidic effective coefficient 酸效应系数acidic effective curve 酸效应曲线acidity constant 酸度常数activity 活度activity coefficient 活度系数adsorption 吸附adsorption indicator 吸附指示剂affinity 亲和力aging 陈化amorphous precipitate 无定形沉淀amphiprotic solvent 两性溶剂amphoteric substance 两性物质amplification reaction 放大反应analytical balance 分析天平analytical chemistry 分析化学analytical concentration 分析浓度analytical reagent (AR) 分析试剂apparent formation constant 表观形成常数aqueous phase 水相argentimetry 银量法ashing 灰化atomic spectrum 原子光谱autoprotolysis constant 质子自递常数auxochrome group 助色团back extraction 反萃取band spectrum 带状光谱bandwidth 带宽bathochromic shift 红移blank 空白blocking of indicator 指示剂的封闭bromometry 溴量法buffer capacity 缓冲容量buffer solution 缓冲溶液burette 滴定管calconcarboxylic acid 钙指示剂calibrated curve 校准曲线calibration 校准catalyzed reaction 催化反应cerimetry 铈量法charge balance 电荷平衡chelate 螯合物chelate extraction 螯合物萃取chemical analysis 化学分析chemical factor 化学因素chemically pure 化学纯chromatography 色谱法chromophoric group 发色团coefficient of variation 变异系数color reagent 显色剂color transition point 颜色转变点colorimeter 比色计colorimetry 比色法column chromatography 柱色谱complementary color 互补色complex 络合物complexation 络合反应complexometry complexometric titration 络合滴定法complexone 氨羧络合剂concentration constant 浓度常数conditional extraction constant 条件萃取常数conditional formation coefficient 条件形成常数conditional potential 条件电位conditional solubility product 条件溶度积confidence interval 置信区间confidence level 置信水平conjugate acid-base pair 共轭酸碱对constant weight 恒量contamination 沾污continuous extraction 连续萃取continuous spectrum 连续光谱coprecipitation 共沉淀correction 校正correlation coefficient 相关系数crucible 坩埚crystalline precipitate 晶形沉淀cumulative constant 累积常数curdy precipitate 凝乳状沉淀degree of freedom 自由度demasking 解蔽derivative spectrum 导数光谱desiccant; drying agent 干燥剂desiccator 保干器determinate error 可测误差deuterium lamp 氘灯deviation 偏差deviation average 平均偏差dibasic acid 二元酸dichloro fluorescein 二氯荧光黄dichromate titration 重铬酸钾法dielectric constant 介电常数differential spectrophotometry 示差光度法differentiating effect 区分效应dispersion 色散dissociation constant 离解常数distillation 蒸馏distribution coefficient 分配系数distribution diagram 分布图distribution ratio 分配比double beam spectrophotometer 双光束分光光度计dual-pan balance 双盘天平dual-wavelength spectrophotometry 双波长分光光度法electronic balance 电子天平electrophoresis 电泳eluent 淋洗剂end point 终点end point error 终点误差enrichment 富集eosin 曙红equilibrium concentration 平衡浓度equimolar series method 等摩尔系列法Erelenmeyer flask 锥形瓶eriochrome black T (EBT) 铬黑Terror 误差ethylenediamine tetraacetic acid (EDTA) 乙二胺四乙酸evaporation dish 蒸发皿exchange capacity 交换容量extent of crosslinking 交联度extraction constant 萃取常数extraction rate 萃取率extraction spectrphotometric method 萃取光度法Fajans method 法杨斯法ferroin 邻二氮菲亚铁离子filter 漏斗filter 滤光片filter paper 滤纸filtration 过滤fluex 溶剂fluorescein 荧光黄flusion 熔融formation constant 形成常数frequency 频率frequency density 频率密度frequency distribution 频率分布gas chromatography (GC) 气相色谱grating 光栅gravimetric factor 重量因素gravimetry 重量分析guarantee reagent (GR) 保证试剂high performance liquid chromatography (HPLC) 高效液相色谱histogram 直方图homogeneous precipitation 均相沉淀hydrogen lamp 氢灯hypochromic shift 紫移ignition 灼烧indicator 指示剂induced reaction 诱导反应inert solvent 惰性溶剂instability constant 不稳定常数instrumental analysis 仪器分析intrinsic acidity 固有酸度intrinsic basicity 固有碱度intrinsic solubility 固有溶解度iodimetry 碘滴定法iodine-tungsten lamp 碘钨灯iodometry 滴定碘法ion association extraction 离子缔合物萃取ion chromatography (IC) 离子色谱ion exchange 离子交换ion exchange resin 离子交换树脂ionic strength 离子强度isoabsorptive point 等吸收点Karl Fisher titration 卡尔?费歇尔法Kjeldahl determination 凯氏定氮法Lambert-Beer law 朗泊-比尔定律leveling effect 拉平效应ligand 配位体light source 光源line spectrum 线状光谱linear regression 线性回归liquid chromatography (LC) 液相色谱macro analysis 常量分析masking 掩蔽masking index 掩蔽指数mass balance 物料平衡matallochromic indicator 金属指示剂maximum absorption 最大吸收mean, average 平均值measured value 测量值measuring cylinder 量筒measuring pipette 吸量管median 中位数mercurimetry 汞量法mercury lamp 汞灯mesh [筛]目methyl orange (MO) 甲基橙methyl red (MR) 甲基红micro analysis 微量分析mixed constant 混合常数mixed crystal 混晶mixed indicator 混合指示剂mobile phase 流动相Mohr method 莫尔法molar absorptivity 摩尔吸收系数mole ratio method 摩尔比法molecular spectrum 分子光谱monoacid 一元酸monochromatic color 单色光monochromator 单色器neutral solvent 中性溶剂neutralization 中和non-aqueous titration 非水滴定normal distribution 正态分布occlusion 包藏organic phase 有机相ossification of indicator 指示剂的僵化outlier 离群值oven 烘箱paper chromatography(PC) 纸色谱parallel determination 平行测定path lenth 光程permanganate titration 高锰酸钾法phase ratio 相比phenolphthalein (PP) 酚酞photocell 光电池photoelectric colorimeter 光电比色计photometric titration 光度滴定法photomultiplier 光电倍增管phototube 光电管pipette 移液管polar solvent 极性溶剂polyprotic acid 多元酸population 总体postprecipitation 后沉淀precipitant 沉淀剂precipitation form 沉淀形precipitation titration 沉淀滴定法precision 精密度preconcentration 预富集predominance-area diagram 优势区域图primary standard 基准物质prism 棱镜probability 概率proton 质子proton condition 质子条件protonation 质子化protonation constant 质子化常数purity 纯度qualitative analysis 定性分析quantitative analysis 定量分析quartering 四分法random error 随机误差range 全距(极差)reagent blank 试剂空白Reagent bottle 试剂瓶recording spectrophotometer 自动记录式分光光度计recovery 回收率redox indicator 氧化还原指示剂redox titration 氧化还原滴定referee analysis 仲裁分析reference level 参考水平reference material (RM) 标准物质reference solution 参比溶液relative error 相对误差resolution 分辨力rider 游码routine analysis 常规分析sample 样本,样品sampling 取样self indicator 自身指示剂semimicro analysis 半微量分析separation 分离separation factor 分离因数side reaction coefficient 副反应系数significance test 显着性检验significant figure 有效数字simultaneous determination of multiponents 多组分同时测定single beam spectrophotometer 单光束分光光度计single-pan balance 单盘天平slit 狭缝sodium diphenylamine sulfonate 二苯胺磺酸钠solubility product 溶度积solvent extraction 溶剂萃取species 型体(物种)specific extinction coefficient 比消光系数spectral analysis 光谱分析spectrophotometer 分光光度计spectrophotometry 分光光度法stability constant 稳定常数standard curve 标准曲线standard deviation 标准偏差standard potential 标准电位standard series method 标准系列法standard solution 标准溶液standardization 标定starch 淀粉stationary phase 固定相steam bath 蒸气浴stepwise stability constant 逐级稳定常数stoichiometric point 化学计量点structure analysis 结构分析supersaturation 过饱和systematic error 系统误差test solution 试液thermodynamic constant 热力学常数thin layer chromatography (TLC) 薄层色谱titrand 被滴物titrant 滴定剂titration 滴定titration constant 滴定常数titration curve 滴定曲线titration error 滴定误差titration index 滴定指数titration jump 滴定突跃titrimetry 滴定分析trace analysis 痕量分析transition interval 变色间隔transmittance 透射比tri acid 三元酸true value 真值tungsten lamp 钨灯ultratrace analysis 超痕量分析UV-VIS spectrophotometry 紫外-可见分光光度法volatilization 挥发Volhard method 福尔哈德法volumetric flask 容量瓶volumetry 容量分析Wash bottle 洗瓶washings 洗液water bath 水浴weighing bottle 称量瓶weighting form 称量形weights 砝码working curve 工作曲线xylenol orange (XO) 二甲酚橙zero level 零水平异步处理dispatch_async(dispatch_get_global_qu eue(0, 0), ^{// 处理耗时操作的代码块...[self test1];//通知主线程刷新dispatch_async(dispatch_get_main_queu e(), ^{//或者说是通知主线程刷新,NSLog(............);});。
食品感官科学专业术语中英文对照
食品感官科学专业术语中英文对照感官分析sensory analysis 用感觉器官检查产品的感官特性。
感官的sensory 与使用感觉器官有关的。
感官(特性)的organoleptic 与用感觉器官感知的产品特性有关的。
感觉sensation 感官刺激引起的主观反应。
评价员assessor 参加感官分析的人员。
准评价员(naive assessor)是尚不符合特定准则的人员。
初级评价员(initiated assessor)是已参加过感官检验的人员。
优选评价员selected assessor 挑选出的具有较高感官分析能力的评价员。
专家expert 根据自己的知识或经验,在相关领域中有能力给出结论的评价员。
专家评价员expert assessor 。
专业专家评价员specialized expert assessor评价小组panel 参加感官分析的评价员组成的小组。
消费者consumer 产品使用者。
品尝员taster 主要用嘴评价食品感官特性的评价员、优选评价员或专家。
品尝tasting 在嘴中对食品进行的感官评价。
特性attribute 可感知的特征。
可接受性acceptability 根据产品的感官特性,特定的个人或群体对某种产品愿意接受的状况。
接受acceptance 特定的个人或群体对符合期望的某产品表示满意的行为。
偏爱preference (使)评价员感到一种产品优于其他产品的情绪状态或反应。
厌恶aversion 由某种刺激引起的令人讨厌的感觉。
区别discrimination 从两种或多种刺激中定性和(或)定量区分的行为。
食欲appetite 对食用食物和/或饮料的欲望所表现的生理状态。
开胃的appetizing 描述产品能增进食欲。
可口性palatability 令消费者喜爱食用的产品的综合特性。
快感的hedonic 与喜欢或不喜欢有关的。
心理物理学psychophysics 研究刺激和相应感官反应之间关系的学科。
药物分析英文词汇
药物分析英文词汇adsorbent 吸附剂adsorption 吸附affinity chromatography 亲和色谱法aliquot (一)份alkalinity 碱度alumina 氧化铝ambient temperature 室温ammonium thiocyanate 硫氰酸铵药物分析英语词汇analytical quality control(AQC)分析质量控制Abbe refractometer 阿贝折射仪anhydrous substance 干燥品 absorbance 吸收度anionic surfactant titration 阴离子表面活性剂滴定法absorbance ratio 吸收度比值absorption 吸收antibiotics-microbial test 抗生素微生物检定法absorption curve 吸收曲线absorption spectrum 吸收光谱 antioxidant 抗氧剂 absorptivity 吸收系数 appendix 附录 accuracy 准确度 application of sample 点样 acid-dye colorimetry 酸性染料比色法area normalization method 面积归一化法acidimetry 酸量法 argentimetry 银量法 acid-insoluble ash 酸不溶性灰分 arsenic 砷 acidity 酸度 arsenic stain 砷斑 activity 活度 ascending development 上行展开additive 添加剂ash-free filter paper 无灰滤纸(定量滤纸)additivity 加和性adjusted retention time 调整保留时间assay 含量测定assay tolerance 含量限度 bromate titration 溴酸盐滴定法atmospheric pressure ionization(API) 大气压离子化bromimetry 溴量法bromocresol green 溴甲酚绿 attenuation 衰减bromocresol purple 溴甲酚紫 back extraction 反萃取bromophenol blue 溴酚蓝 back titration 回滴法bromothymol blue 溴麝香草酚蓝 bacterial endotoxins test 细菌内毒素检查法bulk drug, pharmaceutical product 原料药band absorption 谱带吸收buret 滴定管 baseline correction 基线校正by-product 副产物 baseline drift 基线漂移calibration curve 校正曲线 batch, lot 批calomel electrode 甘汞电极 batch(lot) number 批号calorimetry 量热分析 Benttendorff method 白田道夫(检砷)法capacity factor 容量因子capillary zone electrophoresis (CZE) 毛细管区带电泳between day (day to day, inter-day) precision 日间精密度capillary gas chromatography 毛细管气相色谱法between run (inter-run) precision 批间精密度carrier gas 载气 biotransformation 生物转化cation-exchange resin 阳离子交换树脂bioavailability test 生物利用度试验ceri(o)metry 铈量法 bioequivalence test 生物等效试验characteristics, description 性状 biopharmaceutical analysis 体内药物分析,生物药物分析check valve 单向阀chemical shift 化学位移 blank test 空白试验chelate compound 鳌合物 boiling range 沸程chemically bonded phase 化学键合相British Pharmacopeia (BP) 英国药典chemical equivalent 化学当量 coefficient of distribution 分配系数Chinese Pharmacopeia (ChP) 中国药典coefficient of variation 变异系数color change interval (指示剂)变色范围Chinese material medicine 中成药Chinese materia medica 中药学 color reaction 显色反应 Chinese materia medica preparation 中药制剂colorimetric analysis 比色分析colorimetry 比色法 Chinese Pharmaceutical Association (CPA) 中国药学会column capacity 柱容量column dead volume 柱死体积 chiral 手性的column efficiency 柱效 chiral stationary phase (CSP) 手性固定相column interstitial volume 柱隙体积chiral separation 手性分离column outlet pressure 柱出口压 chirality 手性column temperature 柱温 chiral carbon atom 手性碳原子column pressure 柱压 chromatogram 色谱图column volume 柱体积 chromatography 色谱法column overload 柱超载 chromatographic column 色谱柱column switching 柱切换 chromatographic condition 色谱条件committee of drug evaluation 药品审评委员会chromatographic data processor 色谱数据处理机comparative test 比较试验 chromatographic work station 色谱工作站completeness of solution 溶液的澄清度clarity 澄清度compound medicines 复方药 clathrate, inclusion compound 包合物computer-aided pharmaceutical analysis 计算机辅助药物分析 clearance 清除率concentration-time curve 浓度,时间曲线clinical pharmacy 临床药学confidence interval 置信区间 deflection point 拐点confidence level 置信水平 degassing 脱气 confidence limit 置信限deionized water 去离子水 congealing point 凝点 deliquescence 潮解 congo red 刚果红(指示剂) depressor substances test 降压物质检查法content uniformity 装量差异derivative spectrophotometry 导数分光光度法controlled trial 对照试验correlation coefficient 相关系数 derivatization 衍生化 contrast test 对照试验 descending development 下行展开counter ion 反离子(平衡离子)desiccant 干燥剂 cresol red 甲酚红(指示剂)detection 检查 crucible 坩埚detector 检测器crude drug 生药developer, developing reagent 展开剂crystal violet 结晶紫(指示剂) cuvette, cell 比色池 developing chamber 展开室 cyanide 氰化物deviation 偏差 cyclodextrin 环糊精 dextrose 右旋糖,葡萄糖 cylinder, graduate cylinder, measuring cylinder 量筒diastereoisomer 非对映异构体diazotization 重氮化 cylinder-plate assay 管碟测定法2,6-dichlorindophenol titration 2,6-二氯靛酚滴定法daughter ion (质谱)子离子dead space 死体积 differential scanning calorimetry (DSC) 差示扫描热量法dead-stop titration 永停滴定法differential spectrophotometry 差示分光光度法dead time 死时间decolorization 脱色 differential thermal analysis (DTA) 差示热分析decomposition point 分解点differentiating solvent 区分性溶剂 deflection 偏差diffusion 扩散 electrophoresis 电泳digestion 消化 electrospray interface 电喷雾接口diphastic titration 双相滴定electromigration injection 电迁移进样disintegration test 崩解试验dispersion 分散度 elimination 消除 dissolubility 溶解度 eluate 洗脱液 dissolution test 溶出度检查 elution 洗脱 distilling range 馏程emission spectrochemical analysis 发射光谱分析distribution chromatography 分配色谱enantiomer 对映体 distribution coefficient 分配系数 end absorption 末端吸收 dose 剂量 end point correction 终点校正 drug control institutions 药检机构 endogenous substances 内源性物质drug quality control 药品质量控制enzyme immunoassay(EIA) 酶免疫分析drug release 药物释放度drug standard 药品标准 enzyme drug 酶类药物 drying to constant weight 干燥至恒重enzyme induction 酶诱导enzyme inhibition 酶抑制 dual wavelength spectrophotometry 双波长分光光度法eosin sodium 曙红钠(指示剂) duplicate test 重复试验 epimer 差向异构体 effective constituent 有效成分 equilibrium constant 平衡常数effective plate number 有效板数 equivalence point 等当点 efficiency of column 柱效 error in volumetric analysis 容量分析误差electron capture detector 电子捕获检测器excitation spectrum 激发光谱 electron impact ionization 电子轰击离子化exclusion chromatography 排阻色谱法expiration date 失效期 fluorescence polarization immunoassay(FPIA) external standard method 外标法荧光偏振免疫分析 extract 提取物fluorescent agent 荧光剂 extraction gravimetry 提取重量法fluorescence spectrophotometry 荧光分光光度法extraction titration 提取容量法extrapolated method 外插法,外推法fluorescence detection 荧光检测器factor 系数,因数,因子 fluorimetyr 荧光分析法 feature 特征 foreign odor 异臭Fehling’s reaction 费林反应 foreign pigment 有色杂质 field disorption ionization 场解吸离子化formulary 处方集fraction 馏分 field ionization 场致离子化freezing test 结冻试验filter 过滤,滤光片funnel 漏斗 filtration 过滤fused peaks, overlapped peaks 重叠峰fineness of the particles 颗粒细度fused silica 熔融石英 flame ionization detector(FID) 火焰离子化检测器gas chromatography(GC) 气相色谱法flame emission spectrum 火焰发射光谱gas-liquid chromatography(GLC) 气液色谱法flask 烧瓶gas purifier 气体净化器 flow cell 流通池gel filtration chromatography 凝胶过滤色谱法flow injection analysis 流动注射分析gel permeation chromatography 凝胶渗透色谱法flow rate 流速fluorescamine 荧胺 general identification test 一般鉴别试验fluorescence immunoassay(FIA) 荧光免疫分析general notices (药典)凡例general requirements (药典)通则 hydrophilicity 亲水性hydrophobicity 疏水性 good clinical practices(GCP) 药品临床管理规范hydroscopic 吸湿的hydroxyl value 羟值 good laboratory practices(GLP) 药品实验室管理规范hyperchromic effect 浓色效应 good manufacturing practices(GMP) 药品生产质量管理hypochromic effect 淡色效应规范identification 鉴别 good supply practices(GSP) 药品供应管理规范ignition to constant weight 灼烧至恒重gradient elution 梯度洗脱immobile phase 固定相 grating 光栅immunoassay 免疫测定 gravimetric method 重量法impurity 杂质 Gutzeit test 古蔡(检砷)法inactivation 失活 half peak width 半峰宽index 索引 [halide] disk method, wafer method, pellet method 压片法indicator 指示剂 head-space concentrating injector 顶空浓缩进样器indicator electrode 指示电极inhibitor 抑制剂 heavy metal 重金属injecting septum 进样隔膜胶垫 heat conductivity 热导率injection valve 进样阀 height equivalent to a theoretical plate 理论塔板高度instrumental analysis 仪器分析 height of an effective plate 有效塔板高度insulin assay 胰岛素生物检定法integrator 积分仪 high-performance liquid chromatography (HPLC) 高效液相色谱法 intercept 截距 high-performance thin-layer chromatography (HPTLC) interface 接口高效薄层色谱法interference filter 干涉滤光片 hydrate 水合物intermediate 中间体 hydrolysis 水解internal standard substance 内标物质Kjeldahl method for nitrogen 凯氏定氮法international unit(IU) 国际单位 Kober reagent 科伯试剂 in vitro 体外Kovats retention index 科瓦茨保留指数in vivo 体内labelled amount 标示量 iodide 碘化物leading peak 前延峰 iodoform reaction 碘仿反应least square method 最小二乘法 iodometry 碘量法leveling effect 均化效应 ion-exchange cellulose 离子交换纤维素licensed pharmacist 执业药师 ion pair chromatography 离子对色谱limit control 限量控制limit of detection(LOD) 检测限 ion suppression 离子抑制limit of quantitation(LOQ) 定量限ionic strength 离子强度limit test (杂质)限度(或限量)试验ion-pairing agent 离子对试剂ionization 电离,离子化 limutus amebocyte lysate(LAL) 鲎试验ionization region 离子化区linearity and range 线性及范围 irreversible indicator 不可逆指示剂linearity scanning 线性扫描 irreversible potential 不可逆电位liquid chromatograph/mass spectrometer (LC/MS) 液质联用仪isoabsorptive point 等吸收点litmus paper 石蕊试纸 isocratic elution 等溶剂组成洗脱loss on drying 干燥失重 isoelectric point 等电点low pressure gradient pump 低压梯度泵isoosmotic solution 等渗溶液isotherm 等温线 luminescence 发光 Karl Fischer titration 卡尔?费歇尔滴定lyophilization 冷冻干燥main constituent 主成分 kinematic viscosity 运动黏度make-up gas 尾吹气maltol reaction 麦牙酚试验 microsyringe 微量注射器Marquis test 马奎斯试验 migration time 迁移时间 mass analyzer detector 质量分析检测器millipore filtration 微孔过滤minimum fill 最低装量 mass spectrometric analysis 质谱分析mobile phase 流动相modifier 改性剂,调节剂 mass spectrum 质谱图molecular formula 分子式 mean deviation 平均偏差monitor 检测,监测 measuring flask, volumetric flask 量瓶monochromator 单色器 measuring pipet(te) 刻度吸量管monographs 正文 medicinal herb 草药mortar 研钵 melting point 熔点moving belt interface 传送带接口melting range 熔距multidimensional detection 多维检测metabolite 代谢物multiple linear regression 多元线性回归metastable ion 亚稳离子methyl orange 甲基橙multivariate calibration 多元校正 methyl red 甲基红natural product 天然产物 micellar chromatography 胶束色谱法Nessler glasses(tube) 奈斯勒比色管micellar electrokinetic capillary chromatography(MECC, Nessler’s reagent 碱性碘化汞钾试液MEKC) 胶束电动毛细管色谱法micelle 胶束neutralization 中和 microanalysis 微量分析nitrogen content 总氮量 microcrystal 微晶nonaqueous acid-base titration 非水酸碱滴定microdialysis 微透析micropacked column 微型填充柱 nonprescription drug, over the counter drugs (OTC drugs)非处方药 microsome 微粒体nonproprietary name, generic name 非专有名nonspecific impurity 一般杂质 orthogonal test 正交试验non-volatile matter 不挥发物 orthophenanthroline 邻二氮菲 normal phase 正相 outlier 可疑数据,逸出值 normalization 归一化法 overtones 倍频峰,泛频峰 notice 凡例 oxidation-reduction titration 氧化还原滴定nujol mull method 石蜡糊法oxygen flask combustion 氧瓶燃烧octadecylsilane chemically bonded silica 十八烷基硅烷键合硅胶packed column 填充柱 octylsilane 辛(烷)基硅烷packing material 色谱柱填料 odorless 无臭palladium ion colorimetry 钯离子比色法official name 法定名official specifications 法定标准 parallel analysis 平行分析 official test 法定试验 parent ion 母离子on-column detector 柱上检测器 particulate matter 不溶性微粒 on-column injection 柱头进样 partition coefficient 分配系数 on-line degasser 在线脱气设备 parts per million (ppm) 百万分之几on the dried basis 按干燥品计pattern recognition 模式识别 opalescence 乳浊peak symmetry 峰不对称性 open tubular column 开管色谱柱peak valley 峰谷 optical activity 光学活性peak width at half height 半峰宽 optical isomerism 旋光异构percent transmittance 透光百分率optical purity 光学纯度optimization function 优化函数 pH indicator absorbance ratio method pH指示剂吸光度比值法organic volatile impurities 有机挥发性杂质pharmaceutical analysis 药物分析orthogonal function spectrophotometry 正交函数分光光度法 pharmacopeia 药典pharmacy 药学 prescription drug 处方药phenolphthalein 酚酞 pretreatment 预处理 photodiode arraydetector(DAD) 光电二极管阵列检测器primary standard 基准物质principal component analysis 主成分分析photometer 光度计pipeclay triangle 泥三角programmed temperature gas chromatography 程序升温气相色谱法 pipet(te) 吸移管,精密量取prototype drug 原型药物 planar chromatography 平板色谱法provisions for new drug approval 新药审批办法plate storage rack 薄层板贮箱purification 纯化 polarimeter 旋光计purity 纯度 polarimetry 旋光测定法pyrogen 热原 polarity 极性pycnometric method 比重瓶法polyacrylamide gel 聚丙酰胺凝胶quality control(QC) 质量控制 polydextran gel 葡聚糖凝胶quality evaluation 质量评价 polystyrene gel 聚苯乙烯凝胶quality standard 质量标准 polystyrene film 聚苯乙烯薄膜quantitative determination 定量测定porous polymer beads 高分子多孔小球quantitative analysis 定量分析 post-column derivatization 柱后衍生化quasi-molecular ion 准分子离子 potentiometer 电位计 racemization 消旋化 potentiometric titration 电位滴定法radioimmunoassay 放射免疫分析法precipitation form 沉淀形式 random sampling 随机抽样 precision 精密度rational use of drug 合理用药 pre-column derivatization 柱前衍生化readily carbonizable substance 易炭化物preparation 制剂 reagent sprayer 试剂喷雾器recovery 回收率 safety 安全性reference electrode 参比电极 Sakaguchi test 坂口试验 refractive index 折光指数 salt bridge 盐桥 related substance 有关物质 salting out 盐析 relative density 相对密度 sample applicator 点样器 relative intensity 相对强度 sample application 点样 repeatability 重复性 sample on-line pretreatment 试样在线预处理replicate determination 平行测定sampling 取样 reproducibility 重现性saponification value 皂化值 residual basic hydrolysis method 剩余碱水解法saturated calomel electrode(SCE) 饱和甘汞电极residual liquid junction potential 残余液接电位selectivity 选择性 residual titration 剩余滴定 separatory funnel 分液漏斗 residue on ignition 炽灼残渣 shoulder peak 肩峰 resolution 分辨率,分离度signal to noise ratio 信噪比 response time 响应时间significant difference 显著性差异 retention 保留 significant figure 有效数字 reversed phase chromatography 反相色谱法significant level 显著性水平significant testing 显著性检验 reverse osmosis 反渗透silanophilic interaction 亲硅羟基作用rider peak 驼峰rinse 清洗,淋洗 silica gel 硅胶 robustness 可靠性,稳定性 silver chloride electrode 氯化银电极routine analysis 常规分析similarity 相似性 round 修约(数字)simultaneous equations method 解线性方程组法ruggedness 耐用性size exclusion chromatography(SEC) 空间排阻色谱法 standard deviation 标准差standardization 标定 sodium dodecylsulfate, SDS 十二烷基硫酸钠standard operating procedure(SOP) 标准操作规程sodium hexanesulfonate 己烷磺酸钠standard substance 标准品stationary phase coating 固定相涂布sodium taurocholate 牛璜胆酸钠sodium tetraphenylborate 四苯硼钠starch indicator 淀粉指示剂statistical error 统计误差 sodium thiosulphate 硫代硫酸钠sterility test 无菌试验 solid-phase extraction 固相萃取stirring bar 搅拌棒 solubility 溶解度stock solution 储备液 solvent front 溶剂前沿stoichiometric point 化学计量点 solvophobic interaction 疏溶剂作用storage 贮藏 specific absorbance 吸收系数stray light 杂散光 specification 规格substituent 取代基 specificity 专属性substrate 底物 specific rotation 比旋度sulfate 硫酸盐 specific weight 比重sulphated ash 硫酸盐灰分 spiked 加入标准的supercritical fluid chromatography(SFC) 超临界流体色谱法 split injection 分流进样support 载体(担体) splitless injection 无分流进样suspension 悬浊液 spray reagent (平板色谱中的)显色剂swelling degree 膨胀度 spreader 铺板机symmetry factor 对称因子 stability 稳定性syringe pump 注射泵 standard color solution 标准比色液systematic error 系统误差system model 系统模型 thymol 百里酚(麝香草酚)(指示剂)system suitability 系统适用性thymolphthalein 百里酚酞(麝香草酚酞)(指示剂)tablet 片剂tailing factor 拖尾因子 thymolsulfonphthalein ( thymol blue) 百里酚蓝(麝香草酚蓝)(指示剂) tailing peak 拖尾峰titer, titre 滴定度 tailing-suppressing reagent 扫尾剂time-resolved fluoroimmunoassay 时间分辨荧光免疫法test of hypothesis 假设检验titrant 滴定剂 test solution(TS) 试液titration error 滴定误差 tetrazolium colorimetry 四氮唑比色法titrimetric analysis 滴定分析法 therapeutic drug monitoring(TDM) 治疗药物监测tolerance 容许限toluene distillation method 甲苯蒸馏法thermal analysis 热分析法thermal conductivity detector 热导检测器toluidine blue 甲苯胺蓝(指示剂)thermocouple detector 热电偶检测器total ash 总灰分total quality control(TQC) 全面质量控制thermogravimetric analysis(TGA) 热重分析法traditional drugs 传统药 thermospray interface 热喷雾接口traditional Chinese medicine 中药The United States Pharmacopoeia(USP) 美国药典transfer pipet 移液管 The Pharmacopoeia of Japan(JP) 日本药局方turbidance 混浊turbidimetric assay 浊度测定法 thin layer chromatography(TLC) 薄层色谱法turbidimetry 比浊法turbidity 浊度 thiochrome reaction 硫色素反应ultracentrifugation 超速离心 three-dimensional chromatogram 三维色谱图ultrasonic mixer 超生混合器ultraviolet irradiation 紫外线照射 xylenol orange 二甲酚橙(指示剂) undue toxicity 异常毒性zigzag scanning 锯齿扫描 uniform design 均匀设计zone electrophoresis 区带电泳 uniformity of dosage units 含量均匀度zwitterions 两性离子 uniformity of volume 装量均匀性(装量差异)zymolysis 酶解作用uniformity of weight 重量均匀性(片重差异)validity 可靠性variance 方差versus …对…,…与…的关系曲线viscosity 粘度volatile oil determination apparatus 挥发油测定器volatilization 挥发法volumetric analysis 容量分析volumetric solution(VS) 滴定液vortex mixer 涡旋混合器watch glass 表面皿wave length 波长wave number 波数weighing bottle 称量瓶weighing form 称量形式weights 砝码well-closed container 密闭容器xylene cyanol blue FF 二甲苯蓝FF(指示剂)。
Generalized backward doubly stochastic differential equations and SPDEs with nonlinear Neum
x ∈ Rd ,
x ∈ ∂ G.
Here B is a standard Brownian motion, L is an infinitesimal generator of some diffusion, G is a connected bounded domain, and f , g , l and h are some measurable functions. More precisely, we give some direct links between the stochastic viscosity solution of the above SPDE and the solution of the following generalized BDSDE:
This is an electronic reprint of the original article published by the ISI/BS in Bernoulli, 2007, Vol. 13, No. 2, 423–446. This reprint differs from the original in pagination and typographic detail.
Generalized backward doubly stochastic differential equad backward doubly stochastic differential equations
2.1. Notation and assumptions
Let T be a fixed final time. Throughout this paper {Wt , 0 ≤ t ≤ T } and {Bt , 0 ≤ t ≤ T } will denote two independent d-dimensional Brownian motions (d ≥ 1), defined on the complete probability spaces (Ω1 , F1 , P1 ) and (Ω2 , F2 , P2 ), respectively. For any process U (Us : 0 ≤ s ≤ T ) defined on (Ωi , Fi , Pi ) (i = 1, 2), we write Fs,t := σ {Ur − Us , s ≤ r ≤ t} U U and Ft := F0,t . Unless otherwise specified, we consider: Ω In addition, we put Ft
法布里珀罗基模共振英文
法布里珀罗基模共振英文The Fabryperot ResonanceOptics, the study of light and its properties, has been a subject of fascination for scientists and researchers for centuries. One of the fundamental phenomena in optics is the Fabry-Perot resonance, named after the French physicists Charles Fabry and Alfred Perot, who first described it in the late 19th century. This resonance effect has numerous applications in various fields, ranging from telecommunications to quantum physics, and its understanding is crucial in the development of advanced optical technologies.The Fabry-Perot resonance occurs when light is reflected multiple times between two parallel, partially reflective surfaces, known as mirrors. This creates a standing wave pattern within the cavity formed by the mirrors, where the light waves interfere constructively and destructively to produce a series of sharp peaks and valleys in the transmitted and reflected light intensity. The specific wavelengths at which the constructive interference occurs are known as the resonant wavelengths of the Fabry-Perot cavity.The resonant wavelengths of a Fabry-Perot cavity are determined bythe distance between the mirrors, the refractive index of the material within the cavity, and the wavelength of the incident light. When the optical path length, which is the product of the refractive index and the physical distance between the mirrors, is an integer multiple of the wavelength of the incident light, the light waves interfere constructively, resulting in a high-intensity transmission through the cavity. Conversely, when the optical path length is not an integer multiple of the wavelength, the light waves interfere destructively, leading to a low-intensity transmission.The sharpness of the resonant peaks in a Fabry-Perot cavity is determined by the reflectivity of the mirrors. Highly reflective mirrors result in a higher finesse, which is a measure of the ratio of the spacing between the resonant peaks to their width. This high finesse allows for the creation of narrow-linewidth, high-resolution optical filters and laser cavities, which are essential components in various optical systems.One of the key applications of the Fabry-Perot resonance is in the field of optical telecommunications. Fiber-optic communication systems often utilize Fabry-Perot filters to select specific wavelength channels for data transmission, enabling the efficient use of the available bandwidth in fiber-optic networks. These filters can be tuned by adjusting the mirror separation or the refractive index of the cavity, allowing for dynamic wavelength selection andreconfiguration of the communication system.Another important application of the Fabry-Perot resonance is in the field of laser technology. Fabry-Perot cavities are commonly used as the optical resonator in various types of lasers, providing the necessary feedback to sustain the lasing process. The high finesse of the Fabry-Perot cavity allows for the generation of highly monochromatic and coherent light, which is crucial for applications such as spectroscopy, interferometry, and precision metrology.In the realm of quantum physics, the Fabry-Perot resonance plays a crucial role in the study of cavity quantum electrodynamics (cQED). In cQED, atoms or other quantum systems are placed inside a Fabry-Perot cavity, where the strong interaction between the atoms and the confined electromagnetic field can lead to the observation of fascinating quantum phenomena, such as the Purcell effect, vacuum Rabi oscillations, and the generation of nonclassical states of light.Furthermore, the Fabry-Perot resonance has found applications in the field of optical sensing, where it is used to detect small changes in physical parameters, such as displacement, pressure, or temperature. The high sensitivity and stability of Fabry-Perot interferometers make them valuable tools in various sensing and measurement applications, ranging from seismic monitoring to the detection of gravitational waves.The Fabry-Perot resonance is a fundamental concept in optics that has enabled the development of numerous advanced optical technologies. Its versatility and importance in various fields of science and engineering have made it a subject of continuous research and innovation. As the field of optics continues to advance, the Fabry-Perot resonance will undoubtedly play an increasingly crucial role in shaping the future of optical systems and applications.。
开启片剂完整性的窗户(中英文对照)
开启片剂完整性的窗户日本东芝公司,剑桥大学摘要:由日本东芝公司和剑桥大学合作成立的公司向《医药技术》解释了FDA支持的技术如何在不损坏片剂的情况下测定其完整性。
太赫脉冲成像的一个应用是检查肠溶制剂的完整性,以确保它们在到达肠溶之前不会溶解。
关键词:片剂完整性,太赫脉冲成像。
能够检测片剂的结构完整性和化学成分而无需将它们打碎的一种技术,已经通过了概念验证阶段,正在进行法规申请。
由英国私募Teraview公司研发并且以太赫光(介于无线电波和光波之间)为基础。
该成像技术为配方研发和质量控制中的湿溶出试验提供了一个更好的选择。
该技术还可以缩短新产品的研发时间,并且根据厂商的情况,随时间推移甚至可能发展成为一个用于制药生产线的实时片剂检测系统。
TPI技术通过发射太赫射线绘制出片剂和涂层厚度的三维差异图谱,在有结构或化学变化时太赫射线被反射回。
反射脉冲的时间延迟累加成该片剂的三维图像。
该系统使用太赫发射极,采用一个机器臂捡起片剂并且使其通过太赫光束,用一个扫描仪收集反射光并且建成三维图像(见图)。
技术研发太赫技术发源于二十世纪九十年代中期13本东芝公司位于英国的东芝欧洲研究中心,该中心与剑桥大学的物理学系有着密切的联系。
日本东芝公司当时正在研究新一代的半导体,研究的副产品是发现了这些半导体实际上是太赫光非常好的发射源和检测器。
二十世纪九十年代后期,日本东芝公司授权研究小组寻求该技术可能的应用,包括成像和化学传感光谱学,并与葛兰素史克和辉瑞以及其它公司建立了关系,以探讨其在制药业的应用。
虽然早期的结果表明该技术有前景,但日本东芝公司却不愿深入研究下去,原因是此应用与日本东芝公司在消费电子行业的任何业务兴趣都没有交叉。
这一决定的结果是研究中心的首席执行官DonArnone和剑桥桥大学物理学系的教授Michael Pepper先生于2001年成立了Teraview公司一作为研究中心的子公司。
TPI imaga 2000是第一个商品化太赫成像系统,该系统经优化用于成品片剂及其核心完整性和性能的无破坏检测。
药物分析常用英语词汇
药物分析专业英语词汇表Aabsorbance吸收度absorbanceratio吸收度比值absorption吸收absorptioncurve吸收曲线absorptioncoefficient吸收系数accuratevalue准确值Acid—dyecolormcty酸性染料比色法acidimcty酸量法acidity酸度activity活度adjustedretentiontime调整保留时间absorbent吸收剂absorption吸附alkalinity碱度alumina氧化铝,矾土ambienttemperature室温ammoniumthiocyanate硫氰酸铵analyticalqualitycontrol分析质量控制anhydroussubstance 干燥品antioxidant抗氧剂applicationofsample点样areanormalizationmethod面积归一法arsenic砷arsenicsport砷斑assay含量测定assaytolerance含量限度attenuation衰减acidburette酸式滴定管alkaliburette碱式滴定管amortar研钵Bbackextraction反萃取bandabsorption谱带吸收batch批batchnumber批号Benttendorlfmethod白田道夫法betweendayprecision日间密度精biotransformation生物转化blanktest空白试验boilingrange沸程BritishPharmacopeia英国药典bromatetitration溴酸盐滴定法brominemethod溴量法bromothymolblue溴麝香酚蓝bulkdrug原料药by—product副产物breaker烧杯buretteglassbeadnozzle滴定管brownacidburette棕色酸式滴定管Ccalibrationcurve校正曲线calomelelectrode甘汞电极calorimetry量热分析capacityfactor容量因子capillarygaschromatography毛细管气相色谱法carriergas载气characteristicsdescription性状chelatecompound螯合物chemicalequivalent化学当量Chinesepharmacopeia中国药典Chinesematerialmedicine中成药Chinesematerialmidicalpreparation中药制剂chiral手性的chiralcarbonatom手性碳原子chromatogram色谱图chromatography色谱法chromatographiccolumn色谱柱chromatographiccondition色谱条件clarity澄清度coefficientofdistribution分配系数coefficientofvariation变异系数colorchangeinterval变色范围colorreaction显色反应colormetry比色法columnefficiency柱效columntemperature柱温comparativetest比较试验completenessofsolution溶液的澄清度conjugate缀合物concentration—timecurve浓度时间曲线confidenceinterval置信区间confidencelevel置信水平controlledtrial对照试验correlationcoefficient相关系数contrasttest对照试验congealingpoint凝点contentunifarmity装量差异controlledtrial对照试验correlationcoefficient相关系数contrasttest对照试验counterion反离子cresalred甲酚红cuvettecell比色池cyanide氰化物casserolesmall勺皿Ddead—stoptitration永定滴定法deadtime死时间deflection偏差deflectionpoint拐点degassing脱气deionizedwater去离子水deliquescence潮解depressorsubstancestest降压物质检查法desiccant干燥剂detection检查developingreagent展开剂developingchamber展开室deviation偏差dextrose右旋糖diastereoisomer非对映异构体diazotization重氮化differentialthermalanalysis差示热分析法differentialscanningcalorimetry差示扫描热法Gutzeit古蔡daytodayprecision日间精密度dissolution溶出度directinjection直接进样2,6-dichlorindophenoltitration2,6-二氯靛酚滴定法digestion消化diphastictitration双向滴定disintegrationtest崩解试验dispersion分散度dissolubility溶解度dissolutiontest溶解度检查distillingrange滴程distributionchromatography分配色谱dose剂量drugqualitycontrol药品质量控制dryingtoconstantweight干燥至恒重duplicatetest重复试验diskmethodwatermethod压片法Eeffectiveconstituent有效成分effectiveplatenumber有效板数effectiveofcolumn柱效electrophoresis电泳elimination消除eluate洗脱液elution洗脱enamtiomer对映体endabsorption末端吸收endogenoussubstances内源性物质enzymedrug酶类药物enzymeinduction酶诱导enzymeinhibition酶抑制epimer差向异构体equilibriumconstant平衡常数errorinvolumetricanalysis容量分析误差exclusionchromatography排阻色谱法expirationdate失效期externalstandardmethod外标法extract提取物extrationgravimetry提取重量法extractiontitration提取容量法extrapolatedmethod外插法Erlenmeyerflask锥形瓶evaporatingdishsmall蒸发皿elongatedbulb胖肚electronicbalanceMettlerAL204MettlerAL204电子天平Ffactor系数fehling’sreaction斐林实验filter过滤finenessoftheparticles颗粒细度flowrate流速fluorescentagent荧光剂fluorescencespectrophotometry荧光分光光度法fluorescencedetection荧光检测器fluorescenceanalysis荧光分析法foreignpigment有色杂质formulary处方集free游离freezingtest冻结试验fusedsilica熔融石英filterpaper滤纸Ggaschromatography气相色谱法gas-liquidchromatography气液色谱法gaspurifier气体净化器Generalidentificationtest一般鉴别试验generalnotices凡例Generalrequirements(药典)通则goodclinicalpractices药品临床管理规范goodlaboratorypractices药品实验室管理规范goodmanufacturingpractices(GMP)药品生产质量管理规范goodsupplypractices(GSP)药品供应管理规范gradientelution梯度洗脱grating光栅gravimetricmethod重量法Gutzeittest古蔡(检砷)法glassfunnellongstem玻璃漏斗gradcylinder量筒glassrod玻棒graduatedpipettes刻度吸管GC气相色谱Hheavymetal重金属halfpeakwidth平峰宽heatconductivity热导率heightequivalenttoatheoreticalplate理论塔板高度heightofaneffectiveplate有效塔板高度high-performanceliquidchromatography(HPLC)高效液相色谱法high-performancethin-layerchromatography(HPTLC)高效薄层色谱法hydrate水合物hydrolysis水解hydrophilicity亲水性hydrophobicity疏水性hydroxylvalue羟值hyperchromiceffect浓色效应hypochromiceffect淡色效应HHS-typeconstanttemperaturewaterbathHHS型恒温水锅HPLC高效液相色谱法Iidentification鉴别ignitiontoconstantweight灼烧至恒重immobilephase固定相immunoassay免疫测定impurity杂质inactivation失活index索引indicatorelectrode指示电极indicator指示剂inhibitor抑制剂injectingseptum进样隔膜胶垫instrumentalanalysis仪器分析injectionvalue进样阀insulinassay胰岛素生物检测法integrator积分仪intercept截距interface接口internalstandardsubstance内标物质Internationalunit国际单位invitro体外invivo体内iodide碘化物iodoformreation碘仿反应iodometry碘量法ionpairchromatography离子对色谱ionsuppression离子抑制ionsuppression离子抑制ionicstrength离子强度ion-pairingagent离子对试剂ionization电离isoabsorptivepoint等吸收点isocraticelution等溶剂组成洗脱isoelectricpoint等电点isoosmoticsolution等渗溶液irreversibleindicator不可逆指示剂irreversiblepotential不可逆电位KKarlFischertitration卡尔-费舍尔滴定Kjeldahlmethodfornitrogen凯氏定氮法Koberreagent 科伯试剂Kovatsretentionindex科瓦茨保留指数Llabelledamount标示量leadingpeak前延峰levelingeffect均化效应licensedpharmacist执业药师limitcontrol限量控制limitofdetection检测限limitofquantitation定量限limittest杂质限度试验lossondrying干燥失重lowpressuregradientpump氧压梯度泵linearityandrange线性及范围linearityscanning线性扫描luminescence发光litmuspaper石蕊试纸lyophilization冷冻干燥Mmainconstituent主成分make-upgas尾吹气maltolreaction麦芽酚试验Marquistest马奎斯试验massanalyzerdetector质量分析检测器massspectrometricanalysis质谱分析massspectrum质谱图meandeviation平均偏差meltingpoint熔点meltingrange熔距metabolite代谢物metastableion亚稳离子micellarchromatography胶束色谱法microanalysis微量分析microcrystal微晶microdialysis微透析migrationtime迁移时间Milliporefiltration微孔过滤mobilephase流动相molecularformula分子式monitor检测monochromator单色器monographs正文Nnaturalproduct天然产物Nessler’sreagent碱性碘化汞试液neutralization中和nitrogencontent总氮量nonaqueousacid-basetitration非水酸碱滴定nonprescriptiondrug,overthecounterdrugs非处方药nonspecificimpurity一般杂质non-volatilematter不挥发物normalphase正相normalization归一化法Nesslercolorcomparisontube纳氏比色管Onotice凡例octadecylsilanebondedsilicagel十八烷基硅烷键合硅胶odorless辛基硅烷odorless无臭officialname法定名officialtest法定试验on-columndetector柱上检测器on-columninjection柱头进样onthedriedbasis按干燥品计opalescence乳浊opticalactivity光学活性opticalisomerism旋光异构opticalpurity光学纯度organicvolatileimpurities有机挥发性杂质orthogonaltest正交试验orthophenanthroline邻二氮菲outlier可疑数据overtones倍频封oxidation-reductiontitration氧化还原滴定oxygenflaskcombustion氧瓶燃烧Ppackedcolumn填充柱packingmaterial色谱柱填料palladiumioncolorimetry钯离子比色法parention母离子particulatematter不溶性微粒partitioncoefficient分配系数patternrecognition(ppm)百万分之几peaksymmetry峰不对称性peakvalley峰谷peakwidthathalfheight半峰宽percenttransmittance透光百分率pHindicatorabsorbanceratiomethodpH指示剂吸光度比值法pharmaceuticalanalysis药物分析pharmacopeia药典pharmacy药学photometer光度计polarimetry旋光测定法polarity极性polydextrangel葡聚糖凝胶potentiometer电位计potentiometrictitration电位滴定法precipitationform沉淀形式precision精密度preparation制剂prescriptiondrug处方药pretreatment预处理primarystandard基准物质principalcomponentanalysis主成分分析prototypedrug原型药物purification纯化purity纯度pyrogen热原pycnometermethod比重瓶法plasticwashbottle洗瓶platformbalance天平pipette移液管pyknowmeterflasks容量瓶Qqualitycontrol质量控制qualityevaluation质量评价qualitystandard质量标准quantitativedetermination定量测定quantitativeanalysis定量分析quasi-molecularion准分子离子Rracemization消旋化randomsampling随机抽样rationaluseofdrug合理用药readilycarbonizablesubstance易炭化物质reagentsprayer试剂喷雾剂recovery回收率referenceelectrode参比电极relatedsubstance相关物质relativedensity相对密度relativeintensity相对强度repeatability重复性replicatedetermination平行测定reproducibility重现性residualbasichydrolysismethod剩余碱水解法residualliquidjunctionpotential残余液接电位residualtitration剩余滴定residuceonignition炽灼残渣resolution分辨率responsetime响应时间retention保留reversedphasechromatography反相色谱法reverseosmosis反渗透rinse淋洗robustness可靠性round修约reagentbottles试剂瓶roundbottomflask圆底烧瓶rubbersuctionbulb洗耳球Ssafety安全性Sakaguchitest坂口试验saltbridge盐桥saltingout盐析sampleapplicator点样器sampleapplication点样sampling取样saponificationvalue皂化值saturatedcalomelelectrode饱和甘汞电极selectivity选择性significantdifference显着性水平significanttesting显着性检验silicaget硅胶silverchlorideelectrode氯化银电极similarity相似性sodiumdodecylsulfate十二基酸钠solid-phaseextraction固相萃取solubility溶解度specificabsorbance吸收系数specification规格specificity专属性specificrotation比旋度specificweight比重spiked加入标准的splitinjection分流进样sprayreagent显色剂stability稳定性standardcolorsolution标准比色液standarddeviation标准差standardization标定standardsubstance标准品statisticalerror统计误差sterilitytest无菌试验stocksolution储备液stoichiometricpoint化学计量点storage贮藏straylight杂散光substrate底物substituent取代基sulfate硫酸盐sulphatedash硫酸盐灰分support载体suspension旋浊度swellingdegree膨胀度symmetryfactor对称因子systematicerror系统误差separatingfunnel分液漏斗stopcock玻璃活塞scissors剪刀spiritlamp酒精灯silicagelGthinlayer硅胶G薄层板Ttable片剂tailingfactor拖尾因子tailingpeak拖尾峰testsolution试液thermalanalysis热分析法thermalconductivitydetector热导检测器thermogravimetricanalysis热重分析法TheUnitedStatesPharmacopoeia美国药典ThePharmacopoeiaofJapan日本药局方thinlayerchromatography薄层色谱thiochromereaction硫色素反应thymol百里酚thymolphthalein百里酚酞titer滴定度three-dimensionalchromatogram三维色谱图titrant滴定剂titrationerror滴定误差titrimetricanalysis滴定分析法tolerance容许限totalash总灰分totalqualitycontrol全面质量控制traditionaldrugs传统药traditionalChinesemedicine中药turbidance浑浊turbidimetricassay浊度测定法turbidimetry比浊度turbidity浊度Uultracentrifugation超速离心ultravioletirradiation紫外线照射unduetoxicity异常毒性uniformdesign均匀设计uniformityofdosageunits含量均匀度uniformityofvolume装量均匀性uniformityofweight重量均匀性Vvalidity可靠性variance方差viscosity粘度volatileoildeterminationapparatus挥发油测定器volatilization挥发性volumetricanalysis容量分析volumetricsolution滴定液volumetricflasks比重瓶Wwavelength波长wavenumber波数weighingbottle称量瓶weighingform称量形式well-closedcontainer密闭容器whiteboard白瓷板XxylenecyanolblueFF二甲苯蓝FFxylenolorange二甲酚橙ZZigzagscanning锯齿扫描zwitterions两性离子Zymolysis酶解作用zoneelectrophoresis区带电泳。
面向随机环境的集装箱码头泊位_岸桥分配方法_周鹏飞
2008年1月系统工程理论与实践第1期 文章编号:1000-6788(2008)01-0161-09面向随机环境的集装箱码头泊位-岸桥分配方法周鹏飞,康海贵(大连理工大学海岸及近海工程国家重点实验室,大连116023)摘要: 针对船舶抵港时间和装卸时间的随机性,建立了面向随机环境的集装箱码头泊位-岸桥分配模型,其优化目标是最小化船舶的平均等待时间.考虑到模型求解的复杂度,本文设计了一种改进的遗传算法,并根据模型最优解的特点减少了搜索空间.试验算例验证了模型能够模拟码头泊位-岸桥分配问题的随机决策环境并能反映决策者对待风险的态度和偏好,其算法在允许的运算时间内能获得稳定的满意解.关键词: 集装箱码头;泊位-岸桥分配;随机规划;遗传算法中图分类号: U169.6 文献标志码: A Study on berth and qua y-crane allocation under stochasticenvironments in container terminalZHOU Peng-fei,KANG Hai-gui(State Key Lab.of Coastal and Offshore Engineering,Dalian University of Tech,Dalian116023,China)Abstract: Effective berth and quay-crane allocation improves service level of container terminal.Consideringstochastic characteristic of containership arrival time and handling time,a berth&quay-crane allocation model understochastic environ ments is s uggested,s o as to minimize containership average waiting time in terminal.Because of itshardness,a genetic algorithm is developed with a reduced solution set on its property.Numerical experiments showthat the model provides systemic simulation for the whole stochastic decision-making process and reflects decision-maker risk attitude.And the results of GA are stable and acceptable in allowable CPU time.Key words: container terminal;berth&quay-crane allocation;stochastic programming;genetic algorithm1 引言多用户集装箱码头管理模式能够节约运营成本,提高码头资源的利用效率,因此它已被许多世界级港口(如:新加坡港,香港港等)所采用.而我国大陆各港口也主要采用这种经营管理模式,除了受传统经营模式的影响外,更重要的是由于我国有限的码头资源和急剧增加的集装箱流量之间的矛盾.在多用户集装箱码头经营系统中,优化码头泊位和岸桥分配是提高这种经营模式效率的重要管理手段.近年来,针对码头泊位和岸桥分配调度的研究层出不穷,其方法主要有两类:一类是利用模拟仿真技术来评价和优化资源调度策略以及调度方案(见相关文献[1~6]);另一类是利用数学规划模型进行资源的调度优化,本文主要基于第二类方法进行研究.利用数学规划方法进行泊位和岸桥分配的研究现状分析.采用先来先服务(FC FS)的分配策略,Lai和Shih[7]提出了一种针对泊位分配问题的启发式算法,并利用其对不同分配标准(船舶平均等待时间最小和平均泊位利用率最大)下的分配方案进行了评估.针对军港泊位分配的特点:特权舰优先和船舰移泊, Br own等[8,9]以最大化船舶在港满意度为目标给到港船舶分配泊位.Imai等[10,11]以最小化船舶等待时间为目标,用非线性整数规划模型来模拟静、动态码头的泊位分配问题.Nishimura等[12]进一步扩展了上述模型收稿日期:2005-12-01资助项目:国家自然科学基金(50578030) 作者简介:周鹏飞(1977-),男(汉),河南省卫辉市,讲师,博士,主要研究方向:港口物流运作优化和系统规划,E-mail: pfzhou@.162系统工程理论与实践2008年1月到不同水深泊位的情形,并设计了遗传算法来求解模型.文章[13,14]则对不同服务优先级船舶的泊位分配问题进行了研究.Imai等[15]针对嵌入式泊位两侧同时作业来提高装卸效率的特点,建立泊位分配混合整数规划模型.Wang等[16]设计了一种随机集束搜索算法来求解泊位分配问题.李平等[17]提出一种混合优化策略能提高遗传算法的种群多样性,并加速进化过程.上述泊位分配模型和方法都将码头岸线划分成若干独立的泊位来进行分配,而另一类泊位分配方法则将整个码头岸线看作是连续的,只要有满足到港船舶物理条件(水深和长度)限制的位置就可以进行停泊,这个问题类似“背包”问题.基于图论的思想,Lim[18]提出一种有效求解连续岸线泊位分配问题的启发式算法,但作者假设所有船舶的停靠时间是固定的.Kim等[19]用混合整数规划模型模拟了船舶在岸线的停靠位置和时间,并用模拟退火算法给出了该模型的近似最优解.I mai等[20]将该问题划分成两阶段来解:首先求解离散的泊位分配模型,然后调整离散解形成连续泊位分配问题的解,这是一种近似折衷连续泊位分配问题解法.由于连续岸线泊位分配问题较为复杂,相关的研究也比较少.另外,Li等[21]将泊位-岸桥分配问题看作一个可同时处理多个任务的处理机调度问题,并假定所有船舶已在港等候靠泊,建立了以船舶在港时间最小为目标的模型,提出了启发式求解算法.类似地,Guan 等[22]也将泊位-岸桥分配问题看作处理机调度问题,其优化目标是最小化带权重的任务完成时间.针对岸桥分配问题,Daganzo[23]将船舶的装卸任务划分成若干吊装区,并用整数规划模型解决了静态桥吊的分配问题,其目标是使船舶的等待时间最小.此后,Peterkofsky和Daganzo[24]将桥调规划作为开放的生产计划问题,建立了整数规划模型,并用分支定界法求解了模型.曾庆成等[25]针对岸桥分配问题提出了混合整数规划模型,并基于遗传算法设计了求解算法.此外,在集装箱码头装卸作业柔性化flo w shop的集成化控制模型[26]也包含了岸桥的优化调度.上述模型和方法大都是面向“硬性”(确定性)环境的.但实际中广泛存在的不确定性因素(如船舶抵港时间,装卸时间等)使得确定性模型不能真实地反映实际系统,并且它们在某种程度上影响着分配决策,甚至决定着最终的分配方案等.Zhou等[27]利用模糊理论对泊位调度中的不确定性因素进行了初步探索性研究,收到良好的效果.随机因素同样是泊位调度问题中普遍存在的,因此,随着随机规划理论及其相关技术的发展和对规划效果要求的提高,有必要加强面向随机环境的泊位调度研究.此外,以往模型多是在分配泊位时简化或忽略了与泊位分配直接相关的岸桥分配,或者是将岸桥分配作为独立问题来处理,这样得到的方案不利于码头系统的整体性能的发挥.鉴于以上分析,本文建立了集装箱码头泊位-岸桥动态分配的随机规划模型,并设计了求解模型的遗传算法.所谓的动态是相对于静态(在调度时,所有的船舶都已抵港等待靠泊)而言的,指所考虑的船舶可以在其它船舶靠泊后才到达.2 问题描述通常船舶抵港后或在此之间,码头调度员将根据相关信息和调度策略将泊位和岸桥分配给船舶.图1给出了船舶从到港、停泊、装卸、到最后离港的过程简图.泊位-岸桥的优化分配是指通过分配适当的泊位、选择合适的靠泊顺序并配备合理的岸桥数量,使船舶在港时间较短,以提高船舶的利用率和客户的满意度,并降低码头的运营成本.Imai等[10]证明了在多用户集装箱码头系统中,不考虑先来先服务(FC FS)原则可以获得较短船舶停泊时间的分配方案,但同时会导致某些船舶过长的等待时间.因此,笔者在不考虑先来先服务原则的同时,为各船舶选择了可接受的最大等待时间作为约束条件,这样既能保证较短的船舶停靠时间也可避免某些船舶过长的等待时间.泊位-岸桥分配模型将基于以下假设:1)船舶的到港时间作为随机变量来考虑;2)船舶的装卸时间将依据所在泊位、岸桥数量等因素确定,也是随机变量;3)根据船舶的时间要求和重要性等级确定各船的最大可接受等待时间;4)停靠泊位要满足船舶物理条件(水深和长度)的约束;5)不考虑船舶移泊,每个船舶有且只有一次靠泊机会;6)船舶长度要满足分配岸桥工作面的要求,即:分配岸桥数量不大于船舶允许同时作业的岸桥数量;7)当多个岸桥同时装卸一个船舶时,不可避免地会造成彼此的干扰,进而影响岸桥的装卸效率,根据统计资料这里选用船舶的最大允许岸桥数与实际分配岸桥数量之差作为岸桥装卸效率折减的依据,即:0,1,2以上(包含2)相应的折减率分别为0.9,0.95,1.0.图1 集装箱船舶在码头作业流程简图3 面向随机环境的动态泊位-岸桥分配模型3.1 相关的概念和符号T v ,Tb ,Tc —考虑的到港船舶数、泊位数和岸桥数;V ,B ,C —考虑的到港船舶集、泊位集和岸桥集,V ={1,2,…,Tv },B ={1,2,…,Tb },C ={1,2,…,Tc };O —根据船舶计划到港时间排定的船舶到港顺序集,1对应最先到达的船舶,O ={1,2,…,T v };T vh j —船舶j 装卸箱总量,j ∈V ;ξtvj —集装箱船舶j 的抵港时间,j ∈V ;ξtc j —装卸每个船舶j 上集装箱所用的时间,该参数与船型等因素有关,i ∈B ,j ∈V ;Ls j —船舶j 的长度(包括水平安全预留长度),j ∈V ;Lb i —泊位i 的长度,i ∈B ;Ds j —船舶j 的设计水深(包括竖向安全预留深度),j ∈V ;Db i —泊位i 的水深,i ∈B ;mt j —船舶j 的最大可接受等待时间,j ∈V ;BerthingT —船舶靠泊和离泊时间.决策变量:x ijk —1,如果船舶j 在泊位i 的第k 个服务时间得到服务;0,否则,i ∈B ,j ∈V ,k ∈O ;从属变量:ov ik —第k 个装卸船舶分配岸桥时,泊位i 上装卸的船舶,i ∈B ,k ∈O ;ξtbc ik —第k 个装卸船舶分配岸桥时,泊位i 上装卸船舶的靠泊完成时间,i ∈B ,k ∈O ;vb k —第k 个装卸船舶所分配的泊位,k ∈O ;vc k —装卸第k 个船舶所分配的岸桥总数,k ∈O ;ξtb k —估计装卸第k 个船舶所需的时间,k ∈O ;ξtbs ik —泊位i 的第k 个停泊服务的开始可用时间,i ∈B ,k ∈O ;ξtcs gk —第k 个装卸船舶分配岸桥时,岸桥g 的开始可用时间,g ∈C ,k ∈O ;bc gk —第k 个装卸船舶分配岸桥时,岸桥g 所在泊位,g ∈C ,k ∈O ;ξtcs o gk —第k 个装卸船舶分配岸桥时,岸桥g 到达船舶的时间,g ∈C ,k ∈O ;ξtch k —开始装卸第k 个装卸船舶的时间,k ∈O ;wb j ,wc j —船舶j 等待靠泊时间和等待岸桥时间,j ∈V .3.2 从属变量的确定163第1期面向随机环境的集装箱码头泊位-岸桥分配方法为了方便描述,这里引入临时变量curB i ,curV ,i ∈B .步骤1:k =1.ξtbs ik =0,i ∈B .ξtcs g k =0,g ∈C .初始化bc gk .步骤2:设curB i =1,当(∑j ∈V x ij ,cu rB i =0){c urB i =curB i +1},ov ik =∑j ∈V (j ×x ij ,cu rB i ),ξtbc ik =ξtv o v ik +BerthingT ,i ∈B .选择相应ξtbc ik最小的泊位作为vb k .设curV =ov vb k ,k .步骤3(选择岸桥):设LeftCrane ,RightCrane ,根据当前的岸桥状态(ξtbs ik 和ξtcs gk )和岸桥不能跨越的规则,确定每个岸桥的ξtcso gk .选择ξtcs o g k 小于ξtb c vb k ,k 的岸桥,若有则ξtch k =ξtbc vb k,k ;否则选出最早可用的岸桥,ξtch k =ξtcso gk .令LeftCrane 和RightCrane 分别为所选岸桥集中最小和最大的岸桥编号.若所选岸桥总数大于船舶curV 的允许岸桥数,则依次将LeftCrane +1和RightCrane -1,直至RightCrane -LeftCrane +1=船舶的允许岸桥数;否则继续.步骤4:vc k =RightC rane -Le ftC rane +1.根据假设(7),vc k 和T vh curV 来确定ξtb k .步骤5:如果k ≤T v ,则k =k +1,更新岸桥的ξtcs gk 和bc gk ,更新ξtbs ik ;否则结束.步骤6:当(∑j ∈V x ij ,curB i =0且curB vb k ≤Tv ){c urB vb k =curB vb k +1}.如果CurB vb k ≥Tv ,ξtbc ik 取一个足够大的数;否则,ov ik =∑j ∈V (j ×x ij ,cur B i ),ξtbc ik =max (ξtv ov ik ,ξtbs ik )+BerthingT ,i ∈B .选择相应ξtbcik 最小的泊位作为vb k .设curV =ov vb k ,k .转到步骤3.3.3 基于机会约束的0-1未确定规划模型该动态的泊位-岸桥分配模型可描述为:首先,根据决策变量x ijk 将来港船舶分配到泊位,并为船舶安排靠泊顺序;然后,根据当前泊位待装卸的船舶情况选择当前装卸船舶,并根据岸桥状态和待装卸船舶情况分配装卸船舶的岸桥.船舶等待时间包括两部分:等待靠泊时间和等待岸桥装卸时间,一般来说后者较小.该问题可用下列模型表示:Obj .min .∑k ∈O (wb k +wc k )(1)s .t . ∑i ∈B ∑k ∈O x ijk =1, j ∈V (2)∑j ∈V x ijk ≤1, i ∈B ; k ∈O (3)P (ξtbs vb k ,k -ξtv o v vb k ,k <wb k )≥α, k ∈O (4)P (ξtch k -ξtb c vb k ,k <wc k )≥β, k ∈O (5)∑i ∈B ∑j ∈O (x ijk ×Db i )≥Ds j , j ∈V (6)∑i ∈B ∑k ∈O (x ijk ×Lb i )≥Ls j , j ∈V (7)wb k +wc k ≤mt o v wb k ,k , k ∈O (8)wb k ≥0,wc k ≥0, k ∈O (9)x ijk ∈{0,1}, i ∈B ; j ∈V ; k ∈O(10) 该模型是带有随机参数的非线性0-1规划模型.优化目标是最小化船舶等待时间之和(包括等待靠泊wb k 和等待岸桥时间wc k ).约束2)表示所有船舶有且只有一次靠泊机会.约束3)保证泊位上同时停泊的船舶不超过1艘.约束4)和5)要求船舶的等待时间(wb k 和wc k )具有α和β的保证率.公式6)和7)强调分配的泊位必须满足船舶物理条件(水深和长度).约束8)限制每个船舶的等待时间小于其最大可接受的等待时间(mt ov vb k,k ).约束9)要求船舶等待时间非负.式10)声明决策变量x ijk 是0-1变量.3.4 随机变量的处理164系统工程理论与实践2008年1月根据统计分析,船舶实际发生的抵港时间和装卸时间与计划或事前估计的偏差可认为是正态分布的,那么船舶抵港时间和装卸时间可用ξ(=a +ξd )表示,其中a 为计划或估计时间(实数),ξd表示偏差(期望值为零的正态分布随机变量).模型中的随机变量包括:船舶抵港时间(ξtv j )、集装箱所需的装卸时间(ξtc j )及其从属变量.这些随机变量主要参与加法运算和大小关系的比较.设正态分布变量ξ1(μ1,σ21)和ξ2(μ2,σ22),则加法运算ξ1+ξ2=ξ(μ1+μ2,σ21+σ22);关于两个随机变量的大小比较,笔者假定ξ1>ξ2当且仅当μ1>μ2.4 改进的遗传算法4.1 个体的编码每个基因个体用一个字符集(由两个子字符串或子基因组成)表示,其中:一个子基因对应于分配到每个船舶的泊位,而另一个子基因对应于船舶的靠泊次序.编码前,首先为泊位编号,并根据船舶抵港顺序为船舶进行编号.选择最大推迟靠泊次数(Order Limit Number OL N ).图2给出了基因个体的编码例子,该例中有16个来港船舶,四个泊位,OL N 取3.船舶、子基因1和子基因2部分的数字分别代表来港船舶,泊位以及相应船舶的推迟靠泊次数.子基因1和子基因2的组合加上岸桥分配规则就可表示一个分配方案.例图所示的分配方案中,泊位1停靠船舶的次序为“船舶1、8、11、5、15等”.个体编码的对应解仅考虑了约束条件2)、3)和10),每个满足条件2)、3)和10)的解都能找到一个基因个体编码与之相对应.通常为了避免单个船舶过长的等待时间,OLN 需选择较小的数,同时较小的OLN 也可以缩小算法的搜索空间.这种编码方法可以得到满足约束条件2)、3)和10)的优化解.约束条件6)和7)将在种群初始化和变异运算中考虑,而约束条件4)、5)、8)和9)将在适应度函数中得到体现.图2 基因编码说明4.2 搜索空间讨论在约束条件2)、3)和10)的限制下,该模型决策变量的搜索空间大小为P TvTb ×Tv ,其中Tv 和Tb 分别表示船舶数和泊位数.证明 如果仅考虑约束条件2)、3)和10)时,求解模型类似于分配T v 个球到Tb ×T v 个不同盒子中,显然其搜索空间大小为P Tv Tb ×Tv .证毕.上述遗传算法的搜索空间的大小为(Tv ×OLN )T v ,其中Tv 、Tb 和OL N 分别表示船舶数、泊位数和船舶最大推迟靠泊次数.证明 子基因1的搜索空间大小为T b ×Tb ×…×Tb Tv ,子基因2的搜索空间大小为OLN ×OLN ×…×OL N T v .因此,该遗传算法的搜索空间大小为Tb ×Tb ×…×Tb T v×OLN ×OLN ×…×OL N T v =(Tb ×OLN )Tv .证毕.通常,OLN T v ,那么(Tb ×OLN )T v P TvTb ×Tv .4.3 种群初始化鉴于算法的搜索空间较大,笔者采用了随机生成初始种群的方法.对于子基因1,算法将随机地从满足约束条件6)和7)的泊位中选取.对于子基因2,由于通常情况下较小的推迟靠泊次数对应于较小的等待时间,所以该算法将以给定的概率分布随机地从{1,2,…,OLN }中选取,并且较小的序数对应于较大的概率.4.4 交叉和变异运算165第1期面向随机环境的集装箱码头泊位-岸桥分配方法常用的交叉运算有:部分匹配交叉、基于次序的交叉、循环交叉和基于边重组的交叉运算.针对模型的特点,提出了一种基于部分匹配的交叉运算(如图3).首先,随机地选择两个交叉点,这两个交叉点将两个父基因(“P1”和“P2”)分别分为中间和两边两组基因信息.将父基因的两组基因信息重组形成两个新的子基因个体(“O1”和“O2”),新基因个体都将拥有父基因的基因信息.由于两个父基因个体都满足约束条件6)和7),那么,新生成的两个基因显然也满足这两个约束条件.图3 交叉运算说明变异运算的目的是通过当前基因的突变来打破局部优化的限制,从而达到全局最优.几种常见的变异运算是反序互换,取代和启发式变异运算等.这里采用基于取代变异的方法:随机地选择一个取代位置,并用一个在当前位置上满足约束6)和7)的基因信息取代当前位置上的基因信息(如图4).图4 变异运算说明4.5 个体评估在个体编码、初始化、交叉和变异运算的过程中考虑了除约束条件8)外的所有约束(约束条件4、5和9用来计算目标函数值),因此算法中的所有个体满足除约束条件8)外的所有约束.因此,基因个体的适应度值将由目标函数值和足够大惩罚函数值(如果个体不满足约束条件8)组成.4.6 遗传算法的实现遗传算法的流程如图5所示.算法通过尝试、循环,最终达到目标函数最小的目的.图5 基因算法的流程图5 试验和分析5.1 试验算例根据船舶到港分布,装卸机械的技术参数设计算例,以评价和测试建立的模型和算法.笔者选择了4个泊位、12个岸桥的码头作为算例.船舶抵港时间的期望值满足泊松分布(均值为λ),抵港时间的均方差随机地从3~9个时间单位(10分钟)中选取.船型分为三类(Ⅰ,Ⅱ,Ⅲ),且服从均匀分布.船舶吃水深度和长度根据船型确定.船舶装卸箱量依据船型(Ⅰ:100~300;Ⅱ:200~500;Ⅲ:400~1200)随机选取.岸桥的装卸效率与船型,天气等因素有关,因此,相应于每个船舶的岸桥装卸效率为2~3分钟 箱.船舶最大可166系统工程理论与实践2008年1月接受等待时间从3~10个小时中随机选取.笔者选择了12组不同柏松分布均值λ(3、4和5小时)和抵港船舶数(25、50、75到100个)组合的算例.Ⅰ、Ⅱ和Ⅲ类船舶可停靠的泊位和允许的岸桥工作数量分别为:0-2#泊位和5个岸桥;0-3#泊位和4个岸桥;0-4#泊位和3个岸桥.5.2 评价和分析图5 不同来港船舶数量下遗传算法消耗的CPU 时间为保证算法在可接受的时间内得到较优的优化方案,通过试验选择遗传算法的基本参数:种群大小Pop =100,遗传迭代次数G =2500,交叉概率Pc =0.8和变异概率P m =0.2.在这些参数设置下求解不同规模算例所消耗的CPU 时间如图5,图中最大值不超过10分钟.不同船舶抵港分布期望值λ(3、4和5小时)算例的船舶平均等待时间随遗传算法迭代次数增加的变化趋势如图6.当算法迭代次数超过1000时,目标函数值变得稳定.当迭代次数达到2000时,目标值趋于收敛.表1给出了遗传算法求解部分算例的目标函数值,并与贪婪算图6 遗传算法迭代次数与船舶平均等待时间的关系法(步步最优算法,其算法规则为最先到达的船舶靠泊在最先可用的泊位,并在船舶装卸要求等约束条件下分配最多的岸桥)的求解值进行了比较.可以看出:算法较贪婪算法都有不同程度的改进,目标值的改善不小于25%,从而验证了算法的有效性.图7给出了不同置信度水平对目标值的影响情况.可以看出随着置信水平的增加,目标值有增加的趋势,反映了决策者的风险偏好对目标函数的影响.趋于保守决策者可以设置较高置信水平,反之可设置较低的置信水平,依据所得的目标函数值决策者可以针对可能出现的不利情况采取必要的应对措施.表1 遗传算法与贪婪算法所得平均等待时间的比较(单位:小时)CPU 时间<10分钟α=0.9P 1(3)*P 2(3)P 3(3)P 4(4)P 5(4)P 6(4)贪婪算法遗传算法(G =2000)50船舶0.450.780.670.510.590.4375船舶0.921.211.120.70.720.4850船舶0.260.340.290.350.430.2375船舶0.490.630.660.420.490.31算法较贪婪算法改善>42.2%>47.9%>41.3%>31.4%>27.1%>35.4% *“P1”表示算例1;“3”表示船舶抵港时间期望值的分布均值λ.6 结论在集装箱码头的泊位-岸桥分配问题中,船舶的抵港时间和装卸时间具有明显的动态性和随机性.基于机会约束的随机规划思想,本文建立了集装箱码头的泊位-岸桥分配模型.在模型最优解特征分析的基础上,设计了求解模型的遗传算法.试验表明:集装箱码头泊位-岸桥分配的随机规划模型能够反映问题中的随机因素并能较真实地模拟随机决策环境.同时,模型能够体现出决策者对待风险的态度和偏好,趋于保守决策者可以设置较高置信水平,反之可设置较低的置信水平,依据所得的目标函数值决策者可以针对167第1期面向随机环境的集装箱码头泊位-岸桥分配方法图7 置信度α取值与目标值的关系可能出现的不利情况采取必要的应对措施.在可接受的时间范围内,遗传算法求解模型能够获得较优的方案,其目标函数值较贪婪算法的目标值有不同程度的改善.本文考虑了集装箱码头泊位-岸桥分配问题中的随机因素,但在该问题的实际决策过程中还将涉及其他不确定性因素.如:未确知性、模糊性等以及这些因素的组合,对这些因素的深入研究将有助于获得合理、可靠的泊位-岸桥分配方案.此外,码头是一个连续协调的物流作业系统,泊位-岸桥分配将会受到包括堆场空间分配在内的其他码头资源分配和调度方案的影响,因此加强对泊位-岸桥分配同其他子系统关联性的研究,将是提高码头系统整体性能的一种重要手段.参考文献:[1] Legato P ,Mazza R M .Berth planning and resources optimization at a container terminal via discrete event simulation [J ].EuropeanJournal of Operational Research ,2001,133(3):537-547.[2] Shabayek A A ,Yeung W W .A s imulation model for the Kwai Chung container terminals in Hong Kong [J ].E uropean Journal ofOperational Research ,2002,140:1-11.[3] Bielli M ,Boulmakoul A ,Rida M .Object oriented model for container terminal distributed simulation [J ].European Journal ofOperational Research ,2006,175:1731-1751.[4] 张海霖,江志斌,许泓.集装箱港口集疏运调度系统作业模式的仿真分析[J ].上海交通大学学报,2006,40(6):1024-1030.Zhan g Hailin ,Jiang Zhibin ,Xu Hong .A s imulation study of container terminal scheduling system [J ].Journal of Shanghai Jiaotong Universit y ,2006,40(6):1024-1030.[5] 韩晓龙,丁以中.集装箱港口装卸作业仿真系统[J ].系统仿真学报,2006,18(8):2366-2369.Han Xiaolong ,Ding Yizhong .Simulation system of container terminal charge discharge operations [J ].Journal of System Simulation ,2006,18(8):2366-2369.[6] 蔡芸,张艳伟.集装箱码头泊位分配的仿真优化方法[J ].中国工程机械学报,2006,4(2):228-232.Cai Yun ,Zhang Yan wei .Simulation optimization for berth allocation in container terminals [J ].Chinese Journal of Construction Machinery ,2006,4(2):228-232.[7] Lai K K ,Shih K .A stud y of container berth allocation [J ].Journal of Advanced Transportation ,1992,26(1):45-60.[8] Brown G G ,Lawphongpanich S ,Thurman K P .Optimizing ship berthin g [J ].Naval Research Logistics ,1994,41:1-15.[9] Brown G G ,Cormican K J ,Lawphongpanich S ,et al .Optimizing s ub marine berthing with a persistence incentive [J ].NavalResearch Logistics ,1997,44:301-318.[10] Imai A ,Nagai wa K ,Tat C W .Efficient planning of berth allocation for container terminals in Asia [J ].Journal of AdvancedTransportation ,1997,31(1):75-94.[11] Imai A ,Nishimura E ,Papadimitriou S .The dynamic berth allocation problem for a container port [J ].Transportation Research PartB ,2001,35:401-417.[12] Nishimura E ,Imai A ,Papadimitriou S .Berth allocation planning in the public berth system by genetic algorithms [J ].EuropeanJournal of Operational Research ,2001,131:282-292.[13] Imai A ,Nishimura E ,Papadimitriou S .Berth allocation with service priority [J ].Transportation Research Part B ,2003,37:437-457.[14] Zhou P ,Wang K ,Kang H .Study on berth allocation problem with variable service priority in Multi -User Container Terminal [C ]Proceedings of the Sixteenth International Offshore and Polar Engineerin g Con ference ,USA :The International Society of Offshore and Polar Engineers ,2006.684-688.[15] Imai A ,Nishimura E ,Masahiro H .Berth allocation at indented berths for mega -containers hips [J ].European Journal of OperationalResearch ,2007,179(2):579-593.[16] Wang F ,Lim A .A stochastic beam search for the berth allocation problem [J ].Decis ion Support Systems ,2007,42(4):2186-168系统工程理论与实践2008年1月2196.[17] 李平,孙俊清,韩梅.泊位调度问题的GATS 混合优化策略[J ].天津理工大学学报,2006,22(4):58-61.Li Ping ,Sun Junqing ,Han Mei .The algorithm for the berth scheduling problem by the hybrid optimization strategy GATS [J ].Journal of Tianjin University of Technology ,2006,22(4):58-61.[18] Lim A .The berth scheduling problem [J ].Operations Research Letters ,1998,22:105-110.[19] Kim K H ,Moon K C .Berth scheduling by simulated annealing [J ].Transportation Research Part B ,2003,37:541-560.[20] Imai A ,Sun X ,Papadimitriou S .Berth allocation in a container port :Using a continuous location space approach [J ].Transportation Research Part B ,2005,39:199-221.[21] Li C L ,Cai X ,Lee C Y ,Scheduling with multiple -job -on -one -processor pattern [J ].IIE Transactions ,1998,30:433-445.[22] Guan Y P ,Xiao W Q ,Cheung R K ,et al .A multiprocessor task scheduling model for berth allocation :Heuristic and worst -caseanalysis [J ].Operations Research Letters ,2002,30:343-350.[23] Daganzo C F .The crane scheduling problem [J ].Transportation Research B ,1989,23(3):159-175.[24] Peterkofsky R I ,Daganzo C F .A branch and bound solution method for the crane schedulin g problem [J ].Transportation ResearchB ,1990,24(3):159-172.[25] 曾庆成,高宇.集装箱码头装卸桥调度优化模型与算法[J ].计算机工程与应用,2006,32:217-219.Zeng Qn g cheng ,Gao Yu .Model and algorithm for quay crane scheduling in container terminals [J ].Computer Engineering &Applications ,2006,32:217-219.[26] 陈璐,奚立峰,蔡建国,等.集装箱码头装卸作业的调度控制模型及算法设计[J ].控制理论与应用,2006,23(6):873-878.Chen Lu ,Xi Lifeng ,Cai Jianguo ,et al .Integrated model and heuristic algorith m for the scheduling of container handling system in a maritime terminal [J ].Control Theory &Applications ,2006,23(6):873-878.[27] Zhou P ,Guo Z ,Lin L .A fuzzy vehicle -crane scheduling problem in container terminal [C ] Proceedings of the InternationalConference on Sensin g ,Computing and Automation ,Canada :Watam Press ,2006.3593-3598.(上接第140页)[19] Dorigo M ,Maniezzo V ,Colorni A .The ant system :Optimization by a colon y of cooperatin g agents [J ].IEEE Transactions onSystems ,Man ,and Cybernetics -Part B ,1996,26:29-41.[20] Dorigo M ,Gambardella L M .Ant colonies for the traveling sales man problem [J ].Bio Systems ,1997,43:73-81.[21] Dorigo M ,Gambardella L M .Ant colony system :A cooperative learning approach to the traveling sales man problem [J ].IEEETransactions on Evolutionary Computation ,1997,1:53-66.[22] Stutzle T ,Hoos H .MAX -MIN ant system [J ].Future Generation Computer Systems ,2000,16(8):889-914.[23] B ullnheimer B ,Hartl R F ,Strauss C .A new rank based version of the ant s ystem :A computational study [J ].Central EuropeanJournal for Operation Research and Economics ,1999,7(1):25-28.[24] Middendorf M ,Reischle F ,Schmeck H .Multi colony ant algorithms [J ].Journal of Heuristics ,2002,8(3):305-320.[25] 吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J ].计算机研究与发展,1999,36(10):1240-1245.Wu Qinghong ,Zhang Jihui ,Xu Xinhe .An ant colon y algorith m with mutation features [J ].Journal of Computer Research and Development ,1999,36(10):1240-1245.[26] 覃刚力,杨家本.自适应调整信息素的蚁群算法[J ].信息与控制,2002,31(3):198-201.Qin Gangli ,Yang Jiaben .An improved ant colon y algorith m based on adaptively adjusting pheromone [J ].Information and Control ,2002,31(3):198-201.[27] 郝晋,石立宝,周家启.求解复杂TSP 问题的随机扰动蚁群算法[J ].系统工程理论与实践,2002,25(9):88-91.Hao Jin ,Shi Libao ,Zhou Jiaqi .An ant system al gorithm with random perturbation behavior for complex TSP problem [J ].Systems Engineering -Theory &Practice ,2002,25(9):88-91.169第1期面向随机环境的集装箱码头泊位-岸桥分配方法。
随机共振
274
A. Devices
274
1. Stochastic resonance and the dithering effect
274
B. Stochastic resonance in coupled systems
274
1. Two coupled bistable systems
274
2. Collective response in globally coupled
251
231
2. Electron paramagnetic resonance
253
231
3. Superconducting quantum interference
232
devices
253
234
C. Neuronal systems
254
234
1. Neurophysiological background
254
234
2. Stochastic resonance, interspike interval
236
histograms, and neural response to periodic
238
stimuli
255
239
3. Neuron firing and Poissonian spike trains
C. Tools 1. Digital simulations 2. Analog simulations 3. Experiments
III. Two-State Model IV. Continuous Bistable Systems
A. Fokker-Planck description 1. Floquet approach
完美怎么用英语写作文
Writing an essay in English that is considered perfect involves several key components:clear structure,coherent arguments,correct grammar,and engaging vocabulary.Here is a stepbystep guide to help you write an essay that could be seen as perfect:1.Understand the Prompt:Before you start writing,make sure you fully understand the question or prompt.This will guide the direction of your essay and ensure that your content is relevant.2.Plan Your Essay:Outline the main points you want to cover.This will help you organize your thoughts and create a logical flow to your essay.3.Introduction:Start with a strong introduction that grabs the readers attention.Introduce the topic and provide a brief overview of what you will discuss in the essay.4.Body Paragraphs:Each paragraph should focus on one main idea that supports your thesis e topic sentences to introduce each paragraph,followed by evidence or examples to support your point.Make sure to explain how each piece of evidence relates back to your thesis.5.Coherent Arguments:Ensure that your arguments are logical and flow from one to the next.Each paragraph should build upon the previous one,creating a cohesive narrative.e of Evidence:Support your claims with evidence such as facts,statistics,quotes,or examples.Make sure to cite your sources properly to avoid plagiarism.7.Grammar and Punctuation:Check your essay for grammatical errors and correct punctuation.This is crucial for maintaining the credibility and professionalism of your writing.8.Vocabulary:Use a wide range of vocabulary to express your ideas clearly and effectively.Avoid repetition and clichés.9.Conciseness:Be concise and to the point.Avoid unnecessary words and phrases that do not add value to your argument.10.Transitions:Use transitional phrases to connect your ideas smoothly.This helps to guide the reader through your essay and makes it easier to follow.11.Conclusion:Summarize your main points and restate your thesis in a new way.Theconclusion should leave a lasting impression on the reader.12.Revise and Edit:After writing your first draft,take the time to revise and edit your essay.Look for areas where you can improve clarity,strengthen arguments,or correct errors.13.Proofread:Finally,proofread your essay to catch any typos,grammatical mistakes,or inconsistencies that may have been missed during the editing process.14.Get Feedback:If possible,have someone else read your essay and provide feedback.A fresh set of eyes can often spot errors or areas for improvement that you may have overlooked.By following these steps and focusing on clarity,coherence,and correctness,you can write an essay in English that is wellstructured and engaging,which could be considered perfect by many standards.。
StochasticResona...
StochasticResona...Eur.Phys.J.B69,1–3(2009) DOI:10.1140/epjb/e2009-00163-x Editorial T HE E UROPEANP HYSICAL J OURNAL BStochastic Resonance:A remarkable idea that changed our perception of noiseL.Gammaitoni1,P.H¨a nggi2,P.Jung3,and F.Marchesoni41Department of Physics,University of Perugia,06123Perugia,Italy2Institut f¨u r Physik,Universit¨a t Augsburg,Universit¨a tsstr.1,86135Augsburg,Germany3Department of Physics and Astronomy,Ohio University,Athens,OH45701,USA4Dipartimento di Fisica,Universit`a di Camerino,62032Camerino,Italyc EDP Sciences,Societ`a Italiana di Fisica,Springer-Verlag2009Abstract.Despite a slow start after being introduced in the1980’s,the idea of Stochas tic Resonancespurred since remarkable cross disciplinary interest in natural and social sciences.Ten years after ourcomprehensivereview[Rev.Mod.Phys.70,223(1998)]Stochastic Resonance has become a researcheld on its own.The present Topical Issue presents the most recent applications and extensions of thissurprisingly simple and still powerful idea.PACS.02.50.Ey Stochastic processes–05.40.-a Brownian motion–05.10.Gg Stochastic analysis methodsGood scienti?c ideas are rare,and when someone has one itsometimes takes a decade or more until the world rec-ognizes it.The story of Stochastic Resonance[1]is a story of that type.About30years ago two groups in Rome[2] and Brussels[3]came up with a new idea to explain the al-most periodic occurrence of the ice ages,or how a minute change in the Earth orbit around the Sun can cause a shift of the climate as dramatic as the ice ages.Their basic idea went as follows:If climate supports two stable states,one at a lower temperature(ice age)and one at a larger tem-perature,then?uctuations due to geodynamical events can cause random transitions between those two states. An additional,small,periodic(non random)modulation of the Earth orbit will bias the random transitions towards times where the respective transitions are most likely.If the?uctuations are too small,the transitions occur too infrequently and cannot be entrained by the modulation of the Earth orbit.If the?uctuations are too large,the random transitions would be too frequent and couldn’t be entrained,either.Et voila,there is a Stochastic Resonance at an optimal level of the?uctuations!Although it was brilliant,subsequent data did not sup-port this idea as an explanation for the ice ages.But this was not the end of Stochastic Resonance.Quite to the contrary,the concept of Stochastic Resonance followed a dynamics of its own.It took two experimental demonstra-tions,respectively,on a bistable electronic circuit[4]and on a bidirectional ring laser[5],and the introduction of user friendly quanti?ers[6–8]to set the new?eld Stochas-tic Resonance o?to a good start.An important turning point in this young?eld oc-curred when the resemblance of escape-time distributions in a weakly rocked bistable system[9]with interspike in-terval distributions of actionpotentials of neurons was discovered[10].What was most striking at the time and what triggered researchers’curiosity the most was the sug-gestion that noise,often considered a nuisance of small in?uence,can become instead a very signi?cant compo-nent of the apparatus which generates action potentials. This,combined with the notion of Stochastic Resonance, i.e.the existence of an optimal dose for the level of the ?uctuations,led to a new paradigm that systems may have evolved to perform best under ambient noise lev-els.The?eld experienced a rush into exploring the role of Stochastic Resonance in noisy biological systems[11]. Hallmark research in that direction has been performed by Frank Moss and his collaborators.They have demon-strated Stochastic Resonance for the?rst time in a liv-ing organism.They showed that,indeed,externally added noise enhances the detection of small vibrations by the cray?sh mechanoreceptor[12].In a similar line of research Levine and Miller[13]demonstrated the bene?t of noise for the cricket cercal sensory system.Remarkably,research on the bene?cial role of noise for various aspects of the nervous systems,ranging from synapses[14]to cortex[15], ghost Stochastic Resonances in ensembles of neurons[16] and higher level brain function[17]and even neurorehabil-itation[18]is still very active and the numbers of papers published still increasing.Typically,the biological signals that become ampli?ed via Stochastic Resonance by am-bient jittering perturbations are non-stationary in nature.2The European Physical Journal BThis calls for new Stochastic Resonance quanti?ers[19] with potential rami?cations in information theory[20].Representative for the role of noise and Stochastic Res-onance in biologic systems are select papers of this TopicalIssue[21–25].The quest for the smoking gun proving that evolution itself has been directed by unavoidable ambient ?uctuations is still being pursued,see e.g.[26].Many of the applications of Stochastic Resonance,in particular to neuroscience,are concerned with large en-sembles of coupled constituent systems.Neurons are cou-pled chemically through synapses,and electrically through gap junctions and form large networks.Such a network can exhibit behaviors which are drastically di?erent from those of its constituents,depending on coupling and cou-pling topology.Early studies have recognized the impor-tance of network response versus response of its parts to a weak external signal in the presence of noise[27–29],while the e?ects of network topology on Stochastic Resonance are the subject of ongoing research,as discussed by several contributions published in this Topical Issue[21,30–34] From early on,the role of intrinsic noise,i.e.noise that persists because the system is subject to thermal ?uctuations or,because it is small and made of few con-stituents,in Stochastic Resonance has been subject of investigation.After all,if nature had evolved to a state which operates optimally under ambient noise levels,the underlying sources should be intrinsic.An early pioneer-ing study on Stochastic Resonance in periodically gated ion channels[35],the elementary building blocks of the action potential generating machinery in neurons,demon-strated Stochastic Resonance but at a noise level incon-sistent with ambient levels.Bezrukov and Vodyanoy[36] reported the observation of Stochastic Resonance in a sys-tem of voltage-dependent ion channels formed by the pep-tide alamethicin,i.e in an synthetic ion channel.However, if contrary to what is usually expected,the thermal acti-vation of channel proteins did notobey an Arrhenius law kinetics(as experiments indicate[37]),Stochastic Reso-nance would indeed occur at ambient temperatures[23].A di?erent line of research on the role of intrinsic noise is based on the relation between system size and noise.The smaller the number of constituent parts of a system,the larger will be the?uctuations.Hence,noise levels can be tuned to system size leading to the concept of system-size Stochastic Resonance[38–40].Undoubtedly,the paradigm of Stochastic Resonance, originally developed to explain the ice ages has spread well beyond physics and left its?ngerprints in many other scienti?c disciplines.The present preface is not meant as comprehensive.Indeed it is utterly incomplete as it ig-nores important generalizations of Stochastic Resonance to account for,among others,entropic mechanisms[41]; energetic and control questions[42–44];quantum e?ects [45],even in quantum computing[46];device development [47–49];pattern formation[27,28],and much more.We end this preface by closing full-circle,coming back to climate dynamics.While the big ice-ages are thought to occur every100,000years,it was found that during the glacial times,sudden warmer periods occur more or less periodically at a rate of about1500years(the Dansgaard-Oeschger events).The analysis of Greenland ice-core data [50]revealed a distribution of switching times between cold and warm periods,consistent with those one would expect to see if indeed the North-Atlantic climate would mimic an excitable system being driven by a weak peri-odic force(that likely is of solar origin),thus biasing the climate periodically to the one or other state[51,52].Furthermore,the observed transitions are extremely rapid(less than5years)and have refueled the discussion whether rapid climatic changes are a hallmark of human impact.Subsequently more elaborate geophysical models have been put forward to elucidate the nature of the forc-ing and to further substantiate the role of Stochastic Res-onance[53].References1.L.Gammaitoni,P.H¨a n ggi,P.Jung,F.Marchesoni,Rev.Mod.Phys.70,223(1998)2.R.Benzi,S,Sutera,A.Vulpiani,J.Phys.A14,L453(1981);R.Benzi,G.Parisi,A.Sutera,A.Vulpiani,Tellus 34,10(1982)3. C.Nicolis,G.Nicolis,Tellus33,225(1981)4.S.Fauve,F.Heslot,Phys.Lett.A97,5(1983)5. B.McNamara,K.Wiesenfeld,d R.Roy,Phys.Rev.Lett.60,2626(1988)6. B.McNamara,K.Wiesenfeld,Phys Rev A39,4854(1989)7.P.Jung,P.H¨a nggi,Europhys.Lett.8,505(1989);P.Jung,P.H¨a nggi,Phys.Rev.A44,8032(1991)8.L.Gammaitoni,F.Marchesoni,E.Menichella-Saetta,S.Santucci,Phys.Rev.Lett.62,349(1989);L.Gammaitoni,F.Marchesoni,S.Santucci,Phys.Rev.Lett.74,1052(1995)9.T.Zhou,F.Moss,P.Jung,Phys.Rev.A42,3161(1990)10. A.Longtin,A.Bulsara,F.Moss,Phys.Rev.Lett.67,656(1991)11.P.H¨a nggi,ChemPhysChem3,285(2002)12.J.K.Douglass,L.Wilkens,E.Pantazelou,F.Moss,Nature365,337(1993)13.J.E.Levin,/doc/ae7497ad28ea81c759f578 6d.html ler,Nature380,165(1996)14.H.Yasuda,T.Miyaoka,J.Horiguchi, A.Yasuda,P.H¨a nggi,Y.Yamamoto,Phys.Rev.Lett.100,118103 (2008)15.J.Mayor,W.Gerstner,Neuroreport16,1237(2005)16. A.Lopera,J.M.Buldu,M.C.T orrent, D.R.Chialvo,J.Garcia-Ojalvo,Phys.Rev.E73,021101(2006)17.P.Balenzuela,J.Garcia-Ojalvo,Chaos15,23903(2005)18. C.T.Haas,S.Turbanski,K.Kessler,D.Schmidtbleicher,NeuroRehabilitation21,29(2006)19.I.Goychuk,P.H¨a nggi,Eur.Phys.J.B69,29(2009)20.O.A.Rosso,C.Masoller,Eur.Phys.J.B69,37(2009)21.M.Perc,Eur.Phys.J.B69,147(2009)22. B.Spagnolo,S.Spezia,L.Curcio,N.Pizzolato, A.Fiasconaro,D.Valenti,P.Lo Bue,E.Peri,S.Colazza, Eur.Phys.J.B69,133(2009)23.Yong Woon Parc,D.S.Koh,Wokyung Sung,Eur.Phys.J.B69,127(2009)24.T.Prager,A.B.Neiman,L.Schimansky-Geier,Eur.Phys.J.B69,119(2009)L.Gammaitoni et al.:Stochastic Resonance325. D.Tabarelli, A.Vilardi, C.Begliomini, F.Pavani,M.Turatto and L.Ricci,Eur.Phys.J.B69,155(2009)26.N.D.Dees,S.Bahar,F.Moss,Phys.Biol.5,44001(2008)27.P.Jung,U.Behn,E.Pantazelou,F.Moss,Phys.Rev.A46,R1709(1992)28.J.F.Lindner,B.K.Meadows,W.L.Ditto,M.E.Inchiosa,A.R.Bulsara,Phys.Rev.Lett.75,3(1995)29. F.Marchesoni,L.Gammaitoni,A.R.Bulsara,Phys.Rev.Lett.76,2609(1996)30.H.S.Wio,J.A.Revelli,M.A.Rodriguez,R.R.Deza,G.G.Izus,Eur.Phys.J.B69,71(2009)31.M.Morillo,J.G`o mez-Ord`o?n ez,J.M.Casado,J.Casado-Pascual,D.Cubero,Eur.Phys.J.B69,59(2009)/doc/ae7497ad28ea81c759f5786d.html i,K.Park,L.Rajagopalan,Eur.Phys.J.B69,65(2009)33. A.Krawiecki,Eur.Phys.J.B69,81(2009)34.N.Fujiwara,J.Kurths,Eur.Phys.J.B69,45(2009)35. D.Petracchi,M.Pellegrini,M.Pellegrino,M.Barbi,F.Moss,Biophys.J.66,1844(1994)36.S.M.Bezrukov,I.Vodyanoy,Nature378,362(1995)37.H.Yanagida,R.Inoue,M.Tanaka,Y.Ito,Am.J.Physiol.Cell Physiol.278,C40(2000)38.G.Schmid,I.Goychuk,P.H¨a nggi,Europhys.Lett.56,22(2001)39.J.W.Shuai,P.Jung,Europhys.Lett.56,29(2001)40. A.Pikovsky,A.Zaikin,M.A.de la Casa,Phys.Rev.Lett.88,050601(2002)41.P.S.Burada,G.Schmid,D.Reguera,J.M.Rubi,P.H¨a nggi,Eur.Phys.J.B69,11(2009)/doc/ae7497ad28ea81c759f5786d.html hiri,A.M.Jayannavar,Eur.Phys.J.B69,87(2009)43.J.Ma,Z.Hou,H.Xin,Eur.Phys.J.B69,101(2009)44. E.Heinsalu,M.Patriarca,F.Marchesoni,Eur.Phys.J.B69,19(2009);M.Borromeo,F.Marchesoni,Eur.Phys.J.B69,23(2009)45.M.Grifoni,P.H¨a nggi,Phys.Rep.304,229(1998)46. A.Rivas,N.P.Oxtoby,S.F.Huelga,Eur.Phys.J.B69,51(2009)47. A.R.Bulsara,V.In,A.Kho,G.Anderson,C.Obra,P.Longhini,J.Ne?,S.Baglio,B.Ando,A.Palacios,Eur.Phys.J.B69,109(2009)48.T.Dunn,D.N.Guerra,P.Mohanty,Eur.Phys.J.B69,5 (2009)49. F.T.Arecchi,R.Meucci,Eur.Phys.J.B69,93(2009)50.R.B.Alley,S.Anandakrishnan,P.Jung,Paleoceanography 16,190(2001)51. A.Ganopolski,S.Rahmstorf,Phys.Rev.Lett.88,038501 (2002)52.S.Rahmstorf,R.Alley,Eos(Transactions,American Geophysical Union)83,129(2002)53.H.Braun,M.Christl,S.Rahmstorf,A.Ganopolski,A. Mangini,C.Kubatzki,K.Roth,B.Kromer,Nature438, 208(2005)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /9910354v 2 [c o n d -m a t .s t a t -m e c h ] 19 J a n 2000Stochastic Resonance in Ion Channels Characterized by Information TheoryIgor Goychuk and Peter H¨a nggiInstitute of Physics,University of Augsburg,Universit¨a tsstrasse 1,86135Augsburg,Germany We identify a unifying measure for stochastic resonance (SR)in voltage dependent ion channelswhich comprises periodic (conventional),aperiodic and nonstationary SR.Within a simplest setting,the gating dynamics is governed by two-state conductance fluctuations,which switch at random time points between two values.The corresponding continuous time point process is analyzed by virtue of information theory.In pursuing this goal we evaluate for our dynamics the τ-information,the mutual information and the rate of information gain.As a main result we find an analytical for-mula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates.For small voltage signals it simplifies to a handy expression.Our findings are applied to study SR in a potassium channel.We find that SR occurs only when the closed state is predominantly dwelled.Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain,i.e.,no SR behavior occurs.PACS number(s):05.40.-a,02.50.Wp,87.10.+e,87.16.-bI.INTRODUCTIONThe stochastic resonance (SR)constitutes a cooper-ative phenomenon wherein the addition of noise to the information carrying signal can improve in a paradox-ical manner the detection and transduction of signals in nonlinear systems (see,e.g.,[1]for an introductory overview and [2]for a comprehensive survey and refer-ences).Clearly,this effect could play a prominent role for the function of sensory biology.As such,the beneficial role of ambient and external noises has been addressed not only theoretically (see,e.g.,[3]),but also has been manifested experimentally on different levels of biologi-cal organization –e.g.,in the human visual perception [4]and tactile sensation [5],in the cricket cercal sensory systems [6],or also in the mammalian neuronal networks [7]and –even earlier –for the mechanoreceptive system in crayfish [8].Presumably,the molecular mechanisms of the biological SR have their roots in stochastic properties of the ion channel arrays of the receptor cell membranes [1].This stimulates the interest to study SR in biological ion channels.One of the outstanding challenges in SR-research therefore is the quest to answer whether –and how –SR occurs in single and/or coupled ion channels.These channels are the evolution’s solution of enabling membranes made out of fat to participate in electrical signaling.They are formed of special membrane pro-teins [9].In spite of the great diversity,these natural occurring nanotubes share some common features.Most importantly,the channels are functionally bistable,i.e.they are either open ,allowing specific ions to cross the membrane,or are closed [9].The regulation of the ion flow is achieved by means of the so-called gating dynam-ics,i.e.,those intrinsic stochastic transitions occurring inside the ion channel that regulate the dynamics of open and closed states.The key feature of gating dynam-ics is that the opening-closing transition rates depend strongly on external factors such as the membrane po-tential (voltage-gated ion channels),membrane tension (mechanosensitive ion channels),or presence of chemi-cal ligands (ligand-gated ion channels).This sensitivity allows one to look upon the corresponding ion channels as a kind of single-molecular sensors which transmits an input information to the signal-modulated ion current response.Recently,it has been demonstrated experimentally by Bezrukov and Vodyanoy [10]that a parallel ensemble of independent,although artificial (alamethicin)voltage-gated ion channels does exhibit SR behavior,when the information-carrying voltage signal is perturbed by a noisy component.These authors have put forward the so-called non-dynamical model of SR.It is based on the statistical analysis of the ”doubly stochastic”,periodi-cally driven Poisson process with corresponding voltage-dependent spiking rate [10,11].Conceptually,such a model can be adequate to those situations only where the channel is closed on average with openings constitut-ing relatively rare events.An experimental challenge is to verify whether the SR effect persists for single natural biological ion channels under realistic conditions.More-over,a second challenge is to extend the theoretical de-scription in [11]to account properly for the distribution of dwell times spent by the channel in the conducting state.The previous research on SR in ion channels has ex-clusively been restricted to the case of conventional SR,i.e.,SR with a periodic input signal.In a more general situation,however,input aperiodic signals can be drawn from some statistical distribution.This case of the so-termed aperiodic SR has recently been put forward for neuronal systems [6,12–14].Note that the important as-sumption of dealing with a signal realization that is takenfrom a stationary process has been made in all previous studies.In practice,however,one frequently meets a situation where this stationarity assumption is not rig-orously valid,because the signal has a finite duration on the time-scale set by observation.In this nonstationary situation,both the spectral and the cross-correlation SR measures are inadequate.A preferable approach is then to look for SR from the perspective of statistical infor-mation transduction [6,14].As is elucidated with this work,information theory [15]can indeed provide a uni-fied framework to address different types of SR,including nonstationary SR.It is the main purpose of this work to investigate the possibility to enhance the transmission of information in a single ion channel in presence of a dose of noise.This task will be accomplished within a simplis-tic two-state Markovian model for the ion channel con-ductance [9].Already within such an idealization,our analysis in terms of information theory measures turns out to be rather involved.II.TWO-STATE MODELIn principle,the microscopic description of the gat-ing dynamics should be based upon the detailed under-standing of the structure of channel’s “gating dynamics”.Present state of the art assumes that the voltage-sensitive gates are represented by mobile charged α-helix frag-ments of the channel protein which can dynamically block the ion conducting pathway.Therefore,the gating dy-namics can be described by diffusive motion of gating “particles”in an effective potential.Then,Kramers dif-fusion theory [16,17]and its extension to the realm of fluctuating barriers (see,e.g.,[18]for a review and fur-ther references)can be utilized to describe the gating dynamics.Such a type of procedure,however,is still in its infancy [19].For our purpose,it suffices to follow a well-established phenomenological road provided by a discrete phenomenological modeling [20].The simplest two-state model of this kind reflects the functional bistability of ion channels.The dichotomous fluctuations between the conducting and nonconducting conformations of single ion channels are clearly seen in the patch clamp experiments [20].The statistical distri-butions of sojourn times of the open channel state and the closed channel state,respectively,are generically not exponentially distributed [20].However,one can charac-terize these time distributions by its average,<T o (V )>,to dwell the open (O)state,and by its corresponding av-erage,<T c (V )>,to stay in the closed (C)state.These two averages depend on the transmembrane voltage V .Then,the actual multistate gating dynamics can be ap-proximately mapped onto the effective two-state dynam-ics described by the simple kinetic schemeC k o (V )−→←−k c (V )O with corresponding voltage-dependent effective transi-tion rates k c (V )=1/<T o (V )>and k o (V )=1/<T c (V )>,respectively.Although such a two-state Markov description presents a rather crude approximation,it captures the main features of gating dynamics of the voltage-sensitive ion channels –the dichotomous nature and the voltage-dependence of transition rates.More-over,this model yields by construction the correct mean open (closed)dwell times,and the stationary probability for the channel to stay open,i.e.P o (V )=<T o (V )>/(<T o (V )>+<T c (V )>).An example for the experimen-tal dependence of the transition rates on voltage V can be found for a K +channel in Ref.[21,22]and is depicted in Fig. 1.We note that in contrast to the closing rate the effective opening rate has no exponential dependence on the voltage.Thus,these two rates are not symmet-ric (with respect to dependence on V ,cf.Fig.1).The reason being that the two-state description results as the reduction of an intrinsic multistate (or multi-well)gating dynamics and thus presents only a shadow of real behav-ior.In this sense,the Markovian approximation models the true non-Markovian dynamics on a coarse grained time scale.To proceed,one has to generalize this working model to the case with time-dependent voltages V (t )=V 0+V s (t )+V n (t ).Here we distinguish among three compo-nents of the voltage:(i)the constant bias voltage V 0,(ii)some time-dependent,unbiased signal V s (t ),and (iii)a noisy component voltage V n (t ).The noisy voltage V n (t )is assumed to be a stationary Gaussian Markovian noise with zero average and root mean squared (r.m.s.)ampli-tude σ.Moreover,it possesses a frequency bandwidth f n .Let us restrict our treatment to the situation where both the signal and the external noise are slowly varying on the time-scale set by diffusive motions occurring within the open (or closed)conformation.This time-scale τcon typically lies in the µsec range as manifested experimen-tally by the fast events in channel activation [19].We thus can apply the fluctuating rate model [1,11]assum-ing that the transition rates k o (c )(t )≡k o (c )[V (t )]follows adiabatically the voltage V (t ).Furthermore,we assume that the applied Gaussian voltage V n (t )presents effec-tively “white-noise”on the time scale set by the decay of autocorrelations of the ion current fluctuations.The autocorrelation time τI =1/[k o (V 0)+k c (V 0)]is typically of the order of milliseconds [20].Then,the choice of anoise bandwidth f n satisfying τ−1I ≪f n ≪τ−1con ,i.e.,f n ∼10−100kHz,presents a consistent specification for the fluctuating rate description.The role of exter-nal noise is thus reduced within the same two-state ap-proximation merely to forming new,noise-dressed time-dependent transition rates ¯kα=o,c (t )≡ k α=o,c [V (t )] n .They result by taking the stochastic average of the fluc-tuating rates over the external noise.These effective rates depend now on the noise r.m.s.amplitude σ,the static voltage V 0and the time-dependent signal V s (t ).It turnsout that within in the given approximation the averaged transition rates do not depend on the noise bandwidth f n,see also Appendix A.Our model for the channel dynamics thus readsdP o(t)dt=−¯k o(t)P c(t)+¯k c(t)P o(t),(1)where P o(t),and P c(t)denote the time-dependent prob-abilities for a single ion channel to be open or closed, respectively.The stochastic process described by Eq.(1)is a nonstationary random telegraph noise(RTN) with time-dependent transition rates.This model has ex-tensively been studied in the literature,for example,to model conventional SR[2,23].Moreover,this model has been studied in Ref.[24]from the perspective of input-output cross–correlations as a simple model for aperiodic SR.However,to the best of our knowledge the detailed analysis of this cornerstone model from the perspective to use information theory[15,14]to specify the information transduction process is still lacking.III.STATISTICAL DISTRIBUTION OFCURRENT FLUCTUATIONSHow can we estimate the amount of information trans-mitted from the input voltage signal V s(t)to the output ion current I(t)?A comparative statistical analysis of the ion currentfluctuations performed in the absence and in the presence of signal allows one to answer this question. When the channel is open a large number of ions cross the channel;thus creating afinite current I o(t).This cur-rent obeys the Ohmic law,I o(t)=g o[V(t)−V k],where g o is the conductivity of the open channel and V k is the “reversal”potential(Nernst potential)for K+ionflow. When the channel is closed,the ionflow is negligible and the current is zero.We recall that the current passing through the open channel is generally time-dependent in accordance with the externally applied signal V s(t).How-ever,we will assume that the information about signal is encoded in the switching events of current between zero and I o(t),and not in the additional modulation of I o(t). In other words,the information is assumed to be en-coded in the signal-modulated conductancefluctuations between g o and zero[25].Moreover,one can describe the resulting currentfluc-tuations in terms of conductancefluctuations,i.e.,I(t)=g(t)[V(t)−V k](2) wherein g(t)as a two-state random point process[26,27]. The sample space of g(t)within the time interval[0,t] consists of stochastic trajectories whichflip between zero and g0at randomly distributed switch-time pointsτi,i =1,2,...;i.e.,0<τ1<τ2<...<τs<t.(3) This defines a continuous time point processτ(˜t),0≤˜t≤t.Next,we divide the sample space into two subspaces: (i)the subspace“o”contains all trajectories whichfin-ish in the open state at the end point t of the consid-ered time interval,and(ii)the subspace“c”which con-tains all trajectories which end in the closed state,re-spectively.Furthermore,within each subspace the tra-jectories are divided into the subclasses described by the number s=0,1,2,...which enumerates the number of in-termediateflips that occurred between open and closed states in order to arrive at thefinal state.The proba-bility distribution on this space is given by a sequence of joint multi-time probability densities Q c(o)s(t,τs,..,τ1) for switches to occur at timeτ1,τ2,....,τs and to end up at time t in either the open state o or closed state c,re-spectively.This probability distribution is normalized;i.e.,α=o,c[Qα0(t)+∞s=1tdτs τs0dτs−1...×τ2dτ1Qαs(t,τs,..,τ1)]=1.(4)The probability densities Q c(o)s(t,τs,..,τ1)are readily constructed by taking into account the facts that the process g(t)is(semi-)Markovian for any given realiza-tion of the voltage signal V s(t)with the switching time pointsτi being drawn alternatingly from two different time-dependent Poisson distributions[27].In particular, the probability to stay in the closed conformation until time t,given that this conformation has been occupied initially with the probability P c(0),isQ c0(t)=e− t0¯k o(τ)dτP c(0).(5) To obtain the remaining probability densities,we intro-duce the conditional probability densityP c(τ2|τ1)=¯k o(τ2)e−τ2τ1¯k o(τ)dτ(6)for leaving the state“c”in the time interval[τ2+dt,τ2] given that this state was occupied with probability one at t=τ1.Analogous expressions,with indices changed from“c”to“o”,hold obviously also for the complemen-tary quantities Q o0(t)and P o(τ2|τ1).Then,the multi-time probability densities emerge asQ c2n(t,τ2n,...,τ1)=e− tτ2n¯k o(τ)dτP o(τ2n|τ2n−1)×P c(τ2n−1|τ2n−2)...P o(τ2|τ1)P c(τ1|0)P c(0),(7) for a given even number offlips,andQ c2n+1(t,τ2n+1,...,τ1)=e− tτ2n+1¯k o(τ)dτP o(τ2n+1|τ2n)×P c(τ2n|τ2n−1)...P c(τ2|τ1)P o(τ1|0)P o(0),(8)for odd number offlips,respectively.The probability densities for the other subspace ending in the open state (labeled with“o”)can be written down by use of a simple interchange of the indices“c”and“o”in Eqs.(5)-(8). The above reasoning yields a complete probabilistic de-scription of the stochastic switching process that is re-lated to the conductancefluctuations g(t).In terms of the stochastic path description,the probability that the channel is open at the instant time t is therefore given byP o(t)=Q o0(t)+∞s=1tdτs τs0dτs−1...×τ2dτ1Q o s(t,τs,..,τ1).(9)An analogous expression holds also for the probability of the closed conformation P c(t).Upon differentiating P o(t)and P c(t)with respect to time t one can check that these time-dependent probabilities indeed satisfy the ki-netic equations(1).IV.STOCHASTIC RESONANCE QUANTIFIED BY INFORMATION THEORYIn the following we derive the general theory for var-ious information measures that can be used to quantify the information gain obtained from an input signal V s(t) being transduced by the ion channel current realizations I i(t)when V s(t)is switched on,versus the case with V s(t) being switched off.Intuitively,this information describes the difference in uncertainty about the current realiza-tions in the absence and in the presence of the signal V s(t).A.PreliminariesWe start out by reviewing the necessary background. Let usfirst consider a discrete random variable A.As demonstrated by K.Shannon in1948[15](his expression was discovered independently by N.Wiener),the infor-mation entropyS(A)=−κni=1p i ln p i(10)provides a measure for the uncertainty about a partic-ular realization A i of A[28].In Eq.(10),the set p i denotes the normalized probabilities for the realizationsA i to occur, n i=1p i=1.The positive constantκin(10) defines the unit used in measurement.If the informationentropy is measured in binary units,thenκ=1/ln2, natural units yieldκ=1,and digits giveκ=1/ln10. This measure attains a minimum(being zero)if and only if one p i=1for a particular value of i,and all others satisfying p i=0.It reaches a maximum if p i=1/n. The information entropy for a probability distribution is therefore a measure of how strongly it is peaked about a given alternative.The uncertainty is consequently large for spread out distributions and small for concentrated ones.The application of an external signal(perturbation) results in a change of probabilities p i and consequently in entropy S(A).The gained information I is then de-fined by the corresponding change in entropy,i.e.I= S before−S after.The generalization of the information concept onto the case of continuous variable A(x)presents no principal dif-ficulties.In this case a proper definition of entropy readsS(A)=−κ p(x)ln[p(x)∆x]dx≡−κp(x)ln[p(x)]dx−κln∆x;(11)wherein p(x)is the probability density and∆x denotes the precision with which the variable A(x)can be mea-sured(coarse graining of cell size).As is clearly seen from Eq.(11),the absolute entropy of a continuous variable is not well defined since it diverges in the limit∆x→0. Nevertheless,the entropy difference:=information is well-defined and does not depend on the precision∆x.B.τ-InformationThe generalization of information theory onto the case of stochastic processes is not trivial.In our case,the proper definition of entropy of the switch-point process τ(˜t),considered on the time interval[0,T],is–by anal-ogy with Eq.(11)–Sτ[T|V s]≡−κ α=o,c Qα0(T)ln Qα0(T)+∞s=1Tdτs τs0dτs−1... τ20dτ1Qαs(T,τs,..,τ1)×ln[Qαs(T,τs,..,τ1)(∆τ)s] ,(12)where∆τdenotes the precision of time measurement, and the symbol V s indicates that the entropy is defined in presence of the signal V s(t).The presence of the time resolution∆τin(12)gives the name“τ-entropy”to this quantity[29].It is very important that in the contrast to the case of a continuous variable,the contribution of thefinite time resolution∆τto theτ-entropy cannot be recasted in a form like−κln∆x,cf.Eq.(11).We note that its contribution depends on the statistics of the random process,being different in the presence and in the absence of signal.This is why not only the absolute entropy,but also the difference of entropies become not well defined for continuous time point random processes.As a result,the definition of information in this manner becomes rather ambiguous.For a sufficiently large time interval T the averaged in-formation transferred per unit time from the input volt-age signal V s(t)tothe output current signal I(t)can bedefined as follows[30,31]Iτ=Sτ(T|V s=0)−Sτ(T|V s)dt=−κ α=o,c¯kα(t)ln ¯kα(t)∆τ/e P¯α(t),(14)where¯α=o,ifα=c and vice versa.Together with Eq.(1)and the definition(13)the prominent result in Eq.(14)allows one to express theτ-information for arbi-trary signal V s(t)through straightforward quadratures. Theτ-information concept has been used in fact to an-alyze the information transfer in neuronal systems in Ref. [30,31].However,the strong dependence ofτ-information on the time precision∆τ[31]presents surely an undesir-able subjective feature.In search for objective information measures we consider the information transfer in terms of the mutual information measure.C.Mutual informationTo introduce the reader to the mutual information con-cept,we follow the reasoning of Shannon[15]:the signals V s(t)are drawn from some statistical distribution char-acterized by the probability density functional P[V s(t)]. Noting that the probability densities Qαs(t,τs,...,τ1)in Eqs.(5),(7)and(8)are in fact conditional with re-spect to the given realization of V s(t),one can definethe joint probability densities,Qα,sjoint (t,τs,...,τ1;V s(t))=Qαs(t,τs,...,τ1)P[V s(t)]for the corresponding stochasticprocesses V s(t)and I(t).Moreover,one can define the averaged probability densities Qαs(t,τs,...,τ1) signal forthe process I(t)in the presence of the process V s(t),where the path integral ... signal≡ D V s(t)...P[V s(t)]denotes stochastic averaging over the signal realizations.The mu-tual information between the stochastic process V s(t)andI(t)can then be defined as the entropy difference M T(V s,I)=S av(T)− Sτ(T|V s) signal,(15) where S av(T)is theτ-entropy of the averaged process de-fined similarly to(12),but with the averaged probability densities Qαs(t,τ1,...,τs) signal.Note that making use of the Bayes rules one can transform the definition(15)into a form which makes transparent the fact that the mutual information M T(V s,I)is a symmetric functional of the processes V s(t)and I(t)and provides a nonlinear cross-correlation measure between them[15].We,however, will take advantage of an equivalent form;it is obtained from Eq.(15)by using Eq.(12),yieldingM T(V s,I)=κ α=o,c Qα0(T)ln Qα0(T)Qαs(T,τs,..,τ1) signalsignal,(16)As is clearly deduced from Eq.(15),Shannon’s mutual information does not depend–due to its skillful defi-nition in Eq.(15)–on the time resolution∆τ.This underpins its advantage over the information measure in Eq.(13).Moreover,the functional form(16)inherits important connections between the mutual information and another prominent information measure–the(rel-ative)Kullback entropy or termed also the information gain.D.Rate of Information gainThe information gain[32]is given in terms of the rel-ative entropy of the given statistical distribution with respect to some reference distribution.In our case,the reference distribution corresponds to the stationary ion currentfluctuations in the absence of the voltage signal V s(t).For a given signal V s(t)the information gain readsK T[I|V s]≡κ α=o,c Qα0(T)ln Qα0(T)Q(0)αs(T,τs,..,τ1),(17)where the index“(0)”in Q(0)αs refers to the case when no voltage signal is applied.The relative entropy can be regarded as the signal-induced deviation of entropy of the random point processτ(˜t)from its stationary value obtained in the absence of signal.Although the absolute entropy of such a switch-time point processτ(˜t)depends strongly on the time resolution∆τand thus is not well-defined,the deviation of entropy from the steady-state value can be defined independently of∆τvia Eq.(17). For stochastic processes this relative entropy plays the role similar to the entropy difference;thus characterizing an information measure.This justifies its given name–the information gain.In contrast to mutual information this measure can be defined for deterministic signals as well.Consequently,the information gain can be usedas an information measure both for conventional and for aperiodic SR.Moreover,this measure is also well-defined for nonstationary signals and therefore can be used to quantify nonstationary SR as well.In contrast to the information gain the mutual infor-mation is more difficult to handle analytically.This is rooted in the fact that the averaged point processτ(˜t)is non-Markovian process with corresponding joint proba-bilities not factorizing into products of conditional prob-abilities.The following important inequality can be deduced M T(V s,I)= K T[I|V s] signal−K T[ I signal]≤ K T[I|V s] signal.(18)In Eq.(18),K T[ I signal]≥0is the relative entropy of the averaged process g(t)defined similarly to Eq.(17), but with the averaged multi-time probability densities Qαs(T,τs,..,τ1) signal.The averaged information gain provides thus an upper bound for the mutual informa-tion.Moreover,applying a weak Gaussian signal in the limitτs/τI→0one can show that the difference be-tween the mutual information and the averaged informa-tion gain in(18)is of order O(A4),where A denotes ther.m.s.amplitude of signals A= V2s(t) 1/2signal .On theother hand,it is shown below that the averaged informa-tion gain per unit time is of the order O(A2)and does not depend,within the given lowest order approximation,on other statistical parameters of signal.Thus,the upper bound for mutual information in Eq.(18)can indeed be achieved with an accuracy of O(A2).This fact opens a way to calculate the informational capacity for weak signals[33].The information gain can be evaluated from Eq.(17) without further problems.By differentiating K T[I|V s] with respect to T wefind following to the reasoning de-tailed in Appendix B the remarkable simple,main result for the rate of information gain,i.e.d K t[I|V s]¯kα(V0)−¯kα(t)+¯kα(V0)]P¯α(t),(19) wherein¯kα(V0)denote the stationary transition rates in the absence of signal.Together with Eq.(1)this equa-tion completely determines the information gain within the considered two-state model for any applied signal V s(t).For the case of a periodic signal V s(t)(conven-tional SR),or a stochastic stationary signal(aperiodic SR),one should average additionally Eq.(19)over the signalfluctuations and to take the limit t→∞.In do-ing so,Eq.(19)yields the stationary rate of information gain.For weak stochastic signals this quantity also de-fines the informational capacity[33]C≈lim T→∞ K T[I|V s] signal/T.(20)If the signal is deterministic and has afinite duration, one obtains the total information gain K by integrating Eq.(19)in the range from0to∞.V.STOCHASTIC RESONANCE IN SINGLE K+ION CHANNELSIn the following we apply our developed information theory concepts to investigate SR in a K+ion channel. We restrict our treatment to the case of weak signals with a time duration which strongly exceeds the autocorrela-tion time of currentfluctuationsτI.Then,Eqs.(19)and (1)yield after some elementary calculations in the lowest order of V s(t),d K t[I(t)|V s(t)]8κ¯ko(V0)¯k c(V0)dV0ln[¯kα(V0)],α=o,c,and the noise aver-aged rates¯k o(c)(V0)are given in the Appendix A for a K+channel in Eqs.(A2)and(A3).In the case of stationary stochastic signals or for a pe-riodic driving,Eq.(21)provides after stochastic averag-ing,or averaging over the driving period of applied volt-age V s(t),respectively,the stationary rate of information gain.For signals offinite duration the total information gain is directly proportional to the total intensity of sig-nalξ= ∞0V2s(t)dt,K=R(V0,σ)ξ.(23) As a result wefind that weak signals of the the same intensityξproduce equal information gains.The occur-rence of three different kinds of SR behavior,i.e.,peri-odic,aperiodic,and nonstationary SR clearly depends on the behavior of the form function R(V0,σ)vs.the r.m.s. noise amplitudeσ.We recall that the static voltage (membrane potential)V0controls whether the ion chan-nel is on average open or closed,cf.Fig.1.In Fig.2,we depict the behavior of the function R(V0,σ)vs.the r.m.s. noise amplitude for different values of the applied static voltage.If the K+ion channel is closed on average we ob-serve that the information gain becomes strongly be am-plified by noise,and even can pass through a maximum, i.e.SR occurs,cf.Fig.2a.In contrast,when the station-ary probability for an open channel P o=k o/(k o+k c) becomes appreciably large,the addition of an additional dose of noise can only deteriorate the detection of sig-nal.As a result,the information gain decreases mono-tonically with increasing noise amplitude,cf.Fig.2b.。