信息论与编码 ch05作业讲解

合集下载

精品课课件信息论与编码(全套讲义)

精品课课件信息论与编码(全套讲义)
拓展应用领域 信息论的应用领域将进一步拓展,如生物信息学、 量子信息论等新兴领域,以及与人工智能、大数 据等技术的结合。
跨学科交叉融合
信息论将与更多学科进行交叉融合,如物理学、 化学、社会学等,共同推动信息科学的发展。
编码技术的发展趋势
高效编码算法
随着计算能力的提升,更高效的编码算法将不断涌现,以提高数据 传输和存储的效率。
智能化编码
借助人工智能和机器学习技术,编码将实现智能化,自适应地调整 编码参数以优化性能。
跨平台兼容性
未来的编码技术将更加注重跨平台兼容性,以适应不同设备和网络环 境的多样性。
信息论与编码的交叉融合
理论与应用相互促进
信息论为编码技术提供理论支持, 而编码技术的发展又反过来推动 信息论的深入研究。
共同应对挑战
精品课课件信息论与编码(全套 讲义)

CONTENCT

• 信息论基础 • 编码理论 • 信道编码 • 信源编码 • 信息论与编码的应用 • 信息论与编码的发展趋势
01
信息论基础
信息论概述
信息论的研究对象
研究信息的传输、存储、处理和变换规律的科学。
信息论的发展历程
从通信领域起源,逐渐渗透到计算机科学、控制论、 统计学等多个学科。
卷积编码器将输入的信息序列按位输入到一个移位寄存器中,同时根据生成函数将移位寄存 器中的信息与编码器中的冲激响应进行卷积运算,生成输出序列。
卷积码的译码方法
卷积码的译码方法主要有代数译码和概率译码两种。代数译码方法基于最大似然译码准则, 通过寻找与接收序列汉明距离最小的合法码字进行译码。概率译码方法则基于贝叶斯准则, 通过计算每个合法码字的后验概率进行译码。
04

《信息论与编码》部分课后习题参考答案

《信息论与编码》部分课后习题参考答案

若知道是星期几,则从别人的答案中获得的信息量为 0。 2.3 每帧电视图像可以认为是 3*10^5 个像素构成,所有像素均独立变化,且每一像素又取 128 个不同的亮度电平,并设亮度电平等概率出现。问每帧图像喊多少信息量?如果一个广 播员在约 10000 个汉字的字汇中选取 1000 个字来口述此电视图像,试问广播员描述此图像 所广播的信息量是多少(假设汉字字汇是等概率分布,并且彼此独立)?若要恰当地描述此 图像,广播员在口述中至少需用多少汉字? 答:由于每一象素取 128 个不同的亮度电平,各个亮度电平等概率出现。因此每个亮度电平 包含的信息量为 I(X) = – lb(1/128)=lb128=7 bit/像素 每帧图像中像素均是独立变化的, 因此每帧图像信源就是离散亮度电平信源的无记忆 N 次扩展。由此,每帧图像包含的信息量为 I(XN) = NI(X)= 3×105×7 =2.1×106 bit/帧 广播员在约 10000 个汉字中选取字汇来口述此电视图像, 各个汉字等概分布, 因此每个 汉字包含的信息量为 I(Y) = – lb(1/10000)=lb1000=13.29 bit/ 字 广播员述电视图像是从这个汉字字汇信源中独立地选取 1000 个字进行描述,因此广播 员描述此图像所广播的信息量是 I(YN) = NI(Y)= 1000×13.29 =1.329 ×104 bit/字 由于口述一个汉字所包含的信息量为 I(Y),而一帧电视图像包含的信息量是 I(XN),因此 广播员要恰当地描述此图像,需要的汉字数量为:
《信息论与编码》
部分课后习题参考答案
1.1 怎样理解消息、信号和信息三者之间的区别与联系。 答:信号是一种载体,是消息的物理体现,它使无形的消息具体化。通信系统中传输的是 信号。 消息是信息的载体, 信息是指消息中包含的有意义的内容, 是消息中的未知成分。 1.2 信息论的研究范畴可以分成哪几种,它们之间是如何区分的? 答:信息论的研究范畴可分为三种:狭义信息论、一般信息论、广义信息论。 1.3 有同学不同意“消息中未知的成分才算是信息”的说法。他举例说,他从三岁就开始背 诵李白诗句“床前明月光,疑是地上霜。举头望明月,低头思故乡。 ” ,随着年龄的增长, 离家求学、远赴重洋,每次读到、听到这首诗都会带给他新的不同的感受,怎么能说这 些已知的诗句没有带给他任何信息呢?请从广义信心论的角度对此现象作出解释。 答:从广义信息论的角度来分析,它涉及了信息的社会性、实用性等主观因素,同时受知识 水平、文化素质的影响。这位同学在欣赏京剧时也因为主观因素而获得了享受,因此属于广 义信息论的范畴。

信息论与编码知识梳理及课后答案

信息论与编码知识梳理及课后答案

信息存在于自然界,也存在于人 类社会,其本质是运动和变化。可以说 哪里有事物的运动和变化,哪里就会产 生信息。 信息必须依附于一定的物质形式存 在,这种运载信息的物质,称为信息载
体。
人类交换信息的形式丰富多彩,使 用的信息载体非常广泛。概括起来, 有语言、文字和电磁波。
信息至今无确切定义,但信息有以下 主要特征: 1 信息来源于物质,又不是物质本 身;它从物质的运动中产生出来,又可 以脱离源物质而相对独立地存在。 2 信息来源于精神世界,但又不局 限于精神领域。
电子商务系统中不可缺少的重要环节。




密码编码学是信息安全技术的核心,密码编码学的 主要任务是寻求产生安全性高的有效密码算法和协 议,以满足对消息进行加密或认证的要求。 密码分析学的主要任务是破译密码或伪造认证信息, 实现窃取机密信息或进行诈骗破坏活动。 这两个分支既相互对立又相互依存,正是由于这种 对立统一关系,才推动了密码学自身的发展。 香农在 1949 年发表的《保密通信的信息理论》论 文中,首先用信息论的观点对信息保密问题作了全 面的论述。
香农信息论主要讨论的是语法信 息中的概率信息,本书也以概率信息为 主要研究对象。
§1.3 信息论的起源、发展及研究内容
起源
信息论自诞生到现在不过50多年, 在人类科学史上是相当短暂的。但它的
发展和对学术界及人类社会的影响是相
当广泛和深刻的。信息作为一种资源, 如何开发、利用、共享,是人们普遍关 心的问题。
信息论与编码
贵州大学 彭长根
有关说明:
1、计划学时54,全部为讲课学时,适当组织讨论形式。 2、总成绩由两部分组成,平时成绩占30%,考试成绩 占70%,由作业和考勤组成。
课程概述

信息理论与编码课后答案第5章

信息理论与编码课后答案第5章

第5章 有噪信道编码5.1 基本要求通过本章学习,了解信道编码的目的,了解译码规则对错误概率的影响,掌握两种典型的译码规则:最佳译码规则和极大似然译码规则。

掌握信息率与平均差错率的关系,掌握最小汉明距离译码规则,掌握有噪信道编码定理(香农第二定理)的基本思想,了解典型序列的概念,了解定理的证明方法,掌握线性分组码的生成和校验。

5.2 学习要点5.2.1 信道译码函数与平均差错率5.2.1.1 信道译码模型从数学角度讲,信道译码是一个变换或函数,称为译码函数,记为F 。

信道译码模型如图5.1所示。

5.2.1.2 信道译码函数信道译码函数F 是从输出符号集合B 到输入符号集合A 的映射:*()j j F b a A =∈,1,2,...j s =其含义是:将接收符号j b B ∈译为某个输入符号*j a A ∈。

译码函数又称译码规则。

5.2.1.3 平均差错率在信道输出端接收到符号j b 时,按译码规则*()j j F b a A =∈将j b 译为*j a ,若此时信道输入刚好是*j a ,则称为译码正确,否则称为译码错误。

j b 的译码正确概率是后验概率:*(|)()|j j j j P X a Y b P F b b ⎡⎤===⎣⎦ (5.1)j b 的译码错误概率:(|)()|1()|j j j j j P e b P X F b Y b P F b b ⎡⎤⎡⎤=≠==-⎣⎦⎣⎦ (5.2)平均差错率是译码错误概率的统计平均,记为e P :{}1111()(|)()1()|1(),1()|()s se j j j j j j j ssj j j j j j j P P b P e b P b P F b b P F b b P F b P b F b ====⎡⎤==-⎣⎦⎡⎤⎡⎤⎡⎤=-=-⎣⎦⎣⎦⎣⎦∑∑∑∑ (5.3)5.2.2 两种典型的译码规则两种典型的译码规则是最佳译码规则和极大似然译码规则。

信息论和编码理论习题集答案解析

信息论和编码理论习题集答案解析

信息论和编码理论习题集答案解析第二章信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此每个码字的信息量为2?8log =2?3=6 bit 因此,信息速率为 6?1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1} )(a p =366=61 得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6} )(b p =361 得到的信息量=)(1log b p =36log =5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521 信息量=)(1loga p =!52log =225.58 bit (b) 花色任选种点数任意排列13413!13)(b p =1352134!13A ?=1352134C 信息量=1313524log log -C =13.208 bit2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H =2?(361log 36+362log 18+363log 12+364log 9+365log 536)+36 6log 6 =3.2744 bit)|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit 或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit ),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。

信息论与编码第五章课后习题答案

信息论与编码第五章课后习题答案

第五章课后习题【5.1】某信源按43)0(=P ,41)1(=P 的概率产生统计独立的二元序列。

(1)试求0N ,使当0N N >时有01.005.0)()(≤≥−S H N I P i α 式中,)(S H 是信源的熵。

(2)试求当0N N =时典型序列集N G ε中含有的信源序列个数。

解:(1)该信源的信源熵为811.0)(log )()(=−=∑i i s p s p S H 比特/符号自信息的方差为4715.0811.04log 4134log 43)()]([)]([22222=−+=−=S H s I E s I D i i 根据等长码编码定理,我们知道δεα−≤≥−1)()(S H N I P i 根据给定条件可知,05.0=ε,99.0=δ。

而[]2)(εδN s I D i =因此[]5.19099.0*05.04715.0)(220==≥δεi s I D N 取1910=N 。

(2)ε典型序列中信源序列个数取值范围为:])([])([22)1(εεεδ+−<<−S H N N S H N G代入上述数值得451.164351.1452201.0<<×N G ε【5.2】有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A 、B 、C 、D 、E 和F 。

表5.2消息 )(i a P A B C D E F 1a 1/2 000 0 0 0 0 0 2a 1/4 001 01 10 10 10 100 3a 1/16 010 011 110 110 1100 101 4a 1/16 011 0111 1110 1110 1101 110 5a 1/16 100 01111 11110 1011 1110 111 6a1/1610101111111111011011111011(1) 求这些码中哪些是惟一可译码; (2) 求哪些码是非延长码(即时码); (3) 求对所有惟一可译码求出其平均码长L 。

信息论与编码学习辅导及习题详解

信息论与编码学习辅导及习题详解

信息论与编码学习辅导及习题详解Information Theory and Coding Learning Coaching and Exercise ExplanationInformation Theory and Coding are two closely related scientific disciplines for signal processing, data communication, and computer networks. These two studies are often used together in applications, making the learning of the concepts of Information Theory and Coding important. This essay will guide through the basic knowledge of these two fields, provide coaching on learning Information Theory and Coding, and go through exercise explanations.I. Information TheoryA. DefinitionInformation Theory is a branch of applied mathematics and electrical engineering dealing with the quantification, storage, and communication of information. It was developed in 1948 by Claude Shannon. The fundamental problem of communication is to convey a message from a sender to a receiver without any errors. Information Theory is the study of how information is transmitted over a communication medium, and how the communication medium affects the transmission process.B. Basic ConceptsSome basic concepts of Information Theory are entropy, noise, channel capacity, coding, and error control. Entropy is a measure of uncertainty, and is used to help determine the amount of information contained in a signal.Noise is any disturbances that have an impact on the transmission of information. Channel capacity is the maximum amount of data that can be transmitted through a communication channel. Coding is the process of translating the message from the source into a form that can be understood by the destination. Error control is the process of detecting, identifying, and correcting any errors that occur during transmission.II. CodingA. DefinitionCoding is a branch of mathematics and computer science dealing with the efficient representation of data. It was developed in the late 1950s and early 1960s. Coding is used in a variety of applications, including data storage, image processing, digital signal processing, and communications. Coding techniques can greatly reduce the amount of data that needs to be stored and transmitted.B. Basic ConceptsThe main concepts of Coding are coding, signaling, modulation, coding rate, coding efficiency, and entropy. Coding is the process of transforming the message from the source into a form that can be understood by the destination. Signaling is the process of conveying information through a medium over a communication link. Modulation is the process of varying some aspect of a signal in order to transmit information. The coding rate is the number of bits required to encode one message. The coding efficiency is the ratio between the actual number of bits used to encode the message, and the total number of bits used. Entropy is a measure of the amount of information contained in a signal.III. Learning CoachingA. FundamentalsThe best way to learn the fundamentals of Information Theory and Coding is to start by familiarizing oneself with the core concepts such as entropy, noise, channel capacity, coding, and error control. Taking a college course in Information Theory and Coding is also beneficial. Alternatively, reading textbooks and studying reference material is a viable option.B. PracticePracticing the concepts of Information Theory and Coding is essential to mastering them. It is important to try to understand the material rather than memorize it. Doing practice problems is the best way to learn and build an understanding of the material.IV. Exercise ExplanationA. Information TheoryFor the Information Theory part of this exercise, the main goal is to determine the maximum rate at which data can be transmitted through a given communication channel. To do this, one needs to first calculate the entropy of the signal to determine the amount of information contained in it. Then, the channel capacity needs to be calculated by taking the s ignal’s entropy, the noise of the channel, and the coding rate into consideration.B. CodingFor the Coding part of this exercise, the main goal is to encode a message into a format that can be understood by the destination. To do this, one needsto first select an appropriate coding technique. Then, the information needs to be encoded using this technique. Finally, the encoded message needs to be transmitted through a communication link.In conclusion, Information Theory and Coding are two important scientific fields for signal processing, data communication, and computer networks. This essay has guided through the basics of these two fields, provided coaching on learning Information Theory and Coding, and gone through exercise explanations. Therefore, it is essential for one to understand the fundamentals of Information Theory and Coding and practice the concepts in order to gain mastery in these fields.。

中南大学信息论与编码讲义-第五章

中南大学信息论与编码讲义-第五章
β ≤ β , δ ≤ δ 并且 r ≥ r
R(δ )
) / R (δ )
,可
1 E[d (U ,V )] k
k r= n
定理5.1(信源 信道编码定理 对于给定的信源和信道: 信源-信道编码定理 对于给定的信源和信道: 定理 信源 信道编码定理)对于给定的信源和信道 必须满足: (a)参数 β , δ 和r 必须满足: r ≤ C ( β ) ) (b)相反地,给定 β > β min , δ > δ min 和 r < C ( β )相反地, 以设计出上图所描述的一类通信系统, 以设计出上图所描述的一类通信系统,使得
Rk (δ ) = inf{I (U ;V ) : E[d (U , V )] ≤ kδ } 1 R(δ ) = inf{ Rk (δ ) : k = 1,2,...} k
信源-信道编码定理
平均代价: 平均代价: 平均失真度: 平均失真度: 传输速度: 传输速度:
1 β = E[b( x)] n
δ =
第五章
信源-信道编码定理
一个通用的通讯系统
信源
U (U1,U2,...,Uk) Y (Y1,Y2,...,Yn)
编码器 译码器
X (X1,X2,...,Xn) V (V1,V2,...,Vk)
信 信宿
Cn ( β ) = sup{I ( X ; Y ) : E[b( X )] ≤ nβ } 1 C ( β ) = sup{ Cn ( β ) : n = 1,2,...} n

信息论与编码第5章习题解答

信息论与编码第5章习题解答
x ˆ x
= λ ( 0) ⋅ p * (1) ⋅ e 2s + 0.5 ⋅ λ (1) ⋅ p * (0) ⋅ e s Rs = s ⋅ Ds + 0.5 ⋅ [log λ ( 0) + log λ (1)]
其中参数 s < 0 。
5.7
x2 X x1 1 设信源 = ( p < ) ,其失真度为 Hamming 失真度,试问当允许 2 p (x ) p 1 − p 1 平均失真度 D = p 时,每个信源符号平均最少需要几个二进制符号表示? 2
所以转移概率矩阵具有与失真矩阵相同的置换对称。
α a1 a 2 a 3 β b1 γ a α a a β b γ 3 2 1 P= 1 a a α a b β γ 2 3 1 1 a a a α b β γ 3 2 1 1 ˆ ˆ 由于对于使失真 d ( xi , x j ) = ∞ 的 ( xi , xi ) ,相应的转移概率必须为零,即
所以
R( D ) =
β =D − 3 γ ≥0 α =1− D +2γ ≥0 γ ≥0
β = D − 3γ ≥ 0 α = 1 − β − γ = 1 − D + 2γ ≥ 0 γ ≥0 min {2 − D + γ }
= ( 2 − D ) bit
当1 ≤ D ≤ 3 ,
所以
D α + β + γ = 1 β = D − 3γ ≥ 0 γ ≤ 3 β + 3γ = 0 ⇒ α = 2γ − D + 1 ≥ 0 ⇒ D −1 γ ≥0 γ ≥ α , β , γ ∈ [ 0,1] 2 R( D ) = min {2 − D + γ }

信息论与编码技术第五章课后习题答案

信息论与编码技术第五章课后习题答案

码,并求出其编码效率。
解:
信源符号 概率 编码
码字 码长
X1
3/8 0
0
1
X2
1/6 1
0
10 2
X3
1/8
1
11 2
X4
1/8 2
0
20 2
X5
1/8
1
21 2
X6
1/12
2
22 2
H(X)=-((3/8)*log(3/8)+(1/6)*log(1/6)+(1/8)*log(1/8)+(1/8)*log(1/8)+(1/8)*log(1/8)+(1/12)*log(1/12))
=2.3852 (三进制单位/信源符号)
H3(X)= H(X)/ 1.5850=2.3852/1.5850= 1.5049(三进制单位/信源符号)
L =(3/8)*1+ (1/6)*2+ (1/8)*2+ (1/8)*2+ (1/8)*2+ (1/12)*2=1.625(码符号/信源符号)
η= H3(X)/ L =1.5049/1.625= 92.61 %
5.8 已知符号集合 {x1, x2 , x3,"} 为无限离散消息集合,它们出现的概率分别为 p(x1) = 1/ 2 , p(x2 ) = 1/ 4 , p(x3 ) = 1/ 8 , p(xi ) = 1/ 2i ,……。
(1) 用香农编码方法写出各个符号消息的码字。 (2) 计算码字的平均信息传输速率。
L =4*(1/4)*1=1(码符号/信源符号)
Rt= H(X)/(t* L )=1/(1*10*10-2)=10(比特/秒)

信息论和编码陈运主编答案解析(完整版)

信息论和编码陈运主编答案解析(完整版)

⇒ H X( 2 )
≥ H X( 2 / X1 ) I X( 3;X X1 2 ) ≥ 0
⇒ H X( 3 ) ≥ H X( 3 / X X1 2 )
... I X( N;X X1 2...Xn−1) ≥ 0
⇒ H X( N ) ≥ H X( N / X X1 2...Xn−1)
WORD 完美格式
专业整理
不满足极值性的原因是

i
2.7 证明:H(X3/X1X2) ≤ H(X3/X1),并说明当 X1, X2, X3 是马氏链时等式成立。证明:
H X(3 / X X12 ) − H X(3 / X1)
∑∑∑ ∑∑ = −
p x x x( i1 i2i3 )log p x( i3 / x xi1 i2 ) +
⎢p e( 1 ) = p e( 2 ) = p e( 3 ) ⎢
⎢p e( 1 ) + p e( 2 ) + p e( 3 ) =1
⎢p e( 1 ) =1/3 ⎢ ⎢p e( 2 )

=1/3 ⎢p e( 3 ) =1/3
⎢p x( 1 ) = p e( 1 ) (p x1 /e1 ) + p e( 2 ) (p x1 /e2 ) = p p e⋅( 1 ) + p p e⋅ ( 2 ) = (p + p)/3 =1/3 ⎢⎢ ⎢p x( 2 ) = p e( 2 ) (p x2 /e2 ) + p e( 3 ) (p x2 /e3 ) =p p e⋅( 2 ) + p p e⋅ ( 3 ) = (p + p)/3 =1/3
解: (1)
这个信源是平稳无记忆信源。因为有这些词语:“它在任意时间....而且不论以前发生过什么符 号...........……”

信息论与编码(傅祖云 讲义)第五章

信息论与编码(傅祖云 讲义)第五章

平均错误率为:
PE''' 1 * P(b / a) (0.125 0.05) (0.075 0.075) (0.05 0.125) 0.5 3 Y , X a
第二节 错误概率与编码方法
一般信道传输时都会产生错误,而选择译码准则并不会 消除错误,那么如何减少错误概率呢?下边讨论通过编码 方法来降低错误概率。 例:对于如下二元对称信道
第二节 错误概率与编码方法 我们再讨论一个例子,取M=4,n=5,这4个码字按 2 如下规则选取:R
5
设输入序列为:
ai (ai1 ai 2
ai3
ai 4
ai5 )
满足方程: ai 3 ai1 ai 2
ai 4 ai1 a a a i1 i2 i5
若译码采取最大似然准则:
P(b j / a* ) P(a* ) P(b j ) P(b j / ai ) P(ai ) P(b j )
第一节 错误概率与译码规则 即: P(bj / a* )P(a* ) P(bj / ai )P(ai ) 当信源等概分布时,上式为:
P(bj / a* ) P(bj / ai )
和B: (b ) a F 1 1
F (b2 ) a3 F (b3 ) a2
译码规则的选择应该有一个依据,一个自然的依据就 是使平均错误概率最小 有了译码规则以后,收到 bj 的情况下,译码的条件正 确概率为: P( F (b ) / b ) P(a / b )
j j i j
第一节 错误概率与译码规则 而错误译码的概率为收到 bj 后,推测发出除了 ai 之 外其它符号的概率:
第一节 错误概率与译码规则
为了减少错误,提高通信的可靠性,就必到什么程 度。 前边已经讨论过,错误概率与信道的统计特性有关, 但并不是唯一相关的因素,译码方法的选择也会影响错误 率。

信息论与编码第五章答案学习资料

信息论与编码第五章答案学习资料

信息论与编码第五章答案5.1 设信源1234567()0.20.190.180.170.150.10.01Xa a a a a a a p X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭ (1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率. 解: (1)721222222()()log ()0.2log 0.20.19log 0.190.18log 0.180.17log 0.170.15log 0.150.1log 0.10.01log 0.012.609/i i i H X p a p a bit symbol==-=-⨯-⨯-⨯-⨯-⨯-⨯-⨯=∑(2)(3)71()0.230.1930.1830.1730.1530.140.0173.141()()/ 2.609 3.14183.1%i i i K k p x H X H X K Rη===⨯+⨯+⨯+⨯+⨯+⨯+⨯====÷=∑5.2 对习题5.1的信源编二进制费诺码,计算编码效率.解:a i p(a i)编码码字k ia10.20002 a20.19100103 a30.1810113 a40.1710102 a50.15101103 a60.11011104 a70.011111145.3 对信源编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率.解:二进制哈夫曼码:x i p(x i)编码码字k i s61s50.610s40.391s30.350s20.261x10.20102 x20.191112 x30.1800003 x40.1710013 x50.1500103 s10.111x60.1001104 x70.01101114三进制哈夫曼码:x i p(x i)编码码字k i s31s20.540s10.261x10.2221 x20.190002 x30.181012 x40.172022 x50.150102 x60.11112 x70.0121225.4 设信源(1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率;(4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解:(1)(2)二进制香农码:x i p(x i)p a(x i)k i码字x10.5010x20.250.5210x30.1250.753110x40.06250.87541110x50.031250.9375511110x60.0156250.968756111110x70.00781250.98437571111110x80.00781250.992187571111111二进制费诺码:xi p(x i)编码码字k i x10.5001 x20.2510102 x30.125101103 x40.06251011104x50.0312510111105 x60.015625101111106 x70.00781251011111107 x80.0078125111111117 (3)香农编码效率:费诺编码效率:(4)x i p(x i)编码码字k i x10.5001 x20.25111 x30.12520202 x40.06251212 x50.03125202203 x60.01562512213 x70.00781252022204 x80.0078125122214 (5)5.5 设无记忆二进制信源先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示.(1) 验证码字的可分离性;(2) 求对应于一个数字的信源序列的平均长度;(3) 求对应于一个码字的信源序列的平均长度;(4) 计算,并计算编码效率;(5) 若用4位信源符号合起来编成二进制哈夫曼码,求它的平均码长,并计算编码效率.序列数字二元码字101000011100100131010000131011000014110000000151101000000161110000000017111100000000805.6 有二元平稳马氏链,已知p(0/0) = 0.8,p(1/1) = 0.7,求它的符号熵.用三个符号合成一个来编写二进制哈夫曼码,求新符号的平均码字长度和编码效率.5.7 对题5.6的信源进行游程编码.若“0”游程长度的截至值为16,“1”游程长度的截至值为8,求编码效率. 5.8 选择帧长N= 64(1) 对001000000000000000000000000000000100000000000000 0000000000000000遍L-D码;(2) 对100001000010110000000001001000010100100000000111 0000010000000010遍L-D码再译码;(3) 对000000000000000000000000000000000000000000000000 0000000000000000遍L-D码;(4) 对101000110101110001100011101001100001111011001010 00110101011010010遍L-D码;(5) 对上述结果进行讨论.。

信息论与编码知识梳理及课后答案分解共69页文档

信息论与编码知识梳理及课后答案分解共69页文档
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
信息论与编码知识梳及课后答案分 解
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

信息论与编码第五章习题参考答案

信息论与编码第五章习题参考答案

5.1某离散无记忆信源的概率空间为采用香农码和费诺码对该信源进行二进制变长编码,写出编码输出码字,并且求出平均码长和编码效率。

解:计算相应的自信息量1)()(11=-=a lbp a I 比特 2)()(22=-=a lbp a I 比特 3)()(313=-=a lbp a I 比特 4)()(44=-=a lbp a I 比特 5)()(55=-=a lbp a I 比特 6)()(66=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特根据香农码编码方法确定码长1)()(+<≤i i i a I l a I平均码长984375.164/6317128/17128/1664/1532/1416/138/124/112/1L 1=+=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=由于每个符号的码长等于自信息量,所以编码效率为1。

费罗马编码过程5.2某离散无记忆信源的概率空间为使用费罗码对该信源的扩展信源进行二进制变长编码,(1) 扩展信源长度,写出编码码字,计算平均码长和编码效率。

(2) 扩展信源长度,写出编码码字,计算平均码长和编码效率。

(3) 扩展信源长度,写出编码码字,计算平均码长和编码效率,并且与(1)的结果进行比较。

解:信息熵811.025.025.075.075.0)(=--=lb lb X H 比特/符号 (1)平均码长11=L 比特/符号编码效率为%1.81X)(H 11==L η(2)平均码长为84375.0)3161316321631169(212=⨯+⨯+⨯+⨯=L 比特/符号 编码效率%9684375.0811.0X)(H 22===L η(3)当N=4时,序列码长309.3725617256362563352569442569242562732562732256814=⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯+⨯⨯+⨯=L平均码长827.04309.34==L %1.98827.0811.0X)(H 43===L η可见,随着信源扩展长度的增加,平均码长逐渐逼近熵,编码效率也逐渐提高。

信息论与编码知识梳理及课后答案共69页文档

信息论与编码知识梳理及课后答案共69页文档
信息论与编码知识梳理及课后答案

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

信息论与编码第五章部分PPT课件

信息论与编码第五章部分PPT课件

C(abda)×21=0.10111[0.1,0.110] 第二个符号为b
去掉累积概率Pb: 0.10111-0.1=0.00111
放大至[0,1](×p b-1):
0.00111×22=0.111
第三个符号为d
[0.111,1]
去掉累积概率Pd: 0.111-0.111=0 放大至[0,1](×p d-1):0×24=0
PCM实际参数:fs=8KHz
量化电平mq: 0.5, 1.5, 2.5, 3.5
M=256
量化级数M:M=4
N=8 Rb=64Kbit/s
量化误差e:emax=0.5 编码位数N:N=2(要求2N>=M)
例:对10路带宽均为300~3400kHz的模拟 语音信号进行PCM编码,抽样频率为 8000Hz,抽样后按8级量化,并编为二进 制码。求该系统的数据传输速率。
例:若消息符号的概率分布为: p(u0)=1/2,p(u1)=1/4,p(u2)=1/8,p(u3)=1/8。求: (3)若各消息符号间相互独立,求编码后对应的二进 制序列的熵; (4)若传输每个码字需要1.8元钱,问采用二定长码、 二进制哈夫曼编码、二进制费诺码、三进制费诺码和 三进制哈夫曼编码哪个更节省费用。 答案(3)p(0)=1/2,p(1)=1/2, H(Y)=1
C ( ) 0, A( ) 1
C ( Sr
A
(
Sr
) )
C (S A(S
) )
pi
A(S
) Pr
L log 1 A(S )
C() 0, A() 1
C(Sr) A(Sr)
C(S) A(S)pi
A(S)Pr
例 有四个符号a,b,c,d构成简单序列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
413 p = 13 C52
信息量为:
2006-9-22
413 − log 2 13 = 13.21bit C52
5
MATLAB function
第二章 信源熵
factorial(N), for scalar N, is the product of all the integers from 1 to N, i.e. prod(1:n). When N is an Ndimensional array, factorial(N) is the factorial for each element of N. C = nchoosek(n,k) where n and k are nonnegative integers, This is the number of combinations of n things taken k at a time. E = entropy(I) returns E, a scalar value representing the entropy of grayscale image I. Entropy is a statistical measure of randomness that can be used to characterize the texture of the input image.
i =1 6
概率空间不满足归一化 ∴ 不满足最大离散熵定理
2006-9-22
11
2006-9-22
7
作业题3
解答: (1)对于离散无记忆信源
第二章 信源熵
I ( x1 = 0) = − log 2 (3 / 8) ≈ 1.415bit I ( x2 = 1) = − log 2 (1/ 4) = 2bit I ( x3 = 2) = − log 2 (1/ 4) = 2bit I ( x4 = 3) = − log 2 (1/ 8) = 3bit
作业题1
第二章 信源熵
2.2.居住某地区的女孩子有25%是大学生,在女 大学生中有75%是身高160厘米以上的,而女 孩子中身高160厘米以上的占总数的一半。假 如我们得知“身高160厘米以上的某女孩是大 学生”的消息,问获得多少信息量。
2006-9-22
2
作业题1
第二章 信源熵
解答: 设A表示“大学生”这一事件,B表示“身 高1.60米以上”这一事件,它们出现的概率为
p ( A) = 0.25 p ( B ) = 0.5 p ( B / A) = 0.75 P ( AB ) P ( A) p ( B / A) 0.75 × 0.25 = = = 0.375 P( A / B) = P( B) P( B) 0.5 I ( A / B ) = − log 2 P ( A / B ) = − log 2 0.375 = 1.42bit
此消息中总共有45个符号-14个“0”,13个“1”,12个“2”,6个“3”, 因此总的信息量为 I = 14 I ( x = 0) + 13I ( x = 1) + 12 I ( x = 2) + 6 I ( x = 3)
1 2 3 4
≈ 87.81bit
(2)此消息中总共有45个符号,携带87.81比特信息量,则此消息中平 均每个符号携带的信息量为
I ′ = I / 45 ≈ 1.95bit
2006-9-22 8
作业题3
第二章 信源熵
进一步思考 第(2)问求出的平均每个符号携带的信息量,并不完全等于该离散无记 忆信源平均每个符号携带的信息量,即信源熵,
H ( X ) = −∑ p ( xi ) log 2 p ( xi )
i =1
4
≈ 1.906bit / symbol H(X)与 I ′ 只是近似相等,不是完全相同。原因是 I ′是在此特定的消
息中求得的,此特定消息中各符号出现的概率并不完全等于信源X 中各符号的概率,所以存在差异。由此可进一步理解,信源的信息 熵是一统计量,是表征信源的总体测度信息的。
2006-9-22
9
作业题4
第二章 信源熵
x2 x3 x4 x5 x6 ⎫ ⎡ X ⎤ ⎧ x1 2.6设信源 ⎢ ⎥ = ⎨0.2 0.19 0.18 0.17 0.16 0.17 ⎬ , 求这 ⎣ P( X ) ⎦ ⎩ ⎭ 信源的熵,并解释为什么H ( X ) > log 2 6不满足信源熵的极值性。
2006-9-22 6
作业题3
2.3.设离散无记忆信源,其
第二章 信源熵
⎡ X ⎤ ⎧ x1 = 0 x2 = 1 x3 = 2 x4 = 3⎫ ⎬ ⎢ P( X ) ⎥ = ⎨ 3 / 8 1/ 4 1/ 4 1/ 8 ⎭ ⎣ ⎦ ⎩
发出的消息为 (202120130213001203210110321010021032011223 210) 1.此消息的自信息量是多少? 2.在此消息中平均每个符号携带的信息量是多 少?
2006-9-22
10
作业题4
解答: H ( X ) = −∑ p ( xi ) log 2 p( xi )
i =1 6
第二章 信源熵
= −[ 0.2 log 2 0.2 + 0.19 log 2 0.19 + 0.18log 2 0.18 + 2(0.17 log 2 0.17) + 0.16 log 2 0.16 = 2.66(bit / symbol ) log 2 6 = 2.58 ∴ ∑ p ( xi ) = 0.2 + 0.19 + 0.18 + 0.17 + 0.16 + 0.17 = 1.07 > 1

2006-9-22
3
作业题2
第二章 信源熵
2.3.一幅充分洗乱了的牌(含52张牌),试问
(1) 任一特定排列所给出的信息量是多少? (2) 若从中抽取13张牌,所给出的点数都不相同 能得到多少信息量?
2006-9-22
4
作业题2
第二章 信源熵
解答: 52 (1)任意排列共有 P52 = 52! 种,则任一排列的自信息量 为: − log 2 (1/ 52!) = log 2 52! = 225.58bit (2)应将点数相同花色不同的牌看作一类,则任意抽取 的13张牌应在13类中分别进行。其概率为
相关文档
最新文档