98.2020年6月浙江高考数学押题卷解析_01
【高中高考数学压轴题预测题-浙江省1】2020年高考数学计算题大题-含详细解析答案、可编辑
【高中高考数学压轴题预测题-浙江省1】2020年高考数学计算题大题-含详细解析答案、可编辑学校:__________ 班级:__________ 姓名:__________ 考号:__________一、解答题(本题共计 40 小题,每题 3 分,共计120分,)1. 已知实数a≠0,设函数f(x)=a ln x+√1+x,x>0.(1)当a=−34时,求函数f(x)的单调区间;(2)对任意x∈[1e2,+∞)均有f(x)≤√x2a,求a的取值范围.注:e=2.71828⋯为自然对数的底数.2. 如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B 两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求S1S2的最小值及此时点G的坐标.3. 设等差数列{a n}的前n项和为S n,a3=4,a4=S3.数列{b n}满足:对每个n∈N∗,S n+b n,S n+1+b n,S n+2+b n成等比数列.(1)求数列{a n},{b n}的通项公式;(2)记c n=√a n2b n, n∈N∗,证明:c1+c2+⋯+c n<2√n,n∈N∗.4. 如图,已知三棱柱ABC−A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90∘,∠BAC=30∘,A1A=A1C=AC,E, F分别是AC,A1B1的中点. (1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.5. 设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=[f(x+π12)]2+[f(x+π4)]2的值域.6. 已知函数f(x)=√x−ln x.(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.7. 如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+y24=1(x<0)上的动点,求△PAB面积的取值范围.8. 已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.9. 如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120∘,A 1A =4,C 1C =l ,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.10. 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (−35,−45).(1)求sin (α+π)的值;(2)若角β满足sin (α+β)=513,求cos β的值.11. 设数列满足|a n −a n+12|≤1,n ∈N ∗.(1)求证:|a n |≥2n−1(|a 1|−2)(n ∈N ∗)(2)若|a n |≤(32)n ,n∈N ∗,证明:|a n |≤2,n ∈N ∗.12. 如图,设椭圆C:x 2a 2+y 2=1(a >1)(I )求直线y =kx +1被椭圆截得到的弦长(用a ,k 表示)(II )若任意以点A(0, 1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.13. 已知a ≥3,函数F(x)=min {2|x −1|, x 2−2ax +4a −2},其中min (p, q)={p,p ≤q q,p >q .(Ⅰ)求使得等式F(x)=x 2−2ax +4a −2成立的x 的取值范围; (Ⅱ)(i)求F(x)的最小值m(a);(ii)求F(x)在[0, 6]上的最大值M(a).14. 如图,在三棱台ABC −DEF 中,已知平面BCFE ⊥平面ABC ,∠ACB =90∘,BE =EF =FC =1,BC =2,AC =3,(1)求证:EF ⊥平面ACFD ;(2)求二面角B −AD −F 的余弦值.15. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.16. 已知数列{a n }满足a 1=12且a n+1=a n −a n 2(n ∈N ∗)(1)证明:1≤a nan+1≤2(n ∈N ∗);(2)设数列{a n 2}的前n 项和为S n ,证明12(n+2)≤S n n≤12(n+1)(n ∈N ∗).17. 已知椭圆x22+y2=1上两个不同的点A,B关于直线y=mx+12对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).18. 已知函数f(x)=x2+ax+b(a, b∈R),记M(a, b)是|f(x)|在区间[−1, 1]上的最大值.(1)证明:当|a|≥2时,M(a, b)≥2;(2)当a,b满足M(a, b)≤2时,求|a|+|b|的最大值.19. 如图,在三棱柱ABC−A1B1C1中,∠BAC=90∘,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1−BD−B1的平面角的余弦值.20. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=π4,b2−a2=12c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.21. 设函数f(x)=x3+1x+1,x∈[0, 1],证明:(1)f(x)≥1−x+x2(2)34<f(x)≤32.22. 如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|−1.求p的值;若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.23. 如图,在三棱台ABC−DEF中,平面BCFE⊥平面ABC,∠ACB=90∘,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.24. 设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N∗.(1)求通项公式a n;(2)求数列{|a n−n−2|}的前n项和.25. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=23,求cos C的值.26. 设函数f(x)=x2+ax+b(a, b∈R).(Ⅰ)当b=a24+1时,求函数f(x)在[−1, 1]上的最小值g(a)的表达式.(Ⅱ)已知函数f(x)在[−1, 1]上存在零点,0≤b−2a≤1,求b的取值范围.27. 如图,已知抛物线C1:y=14x2,圆C2:x2+(y−1)2=1,过点P(t, 0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(Ⅰ)求点A,B的坐标;(Ⅱ)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.28. 如图,在三棱柱ABC−A1B1C1中,∠BAC=90∘,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.29. 已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N∗),b1+12b2+13b3+⋯+1nb n=b n+1−1(n∈N∗)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.30. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知tan(π4+A)=2.(1)求sin2Asin2A+cos2A的值;(2)若B=π4,a=3,求△ABC的面积.31. 已知函数f(x)=x3+3|x−a|(a∈R).(1)若f(x)在[−1, 1]上的最大值和最小值分别记为M(a),m(a),求M(a)−m(a);(2)设b∈R,若[f(x)+b]2≤4对x∈[−1, 1]恒成立,求3a+b的取值范围.32. 如图,设椭圆C:x2a2+y2b2=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a−b.33. 如图,在四棱锥A−BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90∘,AB=CD=2,DE=BE=1,AC=√2.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B−AD−E的大小.34. 已知数列{a n}和{b n}满足a1a2a3...a n=(√2)b n(n∈N∗).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n;(2)设c n=1a n−1b n(n∈N∗).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N∗,均有S k≥S n.35. 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=√3,cos2A−cos2B=√3sin A cos A−√3sin B cos B.(1)求角C的大小;(2)若sin A =45,求△ABC 的面积.36. 已知△ABP 的三个顶点在抛物线C:x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM →,(1)若|PF|=3,求点M 的坐标;(2)求△ABP 面积的最大值.37. 已知函数f(x)=x 3+3|x −a|(a >0),若f(x)在[−1, 1]上的最小值记为g(a). (Ⅰ)求g(a);(Ⅱ)证明:当x ∈[−1, 1]时,恒有f(x)≤g(a)+4.38. 如图,在四棱锥A −BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90∘,AB =CD =2,DE =BE =1,AC =√2.(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.39. 已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2⋅S 3=36. (Ⅰ)求d 及S n ;(Ⅱ)求m ,k(m, k ∈N ∗)的值,使得a m +a m+1+a m+2+...+a m+k =65.40. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4sin 2A−B 2+4sin A sin B =2+√2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.。
2020浙江省高考压轴卷数学理(解析版)
绝密★启封前2020浙江省高考压轴卷数 学 理 科数学I注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、 解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:球体的体积公式:V =334R π,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.全集12{}345U =,,,,,集合134{}}35{A B =,,,=,,则U A B ⋂()ð═ . 2.已知i 是虚数单位,若12i a i a R +∈(﹣)()=,,则a = . 3.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽 人.4.如图是一个算法的流程图,则输出y 的取值范围是 .5.已知函数22353log (1)3x x f x x x -⎧-<⎨-+≥⎩()=,若f (m )=﹣6,则f (m ﹣61)= . 6.已知f (x )=sin (x ﹣1),若p ∈{1,3,5,7},则f (p )≤0的概率为 . 7.已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象如图所示,则f (76π)的值为 .8.已知A ,B 分别是双曲线2212x y C m :-=的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为 .9.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 . 10.若函数f (x )=a 1nx ,(a ∈R )与函数g (x )=x ,在公共点处有共同的切线,则实数a 的值为 .11.设A ,B 在圆x 2+y 2=4上运动,且23AB =,点P 在直线3x +4y ﹣15=0上运动.则|PA PB |+u u u r u u u r 的最小值是 .12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =23π,∠ABC 的平分线交AC 于点D ,BD =1,则a +c 的最小值为 .13.如图,点D 为△ABC 的边BC 上一点,2BD DC =u u u r u u u r,E n (n ∈N )为AC 上一列点,且满足:11414n n n n n E A E D E a B a +=+u u u u r u u u u r u u u u r (﹣)﹣5,其中实数列{a n }满足4a n ﹣1≠0,且a 1=2,则111a -+211a -+311a -+…+11n a -= .14.已知函数2910(1)e ,023xx x f x x x ⎧++<⎪⎨⎪-≥⎩()=+6,x 0,其中e 是自然对数的底数.若集合{x ∈Z|x (f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 .二、解答题(本大题共6小题,计90分. 解析应写出必要的文字说明,证明过程或演算步骤,请把 答案写在答题卡的指定区域内)15.(本小题满分14分) 如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,已知点M 为棱BC 上异于B ,C 的一点. (1)若M 为BC 中点,求证:A 1C ∥平面AB 1M ; (2)若平面AB 1M ⊥平面BB 1C 1C ,求证:AM ⊥BC .16.(本小题满分14分)已知12(,),(0,cos(),.2273πππαπβαβαβ∈∈-=+=), (1)求22sin αβ(﹣)的值; (2)求cos α的值.17.(本小题满分14分) 学校拟在一块三角形边角地上建外籍教室和留学生公寓楼,如图,已知△ABC 中,∠C =2π,∠CBA =θ,BC =a .在它的内接正方形DEFG 中建房,其余部分绿化,假设△ABC 的面积为S ,正方形DEFG 的面积为T . (1)用a ,θ表示S 和T ; (2)设f (θ)=TS,试求f (θ)的最大值P ;18.(本小题满分16分) 已知椭圆22221x y C a b:+=0a b (>>)的离心率为22,短轴长为22. (Ⅰ)求C 的方程;(Ⅱ)如图,经过椭圆左项点A 且斜率为k (k ≠0)直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作与OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且△APM面积为23,求k 的值.19.(本小题满分16分) 已知函数()212ln 2f x x x ax a R =+-∈,. (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由.20.(本小题满分16分) 已知集合A =a 1,a 2,a 3,…,a n ,其中a i ∈R (1≤i ≤n ,n >2),l (A )表示和a i +a j (1≤i <j ≤n )中所有不同值的个数.(Ⅰ)设集合P =2,4,6,8,Q =2,4,8,16,分别求l (P )和l (Q ); (Ⅱ)若集合A =2,4,8, (2),求证:(1)()2n n l A -=; (Ⅲ)l A ()是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由? 数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内........注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共2页,均为非选择题(第21~23题)。
2020年浙江省高考数学压轴试卷 (含答案解析)
2020年浙江省高考数学压轴试卷一、选择题(本大题共10小题,共40.0分)1. 已知集合A ={x||x|<2},B ={−1,0,1,2,3},则A ∩B =( )A. {0,1}B. {0,1,2}C. {−1,0,1}D. {−1,0,1,2} 2. 复数5i−2的共轭复数是( )A. 2+iB. −2−iC. −2+iD. 2−i3. 记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A. 1B. 2C. 4D. 84. 一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则四棱锥的表面积为( )A. 83B. 4√3C. 4√5+1D. 4(√5+1)5. 已知x 、y ∈R ,不等式组{x +2y ≥0x −y ≤00≤y ≤k 所表示的平面区域的面积为6,则实数k 的值为( )A. 1B. 2C. 3D. 46. 已知直线l 1:mx +y −1=0,直线l 2:(m −2)x +my −1=0,则“l 1⊥l 2”是“m =1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 7. 函数f(x)=(e x +1)lnx 2e x −1(e 是自然对数的底数)的图象大致为( )A. B. C. D.8. 已知实数a >b >0,m ∈R ,则下列不等式中成立的是( )A. (12)a <(12)bB. a −2>b −2C. m a >m bD. b+m a+m >ba 9. 如图,四棱锥P −ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N −PAC 与四棱锥P −ABCD 的体积比为( )A. 1:2B. 1:3C. 1:6D. 1:810. 若对圆(x −1)2+(y −1)2=1上任意一点P(x,y),|3x −4y +a|+|3x −4y −9|的取值与x ,y无关,则实数a 的取值范围是( )A. a ≤−4B. −4≤a ≤6C. a ≤−4或a ≥6D. a ≥6二、填空题(本大题共7小题,共36.0分) 11. 古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为______ .12. 在二项式(√2+x)9的展开式中,常数项是_____________,系数为有理数的项的个数是______________.13. 已知双曲线x 2a 2−y 2b 2=1(b >a >0),焦距为2c ,直线l 经过点(a,0)和(0,b),若(−a,0)到直线l 的距离为2√23c ,则离心率为______. 14. 已知函数f(x)={|x +a|+|x −1|,x >0x 2−ax +2,x ≤0的最小值为a +1,则实数a 的取值范围为____________. 15. 若平面向量a ⃗ ,b ⃗ 满足|a ⃗ |=|2a ⃗ +b ⃗ |=2,则a ⃗ ⋅b⃗ 的取值范围是______. 16. 从甲、乙等8名志愿者中选5人参加周一到周五的社区服务活动,每天安排一人,每人只参加一天,若要求甲、乙两人中至少有一人参加,且当甲、乙两人都参加时,他们参加社区服务活动的日期不相邻,那么不同的安排方法种数为________(用数字作答).17. 若方程x +m =√4−x 2有且只有一个实数解,则实数m 的取值范围为________.三、解答题(本大题共5小题,共74.0分)18. 已知函数f(x)=(sinx +cosx)2+2cos 2x −1.(1)求函数f(x)的递增区间;(2)当x ∈[0,π2]时,求函数f(x)的值域.19. 如图,在四棱锥P −ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60∘.(1)求证:平面PBD ⊥平面PAC ;(2)若PA=AB,求PC与平面PBD所成角的正弦值20.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;}的前n项和T n.(2)设b n=log3a1+log3a2+⋯+log3a n,求数列{1b n21.已知点F是抛物线C:y2=2px(p>0)的焦点,一点M(0,√2)满足线段MF的中点在抛物线C2上.(1)求抛物线C的方程;(2)若直线MF与抛物线C相交于A、B两点,求线段AB的长.22.已知函数f(x)=lnx+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若函数f(x)的两个零点为x1,x2,且x2x1⩾e2,求证:(x1−x2)f′(x1+x2)>65.-------- 答案与解析 --------1.答案:C解析:本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.先求出集合A和B,由此利用交集的定义能求出A∩B.解:∵集合A={x||x|<2}={x|−2<x<2},B={−1,0,1,2,3},∴A∩B={−1,0,1}.故选C.2.答案:C解析:解:复数5i−2=5(−2−i)(−2+i)(−2−i)=5(−2−i)5=−2−i的共轭复数为−2+i.故选:C.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,属于基础题.3.答案:C解析:本题主要考查等差数列公式及等差数列求和的基本量运算,属于简单题.利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.解:S n为等差数列{a n}的前n项和,设公差为d,∵a4+a5=24,S6=48,∴{a 1+3d +a 1+4d =246a 1+6×52d =48, 解得a 1=−2,d =4,∴{a n }的公差为4.故选C .4.答案:D解析:解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,由该四棱锥的主视图可知四棱锥的底面边长2,高为2,则四棱锥的斜高为√22+12=√5.所以该四棱锥侧面积为:4×12×2×√5=4√5,底面积为:2×2=4,故表面积S =4+4√5=4(√5+1),故选:D由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,进而可得答案. 本题考查三视图复原几何体形状的判断,几何体的表面积与体积的求法,考查空间想象能力与计算能力. 5.答案:B解析:解:作出不等式组对应的平面区域:则k >0由{x +2y =0y =k,解得{x =−2k y =k ,即A(−2k,k), 由{x −y =0y =k,解得{x =k y =k ,即B(k,k) ∵平面区域的面积是9,∴12(3k)k =6,即k 2=4解得k =±2,解得k =2或k =−2(舍),故选:B .作出不等式组对应的平面区域,利用平面区域的形状,结合面积公式即可得到结论.本题主要考查二元一次不等式组表示平面区域,以及三角形的面积公式的计算,比较基础. 6.答案:B解析:解:直线l 1:mx +y −1=0,直线l 2:(m −2)x +my −1=0,若“l 1⊥l 2”, 则m(m −2)+m =0,解得m =0或m =1,故“l 1⊥l 2”是“m =1”的必要不充分条件,故选:B .利用两条直线相互垂直的充要条件求出m 的值,再根据充分必要条件的定义即可得出.本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.7.答案:A解析:解:f(−x)=(e −x +1)ln(−x)2e −x −1=(1+e x )lnx 21−e x =−(e x +1)lnx 2e x −1=−f(x),则函数f(x)是奇函数,图象关于原点对称,排除B ,C .当x >1时,f(x)>0,排除D ,故选:A .判断函数的奇偶性和图象的对称性,利用特殊值的符号是否对应进行排除.本题主要考查函数图象的识别和判断,判断函数的奇偶性以及对称性是解决本题的关键. 8.答案:A解析:解:∵函数y =(12)x 在R 上单调递减,∴当a >b >0时,(12)a <(12)b .故选:A .根据函数y =(12)x 在R 上单调递减知当a >b >0时,(12)a <(12)b .本题考查了利用函数的单调性判断比较大小和不等式的基本性质,属基础题.。
2020年高考数学临考押题卷(浙江专版)(解析版)(01)
2020年高考临考押题卷(五)数学(浙江卷)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单选题1.若集合{}2230A x x x =--≤,{2xB x =≥,则A B =I ( )A .1,32⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .13,2⎡⎤-⎢⎥⎣⎦D .[]2,3【答案】A【解析】由题意13{|}A x x =-≤≤,1{|}2B x x =≥, ∴1{|3}2A B x x =≤≤I .2.已知P 在双曲线22221x y a b-=(0,0)a b >>的渐近线上,则该双曲线的离心率为( )A B .2C D【答案】D【解析】由双曲线方程为22221x y a b-=(0,0)a b >>,则双曲线的渐近线方程为by x a=±,又P 在双曲线的渐近线上,b =,即22222a b c a ==-, 即223a c =,即3==ce a, 3.已知变量x ,y 满足约束条件6,32,1,x y x y x +⎧⎪--⎨⎪⎩„„…,则目标函数2z x y =+的最大值为( )A .3B .5C .8D .11【答案】D【解析】作出可行域如图所示,122zy x =-+,易知截距与z 成正比的关系,平移直线12y x =-,当直线过(1,5)A 时,截距最大,此时max 12511z =+⨯=. 故选:D4.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的边长分别为2和6,高为2,则该刍童的表面积为( )A .322B .40322+C .1043D .72【答案】B【解析】22222+=.故几何体的表面积为222662422403222+++⨯⨯=+. 5.“6πθ=”是“1sin 2θ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】由6πθ=可得1sin 2θ=, 由1sin 2θ=,得到26k πθπ=+或526k πθπ=+,k ∈Z ,不能得到6πθ=, 所以“6πθ=”是“1sin 2θ=”的充分不必要条件, 6.函数()sin 2f x x x x =-的大致图象是( )A .B .C .D .【答案】A【解析】由题意得()()sin 2sin2()f x x x x x x x f x -=----=-+=-,所以函数()f x 是奇函数,排除C 、D 选项;当πx =时,()2πππ2ππ0f sin =-=>,因此排除B ,故选A .7.设随机变量X 的概率分布表如下图,则(21)P X -==( )X1 2 3 4P1614m13A .12B .2C .12 D .6【答案】C【解析】由21X -=,可得3x =或1x =. 再由分布列性质可得111116434m ⎛⎫=-++=⎪⎝⎭ 则()()115(21)136412P X P X P X -===+==+=. 8.设,m n 为两条不同的直线,,αβ为两个不同的平面,下列命题中正确的是( ) A .若//m α,//m n ,//n β,则//αβ B .若//m α,m n ⊥,n β⊥,则//αβ C .若m α⊥,//m n ,//n β, 则αβ⊥ D .若//m α,m n ⊥,//n β, 则//αβ 【答案】C【解析】如图,,αβ相交,故A 错误如图,,αβ相交,故B 错误D.如图,,αβ相交,故D 错误9.函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D【解析】()()()()22331xxx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e -=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根, 且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.10.已知数列{}n a 满足:12a =,()()2110,*n n n a S S n N +-∈=+,其中n S 为{}n a 的前n 项和.若对任意的n 均有()()()12111n S S S kn ++⋯+≥恒成立,则k 的最大整数值为( )A .2B .3C .4D .5【答案】B【解析】当1n ≥时,由条件()()2110,*n n n a S S n N +-∈=+,可得21(1)n n n nS S S S +--=-,整理得221(21)n n n n n S S S S S +-=--+,化简得:121n n n S S S +=-, 从而111n n nS S S +--=-, 故111111n n S S +-=--,由于1111S =-, 所以数列11n S ⎧⎫⎨⎬-⎩⎭是以1111S =-为首项,1为公差的等差数列, 则11n n S =-, 整理得1n n S n+=, 依题只须()()()12111()n minS S S k n+++≤L ,令()()()()12111n S S S f n n+++=L ,则()()()()()121123111n f n n S n n f n n n ++++==>++,所以()f n 为单调递增数列, 故()11()131nin S f n f +===, ∴3max k =, 二、填空题11.已知单位向量1e u r 与2e u u r 的夹角为3π,若向量122e e +u r u u r 与122e ke +u r u u r 的夹角为56π,则实数k 的取值为_______. 【答案】-10【解析】如图建立直角坐标系,由题意得()11,0e =u r,213,2e ⎛⎫= ⎪ ⎪⎝⎭u u r ,则()1222,3e e +=u u r u r ,12132,222e k ke k ⎛⎫+=+ ⎪ ⎪⎝⎭u u u r r ,所以()()1212121212122cos 2,2222e ke e ke e ke e e e e e e ++++=⋅++⋅u u r u u r u u r u u ru u u r u r u r u r ur u r r u u r 2223544522cos67241343222kk k k k k k π+++===⋅++⎛⎫⎛⎫+⋅++ ⎪⎪⎝⎭⎝⎭, 即25402219100kk k ⎧+<⎪⎨⎪+-=⎩,解得10k =-.故答案为:10-.12.已知过抛物线2:2(0)C y px p =>的焦点F 的直线:4l y x b =+截抛物线C 所得的弦长为17,设点A为抛物线C 上的动点,点(2,6),B 过点A 作抛物线C 的准线1l 的垂线,垂足为,D 则AB AD +的最小值为__________. 【答案】10【解析】2:2(0)C y px p =>焦点为,02p ⎛⎫⎪⎝⎭,直线过焦点,故2b p =-,设交点的横坐标分别为12,x x ,2242y px y x p⎧=⎨=-⎩,故22161840x xp p -+=,故1298x x p +=,故1217178x x p p ++==,故8p =,故216y x =. AB AD AB AF BF +=+≤=,当BAF 共线时等号成立.13.已知0a >,函数()([1,2])af x x x x=-∈的图像的两个端点分别为A 、B ,设M 是函数()f x 图像上任意一点,过M 作垂直于x 轴的直线l ,且l 与线段AB 交于点N ,若1MN ≤恒成立,则a 的最大值是______.【答案】6+.【解析】因为()([1,2])af x x x x =-∈,0a >, 所以(1,1),(2,2)2aA aB --,所以直线l 的方程为(1)(1)12ay x a =+-+-,设(,)a M t t t -,所以(,(1)(1)1)2aN t t a +-+-,因为1MN ≤恒成立,所以(1)(1)1()12a a t a t t+-+---≤恒成立,所以23212t t at-+≤, 因为2()32g t t t =-+在[1,2]t ∈时小于等于0恒成立,所以23212t t a t-+-≤,①当1t =或2t =时,01≤显然成立; ②当(1,2)t ∈时,2222323t a t t t t --≤=-++-,所以由基本不等式得6a ≤=,此时t =,所以a的最大值为6+,14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A=60°,则sin B=___________,c =___________.【答案】73 【解析】由正弦定理得a sinAb sinB =,所以π,37sinB sin ==由余弦定理得22222,742,3a b c bccosA c c c =+-∴=+-∴=(负值舍去).15.动直线:(12)(1)3(1)0,()l m x m y m m R ++--+=∈与圆22:2440C x y x y +-+-=交于点A B 、,则动直线l 必过定点______;当弦AB 最短时,直线l 的方程为______. 【答案】(2,1)- 10x y +-=【解析】将直线:(12)(1)3(1)0,()l m x m y m m R ++--+=∈,变形可得()2330x y m x y +-+--=,所以直线所过定点满足23030x y x y +-=⎧⎨--=⎩,解得21x y =⎧⎨=-⎩,所以直线l 必过定点(2,1)A -;圆22:2440C x y x y +-+-=,化为标准方程可得()()22129x y -++=,设圆心为()1,2C -,当直线与AC 垂直时,解得圆的弦长最短,因为直线AC 的斜率为()12121AC k ---==-,所以直线l 的斜率为1l k =-,因为过定点(2,1)A -,所以由点斜式可得()21y x =---,化简可得10x y +-=;16.()91ax +的二项展开式中系数最大的是第三项,且a N +∈,则a =______,展开式中二项式系数最大的是第______项.【答案】3或4 3和4【解析】由题意()91ax +的二项展开式的通项公式为()9991991rrr r r r r T C ax C a x ---+=⋅=⋅⋅,由第三项的系数最大可得2923939929219199C a C a C a C a ----⎧⋅≥⋅⎨⋅≥⋅⎩即3684369a a ≥⎧⎨≥⎩,解得2149a ≤≤,又a N +∈,所以3a =或4; 展开式中二项式系数最大的是49C 和59C ,即为第3项和第4项.17.古希腊数学家阿波罗尼奥斯发现:平面上到两定点A ,B 距离之比为常数(0λλ>且1)λ≠的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足3BP PE =.若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.【答案】2394【解析】(1)以AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立如图所示的坐标系,则(6,0),(2,0),B E 设(,)P x y , 由3BP PE =得2222(6)3[(2)]x y x y -+=-+, 所以22+12x y =,所以若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为3(2)设点(,,)P x y z ,由3BP PE =得222222(6)3[(2)z ]x y z x y -++=-++,所以222++12x y z =,由题得1(3,3,3,),(6,0,3),(6,3,0),F B C 所以11(3,3,0),(0,3,3),FB BC =-=-u u u r u u u u r 设平面1B CF 的法向量为000(,,)n x y z =r ,所以100100·330,(1,1,1)·330n FB x y n n B C y z ⎧=-=⎪∴=⎨=-=⎪⎩u u u v v v u u u v v , 由题得(6,3,z)CP x y =--u u u r ,所以点P 到平面1B CF的距离为||||CP n h n ⋅==u u u r r r 因为2222222(++)(111)(),66x y z x y z x y z ++≥++∴-≤++≤,所以min h ==,所以点M 到平面1B CF由题得1B CF ∆=所以三棱锥1M B CF -的体积的最小值为21934. 三、解答题18.设函数2()cos 2sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最小正周期.(2)求函数()f x 的单调递减区间;(3)设,,A B C 为ABC V 的三个内角,若1cos 3B =,124C f ⎛⎫=- ⎪⎝⎭,且C 为锐角,求sin A . 【解析】() 1函数()2π11cos2x 1f x cos 2x sin x cos2x 3222-⎛⎫=++=+=+ ⎪⎝⎭, 故它的最小正周期为2ππ2=. ()2对于函数()1f x 2=+,令ππ2k π2x 2k π22-≤≤+,求得ππk πx k π44-≤≤+, 可得它的减区间为ππk π,k π44⎡⎤-+⎢⎥⎣⎦,k Z ∈.()3ABC V 中,若1cosB 3=,222sinB 1cos B 3∴=-=. 若C 311f sinC 224⎛⎫=-+=- ⎪⎝⎭,3sinC ∴=,C Q 为锐角,πC 3∴=. ()ππ22113223sinA sin B C sinBcoscosBsin 3323+∴=+=+=⋅+⋅=. 19.在直四棱柱1111ABCD A B C D -中,已知1333DC DD AD AB ====,AD DC ⊥,//AB DC ,E 为DC 上一点,且1DE =.(1)求证:1//D E 平面1A BD ;(2)求二面角1B A D E --的正弦值.【解析】(1)证明:由题意可知,∵//AB DC ,且33DC AB ==,1DE = ∴//AB DE ,AB DE =,故四边形ABED 为平行四边形,∴11////BE AD A D ,11BE AD A D ==,∴四边形11A D EB 为平行四边形,∴11//D E A B ,∵1D E ⊄平面1A BD ,1A B ⊂平面1A BD ,∴1//D E 平面1A BD .(2)由已知直四棱柱1111ABCD A B C D -,且AD DC ⊥,则1,,DA DC DD 两两垂直,如图建立空间直角坐标系:则()()()()11,0,3,1,1,0,0,0,0,0,1,0B A D E 1B A D E -- 设面1BA D 的法向量为()111,,n x y z =r ,又()()11,1,0,1,0,3DB DA ==u u u r u u u u r 则11111030n DB x y n DA x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩u u u v v u u u u v v ,令11z =,可得()3,3,1n =-r ; 设面1EA D 的法向量为()222,,m x y z =u r ,又()()10,1,0,1,0,3DE DA ==u u u r u u u u r 则2122030m DE y m DA x z ⎧⋅==⎪⎨⋅=+=⎪⎩u u u v v u u u u v v ,令21z =,可得()3,0,1m =-u r , 设二面角1B A D E --的平面角的大小为θ,由图可知θ为锐角, 则10cos 9919119n m n mθ⋅===++⋅+⋅r u r r u r 210319sin 119θ⎛⎫∴=-= ⎪ ⎪⎝⎭, 二面角1B A D E --319. 20.已知数列{}()*n a n N ∈的前n 项和为n S ,()2n n n S a λ=+(λ为常数)对于任意的*n N ∈恒成立. (1)若11a =,求λ的值;(2)证明:数列{}n a 是等差数列;(3)若22a =,关于m 的不等式21m S m m -<+有且仅有两个不同的整数解,求λ的取值范围.【解析】(1)当1n =时,()11112S a a λ=+=,112a a λ∴=+,解得:11a λ==; (2)由(1)知:()()()11221n n n n S n a S n a λλ++⎧=+⎪⎨=++⎪⎩,()1121n n n a n a na λ++∴=+-+,*n N ∈,()()1112121n n n nn n a n a na a na n a λλ++-⎧=+-+⎪∴⎨=--+⎪⎩,则()()11122121n n n n n a a n a na n a ++--=+-+-, ()()()111121n n n n a n a n a +-∴-+-=-,又2n ≥,*n N ∈,10n ∴->,∴112n n n a a a +-+=对任意2n ≥,*n N ∈成立,∴数列{}n a 是等差数列;(3)由(2)可知:21m S m m -<+,即()11212m m ma d m m -+-<+, 即()()12212m m m m m λλ-+--<+,()2312m m m λ⋅∴--<+, 令22t λ-=,题目条件转化为满足不等式()31t m m m -<+的正整数解只有两个, 若1m =符合,则22t <,即1t <;若2m =符合,则23t <, 1.5t <;若3m =符合,则t 为任意实数,即除3m =以外只能有1个m 符合要求.当4m ≥,*m N ∈时,()31tm m m -<+,解得:()13m t m m +<-, 令15x m =+≥,则()()()1143145m x m m x x x x+==----+, 令()45f x x x =-+,则()222441x f x x x-'=-=, 当5x ≥时,()0f x '>恒成立,()f x ∴在[)5,+∞上单调递增,()()min455f x f ∴==,()max 1534m m m ⎡⎤+∴=⎢⎥-⎣⎦, ∴当54t ≤时,至少存在2m =、3、4满足不等式,不符合要求; 当5342t <<时,对于任意4m ≥,*m N ∈都不满足不等式,1m =也不满足, 此时只有2m =、3满足; 当32t ≥时,只有3m =符合; 故5342t <<,即523422λ-<<,解得:112λ-<<-或952λ<<;∴λ的取值范围是191,,522⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭U.21.如图,椭圆C:22221(0)x ya ba b+=>>的左、右焦点分别为12,F F,椭圆C上一点P与两焦点构成的三角形的周长为6,离心率为12,(Ⅰ)求椭圆C的方程;(Ⅱ)过点2F的直线l交椭圆22221x ya b+=于,A B两点,问在x轴上是否存在定点P,使得PA PB⋅u u u v u u u v为定值?证明你的结论.【解析】(Ⅰ)由题设得,又,解得,∴.故椭圆的方程为.(Ⅱ),当直线的斜率存在时,设此时直线的方程为,设,,把代入椭圆的方程,消去并整理得,,则,,可得.设点,那么, 若轴上存在定点,使得为定值,则有,解得,此时,,当直线的斜率不存在时,此时直线的方程为,把代入椭圆方程解得, 此时,,,, 综上,在轴上存在定点,使得为定值. 22.已知函数()sin x f x e x =.(e 是自然对数的底数)(1)求()f x 的单调递减区间;(2)记()()g x f x ax =-,若0<<3a ,试讨论()g x 在()0,π上的零点个数.(参考数据:2 4.8e π≈)【解析】(1)()sin x f x e x =,定义域为R . ()()πsin cos 2sin 4x x f x e x x e x ⎛⎫'=+=+ ⎪⎝⎭. 由()0f x '<解得πsin 04x ⎛⎫+< ⎪⎝⎭,解得()3π7π2π2π44k x k k Z +<<+∈. ∴()f x 的单调递减区间为()3π7π2π,2π44k k k Z ⎛⎫++∈ ⎪⎝⎭. (2)由已知()sin x g x e x ax =-,∴()()sin cos x g x ex x a '=+-.令()()h x g x '=,则()2cos x h x e x '=. ∵()0,πx ∈,∴当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '>; 当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<, ∴()h x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减, 即()g x '在π0,2⎛⎫ ⎪⎝⎭上单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减. ∵()01g a '=-,()ππ0g e a '=--<. ①当10a -≥,即01a <≤时,()00g '≥,∴π02g ⎛⎫'> ⎪⎝⎭.∴0π,π2x ⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=, ∴当()00,x x ∈时,()0g x '>;当()0,πx x ∈时,()0g x '<, ∴()g x 在()00,x 上单调递增,在()0,πx 上单调递减. ∵()00g =,∴()00g x >.又∵()ππ0g a =-<,∴由零点存在性定理可得,此时()g x 在()0,π上仅有一个零点. ②若13a <<时,()010g a '=-<,又∵()g x '在π0,2⎛⎫ ⎪⎝⎭上单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减,又π2π02g e a ⎛⎫'=-> ⎪⎝⎭, ∴1π0,2x ⎛⎫∃∈ ⎪⎝⎭,2π,π2x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,()20g x '=, 且当()10,x x ∈、()2,πx x ∈时,()0g x '<;当()12,x x x ∈时,()0g x '>. ∴()g x 在()10,x 和()2,πx 上单调递减,在()12,x x 上单调递增. ∵()00g =,∴()10g x <. ∵ππ22ππ3π0222g e a e ⎛⎫=->-> ⎪⎝⎭,∴()20g x >. 又∵()ππ0g a =-<,由零点存在性定理可得,()g x 在()12,x x 和()2,πx 内各有一个零点,即此时()g x 在()0,π上有两个零点.综上所述,当01a <≤时,()g x 在()0,π上仅有一个零点; 当13a <<时,()g x 在()0,π上有两个零点.。
浙江省2020年高考数学压轴卷(含解析)
2
1
1 1
SA SB SC
SA SC sin ASC SB sin
3 2
,证毕.
PE
PF
1
x,
y VP ABCD 22 3 4
PD
3
四棱锥 P ABCD 中,设 PB
,
VP AEMF VP AEF VP MEF VP AEF
8选项,取 a 1 , b 1 ,则 a b 成立,但 a b ,A 选项错误;
对于 B 选项,取 a , b 0 ,则 a b 成立,但 sin sin 0 ,即 sin a sin b ,B 选项
错误;
x
a
b
1
1 1
.
的单调递增区间;
x ,
6 4 时,求 f x 的值域.
(2)当
19.如图,四棱柱
A1O
ABCD A1 B1C1 D1
底面 ABCD ,
(1)求证:平面
AA1 AB 2
A1CO
平面
的底面 ABCD 是菱形 AC BD O ,
.
BB1 D1 D
C
7.【答案】A
【解析】
∵f(﹣x)
e x 1
1 ex
ex 1
x 1 e x
x ex 1
x 1 ex
f(x),
∴f(x)是偶函数,故 f(x)图形关于 y 轴对称,排除 C,D;
又 x=1 时,
∴排除 B,
f 1
e 1
浙江省 2020 年高考模拟 冲刺卷数学(一)参考答案
则
P
0,
0,
3 2
,
A
−
3 2
,
−1,
0
,
C
3 2
,
0,
0
,
B
3 2
,
−2,
0
,
则 BC = (0, −2, 0) , PC =
3 2
,
0,
−
3 2
,
AC
=
(
3,1, 0) ,
设平面 PBC 的法向量为 n = ( x, y, z ) ,
则
PC
n
=
3 2
x
−
3 2
z
=
0
,令
A 提示:过 A 作 AE ⊥ DC 于 E ,则向量 EA , CB 的夹角(设为 )即为二面角 B − DC − A 的
平 面 角 , 因 为 AB = AE + EC + CB , 由 DC ⊥ BC 及 AE ⊥ DC 得
2
AB
=
2
AE
+
2
EC
+
2
CB
+
2 AE
CB
,设
AE = x , 则 cos =
2
2
3 sin
− cos
=
1
,即
2
sin
−
6
=
1
,因为
2
,所以
= 3
.…7 分
(Ⅱ)由(1)可得 f ( x) =
3
sin
x
+
6
,所以
y
=
f
2x
−
2020年浙江省高考数学选考模拟试卷及答案解析(6月份)
第 1 页 共 23 页
2020年浙江省高考数学选考模拟试卷(6月份)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A ={x ||x |<2},B ={x |x 2﹣3x <0},则A ∩B =( )
A .(0,2)
B .(0,3)
C .(2,3)
D .(﹣2,3) 2.双曲线x 2−y 24=1的渐近线方程是( )
A .y =±√55x
B .y =±√5x
C .y =±12x
D .y =±2x
3.若实数x ,y 满足约束条件{y ≥0
x +2y −2≤0x −y ≥0
,则z =|x ﹣2y |的最大值是( )
A .23
B .2√55
C .2
D .√5
4.某几何体的三视图如图所示,则该几何体的体积为( )
A .2
B .4
C .4√2
D .12
5.已知{a n }是等差数列,a 1=11,S n 为数列{a n }的前n 项和,且S 5=S 7,则S n 的最大值为
( )
A .66
B .56
C .46
D .36 6.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则“
a sinB =b+c sinC+sinA ”是“△ABC 为等腰三角形”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
7.已知随机变量ξ满足P (ξ=0)=1﹣p ,P (ξ=1)=p ,且0<p <1,令随机变量η=|ξ
﹣E (ξ)|,则( )。
2020年浙江省高考数学压轴试卷(含答案解析)
2020年浙江省高考数学压轴试卷一、选择题(本大题共10小题,共40.0分)1.已知集合,集合0,1,2,,则A. B. 1, C. 0, D. 0,1,2.复数的共轭复数是A. B. C. D.3.记为等差数列的前n项和.若,,则的公差为A. 1B. 2C. 4D. 84.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是A.B. 8C.D.5.若实数x,y满足不等式组,则A. 有最大值,最小值B. 有最大值,最小值2C. 有最大值2,无最小值D. 有最小值,无最大值6.“”是“直线和直线互相垂直”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.函数其中e为自然对数的底数的图象大致为A. B.C. D.8.已知a,,且,则A. B. C. D.9.设是一个高为3,底面边长为2的正四棱锥,M为PC中点,过AM作平面AEMF与线段PB,PD分别交于点E,可以是线段端点,则四棱锥的体积的取值范围为A. B. C. D.10.若对圆上任意一点,的取值与x,y无关,则实数a的取值范围是A. B.C. 或D.二、填空题(本大题共7小题,共36.0分)11.九章算术中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺.12.二项式的展开式中常数项为______所有项的系数和为______.13.设双曲线的半焦距为c,直线l过,两点,已知原点到直线l的距离为,则双曲线的离心率为______;渐近线方程为______.14.已知函数,若,则实数______;若存在最小值,则实数a的取值范围为______.15.设向量,,满足,,,若,则的最大值是______.16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是______.17.已知函数,若在区间上方程只有一个解,则实数m的取值范围为______.三、解答题(本大题共5小题,共74.0分)18.已知函数.求的单调递增区间;当时,求的值域.19.如图,四棱柱的底面ABCD是菱形,,底面ABCD,.求证:平面平面;若,求OB与平面所成角的正弦值.20.等比数列的各项均为正数,且,.求数列的通项公式;设,求数列的前n项和.21.已知抛物线上的两个动点和,焦点为线段AB的中点为,且A,B两点到抛物线的焦点F的距离之和为8.求抛物线的标准方程;若线段AB的垂直平分线与x轴交于点C,求面积的最大值.22.已知函数.Ⅰ若函数在上单调递增,求实数a的取值范围;Ⅱ若函数有两个不同的零点,,求实数a的取值范围;求证:其中为的极小值点-------- 答案与解析 --------1.答案:C解析:【分析】本题考查交集的求法,解题时要认真审题,注意交集定义的合理运用,属基础题.先求出集合A和B,由此利用交集的定义能求出.【解答】解:集合,0,1,2,,0,.故选C.2.答案:A解析:解:复数的共轭复数.故选:A.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.答案:C解析:【分析】本题主要考查等差数列通项公式及等差数列求和的基本量运算,属于简单题.利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出的公差.【解答】解:为等差数列的前n项和,设公差为d,,,解得,,的公差为4.故选C.4.答案:C解析:解:根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2;画出图形,如图所示;所以该四棱锥的底面积为,高为;所以该四棱锥的体积是.故选:C.根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2;求出四棱锥的底面积和高,计算它的体积.本题考查了利用三视图求几何体体积的问题,是基础题.5.答案:C解析:解:画出不等式组表示的平面区域,如图阴影所示;设,则直线是一组平行线;当直线过点A时,z有最大值,由,得;所以z的最大值为,且z无最小值.故选:C.画出不等式组表示的平面区域,设,则直线是一组平行线,找出最优解,求出z有最大值,且z无最小值.本题考查了简单的线性规划应用问题,也考查了数形结合思想,是基础题.6.答案:C解析:解:“”时,直线为,和互相垂直,充分条件成立;“直线和直线互相垂直”,两线斜率乘积为,,所以“”,必要条件成立,因而是充分必要条件.故选:C.验证比较易,对于只须两线斜率乘积为即可.本题主要考查直线与直线垂直的判定,以及充要条件,是基础题目.7.答案:A解析:【分析】本题主要考查函数图象的识别和判断,利用特殊值法进行排除是解决本题的关键,属于基础题.根据函数值的符号是否对应,利用排除法进行求解即可.【解答】解:当时,,则;当时,,则,所以的图象恒在x轴下方,排除B,C,D,故选A.8.答案:C解析:解:设,由指数函数的性质知,函数为R上的减函数,又,故.故选:C.由不等式的性质及指数函数的图象及性质直接判断得解.本题考查不等式的性质及指数函数的图象及性质,属于基础题.9.答案:B解析:解:为了建立四棱锥的体积与原三棱锥的体积的关系,我们先引用下面的事实,如图设,,分别在三棱锥的侧棱SA,SB,SC上,又与的体积分别为和V,则事实上,设C,在平面SAB的射影分别为H,,则又所以下面回到原题:设,的体积,于是由上面的事实有:,得:,于是,而由,,得,则,又得,所以,当时,,V为减函数,当时,,V为增函数所以得:,又,得,故答案为,故选:B.由三棱锥被截四面体的体积与原四棱锥的体积的结论,转化到本题中,进而转化成函数求最值问题,求导分析单调性后即可求得最值,本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度较大10.答案:D解析:【分析】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于中档题.由题意可得可以看作点P到直线m:与直线l:距离之和的5倍,,根据点到直线的距离公式解得即可.【解答】解:设,故可以看作点P到直线m:与直线l:距离之和的5倍,取值与x,y无关,这个距离之和与P无关,如图所示:当圆在两直线之间时,P点与直线m,l的距离之和均为m,l的距离,此时与x,y的值无关,当直线m与圆相切时,,化简得,解得或舍去,.故选:D.11.答案:165解析:解:设该女子每天的织布数量为,由题可知数列为公比为2的等比数列,设数列的前n项和为,则,解得,所以,.故答案为:,165.设该女子每天的织布数量为,由题可知数列为公比为2的等比数列,再利用等比数列的通项公式以及前n项和公式即可求解.本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题.12.答案:5 32解析:解:展开式的通项为:,令,解得,所以展开式中的常数项为:.令,得到所有项的系数和为.故答案为:5,32.利用展开式的通项公式可得展开式中的常数项;令,得到所有项的系数和.本题考查了二项式的展开式的通项公式及其性质、方程的解法、转化法,考查了推理能力与计算能力,属于基础题.13.答案:2解析:解:由题可设直线l方程为:,即,则原点到直线的距离,解得,两式同时平方可得,又,代换可得,展开得:,同时除以得:,整理得,解得或4,又,所以,所以;,所以渐近线方程为:.故答案为:2;.利用已知条件结合点到直线的距离,求出a,b,c关系,然后求解离心率,然后求解渐近线方程.本题考查双曲线的简单性质的应用,是基本知识的考查,考查计算能力.14.答案:解析:解:,,,.易知时,;又时,递增,故,要使函数存在最小值,只需,解得:.故答案为:,.根据题意列出关于a的方程即可;在每一段上求出其函数值域,然后小中取小,能取到即可.本题考查分段函数的值域的求法.分段函数问题本着先分段研究,再综合的原则解决问题,属于基础题.15.答案:解析:解:,,,,不妨设,,,,,,表示线段上的点到圆的距离,在直角坐标系中画出线段线段和圆,如下:由图象知当.故答案为:.不妨设,,,则,表示线段上的点到圆的距离,然后求出最大距离即可.本题考查了平面向量的坐标运算和向量模的几何意义,考查了转化思想与数形结合思想,属中档题.16.答案:36解析:解:把“参观工厂”与“环保宣讲”这两个项目当做一个整体,共有种方法,其中,把“民俗调查”安排在周一,有种方法,满足条件的不同安排方法的种数为,故答案为:36.利用“捆绑法”、“间接法”及排列组合的计算公式即可得出结果.本题主要考查排列组合、两个基本原理的应用,熟练掌握排列组合的意义及其计算公式是解题的关键.对于相邻问题经常使用“捆绑法”对于排除不符合条件的选法可用排除法,属于中档题.17.答案:或解析:解:当时,由,得到,即:,当时,由,得到:,令函数,转换为:与函数的图象在区间上有且只有一个交点.在同一坐标系内画出,与函数的图象,结合函数的图象,即,由于函数的图象只有一个交点,如图所示:故:,解得:.故函数有一个交点,则:m的取值范围是:或故答案为:或利用分类讨论思想对函数的关系式进行应用,进一步利用函数的图象的应用求出参数的取值范围.本题考查的知识要点:函数的图象的应用,函数的图象的交点的应用,主要考察学生的运算能力和转换能力,属于基础题型.18.答案:解:函数,令,求得,故函数的增区间为;若,则,故当时,函数取得最小值为;当时,函数取得最大值为,所以函数的值域为.解析:直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出结果.利用函数的定义域的应用求出函数的值域.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.答案:证明:由底面ABCD可得,又底面ABCD是菱形,所以,因为,所以平面,因为平面,所以平面平面D.解:因为底面ABCD,以O为原点,,,为x,y,z轴建立如图所示空间直角坐标系,则0,,,,0,,,,设平面的一个法向量为,由,即,取得,又,所以,所以OB与平面所成角的正弦值为.解析:证明,,推出平面,然后证明平面平面D.以O为原点,,,为x,y,z轴建立如图所示空间直角坐标系,求出平面的一个法向量,结合,利用空间向量的数量积求解OB与平面所成角的正弦值即可.本题考查直线与平面垂直,平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力,是中档题.20.答案:解:设数列的公比为q,由.得.所以.由条件可知,故.由,得,所以.故数列的通项式为..故,数列的前n项和:.所以数列的前n项和为:.解析:本题考查数列求和以及通项公式的求法,考查转化思想以及计算能力,为中档题.利用已知条件求出数列的公比与首项,然后求数列的通项公式.利用对数运算法则化简,然后化简数列的通项公式,利用裂项相消法求和即可.21.答案:解:由题意可知,则,,抛物线的标准方程为:;设直线AB的方程为:,联立方程,消去x得:,,,即,即,,设AB的中垂线方程方程为:,即,可得点C的坐标为,直线AB的方程为:,即,点C到直线AB的距离,,令,则,,令,,令得,,在上,,函数单调递增;在上,,函数单调递减,当,即时,.解析:利用抛物线的定义可得,求出p的值,从而得到抛物线的方程;设直线AB的方程为:,与抛物线方程联立,利用韦达定理和弦长公式可得,利用AB的中垂线方程可得点C的坐标,再利用点到直线距离公式求出点C到直线AB的距离d,所以,令,则,利用导数得到当,即时,.本题主要考查了抛物线的定义,以及直线与抛物线的位置关系,是中档题.22.答案:解:Ⅰ由,得,设,;则;由,解得,所以在上单调递减,在上单调递增,所以函数在上单调递增,,所以;所以,实数a的取值范围是:Ⅱ因为函数有两个不同的零点,不单调,所以.因此有两个根,设为,,且,所以在上单调递增,在上单调递减,在上单调递增;又,,当x充分大时,取值为正,因此要使得有两个不同的零点,则必须有,即;又因为;所以:,解得,所以;因此当函数有两个不同的零点时,实数a的取值范围是.先证明不等式,若,,,则.证明:不妨设,即证,设,,只需证且;因为,,所以在上单调递减,在上单调递增,所以,,从而不等式得证.再证原命题.由得;所以,两边取对数得:;即.因为,所以,因此,要证.只需证;因为在上单调递增,,所以只需证,只需证,即证,其中;设,,只需证;计算得;.由在上单调递增,得,所以;即在上单调递减,所以:;即在上单调递增,所以成立,即原命题得证.解析:Ⅰ先求其导函数,转化为,即求的最小值即可;Ⅱ结合第一问的结论得不单调,故;设有两个根,设为,,且,可得原函数的单调性,把问题转化为,即可求解结论.转化为先证明不等式,若,,,则再把原结论成立转化为证;构造函数一步步推其成立即可.本题考查了导数的综合应用,同时考查了不等式的证明,是对导数知识的综合考查,属于难题.。
2020年高考数学押题密卷(含解析)
2020年全国高考数学试卷及答案(名师押题预测试卷+解析答案,值得下载)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则(A B = )A .(1,2)B .(1,)+∞C .(1,2]D .(2,)+∞【解析】解:,,则【答案】A . 2.已知向量,(3,1)b =,若//a b ,则(a b = ) A .1 B .1-C .10-D .1±【解析】解:,(3,1)b =, 若//a b ,则,1m ∴=-,【答案】C .3.已知α是第二象限角,若,则sin (α= )A .223-B .13-C .13D .223【解析】解:α是第二象限角,若可得1cos 3α=-,所以.【答案】D .4.等差数列{}n a 的前项和为n S ,若3a 与8a 的等差中项为10,则10(S = ) A .200B .100C .50D .25【解析】解:由等差数列的性质可得:,则.【答案】B .5.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m α⊂,//n α,则//m n ; ②若//m α,//m β,则//αβ; ③若n αβ=,//m n ,则//m α且//m β;④若m α⊥,m β⊥,则//αβ. 其中真命题的个数是( ) A .0B .1C .2D .3【解析】解:①若m α⊂,//n α,则m 与n 平行或异面,故不正确; ②若//m α,//m β,则α与β可能相交或平行,故不正确; ③若n αβ=,//m n ,则//m α且//m β,m 也可能在平面内,故不正确;④若m α⊥,m β⊥,则//αβ,垂直与同一直线的两平面平行,故正确 【答案】B .6.执行如图所示的程序框图,则输出的n 值是( )A.11 B.9 C.7 D.5 【解析】解:模拟程序的运行,可得1n=,0S=不满足条件37S,执行循环体,113S=⨯,3n=不满足条件37S,执行循环体,,5n=不满足条件37S,执行循环体,,7n=此时,满足条件37S,退出循环,输出n的值为7.【答案】C.7.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD-中,AB⊥平面BCD,BC CD⊥,且,M为AD的中点,则异面直线BM与CD夹角的余弦值为()A.23B.34C.33D.24【解析】解:以D为原点,DB为x轴,DC为y轴,过D作平面BDC的垂线为z轴,建立空间直角坐标系,设,则(1A,0,1),(1B,0,0),(0C,0,0),(0D,1,0),111 (,,)222 M,则,(0CD =,1,0),设异面直线BM 与CD 夹角为θ,则.∴异面直线BM 与CD 夹角的余弦值为33. 【答案】C .8.设0a >且1a ≠,则“b a >”是“log 1a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】解:充分性:当01a <<时,“b a >”时“log 1a b <”故充分性不成立. 必要性:当log 1a b >时,若01a <<,则0b a <<,故充分性不成立. 综上,“b a >”是“log 1a b >”的既不充分也不必要条件. 【答案】D .9.某空间几何体的三视图如图所示,其中正视图和俯视图均为边长为1的等腰直角三角形,则此空间几何体的表面积是( )A.322+B.312+C.3122++D.23+【解析】解:由题意可知几何体的直观图如图是正方体的一部分,三棱锥A BCD-,正方体的棱长为1,所以几何体的表面积为:.【答案】C.10.程序框图如图,若输入的2a=,则输出的结果为()A .20192B .1010C .20232D .1012【解析】解:模拟程序的运行,可得2a =,0S =,0i = 执行循环体,2S =,12a =,1i = 满足条件2019i ,执行循环体,122S =+,1a =-,2i = 满足条件2019i ,执行循环体,1212S =+-,2a =,3i = 满足条件2019i ,执行循环体,,12a =,4i = ⋯由于,观察规律可知,满足条件2019i ,执行循环体,,12a =,2020i = 此时,不满足条件2019i ,退出循环,输出.【答案】D .11.将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”,则概率()P A B 等于( ) A .14B .3536C .518D .512【解析】解:将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”, 基本事件总数,AB 包含的基本事件个数,∴概率.【答案】C .12.已知定义在R 上的连续可导函数()f x 无极值,且x R ∀∈,,若在3[,2]2ππ上与函数()f x 的单调性相同,则实数m 的取值范围是( ) A .(-∞,2]- B .[2-,)+∞ C .(-∞,2] D .[2-,1]-【解析】解:定义在R 上的连续可导函数()f x 无极值,方程()0f x '=无解,即()f x 为R 上的单调函数,,则()2018x f x +为定值, 设,则,易知()f x 为R 上的减函数,,,又()g x 与()f x 的单调性相同, ()g x ∴在R 上单调递减,则当3[,2]2x ππ∈,()0g x '恒成立, 即,当3[,2]2x ππ∈,则5[63x ππ+∈,13]6π, 则当26x ππ+=时,取得最大值2,此时取得最小值2-,即2m -,即实数m 的取值范围是(-∞,2]-, 【答案】A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.函数1()x f x e -=在(1,1)处切线方程是 . 【解析】解:函数1()x f x e -=的导数为1()x f x e -'=,∴切线的斜率k f ='(1)1=,切点坐标为(1,1),∴切线方程为1y x -=,即y x =.故答案为:y x =.14.已知P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值是 .【解析】解:抛物线24y x =的焦点坐标(1,0),P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值,就是PF 的距离减去y 轴与准线方程的距离, 可得最小值为:.故答案为:2.15.设n S 是数列{}n a 的前n 项和,点(n ,*)()n a n N ∈在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 1nn + .【解析】解:点(n ,*)()n a n N ∈在直线2y x =上,2n a n ∴=..∴.则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和.故答案为:1nn +. 16.已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为 254π .【解析】解:由圆锥体积为23π,其底面半径为1, 可求得圆锥的高为2, 设球半径为R ,可得方程:,解得54R =, ∴,故答案为:254π. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别是ABC ∆的三个内角A ,B ,C 的对边,若10a =,角B 是最小的内角,且.(Ⅰ)求sin B 的值;(Ⅱ)若ABC ∆的面积为42,求b 的值. 【解析】(本题满分为12分) 解:(Ⅰ)由、及正弦定理可得:,⋯⋯由于sin 0A >,整理可得:,又sin 0B >, 因此得3sin 5B =.⋯⋯ (Ⅱ)由(Ⅰ)知3sin 5B =, 又ABC ∆的面积为42,且10a =, 从而有,解得14c =,⋯⋯又角B 是最小的内角, 所以03Bπ<,且3sin 5B =,得4cos 5B =,⋯⋯ 由余弦定理得,即62b =.⋯⋯18.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、0~2000步,(说明:“0~2000”表示“大于或等于0,小于2000”,以下同理),B 、2000~5000步,C 、5000~8000步,D 、8000~10000步,E 、步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.若某人一天的走路步数大于或等于8000,则被系统认定为“超越者”,否则被系统认定为“参与者”. (Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在2000~8000的人数;(Ⅱ)若在大学生M 该天抽取的步数在8000~12000的微信好友中,按男女比例分层抽取9人进行身体状况调查,然后再从这9位微信好友中随机抽取4人进行采访,求其中至少有一位女性微信好友被采访的概率;(Ⅲ)请根据抽取的样本数据完成下面的22⨯列联表,并据此判断能否有95%的把握认为“认定类别”与“性别”有关?参与者超越者 合计 男 20 女20合计 40附:,,20()P K k0.10 0.050 0.010 0k 2.706 3.841 6.635【解析】解:(Ⅰ)所抽取的40人中,该天行走2000~8000步的人数:男12人, 女14人⋯⋯,400位参与“微信运动”的微信好友中,每天行走2000~8000步的人数 约为:人⋯⋯;(Ⅱ)该天抽取的步数在8000~12000的人数:男8人,女4人, 再按男女比例分层抽取9人,则其中男6人,女3人⋯⋯所求概率(或⋯⋯ (Ⅲ)完成22⨯列联表⋯⋯参与者 超越者 合计男 12 8 20女 16 4 20合计 28 12 40计算,⋯⋯因为1.905 3.841<,所以没有理由认为“认定类别”与“性别”有关, 即“认定类别”与“性别”无关 ⋯⋯19.如图,在正三棱柱中,12AB AA ==,E ,F 分别为AB ,11B C 的中点.(Ⅰ)求证:1//B E 平面ACF ;(Ⅱ)求CE 与平面ACF 所成角的正弦值.【解析】证明:(Ⅰ)取AC 的中点M ,连结EM ,FM ,在ABC ∆中, 因为E 、M 分别为AB ,AC 的中点,所以//EM BC 且12EM BC =, 又F 为11B C 的中点,11//B C BC ,所以1//B F BC 且112B F BC =,即1//EM B F 且1EM B F =,故四边形1EMFB 为平行四边形,所以,又MF ⊂平面ACF ,1B E ⊂/平面ACF ,所以1//B E 平面ACF .⋯⋯解:(Ⅱ)取BC 中点O ,连结AO 、OF ,则AO BC ⊥,OF ⊥平面ABC ,以O 为原点,分别以OB 、AO 、OF 为x 轴、y 轴、z 轴,建立空间直角坐标系 ⋯⋯ 则有, 得 设平面ACF 的一个法向量为(n x =,y ,)z则00n CA n CF ⎧=⎪⎨=⎪⎩,即3020x y x z ⎧-=⎪⎨+=⎪⎩,令3z =-,则(23n =,2,3)-,⋯⋯ 设CE 与平面ACF 所成的角为θ,则,所以直线CE 与平面ACF 所成角的正弦值为21919.⋯⋯。
2020年浙江省高考数学压轴试卷(有答案解析)
2020年浙江省高考数学压轴试卷一、选择题(本大题共11小题,共44.0分)1.已知全集U={1,2,3,4,5,6},集合A={1,3,5},B={1,2},则A∩(∁U B)()A. ∅B. {5}C. {3}D. {3,5}2.已知双曲线(a>0)的离心率为,则a的值为()A. B. C. D.3.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为()A. 4+2B. 2C. 4+4D. 6+44.若复数z满足:1+(1+2z)i=0(i是虚数单位),则复数z的虚部是()A. B. C. D.5.函数y=2x2-e|x|在[-2,2]的图象大致为()A. B.C. D.6.已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.(1-x)4(1+x)5的展开式中x3的系数为()A. 4B. -4C. 6D. -68.4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.根据调查结果知道,从该校学生中任意抽取1名学生恰为读书迷的概率是.现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,则期望E(X)和方差D(X)分别是()A. ,B. ,C. ,D. ,9.已知A,B,C是球O球面上的三点,且,D为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥D-ABC体积的最大值为()A. B. C. D.10.设S n为等差数列{a n}的前n项和,若a7=5,S5=-55,则nS n的最小值为()A. B. C. D.11.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有()A. 120种B. 156种C. 188种D. 240种二、填空题(本大题共6小题,共32.0分)12.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有______人;所合买的物品价格为______元.13.已知x,y满足条件则2x+y的最大值是______,原点到点P(x,y)的距离的最小值是______14.在△ABC中,若b=2,A=120°,三角形的面积,则c=________;三角形外接圆的半径为________.15.已知向量、满足||=1,||=2,则|+|+|-|的最小值是______,最大值是______.16.已知实数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围为______.17.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈[,],则a的最大值为______.三、解答题(本大题共5小题,共60.0分)18.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.19.已知等差数列{a n}的前n项和为S n,若.(1)求首项a1与m的值;(2)若数列{b n}满足,求数列{(a n+6)•b n}的前n项和.20.如图,已知四棱锥P-ABCD,底面ABCD为菱形,AB=2,∠BAD=120°,PA⊥平面ABCD,M,N分别是BC,PC的中点.(1)证明:AM⊥平面PAD;(2)若H为PD上的动点,MH与平面PAD所成最大角的正切值为,求二面角M-AN-C的余弦值.21.已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为5.(1)求该抛物线C的方程;(2)已知抛物线上一点M(t,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断直线DE是否过定点?并说明理由.22.已知函数.若函数是单调递减函数,求实数a的取值范围;若函数在区间上既有极大值又有极小值,求实数a的取值范围.-------- 答案与解析 --------1.答案:D解析:解:∵U={1,2,3,4,5,6},B={1,2},∴∁U B═{3,4,5,6},又集合A={1,3,5},∴A∩∁U B={3,5},故选:D.先由补集的定义求出∁U B,再利用交集的定义求A∩∁U B.本题考查交、并补集的混合运算,解题的关键是熟练掌握交集与补集的定义,计算出所求的集合.2.答案:B解析:解:双曲线,可得c=1,双曲线的离心率为:,∴,解得a=.故选:B.直接利用双曲线求出半焦距,利用离心率求出a即可.本题考查双曲线的离心率的求法,双曲线的简单性质的应用.3.答案:D解析:【分析】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力,属于基础题.根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积.【解答】解:根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是、斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积=2×+2×2+2×=6+4.故选:D.4.答案:B解析:解:由1+(1+2z)i=0,得z=,∴复数z的虚部是,故选:B.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.解析:【分析】本题考查的知识点是函数的图象,属于基础题.根据已知函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵,∴,故函数为偶函数,当时,,故排除A,B;当时,,则有解为x0,当时,时,故函数在[0,2]不是单调的,故排除C,故选D.6.答案:A解析:解:a⊥α,且b⊥α⇒a∥b,反之不成立.可能a,b分别于α,β斜交.∴“a⊥α,且b⊥α”是“a∥b”的充分不必要条件.故选:A.a⊥α,且b⊥α⇒a∥b,反之不成立.可能a,b分别于α,β斜交.本题考查了空间线面位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.答案:B解析:解:(1-x)4(1+x)5=(1-4x+6x2-4x3+x3)(1+5x+10x2+10x3+5x4+x5),故展开式中x3的系数为10-40+30-4=-4,故选:B.把(1-x)4和(1+x)5按照二项式定理展开,可得展开式中x3的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8.答案:B解析:解:由题意,从该校学生中任意抽取1名学生恰为读书迷的概率.从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,所以.X0123p均值,方差.从该校学生中任意抽取1名学生恰为读书迷的概率.说明每次抽取的结果是相互独立的,推出.得到分布列,然后求解期望即可.本题考查独立重复实验的概率的分布列以及期望的求法,考查转化思想以及计算能力.9.答案:D解析:解:如图,在△ABC中,∵AB=AC=3,BC=3,∴由余弦定理可得cos A==-,则A=120°,∴sin A=.设△ABC外接圆的半径为r,则,得r=3.设球的半径为R,则,解得R=2.∵×3×3×=,∴三棱锥D-ABC体积的最大值为=,故选:D.由题意画出图形,求出三角形ABC外接圆的半径,设出球的半径,利用直角三角形中的勾股定理求得球的半径,则三棱锥D-ABC体积的最大值可求.本题主要考查空间几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等,是中档题.10.答案:A解析:解:由题意可得,解可得a1=-19,d=4,∴S n=-19n=2n2-21n,∴nS n=2n3-21n2,设f(x)=2x3-21x2,f′(x)=6x(x-7),当0<x<7时,f′(x)<0;函数是减函数;当x>7时,f′(x)>0,函数是增函数;所以n=7时,nS n取得最小值:-343.故选:A.分别利用等差数列的通项公式及求和公式表示已知条件,然后求出得a1,d,在代入求和公式即可求解.本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题.11.答案:A解析:【分析】本题考查排列、组合的应用,注意题目限制条件比较多,需要优先分析受到限制的元素,是简单题.根据题意,由于节目甲必须排在前三位,对甲的位置分三种情况讨论,依次分析乙丙的位置以及其他三个节目的安排方法,由分步计数原理可得每种情况的编排方案数目,由加法原理计算可得答案.【解答】解:根据题意,由于节目甲必须排在前三位,分3种情况讨论:①甲排在第一位,节目丙、丁必须排在一起,则丙丁相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有4×2×6=48种编排方法;②甲排在第二位,节目丙、丁必须排在一起,则丙丁相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有3×2×6=36种编排方法;③甲排在第三位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有3×2×6=36种编排方法;则符合题意要求的编排方法有36+36+48=120种;故选:A.12.答案:7 ;53解析:解:设人数为x,物品价格为y,则,解得x=7,y=53.故答案为:7,53.列方程组求解.本题考查了方程的应用,属于基础题.13.答案:6解析:解:作出x,y满足条件的可行域如图:目标函数z=2x+y在的交点A(2,2)处取最大值为z=2×2+1×2=6.原点到点P(x,y)的距离的最小值是:|OB|=.故答案为:6;;画出约束条件表示的可行域,判断目标函数z=2x+y的位置,求出最大值.利用可行域转化求解距离即可.本题考查简单的线性规划的应用,正确画出可行域,判断目标函数经过的位置是解题的关键.14.答案:2;2解析:【分析】本题主要考查正弦定理的应用,三角形的面积公式,属于基础题.由条件求得c =2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【解答】解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sin A=c•,∴c=2=b,故B=(180°-A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2.故答案为2;2.15.答案:4解析:解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|-|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=-x+z,则直线y=-x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=-x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max=×=.综上所述,|+|+|-|的最小值是4,最大值是.故答案为:4、.通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|-|=,进而换元,转化为线性规划问题,计算即得结论.本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.答案:(-∞,-2]解析:解:原问题等价于f2(x)+f(x)=-t有三个不同的实根,即y=-t与y=f2(x)+f (x)有三个不同的交点,当x≥0时,y=f2(x)+f(x)=e2x+e x为增函数,在x=0处取得最小值为2,与y=-t只有一个交点.当x<0时,y=f2(x)+f(x)=lg2(-x)+lg(-x),根据复合函数的单调性,其在(-∞,0)上先减后增.所以,要有三个不同交点,则需-t≥2,解得t≤-2.原问题等价于f2(x)+f(x)=-t有三个不同的实根,即y=-t与y=f2(x)+f(x)有三个不同的交点,然后分x≥0和x<0两种情况代入解析式可得.本题考查了函数与方程的综合运用,属难题.17.答案:解析:解:设A(x1,y1)、B(x2,y2),由,消去y,可得(a2+b2)x2-2a2x+a2(1-b2)=0,∴则x1+x2=,x1x2=,由△=(-2a2)2-4a2(a2+b2)(1-b2)>0,整理得a2+b2>1.∴y1y2=(-x1+1)(-x2+1)=x1x2-(x1+x2)+1.∵OA⊥OB(其中O为坐标原点),可得•=0∴x1x2+y1y2=0,即x1x2+(-x1+1)(-x2+1)=0,化简得2x1x2-(x1+x2)+1=0.∴2•-+1=0.整理得a2+b2-2a2b2=0.∵b2=a2-c2=a2-a2e2,∴代入上式,化简得2a2=1+,∴a2=(1+).∵e∈[,],平方得≤e2≤,∴≤1-e2≤,可得≤≤4,因此≤2a2=1+≤5,≤a2≤,可得a2的最大值为,满足条件a2+b2>1,∴当椭圆的离心率e=时,a的最大值为.故答案为:.将直线方程代入椭圆方程,由韦达定理,向量数量积的坐标运算,求得2a2=1+,由离心率的取值范围,即可求得a的最大值.本题考查椭圆的标准方程,直线与椭圆的位置关系,韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.18.答案:解:(Ⅰ)函数f(x)=sin(ωx-)+sin(ωx-)=sinωx cos-cosωx sin-sin(-ωx)=sinωx-cosωx=sin(ωx-),又f()=sin(ω-)=0,∴ω-=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x-),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin (x-)的图象;再将得到的图象向左平移个单位,得到y=sin(x+-)的图象,∴函数y=g(x)=sin(x-);当x∈[-,]时,x-∈[-,],∴sin(x-)∈[-,1],∴当x=-时,g(x)取得最小值是-×=-.解析:本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[-,]时g(x)的最小值.19.答案:解:(1)由已知得a m=S m-S m-1=4,且a m+1+a m+2=S m+2-S m=14,设数列{a n}的公差为d,则有2a m+3d=14,∴d=2由S m=0,得,即a1=1-m,∴a m=a1+(m-1)×2=m-1=4∴m=5,a1=-4(2)由(1)知a1=-4,d=2,∴a n=2n-6∴n-3=log2b n,得.∴.设数列{(a n+6)b n}的前n项和为T n∴①②①-②得==∴解析:(1)利用a m=S m-S m-1,转化求出数列的公差,然后利用已知条件求解m.(2)化简数列的通项公式,利用错位相减法求和求解即可.本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.20.答案:(1)证明:由四边形ABCD为菱形,∠BAD=120°,可得∠ABC=60°,△ABC 为正三角形.因为M为BC的中点,所以AM⊥BC.…(2分)又BC∥AD,因此AM⊥AD.因为PA⊥平面ABCD,AM⊂平面ABCD,所以PA⊥AM.而PA∩AD=A,所以AM⊥平面PAD.…(4分)(2)解:AB=2,H为PD上任意一点,连接AH,MH.由(1)知:AM⊥平面PAD,则∠MHA为MH与平面PAD所成的角.在Rt△MAH中,AM=,∴当AH最短时,∠MHA最大,即当AH⊥PD时,∠MHA最大.此时,tan∠MHA==又AD=2,∴∠ADH=45°,∴PA=2.由(1)知AM,AD,AP两两垂直,以A为坐标原点如图建立空间直角坐标系,则A(0,0,0),P(0,0,2),D(0,2,0),,,,则,,,设AC的中点为E,则,故就是面PAC的法向量,.设平面MAN的法向量为n=(x,y,1),二面角M-AN-C的平面角为θ..,∴二面角M-AN-C的余弦值为.…(12分)解析:(1)利用菱形与等边三角形的性质可得:AM⊥BC,于是AM⊥AD.利用线面垂直的性质可得PA⊥AM.再利用线面垂直的判定与性质定理即可得出;(2)连接AH,MH.由(1)知:AM⊥平面PAD,可得:∠MHA为EH与平面PAD所成的角.在Rt△EAH中,AM=,可知:当AH最短时,∠MHA最大,即当AH⊥PD时,∠MHA最大.利用直角三角形边角关系可得PA=2.由(1)知AM,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系.求出法向量,利用向量夹角求解即可.本题考查了直线与平面垂直的判定.在题中出现了探究性问题,在解题过程中“空间问题平面化的思路”,是立体几何常用的数学思想,属于中档题.21.答案:解:(1)由题意设抛物线方程为y2=2px,其准线方程为,∵P(4,m)到焦点的距离等于A到其准线的距离,∴,∴p=2.∴抛物线C的方程为y2=4x.(2)由(1)可得点M(4,4),可得直线DE的斜率不为0,设直线DE的方程为:x=my+t,联立,得y2-4my-4t=0,则△=16m2+16t>0①.设D(x1,y1),E(x2,y2),则y1+y2=4m,y1y2=-4t.∵•=(x1-4,y1-4)•(x2-4,y2-4),=x1x2-4(x1+x2)+16+y1y2-4(y1+y2)+16,=,=,=t2-16m2-12t+32-16m=0即t2-12t+32=16m2+16m,得:(t-6)2=4(2m+1)2,∴t-6=±2(2m+1),即t=4m+8或t=-4m+4,代入①式检验均满足△>0,∴直线DE的方程为:x=my+4m+8=m(y+4)+8或x=m(y-4)+4.∴直线过定点(8,-4)(定点(4,4)不满足题意,故舍去).解析:(1)求出抛物线的焦点坐标,结合题意列关于p的等式求p,则抛物线方程可求;(2)由(1)求出M的坐标,设出直线DE的方程x=my+t,联立直线方程和抛物线方程,化为关于y的一元二次方程后D,E两点纵坐标的和与积,利用⊥得到t与m的关系,进一步得到DE方程,由直线系方程可得直线DE所过定点.本题考查抛物线的简单性质,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,属中档题.22.答案:解:(1),∵函数f(x)是单调递减函数,∴f'(x)≤0对(0,+∞)恒成立,∴-2x2+ax-1≤0对(0,+∞)恒成立,即对(0,+∞)恒成立,∵(当且仅当2x=,即x=时取等号),∴;(2)∵函数f(x)在(0,3)上既有极大值又有极小值.∴在(0,3)上有两个相异实根,即2x2-ax+1=0在(0,3)上有两个相异实根,,则,得,即.解析:本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查转化思想以及计算能力.(1)求出导函数,通过f'(x)≤0对(0,+∞)恒成立,分离变量推出a,利用基本不等式求解函数的最小值,得到a的范围.(2)通过函数f(x)在(0,3)上既有极大值又有极小值,则说明导函数有由两个零点,列出不等式组求解即可.。
临考押题卷01-2020年高考数学临考押题卷(浙江专版)(原卷和解析)
=
2
sin
π 2
+
π 6
=
3.
8.在《九章算术》中,将有三条棱互相平行且有一个面为梯形的五面体称为“羡除”.现有一个羡除如图所
示, DA ⊥ 平面 ABFE ,四边形 ABFE , CDEF 均为等腰梯形,四边形 ABCD 为正方形, AB//EF , AB = 2 , EF = 6 ,点 F 到平面 ABCD 的距离为 2,则这个羡除的表面积为( )
A.
1 2
,1
B.{1}
C.{−1, 0}
D.
−∞,
1 2
2.已知复数
z
=
5+i 1−i
(i
为虚数单位),则在复平面内
z
所对应的点在(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.已知抛物线 ax2
=
y
的焦点到准线的距离为
1 2
,则实数
a
等于(
)
A. ±1
B. ±2
C.
±
1 4
D.
±
1 2
A 是曲线 C1 与 C2 的交点,且 ∠AF2F1 为钝角,若
AF1
=
7 2
,
AF2
=
5 2
,则
F1F2
=(
)
A. 3
B. 6
C.2
D.4
10.已知 k
∈R
,函数
f
(x)
=
x 2
( x
− 2kx + 2k, x ≤ 1
− k −1) ex + e3, x
> 1 ,若关于
2020届浙江省高三下学期6月新高考进阶数学试题(解析版)
2020届浙江省高三下学期6月新高考进阶数学试题一、单选题1.已知(){}2ln 2A x Ny x x =∈=--∣,{B y Ny =∈=∣,则()NA B =( ) A .{}1,2 B .{}0,1C .{}1,2,3D .∅【答案】A【解析】首先确定集合,A B 中的元素,然后再由集合的运算法则计算. 【详解】由220x x -->得1x <-或2x >,∴{|2}A x N x =∈>,{0,1,2}NA =,10x -≥,11x -≤≤,011x ≤-≤,∴1e ≤≤,即1y e ≤≤,又y N ∈,∴1y =或2,即{1,2}B =,∴(){1,2}NA B =.故选:A . 【点睛】本题考查集合的综合运算,解题关键是确定集合中的元素.一定要注意代表元的形式,对于与函数有关的数集,要注意是函数的定义域还是函数的值域.2.多项式396x x ⎛⎫+- ⎪⎝⎭的常数项是( ) A .216 B .216-C .540D .540-【答案】D【解析】由于296x x =+-,故只需求解6的常数项即可. 【详解】解:因为332669x x ⎡⎤==⎢⎥⎛⎫+- ⎪⎝⎭⎢⎥⎣⎦所以()631663rrr rr r r T C C x --+⎛==- ⎝,令30r -=,得3r =, 所以常数项为:()3363540C -=-.故选:D.【点睛】本题考查二项式定理,解题关键是二项式定理的展开式的通项公式.解题时多项式应化为二项式,这样求解较方便.3.正项等比数列{}n a ,m n p q +=+,“m n p q a a a a +≥+”是“mn pq <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】先判断是否是充分条件,可令m n p q ===,显示条件成立,但结论不成立,故不充分;再证是否是必要条件,不妨假设m 最大,则n 最小,且0m p q n -=->,设{}n a 公比为,0x x >再得到()mnpqx x x x +-+(1)()m pp n xx x -=--,对x 分01x <<,1x =,1x >讨论,可证得m n p q x x x x +>+,从而得到m n p q a a a a +≥+,得到答案. 【详解】解:设正项等比数列{}n a 的公比为(0)x x >,因为m n p q +=+,当m n p q a a a a +≥+时,令m n p q ===,不等式成立,但是mn pq <不成立; 故“m n p q a a a a +≥+”是“mn pq <”的不充分条件;当mn pq <时,显然,,,m n p q 互不相等,设{}n a 公比为,0x x >m n p q a a a a +≥+等价于1111m n p q x x x x ----+≥+,即m n p q x x x x +≥+,因为m n p q +=+,mn pq <,所以()m p q m pq +-<,即()()0m p m q -->, 不妨假设m 最大,所以n 最小,所以0m p q n -=->,()m n p q x x x x +-+(1)(1)p m p n q n x x x x --=---(1)()m p p n x x x -=--当1x >时,1m p x ->,p n x x >,∴m n p q x x x x +>+; 当1x =时,m n p q x x x x +=+;当01x <<时,1m p x -<,p n x x <,∴m n p q x x x x +>+; 综上知,当mn pq <时,有m n p q a a a a +≥+, 故“m n p q a a a a +≥+”是“mn pq <”的必要条件.即“m n p q a a a a +≥+”是“mn pq <”的必要不充分条件. 故选:B . 【点睛】本题考查了充分必要条件的判断,等比数列的通项公式及性质,作差法比较厌,还考查了学生的分析推理能力,转化与化归思想,难度较大.4.一个几何体的三视图如图所示,则该几何体两两垂直的平面共有( )A .4对B .5对C .6对D .7对【答案】D【解析】先根据三视图还原几何体的直观图,结合线面、面面垂直的判定定理即可. 【详解】由三视图可知,该几何体为如图所示的四棱锥P ABCD -, 其中ABCD 为边长为1的正方形,PA ⊥平面ABCD , 所以平面PAB ⊥平面ABCD ,平面PAD ⊥平面ABCD , 平面PAC ⊥平面ABCD ,又,,AD AB PA AD AB PA A ⊥⊥⋂=, 所以AD ⊥平面PAB ,平面PAD ⊥平面PAB ,又AC BD ⊥,,PA BD PA AC A ⊥⋂=,所以BD ⊥平面PAC ,平面PBD ⊥平面PAC ,同理可证:CD ⊥平面PAD ,CB ⊥PAB ,故平面PBC ⊥平面PAB , 平面PCD ⊥平面PAD ,故该几何体两两垂直的平面共有7对.故选:D 【点睛】本题主要考查线面、面面垂直的判定定理,属于基础题. 5.若4AB =,3AC CB =,平面内一点P ,满足||||PA PC PB PCPA PB ⋅⋅=,sin PAB ∠的最大值是( ) A .23B .12C .13D .16【答案】C【解析】由条件可得3,1AC BC ==,PC 是角平分线,然后由角平分线的性质可得3PA ACPB BC==,设PB x =,则3PA x =,然后221692222cos 22343393x x x PAB x x +-∠==+≥=⨯⨯,即可得出sin PAB ∠的最大值. 【详解】由4AB =,3AC CB =可得3,1AC BC == 因为||||PA PC PB PC PA PB ⋅⋅=,所以APC BPC ∠=∠,即PC 是角平分线所以由角平分线的性质可得3PA ACPB BC== 设PB x =,则3PA x =,由,PA PB AB PA PB AB +>-<可得12x <<因为221692222cos 22343393x x x PAB x x +-∠==+≥=⨯⨯当且仅当233x x =,即x =cos PAB ∠的最小值为3所以sin PAB ∠的最大值是13故选:C 【点睛】本题考查了平面向量的数量积、余弦定理和利用基本不等式求最值,考查了学生的分析转化能力,属于中档题.6.已知函数22()(sin )(cos )()k k f x x x k Z +=-∈,()2121()(sin )(cos )k k g x x x k Z --+-=∈,()f x 与()g x 的最小正周期分别是( )A .2,21k k ππ-B .,2kππ C .2,21k ππ- D .,2ππ【答案】D【解析】用特殊值2k =分析,求出()f x 的周期,可知AB 错误,又33()sin cos g x x x =-,再验证并得到C 错,从而得到答案.【详解】令2k =,则44()sin cos cos2f x x x x =-=-,最小正周期为π,故AB 错误,33()sin cos g x x x =-,若其周期为23π,由(0)1g =-,21()38g π+=, 则2()(0)3g g π≠,故C 错误,D 正确. 故选:D 【点睛】本题考查了三角函数的周期,考查了特殊值法的应用,属于中档题.7.新冠疫情期间,网上购物成为主流.因保管不善,五个快递ABCDE 上送货地址模糊不清,但快递小哥记得这五个快递应分别送去甲乙丙丁戊五个地方,全部送错的概率是( ) A .310B .13C .1130D .25【答案】C【解析】5个快递送到5个地方有55120A =种方法,全送错的方法:第一步A 送错有4种可能,然后第二步是关键,考虑A 送错的地方对应的快递,如A 送到丙地,第二步考虑快递C ,而C 送错位置分两类,一类是送到甲,一类是送其他三个地方,再对剩下的3个快递分别考虑即可完成. 【详解】5个快递送到5个地方有55120A =种方法,全送错的方法数:先分步:第一步快递A 送错有4种方法,第二步考虑A 所送位置对应的快递,假设A 送到丙地,第二步考虑快递C ,对C 分类,第一类C 送到甲地,则剩下,,B D E 要均送错有2种可能(丁戊乙,戊乙丁),第二类C 送到乙丁戊中的一个地方,有3种可能,如送到丁地,剩下的,,B D E 只有甲乙戊三地可送,全送错有3种可能(甲戊乙,戊甲乙,戊乙甲),∴总的方法数为4(1233)44⨯⨯+⨯=,所求概率为441112030P ==. 故选:C . 【点睛】本题考查古典概型,快递送错位置与信装错信封(信封上已写地址)是同一回事,属于典型的计数问题,注意其求解方法,分类还是分步要确定好. 8.函数()0xy xx =>的最小值是( )A .1eB .11ee ⎛⎫ ⎪⎝⎭C .1D .0+(无最小值,无限趋向于0)【答案】B 【解析】将()0xy xx =>变形得ln ln y x x =,可得ln x x y e =,求得该函数的导数,利用导数研究函数ln x xy e =的单调性与极值,进而可得出该函数的最小值.【详解】当0x >时,在等式x y x =两边取自然对数得ln ln y x x =,ln x xy e ∴=,()ln ln 1x x y e x '∴=+,令0y '=,得1=x e.当10x e<<时,0y '<,此时函数ln x xy e =单调递减;当1x e>时,0y '>,此时函数ln x x y e =单调递增. 因此,函数ln x xy e =在1=x e 处取得最小值,即1min 1e y e ⎛⎫= ⎪⎝⎭.故选:B.【点睛】本题考查利用导数求函数的最值,将函数解析式变形为ln x x y e =是解题的关键,考查计算能力,属于中等题.9.双曲线上22221(0)x y b a a b-=>>有两点A 、B ,O 为坐标原点,F 为双曲线焦点,满足OA OB ⊥,当A 、B 在双曲线上运动时,使得恒222111||||||OA OB OF +≤成立,则离心率取值范围是( )A .12⎦B .32⎦C .⎭ D .⎛ ⎝ 【答案】A【解析】先根据OA OB ⊥得到12120x x y y +=,再联立直线方程和双曲线方程利用韦达定理化简得到2222221m a b k b a =+-,从而得到22222211||||b a a b OA OB -+=为定值,即可求解离心率. 【详解】设()()1122,,,A x y B x y ,直线AB :y kx m =+ 因为OA OB ⊥,即12120OA OB x x y y ⋅=+=联立22221y kx mx y a b=+⎧⎪⎨-=⎪⎩,整理得()22222222220b a k x kma x a m a b ----=2122222kma x x b a k +=-,()22212222a m b x x b a k-+=- ()()()2212121112y y kx m kx m k x x km x x m =++=+++代入得2222212222m b a b k y y b a k-=- 所以()2222222212122222220a m b m b a b k x x y y b a k b a k-+-+=+=-- 整理得2222221m a b k b a=+-即由()0,0O 到直线AB :y kx m =+的距离d =所以距离为一个定值又()()222222211||||||||||||||||||OA OB AB OA OB OA OB OA OB +==⋅⋅+ 又11||||||22ABCSOA OB AB d =⋅=⋅ 即()222||||||OA OB AB d ⋅=所以()2222222222211||11||||||||AB k b a d ma bOA OB OA OB +-+====⋅ 又222111||||||OA OB OF +≤所以222221112b a e a bc -+≤⇒<≤又b a e >⇒<12e +<≤ 故选:A 【点睛】此题考查双曲线的离心率,难点是联立方程后的化简过程,对计算的要求较高,属于较难题目. 10.函数43221()x ax bx ax f x x--++=,a ∀,b R ∈,[1,2]x ∈上()f x 最大值(),M a b 的最小值为( )A .916B .932C .716D .732【答案】B 【解析】令1t x x=-,把函数式变形化简为2()()2f x g t t at b ==+--,注意30,2t ⎡⎤∈⎢⎥⎣⎦,然后由(,)M a b 定义有(,)(0)M a b g ≥①,3(,)2M a b g ⎛⎫≥ ⎪⎝⎭②,3(,)4M a b g ⎛⎫≥ ⎪⎝⎭③,由①+②+2×③结合绝对值不等式的性质,计算后可得最小值.【详解】221()a f x x ax b x x =--++,令1t x x=-,则2()()2f x g t t at b ==+--, [1,2]x ∈,则130,2t x x ⎡⎤=-∈⎢⎥⎣⎦, 由题意(,)(0)2M a b g b ≥=-,3173(,)242M a b g a b ⎛⎫≥=-- ⎪⎝⎭,3413(,)4164M a b g a b ⎛⎫≥=-- ⎪⎝⎭3412(,)228M a b a b ⇒≥+-,∴173341(,)(,)2(,)224228M a b M a b M a b b a b a b ++≥-+--++- 17334192242288b a b a b ≥-+--++-=, ∴9(,)32M a b ≥.当且仅当553,322b a ==等号同时成立. ∴(,)M a b 的最小值为932.故选:B . 【点睛】本题考查求绝对值函数的最值,考查绝对值不等式的性质和应用,考查运算求解能力,属于中档题.二、填空题11.在复变函数中,自变量z 可以写成(cos sin )i z r i r e θθθ=⨯+=⨯,其中||r z =,θ是z 的辐角.点(),x y 绕原点逆时针旋转θ后的位置可利用复数推导,点()2,3A 绕原点逆时针旋转3arcsin5得A '_______;复变函数ln (,0)z z C z ω=∈≠,i ωπ=,z =_______.【答案】118(,)55- 1-【解析】点A 对应的复数sin )z i αα=+,其中cos 1313αα==A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,利用两角和差公式求得A '的坐标;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+,化简可得z . 【详解】点A 对应的复数sin )z i αα=+,其中cos ,sin 1313αα==则A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,则cos()cos cos sin sin 65αβαβαβ+=-=-,sin()sin cos cos sin 65αβαβαβ+=+=,则118)55z i '=+=-+,故A '的坐标为118(,)55-;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+, 得1z =-. 故答案为:118(,)55-;1- 【点睛】本题考查了复数的运算,结合考查了两角和的正弦、余弦公式,还考查了学生阅读理解能力,分析能力,运算能力,属于中档题.12.在ABC 中,35AB AC BA BC CA CB ⋅+⋅=⋅,cos C 的最小值为_______.【解析】可先用向量的数量积公式将原式变形为:cos 3cos 5cos bc A ac B ab C +=,然后再结合余弦定理整理为222379a b c +=,再由cos C 的余弦定理得到,a b 的关系式,最后利用基本不等式求解即可. 【详解】已知23AB AC BA BC CA CB ⋅+⋅=⋅,可得cos 3cos 5cos bc A ac B ab C +=,将角A,B,C 的余弦定理代入得222379a b c +=,由222222239c 9s 22o a ba b C c ab ab ++-==≥,当b =时取到等号,故cos C.【点睛】本是考查了向量的数量积、余弦定理、基本不等式的综合运用,能正确转化23AB AC BA BC CA CB ⋅+⋅=⋅是解题关键.属于中档题.13.“520”告白季,心形方程成为数学爱好者表白的不二之选.已知椭圆经旋转和对称变换后可得心形方程.若心形方程22||1x x y y -+=,则x y +的取值范围是_______.【答案】,23⎡⎤-⎢⎥⎣⎦【解析】当0x ≥时,有221x xy y -+=,配方得22()133()2x y x y xy ++-=≤⋅,解得x y +的范围,当0x <时,有221x xy y ++=,配方得22()1()2x y x y xy ++-=≤,再解得x y +的范围,综合可得x y +的取值范围. 【详解】(1)当0x ≥时,有221x xy y -+=,配方得22()133()2x y x y xy ++-=≤⋅, 则2()4x y +≤,得22x y -≤+≤,当且仅当0x y =≥时取得最值,则1x y ==时,x y +有最大值为2;又由0x ≥时,有2210x yx y -+-=,则22()4(1)0y y ∆=---≥,得243y ≤,y ≤≤,即2x y ≤+≤;(2)当0x <时,有221x xy y ++=,配方得22()1()2x y x y xy ++-=≤, 则24()3x y +≤,得x y ≤+≤0x y =<时取得最值,则x y ==x y +有最小值为3-;综合(1)(2)可得x y +∈3⎡⎤-⎢⎥⎣⎦.故答案为:⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了有条件等式求值域,可利用等式,结合基本不等式构建不等式,再解构建的不等式求得值域,注意取“=”条件,还考查了分析推理能力,运算能力,难度较大. 14.三棱锥O ABC -中,OA 、OB 、OC 两两垂直且相等,点P 为线段OA 上动点,点Q 为平面OBC 上动点,且满足13OP OA ≤,OP BQ =,PQ 和OB 所成角θ,cos θ的最小值为_______.【答案】3【解析】如图所示,根据已知可设()10,0,03P t t ⎛⎫≤≤⎪⎝⎭,()0,0,1A ,()1,0,0B ,()0,1,0C ,(),,0Q a b ,由OP BQ =可得:()2221a b t -+=,(),,PQ a b t →=-,()1,0,0OB →=,cos cos ,OB PQ θ→→==.研究,a t 范围,化简计算即可得出结果. 【详解】如图所示,根据已知可设()(0,0,1),(1,0,010,0,03),(0,1,0),(,,0)A B C Q P t t a b ⎛⎫≤≤⎪⎝⎭OP BQ =()2221a b t ∴-+=,(),,PQ a b t →=-,()1,0,0OB →=,cos cos ,OB PQ θ→→===,1t a t -≤-≤,11t a t -≤≤+,13t ≤,cos θ∴=≥==令187m a =-,则()21717766s 3co m m m m θ+⎛⎫==+≥⎪⎝⎭, 此时13t =,79a =符合条件.故答案为:73.【点睛】本题考查考查线线角求法、空间向量应用,考查空间想象能力和计算能力,属于难题.三、双空题15.如表是随机变量102a ξ⎛⎫<<⎪⎝⎭的分布列,()E ξ=_______,()2D ξ∈_______. ξ0 12Pa12a -a【答案】1 ()0,4【解析】利用期望的公式求出()E ξ,再根据()2D ξ422()[]E E ξξ=-,化简求取值范围. 【详解】由题()E ξ01221a a a =⋅+-+=,又4444()01(12)2114E a a a a ξ=⋅+⋅-+⋅=+,2()E ξ=22201(12)212a a a a ⋅+⋅-+⋅=+,则()2D ξ422()[]E E ξξ=-22114(12)410a a a a =+-+=-+,1(0,)2a ∈,令2()410,f a a a =-+1(0,)2a ∈,则()f a 在1(0,)2a ∈递增,得()(0,4)f a ∈,故()2D ξ∈()0,4.故答案为:1;()0,4. 【点睛】本题考查了期望与方差的计算,熟记并灵活运用公式是解题的关键,属于中档题.16.已知2x y +=,2x >-,3y >-,则2223x y x y +++的最小值为_______,此时x y -_______.【答案】4725-【解析】令2,3m x n y =+=+,则0,0,7m n m n >>+=,再化简2223x y x y +++493m n =+-,利用49m n +149()()7m n m n=++化简,均值不等式求最值,得到答案. 【详解】令2,3m x n y =+=+,则0,0,7m n m n >>+=,再化简2223x y x y +++493m n=+-, 又49m n +149()()7m n m n =++13149131225()77777n m m n =++≥+=, 当且仅当49n m m n=时取得最小值,又7m n +=,得1421,55m n ==, 即当46,55x y ==时,2223x y x y +++有最小值254377-=,此时x y -=25-. 故答案为:47;25-.【点睛】本题考查了基本不等式求最值,结合考查了换元法的应用,属于中档题.17.直线1: 2l y x =-与直线2:(0)l y kx k k =+>相交于点P .直线1l 与x 轴交于点1P ,过点1P 作x 轴的垂线交直线2l 于点1Q ,过点1Q 作y 轴的垂线交直线1l 于点2P ,过点2P 作x 轴的垂线交直线2l 于点2Q ,,这样一直作下去,可得到一系列点1P 、1Q 、2P 、2Q ,,点(1,2,3)n P n =的横坐标构成数列{}n x .那么,k =_______时,{}n x 为周期数列;k =_______时,{}n x 为等比数列.【答案】1 2【解析】由题意依次计算1P 、1Q 、2P 、2Q ,,归纳出结论n x ,再由周期数列和等比数列的定义求解. 【详解】1l 的方程是2y x =-,2l 的方程是y kx k =+,则1(2,0)P ,()12,3Q k ,2(23,3)P k k -,22(23,33)Q k k k --,223(233,33)P k k k k -+-,2233(233,333)Q k k k k k -+-+,23234(2333,333)P k k k k k k -+--+,…,∴211233(1)3n n n x k k k --=-+++-⋅,∴()13121n nk k x k-⎡⎤--⎣⎦=-+,要使{}n x 为周期数列,则存在*n N ∈且1n >,2n x =,即()1310n k k -⎡⎤--=⎣⎦, ∵0k >,只有1k =且n 为奇数时满足题意,故1k =,要使{}n x 为等比数列,则2213x x x =,22(23)2(233)k k k -=-+,∵0k >,∴2k =,此时12(1)n n x -=⨯-,{}n x 是等比数列.故答案为:1;2. 【点睛】本题考查周期数列与等比数列的概念,考查归纳推理.解题关键是是由归纳推理得出n x 的表达式.也可由数列的前几项满足条件得出k 值,然后检验数列{}n x 后面的项也满足条件即可.四、解答题18.在非直角ABC 中,4tan tan tan tan tan 3A B C B C ++=⋅,5a =. (1)求sin A ;(2)若AD 是角平分线,AD =,求ABCS .【答案】(1)4sin 5A =;(2)12. 【解析】(1)先根据内角和为π得到tan tan tan tan tan tan A B C A B C ++=⋅,从而可求tan A 的值,利用同角的三角函数的基本关系式可求sin A .(2)由(1)可得sin2A =,设,AB x AC y ==,则根据面积公式可得()3011x y xy +=,再由余弦定理得,x y 的关系,两者结合可求30xy =,从而可求面积. 【详解】(1)因为()()tan tan tan A B C B C π=--=-+,故tan tan tan 1tan tan B CA B C+=--,整理得到tan tan tan tan tan tan A B C A B C ++=⋅,所以4tan tan tan tan tan 3A B C B C ⋅=.因为,B C 为三角形内角,故tan tan 0B C ≠,故4tan 3A =,因为A 为三角形内角,故0,2A π⎛⎫∈ ⎪⎝⎭,故4sin 5A ==. (2)设,AB x AC y ==. 由(1)知0,2A π⎛⎫∈ ⎪⎝⎭,4sin 5A =,故3cos 5A =,故2312sin 52A =-,而0,24A π⎛⎫∈ ⎪⎝⎭,故5sin 25A =. 由ADBADCABCSSS+=可得111sin sin sin 22222A A AD AB AD AC AB AC A ⨯⨯+⨯⨯=⨯⨯, 故()245541155x y xy +⨯⨯=⨯,整理得到()3011x y xy +=. 由余弦定理可得2232255x y xy +-⨯=,整理得到:()216255x y xy +-=, 故()21212880259000xy xy --⨯=即()()121750300xy xy +-=, 故30xy =,所以面积为14301225⨯⨯=. 【点睛】本题考查余弦定理解三角形以及面积公式的应用,当解三角形中遇到角平分线时,可考虑用面积关系来讨论,本题数据较大,不易计算.19.四面体A BCD -中,3AB AC AD BC BD =====,E 是AB 上一动点,F 、G 分别是CD 、EF 的中点.(1)当E 是AB 中点,3CD =时,求证:DG BC ⊥;(2)1AE =,当四面体A BCD -体积最大时,求二面角D CE B --的平面角的正弦值.【答案】(1)见解析;(22203【解析】(1)当3CD =时,四面体A BCD -是正四面体,通过正四面体的性质建立空间直角坐标系,通过计算得0BC DG =,从而得证. (2)取AB 的中点H ,连接CH ,DH ,FH ,易证明13A BCD A CDHB CDH CDHV V V SAB ---=+=,设CF x =,利用勾股定理计算得到FH ,利用体积公式22411127272333244A BCD CDHV S AB x x x x -==⋅⋅⋅-⋅=-,算出体积表达式,进行配方得到体积取最大值时364CF =,22227364FH CH CF x CF =-=-==,故,,CH DH AB 两两互相垂直,利用空间直角坐标系计算得出答案. 【详解】(1)取BC 的中点H ,连接DH ,BF ,DH BF O =,连接OA ,过O 做CD 的平行线交BD 于点M , 如图,3AB AC AD BC BD =====,3CD =,∴ 此三棱锥是正四面体,∴O 为BCD ∆的中心,AO ⊥ 面BCD ,以O 为坐标原点,分别以OF ,OM ,OA 为空间直角坐标系的x ,y ,z 轴,建立空间直角坐标系,易知,2293394DH DC CH =-=-=,1332OH DH ==,233OD DH ==,22936AO AD OD =-=-= ∴(3,0,0)B - ,33(,,0)22C -,33(,,0)22D ,(0,0,6)A ,36(,0,)22E -,3(,0,0)F ,6(0,0,)G , ∴333(,,0)2BC =- ,336(,,)2DG =-- ,∴0BC DG = ,∴DG BC ⊥得证. (2)如图,取AB 的中点H ,连接CH ,DH ,FH , 3AB AC AD BC BD =====,∴ ABC ,ABD △ 均为等边三角形, ∴AB CH ⊥,AB DH ⊥,CH DH H =,,CH DH ⊂面CDH ,∴AB ⊥面CDH ,∴13A BCD A CDHB CDH CDHV V V SAB ---=+=,设CF x = ,则222223279()24CH DH BC BH ==-=-=,222274FH CH CF x =-=-, ∴22411127272333244A BCD CDHV S AB x x x x -==⋅⋅⋅-⋅=-,∴24222727729()4864A BCD V x x x -=-=--+, ∴当2278x =,即36x = 时,四面体A BCD -体积有最大值, 此时, 222273644FH CH CF x =-=-=, ∴FH CF =,∴CDH △为等腰直角三角形,CH DH ⊥,如图,以H 为坐标原点,HC 为x 轴,HD 为y 轴,HA 为z 轴,建立空间直角坐标系,1AE =,∴3(0,0,)2B -,(,0,0)2C,(0,,0)2D ,1(0,0,)2E ,∴(CD =,1()2CE =,3()2CB =- 设面CDE 的法向量为111(,,)n x y z = ,由0n CD = ,0n CE =得,11110221022x y x z ⎧-+=⎪⎪⎨⎪-+=⎪⎩ ∴取(1,1,3n =,设面BCE 的法向量为222(,,)m x y z = ,由0m CB = ,0m CE =得,2222302102x z x z ⎧-=⎪⎪⎨⎪+=⎪⎩ ∴取(0,1,0)m =,∴cos 2929n m n mθ===⋅ ,∴sin 29θ= ,故答案是29. 【点睛】(1)此题通过传统方法需要证明点G 在高线OA ,比较繁琐,建系可以有效的避免这一点,证明起来比较简单;(2)第二问的关键是找到什么时候四面体A BCD -的体积最大,需要构建体积表达式,利用函数的方法求出四面体A BCD -的体积最大时满足的条件,后建系计算即可得出答案,此题计算较为复杂,大家要细心解答.20.在数列{}n a 中,11a =,22a =,2134n n n a a a ++=+. (1)求{}n a 的通项公式;(2)n b =n S是数列{n b 的前n项和,n n T =,求证:1232n T T T ++⋅⋅⋅+<. 【答案】(1)()11324155n n n a --=⋅+-⋅;(2)证明见解析.【解析】(1)由题得()2114n n n n a a a a ++++=+,构造数列{}1n n a a ++为等比数列,得1134n n n a a -++=⋅,从而有1294n n n a a -+-=⋅,对n 分奇偶,采用累加法求出{}n a 的通项公式;(2)由(1)可得42n nn b =-,则可得n S ,故131122121n n n T +⎛⎫=- ⎪--⎝⎭,采用裂项相消法求12n T T T ++⋅⋅⋅+即可证明. 【详解】(1)由2134n n n a a a ++=+得,()2114n n n n a a a a ++++=+,又213a a +=, 所以数列{}1n n a a ++为首项为3,公比为4的等比数列,故1134n n n a a -++=⋅,又2134n n n a a +++=⋅,则有1294n n n a a -+-=⋅,所以当n 为奇数时,()()()131532n n n a a a a a a a a -=+-+-+-⋅⋅⋅+()32231214432191441941455n n n ----⋅=++++=+⋅=⋅⋅⋅+⋅-,当n 为偶数时,1113234455n n n n a a --+=⋅-=⋅-,经验证12,a a 均符合, 故()11324155n n n a --=⋅+-⋅; (2)4n n b ==,则42n nn b =-, 所以()()224442224442221412n n nnn S -⋅-⋅=+++-+++⋅⋅⋅⋅⋅-⋅=-- 11124233n n ++=⋅-+,所以()()11112323112212122121124233n nn n n n n n n n n b T ++++⋅⎛⎫====⋅- ⎪----⎝+⎭-所以122312112131111221212211n n n T T T +⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥---⎛⎫++⋅⋅⋅++⋅⋅⋅+- ⎪-⎝⎭⎝⎭⎣-⎝⎦⎭ 131312212n +⎛⎫=-< ⎪-⎝⎭ 【点睛】本题主要考查了数列的递推公式,数列的通项公式,数列求和,考查了累加法,裂项相消法这些数列求解的基本方法,综合考查了学生的运算求解能力.21.已知抛物线2:2(0)y px p Γ=>,过抛物线焦点F 的直线1l 、2l 分别交抛物线于A 、B 、C 、D (B 、C 在x 轴上方),()11,A x y ,()22,B x y ,1214y y =-.(1)求抛物线Γ的标准方程;(2)若45BFC ∠=︒,求AB CD ⋅的最小值. 【答案】(1)2y x =;(2)24162-【解析】(1)设直线1l 的方程为2p x ky =+,联立抛物线方程与2px ky =+,利用韦达定理写出12y y ,解出p 的值;(2)设直线1l 的倾斜角为α,利用含α的式子表示弦长AB ,同理可得CD ,得出AB CD ⋅的表达式,然后利用三角恒等变换结合三角函数等知识点求解最值.【详解】解:(1)由题意得,02p F ⎛⎫⎪⎝⎭,当直线AB 斜率存在时,设直线AB 的方程为2p x ky =+,代入()220y px p =>得:2220y pky p --=,则21214yy p ⋅=-=-,得12p =,当AB x ⊥轴时,21214y y p ⋅=-=-成立, 所以抛物线Γ的标准方程为:2y x =.(2)设直线1l 的倾斜角为α,则直线2l 的倾斜角为45α+,如图所示,分别过点,A B 作,BM AN 分别垂直于抛物线2y x =的准线,垂足分别为M 、N ,再分别作BP AQ 、垂直于x 轴,则cos BF p BF α⋅+=,得1cos pBF α=-,cos p AF AF α-⋅=,得1cos pAF α=+,所以22211cos 1cos sin sin p p p AB AF BF αααα=+=+==+-,同理可得()()2221sin 45sin 45p CD αα==++所以()22211sin sin 4522sin AB CD ααααα⋅==⋅+⎡⎤⎫⋅+⎢⎥⎪⎢⎥⎝⎭⎣⎦ 2211241621212sin 2242πα=≥=-⎡⎛⎛⎫-++ ⎢ ⎪⎝⎭⎣⎦⎝⎭当且仅当242ππα-=, 3=8πα时AB CD ⋅取最小值.所以AB CD ⋅的最小值为24-【点睛】本题考查直线与抛物线的综合,难度较大.解答时要合理设元,巧妙利用韦达定理求解,关于弦长最值问题一定要现将弦长用所设未知量表示出来,然后设法求出最值. 22.函数()ax f x e x =-,0a >.(1)对任意[0,)x ∈+∞,21()12f x x ≥+恒成立,求a 的取值范围; (2)若1a >,对任意(,)x e ∈+∞,2()(6)ln 60ln f x ax ax x x+--+≥恒成立,求a 的取值范围.【答案】(1)1a ≥;(2)>1a 【解析】(1)由已知条件得21102axe x x ---≥在[0,)x ∈+∞上恒成立,令()2112ax g x e x x =---,即需()0g x ≥在[0,)x ∈+∞上恒成立,对()g x 求导,分析其导函数的正负,得出()g x 的图象变化趋势,可得出a 的取值范围; (2)不等式2()(6)ln 60ln f x ax ax x x+--+≥等价于()()22ln 26ln 6ln 2ax x e ax ax x x e +-≥-+,令()226x F x e x x =+-,对函数()F x 求导,分析函数的单调性,运用单调性求解不等式,得到ln xa x≥在(,)x e ∈+∞上恒成立,令()ln xG x x=,对其求导函数,研究其单调性,根据函数()G x 的最值,可得a 的取值范围. 【详解】(1)由函数()axf x e x =-,得不等式21()12f x x ≥+等价于21102ax e x x ---≥在[0,)x ∈+∞上恒成立,令()2112axg x e x x =---,则()'1ax g x ae x =--,令()()'1ax h x g x ae x ==--,则()'21axh x a e =-,因为0a >,所以()'21axh x a e =-在R 上单调递增,又[0,)x ∈+∞,所以()()'2'2101ax h x a e h a =-≥=-,当210a -≥时,即1a ≥时,()'0h x ≥,所以()h x 在[0,)+∞上单调递增,所以()()010h x h a ≥=-≥,即()'0g x ≥,所以()g x 在[0,)+∞上单调递增,所以()()00g x g ≥=,所以21102axe x x ---≥在[0,)x ∈+∞上恒成立,满足题意,所以1a ≥满足;当210a -<时,即01a <<时,()'00h <,又()'h x 在[0,)+∞上单调递增,所以存在唯一0[0,)x ∈+∞使得()'0h x =,即02021ln ax a ex a a==-,,所以()'h x 在0[0,)x 上()'0h x <,()h x 在0[0,)x 上单调递减,()'h x 在()0+x ∞,上()'>0h x ,()h x 在()0+x ∞,上单调递增, 所以()()0h x h x ≥,而()000122ln 11+ln 1ax a a h x ae x a a a a-+=--=-=, 令()()'22ln 1,>0aH a a a H a a-=-+=,所以()H a 在()01,上单调递增,所以()()12ln11+10H a H <=-=,所以()00h x <,即()'00g x <,又()'010g a =-<,()'+x g x →+∞→∞,,所以存在()10+x x ∈∞,使得()'0g x =,即1110ax x ae --=,且()'g x 在()10x ,上()'0g x <,()g x 在()10x ,上单调递减,()'g x 在()1+x ∞,上()'>0g x ,()g x 在()1+x ∞,上单调递增,所以()()1g x g x ≥,而()00g =,所以()10g x <,这与()0g x ≥在[0,)+∞上恒成立相矛盾,所以01a <<不满足题意, 综上可得a 的取值范围1a ≥; (2)因为(,)x e ∈+∞,所以不等式2()(6)ln 60ln f x ax ax x x+--+≥等价于()()22ln 26ln 6ln 2ax x e ax ax x x e +-≥-+,令()226xF x e x x =+-,则()()'22623xxF x e x e x =+-=+-,因为()'F x 在R 上单调递增,且()()'12+13>0F e =-,1'2112+3022F e ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,所以存在唯一的2112x ⎛⎫∈ ⎪⎝⎭,,使得()'20F x =, 所以()2x x ∈-∞,时,()'0F x <,()F x 在()2x -∞,上单调递减,()2+x x ∈∞,时,()'>0F x ,()F x 在()2+,x ∞上单调递增, 因为(,)x e ∈+∞,1a >,所以>1,ln >1ax e x >,所以要使()()22ln 26ln 6ln 2ax x e ax ax x x e +-≥-+在(,)x e ∈+∞上成立,即()()ln F ax F x ≥在(,)x e ∈+∞上成立,则需ln >1ax x ≥,即ln x a x≥在(,)x e ∈+∞上恒成立,令()ln x G x x=,则()2'1ln x G x x -=,因为(,)x e ∈+∞,所以ln >1x ,所以1ln 0x -<,即()'0G x <,所以()ln x G x x=在(,)x e ∈+∞上单调递减,所以()()ln 1e G x G e e e <==,所以1a e≥ ,又>1a ,所以a 的取值范围是>1a . 【点睛】本题考查运用导函数解决不等式的恒成立问题中求参数的范围的问题,关键在于构造合适的函数,通过对其导函数取得正负的区间,得出所构造的函数的单调性,属于难题.。
浙江省2020届高三高考压轴卷数学试题(含解析)
V 则 S−A1B1C1 = SA1 SB1 SC1 ,设 SB 与平面 SAC 所成角 , VS−ABC SA SB SC
VS − A1B1C1 VS − ABC
= VB1 −SA1C1 VB−SAC
=
1 3
1 2
SA1
SC1
sin
ASC
SB1
sin
1 1 SA SC sin ASC SB sin
=
SA1 SB1 SC1 SA SB SC
,证毕.
32
四棱锥
P
−
ABCD
中,设
PE PB
=
x,
PF PD
=
y
,VP− ABCD
=
1 22 3
3
=
4
VP− AEMF VP− ABCD
= VP−AEF + VP−MEF 2VP− ABD
=
VP− AEF 2VP− ABD
+ VP−MEF 2VP−DBC
3x − 4 y + a = 0 的距离 d = 3 − 4 + a 1,解得 a 6 或 a −4 (舍去) 5
故选:D. 10.【答案】B
【解析】
- 7 - / 18
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
首先证明一个结论:在三棱锥 S − ABC 中,棱 SA, SB, SC 上取点 A1, B1, C1
12.二项式 (
x
+
1 x2
)5
的展开式中常数项为__________.所有项的系数和为__________.
- 2 - / 18
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
浙江省2020届高三6月名师押题金卷数学(试题)(解析版)
由函数
f
x
3x 3x
1 1
cos
x
有
f
x
3 3
x x
1 1
cos
x
3x 1 1 3x
cos
x
f
x
所以函数 f x 为奇函数,故排除 A,B 选项.
又当
x
0
,且
x
0
时,
3x 3x
1 1
0,
cos
x
0
,即
f
x
0
,排除
D
选项.
故选:C
7.已知随机变量 满足 P( 0) 1 , P( 1) x, P( 2) 2 x ,若 0 x 2 ,则( )
2 3
上单调递减,
所以当 0 x 2 时, D( ) 无最大值,无最小值, 3
故选:D.
8.如图1,已知 E 、 F 分别是正方形 ABCD 的边 BC 和 CD 的中点,分别沿 AE 、 EF 、 AF 将 △ABE 、 △ECF 、VAFD 折起,使 B 、C 、D 三点重合于 P 点,如图 2 所示.设异面直线 AP 与 EF 所成的角为 ,
所以 3a 3b a b a3 b3
即当 3a 3b 时, a3 b3 成立,反之当 a3 b3 时, 3a 3b 成立
所以“ 3a 3b ”是“ a3 b3 ”的充要条件.
故选:C
6.函数
f
x
3x 3x
1 cos 1
x 的图象大致是(
)
2
A.
B.
C.
D.
【答案】C 【解析】
A. b3 b1 b7
B. b3 b4 b7
C. T3 T1 T7
浙江省2020届高三6月名师押题金卷数学(试题)
浙江省2020届高三6月名师押题金卷数学(试题)第I 卷选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,3,5}A =,{3,5,7}=B ,则A B = ()A .{1,3,5}B .{1,7}C .{3,5}D .{5}2.椭圆22168x y +=的离心率为()A .12B .14C .13D .333.设i 是虚数单位,复数2iz =-,则复数z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限4.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的侧面积为()A .8±B .6+C .6+D .35.已知a ,b ∈R ,则“33a b <”是“33a b <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数()31cos 31x x f x x +=⋅-的图象大致是()A .B .C .D .7.已知随机变量ξ满足12(0),(1),(2)33P P x P x ξξξ======-,若203x <<,则()A .()E ξ有最大值,有最小值;()D ξ有最大值,有最小值B .()E ξ有最大值,无最小值;()D ξ有最大值,无最小值C .()E ξ无最大值,有最小值;()D ξ无最大值,有最小值D .()E ξ无最大值,无最小值;()D ξ无最大值,无最小值8.如图1,已知E 、F 分别是正方形ABCD 的边BC 和CD 的中点,分别沿AE 、EF 、AF 将ABE △、ECF △、AFD V 折起,使B 、C 、D 三点重合于P 点,如图2所示.设异面直线AP 与EF 所成的角为α,二面角E AP F --、A EF P --的大小分别为β、γ则下列说法正确的是()A .γβα<<B .βγα<<C .γβα<=D .γβα=<9.已知函数()()22,032,0x x e x f x x x x ⎧+≤=⎨-+>⎩,()(),3,f x x m g x x x m ⎧≤=⎨-+>⎩,若()g x 恰好有3个零点,则m 的取值范围是()A .[)2,1-B .(]2,1-C .[)[)1,23,+∞D .(][)1,23,+∞ 10.已知数列{}n a 的前n 项和n S 满足()n n tnS b =-(t ,b 为常数,*n ∈N ,且0t ≠),11a =-,232a =,若存在正整数n ,使得()()10n n a d a d +--<成立;数列{}nb 是首项为2,公差为d 的等差数列,n T 为其前n 项和,则以下结论正确的是()A .317b b b +<B .347b b b +>C .317T T T +<D .317T T T +>第II 卷非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.科学家在研究物体的热辐射能力时定义了一个理想模型叫“黑体”,即一种能完全吸收照在其表面的电磁波(光)的物体.然后,黑体根据其本身特性再向周边辐射电磁波,科学研究发现单位面积的黑体向空间辐射的电磁波的功率B 与该黑体的绝对温度T 的4次方成正比,即4B T σ=,σ为玻尔兹曼常数.而我们在做实验数据处理的过程中,往往不用基础变量作为横纵坐标,以本实验结果为例,B 为纵坐标,以4T 为横坐标,则能够近似得到______(曲线形状),那么如果继续研究该实验,若实验结果的曲线如图所示,试写出其可能的横纵坐标的变量形式______.12.已知实数x ,y 满足2102701x y x y x -+≤⎧⎪+-≤⎨⎪≥-⎩,则23z x y =+的最大值是_______,最小值是_______.13.若二项式9ax ⎛ ⎝的展开式中的常数项为672,则a =________,31x 的系数为________.14.已知ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,设2B A =,则角A 的取值范围是_______;b a的取值范围是_______.15.已知1F ,2F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,以12F F 为直径的圆与双曲线的渐近线的一个公共点为P ,若122PF PF =,则双曲线的离心率为________.16.已知()f x x x =,若()()()220f x m m f x m -≤>对任意1x ≥恒成立,则实数m 的取值范围为____________.17.如图,在ABC 中,3BAC π∠=,D 为AB 中点,P 为CD 上一点,且满足13t AC AB AP =+ ,若ABC的面积为2,则AP 的最小值为__________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知角02παα⎛⎫<< ⎪⎝⎭的顶点与原点O 重合,始边与x 轴非负半轴重合,终边经过点,将角α的终边绕着原点O 逆时针旋转02πθθ⎛⎫<< ⎪⎝⎭得到角β的终边.(1)若4πθ=,求sin β的值;(2)求sin cos θβ的取值范围.19.如图所示的多面体中,AD ⊥平面PDC ,四边形ABCD 为平行四边形,E 为AD 的中点,F 为线段PB上的一点,∠CDP =120°,AD =3,AP =5,PC =.(Ⅰ)试确定点F 的位置,使得直线EF ∥平面PDC ;(Ⅱ)若PB =3BF ,求直线AF 与平面PBC 所成角的正弦值.20.已知数列{}n a 是等差数列,26a =,518a =,数列{}n b 的前n 项和是n S ,且112n n S b +=.(1)求数列{}n a 的通项公式;(2)求证数列{}n b 是等比数列;(3)记n n n c a b =,求证:1n n c c +≤.21.在平面直角坐标系xOy 中,过点()0,4的直线l 与抛物线()2:20C x py p =>交于A ,B 两点,以AB 为直径作圆,记为M ,M 与抛物线C 的准线始终相切.(1)求抛物线C 的方程;(2)过圆心M 作x 轴垂线与抛物线相交于点N ,求ABN S 的取值范围.22.已知函数()()ln 1f x x x ax =++.(1)若0a <,证明:函数()f x 的极值为一个非正数;(2)若函数()f x 与()sin g x x =在0x =处的切线相同,当4m ≥,0x ≥时,证明:()()32mx f x g x x ≥-+.。