二○○七年全国高中数学联赛江西省预赛试卷(2007.9.23,详细答案)

合集下载

2017年全国高中数学联赛江西省预赛试题解答(word版)

2017年全国高中数学联赛江西省预赛试题解答(word版)

2017年全国高中数学联赛江西省预赛试题一、填空题(共8题,每题10分,计80分)1、某人在将2009中间的两个数码00分别换成两位数ab 与cd 时,恰好都得到完全平方数:()2229,29,ab m cd n m n ==<,则数组(),m n ab cd ++=(100,100)解:注意到,对于整数k ,若2k 的末位数为9,则k 的末位数必为3或7,易知244200029ab <<,(245205=),25302529cd =>,因此4455m n <<<,于是,若要,m n 满足条件,只可能是,47,53m n ==,由于2472209=,2532809=, 所以20,80,47,53ab cd m n ====,()(),100,100m n ab cd ++=.2、若一个椭圆的焦点和顶点分别是双曲线221916y x -=的顶点和焦点,则椭圆的方程为:2211625x y += 解:双曲线的两顶点为()0,3±,两焦点为()0,5±,故由条件,椭圆的两焦点为()0,3±,两顶点为()0,5±,因此,3,5c a ==,22216b a c =-=,则椭圆的方程为2211625x y +=.3、实数,x y 满足22236x y y +=,则x y +的最大值是1+解:令x y t +=,则x t y =-,由()22236t y y y -+=,得()22522320y t y t -++=,因y 为实数,则判别式()224234520t t ∆=+-⨯⨯≥,得2222t ≤≤. 4、四面体ABCD 中,,,,1CD BC AB BC CD AC AB BC ⊥⊥===,平面BCD 与平面ABC 成045的二面角,则点B 到平面ACD 的距离为3.解:DC AC ==DE ⊥平面ABC ,垂足为E ,连,CE AE ,由三垂线逆定理,EC BC ⊥,所以045DCE ∠=,故12CE D E D C===,1136ABCD ABC V DE S =⋅=,又因ABCE 为正方形,1AE =,则AD =,因此正三角形ACD 的面积为B 到平面ACD 的距离为h ,由1136ACD h S ⋅=,得3h =5、从集合{}1,2,3,,2009M = 中,去掉所有3的倍数以及5的倍数后,则剩下的元素个数为1072.解:集合M 中,3的倍数有20096693⎡⎤=⎢⎥⎣⎦个,5的倍数有20094015⎡⎤=⎢⎥⎣⎦个,15的倍数有200913315⎡⎤=⎢⎥⎣⎦个,则剩下的元素个数为()20096694011331072-+-=个.6、函数322()(1)x x f x x -=+的值域是11[,]44-. 解:2221()11x x f x x x -=⋅++,令tan x α=,则11sin 2cos 2sin 424f ααα=⋅=,由此,1144f -≤≤,当tan ,tan88x ππ=-时两边分别取得等号.7、247coscoscos cos 15151515ππππ--+=12-. 解:原式7244coscoscos cos 2cos cos 2cos cos 15151515155155ππππππππ⎛⎫⎛⎫=+-+=- ⎪ ⎪⎝⎭⎝⎭ 42coscos cos 4cos sin sin 515155610ππππππ⎛⎫=-=- ⎪⎝⎭12cos sin 5102ππ=-=-.(注:由0sin 722sin36cos364sin18cos18cos36==,则001sin18cos364=,即1c o ss i n 5104ππ=.) 8、九个连续正整数自小到大排成一个数列129,,,a a a ,若13579a a a a a ++++为一平方数,2468a a a a +++为一立方数,则这九个正整数之和的最小值是18000.解:设这九数为 4,3,2,1,,1,2,3,4a a a a a a a a a ----++++,则有,25a m =,34a n =,9S a =,则4532n m a ==,得2345m n = ………① 令112,5n n m m ==,得231110040m n =,所以 231152m n =,再取122m m =,125n n =,化为 2222225m n =,取2210,2m n ==,可使左式成立,这时20,100n m ==,2000a =,918000S a ==. 二、解答题(共3题,合计70分)9、(20分)给定Y 轴上的一点(0,)A a (1a >),对于曲线212x y =-上的动点(,)M x y ,试求,A M两点之间距离AM 的最小值(用a 表示).解:如图,易求得曲线上诸点的坐标为:(0),0),(0,1)E F D ,当22x <,即x ≤≤212x y =- ………①;而当22x ≥时,曲线方程为212x y =- ………②,对于情形①,即x ≤≤M 位于顶点D 处时,距离AM 取得最小值1a -;………5分对于情形②,即在x ≤x ≥2(,1)2x M x -,由于 2222221(1)(2)2124x AM x a x a a =+--=-++,因1a >,则22a >>于是,当x =AM…………15分再比较AD 与AM :令222()(1)(21)(4)f a AD AMa a a a =-=--+=-,则当14a <≤时,()0f a ≤,AD AM ≤,即最小值为1AD a =-; 而当4a >时,()0f a >,则最小值AM =…………20分10、(25分)在一个圆中任取三条互不相交的弦,以其中每两条弦为一组对边,各得到一个凸四边形,设这三个四边形的对角线的交点分别为,,M N P ;证明:,,M N P 三点共线.证:如图,设,,AB CD EF 为三条不相交的弦,其中AC BD P = ,AF BE M = ,CE DF N = ,又设BD CE H = ,点,,N P M 截BEH ∆的三边,据梅涅劳斯逆定理,只要证1HP BM ENPB ME NH⋅⋅= …… ①, …………5分 用记号∆表示三角形面积,则由BM BAF BA BFME EA EFEAF ∆⋅==⋅∆ …… ② HP HAC HAC EAC CH EA EC CH EAPB CE BA BC BA BCBAC EAC BAC ∆∆∆⋅⋅==⋅=⋅=⋅⋅∆∆∆ ……③ 由此得HP BM CH BF PB ME BC EF ⋅⋅=⋅,因此只要证,1EN BF CHEF BC NH ⋅=⋅ …… ④, …………15分 注意 EN DNEF DC=, BFD BCD ∠=∠,则 NH NBD FBD FBN CH CBD CBD∆∆-∆==∆∆FB FD FB FN FB ND FB ENCB CD CB CD CB EF ⋅-⋅⋅===⋅⋅⋅,所以1EN BF CHEF BC NH⋅=⋅,即④成立,从而①成立,故结论得证. …………25分11、(25分)n 项正整数列12,,,n x x x 的各项之和为2009,如果这n 个数既可分为和相等的41个组,又可分为和相等的49个组,求n 的最小值.解:设分成的41个组为1241,,,A A A ,每组中的各数和皆为49,称这种组为A 类组;而分成的49个组为1249,,,B B B ,每组中的各数和皆为41,称这种组为B 类组. …………5分显然,每个项k x 恰好属于一个A 类组和一个B 类组,即同类组之间没有公共项,如果两个组,i j A B 中有两个公共项,r t x x ,则可以将这两个数合并为一个项r t x x +,这样可使n 值减少,故不妨设,每对,i j A B 至多有一个公共项.今用点1241,,,u u u 分别表示1241,,,A A A ,而点1249,,,v v v 表示组1249,,,B B B ,如果组,i j A B 有公共项,则在相应的点,i j u v 之间连一条边,于是得二部图G ,它恰有n 条边和90个顶点. …………10分下面证明G 是连通图.如果图G 的最大连通分支为G ',其顶点数少于90,设在分支G '中,有a 个A 类顶点12,,,a k k k u u u 和b 个B 类顶点12,,,b s s s v v v ,其中90a b +<,则在相应的A 类组12,,,a k k k A A A 和B 类组12,,,bs s sB B B 中,A 类组i k A 中的每个数i x 都要在某个B 类组js B 中出现;而B 类组i s B 中的每个数j x 也都要在某个A 类组jr A 中出现,(否则将有边与分支外的顶点连接,发生矛盾),因此a 个A 类组12,,,a k k k A A A 中各数的和应等于b 个B 类组12,,,b s s s B B B 中各数的和,即有4941a b =,由此得41a ,49b ,所以414990a b +≥+=,矛盾!因此G 是连通图.于是图G 至少有90189-=条边,即89n ≥; …………20分另一方面,我们可实际构造一个具有89项的数列1289,,,x x x ,满足本题条件.例如取141427576798083848541,8,7,1,6,x x x x x x x x x x ==============86872x x ==,88895,3x x ==,(该数列有41个取值为41的项;34个取值为8的项;另将其余七个8拆成七对,其中四对{}7,1,两对{}6,2,一对{}5,3,又得到14个项),于是,每个A 类组可由一个41,一个8,或者由一个41,添加一对和为8的项组成;这样共得41个A 类组,每组各数的和皆为49;为了获得和为41的49个B 类组,可使1241,,,x x x 各成一组,其余的数可以拼成八个B 类组:{}8,8,8,8,8,1的组四个,{}8,8,8,8,7,2的组两个,{}8,8,8,8,6,3的组一个,{}8,8,7,7,6,5的组一个.故n 的最小值为89.…25分。

2007年全国初中数学联赛江西省预赛试卷

2007年全国初中数学联赛江西省预赛试卷

2007年全国初中数学联赛江西省预赛试卷第一试一、选择题1.2007的末位数字是()(A)1 (B)3 (C)7 (D)92)(A(B(C(D3.若a,b,c为正数,已知关于x的一元二次方程ax2+bx+c=0有两个相等的实根,•则方程(a+1)x2+(b+2)x+(c+1)=0的根的情况是()(A)没有实根(B)有两个相等的实根(C)有两个不等的实根(D)不能确定4.若直角三角形的三个顶点皆取自某个正十二边形的顶点,•则这种直角三角形的个数为()(A)36 (B)60 (C)96 (D)1205.对于给定的单位正方形,若将其两条对角线以及每两条边的中点连线作出,便得到如图,则图中互为相似的三角形“对子”数有()(A)44 (B)552(C)946 (D)18926.若将三条高线长度分别为x,y,z的三角形记为(x,y,z),则在以下四个三角形(6,8,10),(8,15,17),(12,15,20),(20,21,29)中,直角三角形的个数为()(A)1个(B)2个(C)3个(D)4个二、填空题(每小题7分,共28分)7的解为________.8.边长为整数,周长为20的三角形个数是______.9.在边长为1的正方形ABCD中,分别以A,B,C,D为圆心,作半径为1的圆弧,将正方形分成图中的九个小块,则中心小块的面积是______.10.用数字1,2,3,4排成一个四位数,使得这个数是11的倍数,则这样的四位数共有_______个.第二试三、解答题11.(20分)试求所有的整数a,使得关于x的一元二次方程x2-(a2-4a+9)=0 ①的两根皆为整数.12.(25分)四边形ABCD的对角线AC,BD交于P,过点P作直线,交AD于E,交BC于F,若PE=PF,且AP+AE=CP+CF.证明:四边形ABCD为平行四边形.13.(25分)若数a能表示成两个自然数(允许相同)的平方和,则称a为“好数”,•试确定,在前200个正整数1,2,…,200中,有多少个“好数”?参考答案一、1.B 2.B 3.D 4.B 5.C 6.A二、7.43,53,133 8.8 9.3π10.8个 三、11.设方程的两根为x 1,x 21+x 2=整数,即①为整系数一元二次方程,其根为整数,则其判别式△必为完全平方数. 设(5a 2-26a -8)+4(a 2-4a+9)=b 2,b ∈N ,即(3a -7)2-b 2=21. 故得(3a-7-b )(3a-7+b )=21.因21=3·7=1·21=(-7)·(-3)=(-21)·(-1),373377;3713721;377373;372137 1.a b a b a b a b a b a b a b a b --=⎧⎨-+=⎩--=⎧⎨-+=⎩--=-⎧⎨-+=-⎩--=-⎧⎨-+=-⎩故有或或或 分别解得,a=4,6,43,-43. 因为a 为整数,且当a=4故只有a=6,此时方程①成为x 2-4x-21=0,•它有两个整根:7和-3, 因此本题所求的整数a=6.12.在PA ,PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF ,则PM=PN ,于是EMFN •为平行四边形.得∠AME=∠CNF ,且△AME ,△CNF 皆为等腰三角形,则∠PAE=∠PCF ,所以△PAE •≌△PCF ,得PA=PC .故AFCE 为平行四边形.AE ∥CF ,所以∠PED=∠PFB ,△ PED ≌△PFB ,因此,PB=PD ,即对角线AC ,BD 互相平分, 从而四边形ABCD 为平行四边形.13.不超过200的平方数是02,12,22, (142)显然,12,22,…142中的每个数k 2可表为k 2+0形式,这种数共有14个;而12,22,…,102中的每一对数(允许相同)的和不大于200, 这种数有1092⨯+10=55(个), (•其中,x 2+x 2形式的数10个,x 2+y 2(x ≠y )形式的数1092⨯=45个). 其次,112+x 2(x=1,2,…8)形式的数8个;122+x 2(x=1,2,…,7)形式的数7个;132+x 2(x=1,2,…,5)形式的数5个;142+x 2(x=1,2)形式的数2个.共得22个.再考虑重复情况,利用如下事实:若x=a 2+b 2,y=c 2+d 2(a ≠b ,c ≠d ),则xy=(ac+bd )2+(ad-b c )2=(ac-bd )2+(ad+bc )2.不超过40且能表为两个不同正整数的平方和的数有5,10,13,17,20,25,26,29,•34,37,40,该组中的每个数与5的积,以及13都不大于200,•且都可用两种方式表为平方和,故各被计算了两次,累计有12次重复(10,13,17,20与10的积已包含在以上乘积组中).因此,满足条件的数共有:14+55+22-12=79个.。

2007年高考数学(江西卷) 全卷 加答案及解析

2007年高考数学(江西卷) 全卷 加答案及解析

2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简224(1)ii ++的结果是( )A.2i +B.2i -+C.2i -D.2i --2.321lim 1x x x x →--( )A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( )A.4 B.5C.6D.75.若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x < D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( )A.9 B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 垂直平面11CB D C.AH 的延长线经过点1C D.直线AH 和1BB 所成角为458.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程111B20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.512.设2:()e l n 21xp f x x x m x =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项: 第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为.14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a = .15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若A B m A M = ,AC nAN =,则m n +的值为.16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数1(0)()2(1)x c cx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩ ≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值; (2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(0)y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠= ,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积. 21.(本小题满分12分)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0,其中点O 为坐标原点. 22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n n a a a a n n ++++<<+-+.11y(1)求1a ,3a ;(3)求数列{}n a 的通项n a .2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一、选择题 1.C 2.B3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.B11.B 12.B 二、填空题 13.[5)+,∞ 14.4 15.2 16.B D ,三、解答题17.解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+=⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()18f x >+得,当102x <<时,解得142x <<. 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =代入函数2cos()y x ωθ=+得cos θ= 因为02θπ≤≤,所以6θπ=. 又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭.(2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,02y =,所以点P 的坐标为022x π⎛-⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 462x π⎛⎫-= ⎪⎝⎭ 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则123123123()()()()P E P A A A P A A A P A A A =++0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =, 所以~(30.3)B ξ,, 故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=, 3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=. 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D .则11OD BB CC ∥∥. 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥.1C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1AC .又因为AB =BC =222AC AB BC AC ==+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为BH =,所以1sin 2BH BCH BC ==∠,故30BCH = ∠, 即:所求二面角的大小为30.(3)因为BH =,所以 22221111(12)33222B AAC C AA C C V S BH -==+= .11A 21112211111212A B C A BC A B C V S BB -=== △.所求几何体体积为221112232B AAC C A B C A BC V V V --=+=.解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,.易知,(001)n =,,是平面111A B C 的一个法向量. 因为0OC n =,OC ⊄平面111A B C ,所以OC ∥平面111A B C . (2)(012)AB =-- ,,,(101)BC =,,, 设()m x y z =,,是平面ABC 的一个法向量,则则0AB m = ,0BC m = 得:200y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-,,. 显然,(110)l =,,为平面11AA C C 的一个法向量.则cos 2m l m l m l===,,结合图形可知所求二面角为锐角. 所以二面角1B AC A --的大小是30. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =1x方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即211111012λλλλλ--=⇒+-=⇒=-,因为01λ<<,所以12λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0OM ON =,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以12λ-=;②当12x x ≠时,221102202211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩ . 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ=-=+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,解得:1223λ<<.由①②知1223λ<≤. 22.解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭ ① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+, 解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =. 下面用数学归纳法证明.1 当1n =,2时,由(1)知2n a n =均成立;2 假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤.故21(1)k a k +=+,即1n k =+时,2n a n =成立.由1 ,2 知,对任意n ∈*N ,2n a n =. (2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1 当1n =,2时,由(1)知2n a n =均成立;2 假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数,则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k+++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥, 所以4321221(1)11k k k k a k k k k k +++=+--+-+≥. 又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④ 据③④21(1)k a k +=+,即1n k =+时,2n a n =成立.由1 ,2 知,对任意n ∈*N ,2n a n =.。

2007年全国高中数学联赛试题及详细解析

2007年全国高中数学联赛试题及详细解析

2007年全国高中数学联赛 (考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21-5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6, 33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

9. 已知正方体ABCD −A 1B 1C 1D 1的棱长为1,以顶点A 为球心,332为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________。

10. 已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数。

若a 1=d ,b 1=d 2,且321232221b b b a a a ++++是正整数,则q 等于________。

11. 已知函数)4541(2)cos()sin()(≤≤+-=x x πx πx x f ,则f (x )的最小值为________。

12. 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。

2007年全国高中数学联赛试题及详细解析

2007年全国高中数学联赛试题及详细解析

2007年全国高中数学联赛 (考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21-5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

9. 已知正方体ABCD −A 1B 1C 1D 1的棱长为1,以顶点A 为球心,332为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________。

10. 已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数。

若a 1=d ,b 1=d 2,且321232221b b b a a a ++++是正整数,则q 等于________。

11. 已知函数)4541(2)cos()sin()(≤≤+-=x x πx πx x f ,则f (x )的最小值为________。

12. 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。

2007年高考.江西卷.理科数学试题及解答

2007年高考.江西卷.理科数学试题及解答

准考证号 姓名(在此卷上答题无效)绝密★启用前2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3 n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2)1(42i i++的结果是 A .2+i B .-2+i C .2-i D .-2-i2.1lim 231--→x x x xA .等于0B .等于lC .等于3D .不存在3.若tan(4π一α)=3,则cot α等于 A .-2 B .-21 C .21D .24.已知(x +33x)n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于A .4B .5C .6D .75.若0<x <2π,则下列命题中正确的是 A .sin x <x π3 B .sin x >x π3 C .sin x <224x π D .sin x >224x π6.若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为A .9B .6C .4D .27.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线, 垂足为点H .则以下命题中,错误..的命题是 A .点H 是△A 1BD 的垂心 B .AH 垂直平面CB 1D 1 C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 19.设椭圆)0(12222>>b a by a x =+的离心率为e =21,右焦点为F(c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P(x 1,x 2)A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为 A .91 B .121 C .151 D .18111.设函数f(x)是R 上以5为周期的可导偶函数,则曲线y =f(x)在x =5处的切线的斜率为 A .-51 B .0 C .51D .512.设p :f(x)=e x +In x +2x 2+mx +l 在(0,+∞)内单调递增,q :m ≥-5,则p 是q 的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件绝密★启用前2007年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数y =4+log 2(x -1)(x ≥3),则其反函数的定义域为 .14.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=91,则a 36= .15.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 . 16.设有一组圆C k :(x -k +1)2+(y -3k)2=2k 4 (k ∈N *).下列四个命题:A .存在一条定直线与所有的圆均相切B .存在一条定直线与所有的圆均相交C .存在一条定直线与所有的圆均不.相交 D .所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数⎪⎩⎪⎨⎧≤++=-)1(2)0(1)(2<<<x c k c x cx x f c x在区间(0,1)内连续,且89)(2=c f . (1)求实数k 和c 的值; (2)解不等式182)(+>x f18.(本小题满分12分)如图,函数y =2cos(ωx +θ) (x ∈R ,0≤θ≤2π)的图象与y 轴交于点(0,3),且在该点处切线的斜率为一2. (1)求θ和ω的值;(2)已知点A(2π,0),点P 是该函数图象上一点, 点Q(x 0,y 0)是PA 的中点,当y 0=23,x ∈[2π,π]时,求x 0的值.19.(本小题满分12分) 某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6, 0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分) 右图是一个直三棱柱(以A 1B 1C 1为底面)被一平面所截得到 的几何体,截面为ABC .已知A 1B 1=B 1C 1=l ,∠A l B l C 1=90°, AA l =4,BB l =2,CC l =3.(1)设点O 是AB 的中点,证明:OC ∥平面A 1B 1C 1; (2)求二面角B —AC —A 1的大小; (3)求此几何体的体积. 21.(本小题满分12分) 设动点P 到点A(-l ,0)和B(1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1),使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点. 22.(本小题满分14分) 设正整数数列{a n }满足:a 2=4,且对于任何n ∈N *,有n n n n a n n a a a 1211111211++-++++<<.(1)求a 1,a 3;(2)求数列{ a n }的通项a n .2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一、选择题 1.C 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.B 11.B 12.B 二、填空题 13.[5)+,∞ 14.4 15.2 16.B D , 三、解答题17.解:(1)因为01c <<,所以2c c <,由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+= ⎪⎝⎭,即1k =.(2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩ ≤由()18f x >+得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=, 因为02θπ≤≤,所以6θπ=. 又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =, 所以点P的坐标为022x π⎛-⎝.又因为点P 在2cos 26y x π⎛⎫=+⎪⎝⎭的图象上,所以05cos 462x π⎛⎫-=⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则 123123123()()()()P E P A A A P A A A P A A A =++0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =, 所以~(30.3)B ξ,,故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则 ()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=,3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=.20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥. 因为O 是AB 的中点,所以1111()32OD AA BB CC =+==.则1ODC C 是平行四边形,因此有1OC C D ∥. 1C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH.因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1A C .又因为AB =BC =222AC AB BC AC =⇒=+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为2BH =,所以1sin 2BH BCH BC ==∠,故30BCH =∠, 即:所求二面角的大小为30.(3)因为2BH =,所以11A 2222211121(12)233222B AAC C AA C C V S BH -==+=.1112211111212A B C A BC A B C V S BB -===△.所求几何体体积为221112232B AAC C A B C A BC V V V --=+=.解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,.易知,(001)n =,,是平面111A B C 的一个法向量. 因为0OC n =,OC ⊄平面111A B C ,所以OC ∥平面111A B C .(2)(012)AB =--,,,(101)BC =,,, 设()m x y z =,,是平面ABC 的一个法向量,则则0AB m =,0BC m =得:200y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-,,. 显然,(110)l =,,为平面11AAC C 的一个法向量.则cos 2m l m l m l===⨯,,结合图形可知所求二面角为锐角. 所以二面角1B AC A --的大小是30. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上. 即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,1x所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0OM ON =,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.由①②知,1223λ<≤. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以12λ=;②当12x x ≠时,22110222211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-;由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭ 220001(1)21x x x λλ==+---.所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<, 23λ<<23λ<. 22.解:(1)据条件得1111112(1)2n nn n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭ ① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+,解得12837a <<.因为1a 为正整数,故11a =.当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++-因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤.故21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1,2知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k+++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥,所以4321221(1)11k k k ka k k k k k +++=+--+-+≥.又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④据③④21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1,2知,对任意n ∈*N ,2n a n =.。

2007年普通高等学校招生全国统一考试(江西卷)理科数学

2007年普通高等学校招生全国统一考试(江西卷)理科数学

2007年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅰ卷参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=其中R 表示球的半径 球的体积公式343V R π=其中R 表示球的半径 一.选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简()2241ii ++的结果是( )A.2i +B.2i -+C.2i -D.2i --2.321lim 1x x x x →--( ) A.等于0B.等于1C.等于3D.不存在3.若tan 34πα⎛⎫-=⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5C.6D.75.若02x π<<,则下列命题中正确的是( )A.3sin x x π<B.3sin x x π>C.224sin x x π<D.224sin x x π>6.若集合{}0,1,2M =,(){},210210,,N x y x y x y x y M =-+≥--≤∈且,则N 中元素的个数为( ) A.9B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H .则以下命题中,错误..的命题是( )A.点H 是1A BD △的垂心B.AH 垂直平面11CB DC.AH 的延长线经过点1CD.直线AH 和1BB 所成角为45°8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半,设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >>B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆()222210x y a b a b +=>>的离心率为1e 2=,右焦点为(),0F c ,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点()12,P x x ( ) A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一个骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( )A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.512.设p :()2e ln 21x f x x x mx =++++在()0,+∞内单调递增,q :5m ≥-,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第Ⅱ卷二.填空题:本大题共4小题.请把答案填在答题卡上.13.设函数()()24log 13y x x =+-≥,则其反函数的定义域为______.14.已知数列{}n a 对于任意p ,*q N ∈,有p q p q a a a ++=,若119a =,则36a =______. 15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M ,N ,若AB mAM =uu u r uuu r ,AC nAN =uuu r uuu r,则m n +的值为______.16.设有一组圆k C :()()()224*132x k y k k k N -++-=∈.下列四个命题: A.存在一条定直线与所有的圆均相切B.存在一条定直线与所有的圆均相交C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是______.(写出所有真命题的代号)三.解答题:本大题共6小题.解答应写出文字说明,证明过程或演算步骤.17.已知函数()()()21021xc cx x c f x k c x -+<<⎧⎪=⎨⎪+≤<⎩在区间()0,1内连续,且()298f c=. (1)求实数k 和c 的值; (2)解不等式()18f x >+. 18.如图,函数()2cos ,02y x x R πωθθ⎛⎫=+∈ ⎪⎝⎭剟的图象与y轴交于点(,且在该点处切线的斜率为2-.(1)求θ和ω的值; (2)已知点,02A π⎛⎫ ⎪⎝⎭,点P 是该函数图象上一点,点()00,Q x y 是PA 的中点,当02y =,0,2x ππ⎡⎤∈⎢⎥⎣⎦时,求0x 的值.19.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品合格概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.20.如图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=︒,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明://OC 平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积.21.设动点P 到点()1,0A -和()1,0B 的距离分别为1d 和2d ,2APB θ∠=,且存在常数()01λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使0OM ON ⋅=uuu r uuu r,其中点O 为坐标原点.22.设正整数数列{}n a 满足:24a =,且对于任何*n N ∈,有11111122111n n n na a a a n n ++++<<+-+. (1)求1a ,3a ;(2)求数列{}n a 的通项n a .。

2007年全国高中数学联赛试题及解答

2007年全国高中数学联赛试题及解答

2 3 9.已知正方体 ABCD-A1B1C1D1 的棱长为 1,以顶点 A 为球心, 为半径作一个球,则球面与正方 3 体的表面相交所得到的曲线的长等于 . 10.已知等差数列{an}的公差 d 不为 0,等比数列{bn}的公比 q 是小于 1 的正有理数.若 a1=d,b1=d2, 2 2 a2 1+a2+a3 且 是正整数,则 q 等于 . b1+b2+b3
2007 年全国高中数学联赛试卷
2007.10.18.
2007 年全国高中数学联赛一试试卷
(考试时间:10 月 14 日上午 8∶00——9∶40)
一、选择题(本题江分 36 分,每小题 6 分): 1.如图,在正四棱锥 P-ABCD 中,∠APC=60° ,则二面角 A-PB-C 的平 面角的余弦值为 A. 1 7 B.- 1 7 C.
2007 年全国高中数学联赛试卷
2007.10.18.
2007 年全国高中数学联赛一试解答
(考试时间:10 月 14 日上午 8∶00——9∶40)
一、选择题(本题江分 36 分,每小题 6 分): 1.如图,在正四棱锥 P-ABCD 中,∠APC=60° ,则二面角 A-PB-C 的平面角的余弦值为 A. 1 7 B.- 1 7 C. 1 2 D.- 1 2
A.
B.
C.
D.
选 A. 解:设⊙O1、⊙O2 半径分别为 R、r(不妨设 R≥r>0),|O1O2|=d. 若两圆内含,d<R-r,则⊙P 与两圆都内切或与小圆外切与大圆内切,所求轨迹为两个以两圆圆心为 焦点的椭圆,当两圆圆心重合时,轨迹为圆;故 C 可以是动圆圆心轨迹; 当两圆外离, d>R+r, 若 R>r, 动圆与两圆都外切或都内切, 所求轨迹为以两圆圆心为焦点的双曲线; 与一圆内切与另一圆外切时, 轨迹也为以两圆圆心为焦点的双曲线, 故 D 可以是动圆圆心轨迹; 当 R=r 时, 与两圆都外切或都内切的动圆圆心轨迹为两圆圆心连线的中垂线,与一圆内切与另一圆外切时,轨迹为以 两圆圆心为焦点的双曲线,故 B 可以是动圆圆心轨迹. A 中的椭圆与双曲线焦点不同,从而没有动圆圆心轨迹为 A 中情形. 事实上,当两圆相交时,若 R>r,动圆与两圆同时外切或内切,所求轨迹为以两圆圆心为焦点的双曲 线,与一圆内切与另一圆外切,轨迹为椭圆,但双曲线与椭圆的焦点相同;若 R=r,则轨迹为椭圆及一条 直线.当两圆内切时,所求轨迹为一个以两圆圆心为焦点的椭圆与经过两圆圆心的直线;当两圆外切时, 若 R>r,动圆与两圆都外切或都内切,所求轨迹为一个以两圆圆心为焦点的双曲线,与一圆外切与另一圆 内切,轨迹为经过两圆圆心的直线;若 R=r,轨迹为两条直线;即 A 不能成为动圆圆心轨迹. 6.已知 A 与 B 是集合{1,2,3,„,100}的两个子集,满足:A 与 B 的元素个数相同,且 A∩B 为空 集.若 n∈A 时,总有 2n+2∈B,则集合 A∪B 的元素个数最多为 A.62 B.66 C.68 D.74 选 B. 解:由 2n+2≤100,知 n≤49.即若 n∈A,则 n≤49. 把不超过 49 的数分组:{2k-1,4k}(k=1,2,„,12 其中 2(2k-1)+2=4k≤50),(12 组,24 个数) {2k-1}(k=13,14,„,25 其中 50≤4k≤100),(13 组,13 个数) {2,6},{10,22},{14,30},{18,38} (余下 4k-2 型数,配对 4 组,8 个数) {26},{34},{42},{46}(4 组,4 个数) 共有 33 组,若 A 在小于 49 的正整数中取出的数超过 34 个,则必有两个数同组,此时 A∩B≠.故 n ≤33.又取 A={2k-1|k∈N*,k≤25}∪{2,10,14,18,26,34,42,46},B={2n+2|n∈A},满足题意, 此时|A∪B|=66. 二、填空题(本题满分 54 分,每小题 9 分) 7.在平面直角坐标系内,有四个定点 A(-3,0),B(1,-1),C(0,3),D(-1, y 3)及一个动点 P,则|PA|+|PB|+|PC|+|PD|的最小值为 . 填 3 2+2 5. 解:显然,如图可知,|PA|+|PC|≥|AC|,|PB|+|PD|≥|BD|,于是|PA|+|PB|+|PC| +|PD|≥|AC|+|BD|=3 2+2 5. → → 8. 在∆ABC 和∆AEF 中, B 是 EF 中点, AB=EF=1, BC=6, CA= 33, 若 AB · AE

2007年普通高等学校招生全国统一考试理科数学试卷及答案-江西卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-江西卷

2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简224(1)i i ++的结果是( ) A.2i +B.2i -+C.2i -D.2i --2.321lim1x x x x →--( ) A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.24.已知n⎛⎝展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5 C.6 D.75.若π02x <<,则下列命题中正确的是( )A.3sin πx x < B.3sin πx x >C.224sin πx x <D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( ) A.9B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A B D 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.A H 垂直平面11C B D C.A H 的延长线经过点1C D.直线A H 和1B B 所成角为458.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)x y a bab+=>>的离心率为1e 2=,右焦点为(0)F c,,方程20a x b x c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )11C1B。

2007年普通高等学校招生全国统一考试文科数学试卷及答案-江西卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-江西卷

2007年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}01M =,,{}012345I =,,,,,,则I M ð为( ) A.{}01,B.{}2345,,,C.{}02345,,,,D.{}12345,,,,2.函数5tan(21)y x =+的最小正周期为( ) A.π4B.π2C.πD.2π3.函数1()lg4xf x x -=-的定义域为( ) A.(14),B.[14),C.(1)(4)-∞+∞,,D.(1](4)-∞+∞,, 4.若tan 3α=,4tan 3β=,则tan()αβ-等于( )A.3-B.13-C.3D.135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为( )A.2- B.1- C.1 D.26.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3647.连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A.1-B.32C.1+D.32+8.若π02x <<,则下列命题正确的是( ) A.2sin πx x < B.2sin πx x > C.3sin πx x <D.3sin πx x >9.四面体ABCD 的外接球球心在CD 上,且2CD =,AD =在外接球面上两点A B ,间的球面距离是( ) A.π6B.π3C.2π3D.5π610.设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >> C.324h h h >>D.241h h h >>12.设椭圆22221(0)x y a b a b+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能2007年普通高等学校招生全国统一考试(江西卷)文科数学 第II 卷注意事项:第II 卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则AB AC =.14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(31),,则函数1()y f x -=的图象必经过点.16.如图,正方体1AC 的棱长为1,过点作平面1A BD 的垂线,垂足为点H .有下列四个命题A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为34其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)111B已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求AB 与平面11AAC C 所成的角的大小; (3)求此几何体的体积. 21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n nn T a a a a =-+--.1122.(本小题满分14分)设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A B ,两点.问:是否存在λ,使1FAB △是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.2007年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得, 当102x <<时,解得142x <<, 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =2cos()y x ωθ=+中得cos 2θ=, 因为π02θ≤≤,所以π6θ=.由已知πT =,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,0y =所以点P的坐标为0π22x ⎛-⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 462x ⎛⎫-= ⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点,2CA所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C .连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角.因为2BH =,AB =sin BH BAH AB ==∠ AB 与面11AAC C所成的角为BAH =∠ (3)因为BH =,所以222213B AA C C AA C C V S BH -=.1121(12)23222=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,,1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量.由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C .1x(2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩, 取1x y ==得:(110)m =,,. 又因为(012)AB =--,, 所以,cos m <,m AB AB m AB>==-sin θ= 所以AB 与面11AAC C 所成的角为. (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n n n nT --=-+-++-,…………② +①②得:2232124111121333333n n n nT -=-+-+--211231313n n -=-+ 22333843n nn --=所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122FF =22221212121242cos2()4sin d d d d d d d d θθ=+-=-+212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F为焦点,实轴长2a =的双曲线.方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,(01)λ=,故存在1217λ-=方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos 4πsin 24AF AF AF AF BF BF BF BF λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin 1)24AFF S AF AF λ==△,121212BF F S BF BF λ==△.则1(2AF B S λ=△.①由1212221AF F BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==.则122211(222AF B S AB d ==△.②由①②得2(22d λ=.③根据双曲线定义122BF BF a -==可得,1)d =. 平方得:221)4(1)d λ=-.④ 由③④消去d 可解得,(01)λ=, 故存在1217λ-=。

2007年高考数学(理科)试卷及答案(江西卷)

2007年高考数学(理科)试卷及答案(江西卷)

2007年普通高等学校招生全国统一考试(江西卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分。

第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答。

若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3 n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k(1一P )kn -一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.化简2)1(42i i++的结果是 A .2+i B .-2+iC .2-iD .-2-i2.1lim 231--→x x x xA .等于0B .等于lC .等于3D .不存在 3.若tan (4π一α)=3,则cot α等于 A .-2 B .-21C .21D .2 4.已知(x +33x)n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于A .4B .5C .6D .7 5.若0<x <2π,则下列命题中正确的是 A .sin x <x π3B .sin x >x π3C .sin x <224x πD .sin x >224x6.若集合M ={0,l ,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为A .9B .6C .4D .27.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误..的命题是A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 19.设椭圆)0(12222>>b a by a x =+的离心率为e =21,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为A .91B .121C .151D .181 11.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为A .-51B .0C .51D .512.设p :f (x )=e x +ln x +2x 2+mx +l 在(0,+∞)内单调递增,q :m ≥-5,则p 是q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件第Ⅱ卷注意事项:二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上。

普通高等学校招生全国统一考试数学卷江西理含答案

普通高等学校招生全国统一考试数学卷江西理含答案

2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简224(1)ii ++的结果是( )A.2i +B.2i -+C.2i -D.2i --2.321lim 1x x x x →--( )A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( )A.4B.5C.6D.75.若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x < D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( )A.9 B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.AH 的延长线经过点1C D.直线AH 和1BB 所成角为45111B8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( ) A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.512.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项: 第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效. 二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为.14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a =.15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若A B m A M =,AC nAN =,则m n +的值为.16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21(0)()2(1)x c cx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值;(2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积. 21.(本小题满分12分)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0,其中点O 为坐标原点.22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+. (1)求1a ,3a ;(3)求数列{}n a 的通项n a .2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一、选择题 1.C 2.B 3.A 4.C 5.D 6.C 7.D8.A9.A10.B11.B 12.B 二、填空题13.[5)+,∞ 14.4 15.2 16.B D ,三、解答题17.解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =.C11y又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+=⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,y =2cos()y x ωθ=+得cos 2θ=, 因为02θπ≤≤,所以6θπ=. 又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫⎪⎝⎭,,00()Q x y ,是PA的中点,0y =所以点P的坐标为022x π⎛-⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 46x π⎛⎫-= ⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则123123123()()()()P E P A A A P A A A P A A A =++ 0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =, 所以~(30.3)B ξ,,故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=, 3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=. 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D .则11OD BB CC ∥∥. 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥.1C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1A C .又因为AB =BC =222AC AB BC AC ==+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为2BH =,所以1sin 2BH BCH BC ==∠,故30BCH =∠,即:所求二面角的大小为30.(3)因为2BH =,所以 222211121(12)233222B AAC C AA C C V S BH -==+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体体积为221112232B AAC C A B C A BC V V V --=+=.解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,.易知,(001)n =,,是平面111A B C 的一个法向量. 因为0OC n =,OC ⊄平面111A B C ,所以OC ∥平面111A B C .(2)(012)AB =--,,,(101)BC =,,, 设()m x y z =,,是平面ABC 的一个法向量,则 则0AB m =,0BC m =得:20y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-,,. 显然,(110)l =,,为平面11AAC C 的一个法向量.则cos 2m l m l m l===⨯,,结合图形可知所求二面角为锐角.11A 21x所以二面角1B AC A --的大小是30. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即211111012λλλλλ--=⇒+-=⇒=-,因为01λ<<,所以12λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0OM ON =,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以λ=; ②当12x x ≠时,221102202211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭ 220001(1)21x x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=-因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<23λ<. 22.解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+,解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭,解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++-因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤.故21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1,2知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③又由②右式,22221(1)21(1)1k k k k k k k k a k k +++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥,所以4321221(1)11k k k ka k k k k k +++=+--+-+≥.又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④据③④21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1,2知,对任意n ∈*N ,2n a n =.。

高中数学联赛江西省预赛试题及参考答案

高中数学联赛江西省预赛试题及参考答案

2017年全国高中数学联赛江西省预赛试题及参考答案一、填空题1、化简++++++344312332112211…=++20162017201720161.201711-解:由111)1(1)1).(1(1)1(11+-=+-+=+++=+++k kk k k k k k k k kk k k 可得.2、若sinx+cosx=22,825cos sin 33=+x x . 解:4121)cos (sin cos sin 2-=-+=x x x x ,82582342)cos (sin cos sin 3)cos (sin cos sin 333=+=+-+=+x x x x x x x x 3、体积为1的正四面体被放置于一个正方体中,则此正方体体积的最小值是 3 .解:反向考虑,边长为a 的正方体(体积为a 3),其最大内接正四面体顶点,由互不共棱的正方体顶点组成,其体积为.3a 13,3333==,则令a a 4、若椭圆的一个顶点关于它的一个焦点的对称点恰好在其准线上,则椭圆的离心率=e 2221或. 解:建立坐标系,设椭圆的方程为),0,(),0,(),0(12,12,12222b B a A b a b y a x ±=±=>>=+则顶点焦点)0,(2,1c F ±=,准线方程为,,2222,1b a c ca l -=±=其中据对称性,只要考虑两种情况:(1)、上,的对称点在右准线关于c a x c F a A 221)0,()0,(=-由21,22===+-a c e c c a a 得;(2)、 上,的对称点在右准线关于ca x c F B 221)0,()b ,0(=由横坐标.22,202===+a c e c c a 得 5、函数14342++-=x x y 的最小值是5.解:首先,.06414342≥+-=++->x x x x y 又由),14(9)4(22+=+x x y 即0)9(8064,0)9(8202222≥--=∆=-+-y y y xy x 据判别式,即,52≥y 因y>0,则,5≥y 此值在求解)(也可以令时取得θtan 21.51==x x . 6、设+++=++22102)1(x a x a a x x n…nn x a 22+,则+++642a a a …=+na 2213-n .解:令x=0,得a 0=1,再令x=1,得a 0+ a 1+ a 2+…+ a 2n =n3,又令x=-1,得a 0- a 1+ a 2+…+ a 2n =1,所以2132642-=++++n na a a a Λ.7、将全体真分数排成这样的一个数列}{n a :,43,42,41,32,31,21…,排序方法是:自左至右,先将分母按自小到大排列,对于分母相同的分数,再按分子自小到大排列,则其第2017项=2017a 651. 解:按分母分段,分母为k+1的分数有k 个,因208026564,201626463=⨯=⨯,因2017属于第64段,则2017a 应是分母为65的第一数,即651. 8、将各位数字和为10的全体正整数按自小到大的顺序排成一个数列}{n a ,若2017=n a ,则n=120.解:数字和为10的两位数ab 有9个;数字和为10的三位数abc :首位数字a 可取1,2,…,9中任意一个值,当a 取定后,b 可取0,1,…,10-a 这11-a 个数字的任意一个值,而在a,b 确定后,c 的值就唯一确定,因此三位数的个数是54)11(91=-∑=a a ;数字和为10的四位数abc 1:a+b+c=9的非负整数解(a,b,c )的个数是55211=C ,数字和为10的四位数abc 2共有2个即2008和2017,故在1,2,…,2017中,满足条件的数有9+54+55+2=120个. 二、解答题(共70分)9、(本题满分15分)数列}{n a ,}{n b 满足:111==b a ,n n n b a a 21+=+,)1(1≥+=+n b a b n n n .证明:(1)、21212<--n n b a ,222>n n b a ;(2)、2211-<-++nn n n b ab a . 证明:)2()(2)2(222222121n n n n n n n n b a b a b a b a --=+-+=-++…①由此递推得n n n n n n n n n n b a b a b a b a b a )1()2()1()2()(2)2(221211212121121122-=--==--=+-+=--------Λ…②因此02,022122122222<->---n n n n b a b a 即有,2,2221212><--nn n n b ab a 据①得22212122n n n n b a b a -=-++…③,由条件知,{}{},,n n b a 皆为严格递增的正整数数列,,0,011>>>>++n n n n b b a a 所以nn n n b a b a 212111+<+++…④nn b b 111<+…⑤ 将③④⑤相乘得2211-<-++nn n n b ab a 10、(本题满分15分)若小于2017的三个互异正整数a ,b ,c 使得33b a -,33c b -,33a c -均是2017的倍数;证明:222c b a ++必是c b a ++的倍数. 证:因)(即2233a )(2017,)(2017b ab b a b a++--;又由,20170<-<b a 注意2017为质数,则a-b 与2017互质,因此)(ab b ++22a2017…①同理有)(bc c ++22b 2017…②)(ac c ++22a 2017…③,根据②③,]b a [20172222)()(bc c ac c ++-++,即)(c b b a ++-a )(2017,从而)(c b ++a 2017,因正整数a,b,c 皆小于2017,得a+b+c<3*2017,因此a+b+c=2017或2*2017.又注意222a a cbc b ++++与同奇偶,故只要证)(222a 2017cb ++,将①改写为)(则知))(ac ac c b --+++22b 2017],ba a [2017…④,同理有)(bc -2a 2017,)(ab -2c 2017…⑤,将①②③④⑤式相加,得)(222a 32017c b ++于是)(222a 2017c b ++,从而)(222a)(c b c b a ++++. 11、(本题满分20分)设P ={21,22,23,…}是由全体正整数的平方所构成的集合;如果数n 能够表示为集合P 中若干个(至少一个)互异元素的代数和,则称数n 具有P 结构.证明:每个自然数n 都具有P 结构.证明:首先,我们可以将前十个自然数分别表示为: 再考虑区间(]224,3中的数,其中除了16=42之外,其余的数皆可表示为)61(42≤≤-=k k n 形式;并且注意到,在1,2,3,4,5,6中每个数的p结构表示中,凡是表示式中42参与时,42皆以正项形式出现,于是由)61(42≤≤-=k k n 可知,此时42项便抵消(不会出现242⨯的项);因此,区间(]224,3中的数皆具有P 结构表示,也就是24≤的每个数都具有P 结构表示,且其中最大项至多为42,而凡是含有42的表示中,42皆以正项形式出现,下面使用归纳法,假若已证得2m ≤的每个数都具有P结构表示,且其中最大项至多为2m ,而凡是含有2m 表示中,2m 皆以正项形式出现(其中4≥m ),对于区间(]22)1(,+m m 中的数,除了最大数可以直接表示为2)1(+m 之外,其余元素n 皆可表示为:)21()1(2m k k m n ≤≤-+=,由归纳假设,22,4m m m <≥且,并且此k 具有P 结构表示,其中每项皆2m ≤,因此数n 具有P 结构表示,故由归纳法,即知所证的结论成立.12、(本题满分20分)如图,⊙1O ,⊙2O 相交于A ,B 两点,CD 是经过点A 的一条线段,其中,点C ,D 分别在⊙1O 、⊙2O 上,过线段CD 上的任意一点K ,作BD KM//,BC KN //,点M ,N 分别在BC ,BD 上,又向BCD ∆形外方向,作BC ME ⊥,BD BF ⊥,其中E 在⊙1O 上,F在⊙2O 上;证明:KF KE⊥.证明:设⊙1O 、⊙2O 的半径分别为21,r r ,由于ABEC 共圆,ABFD 共圆,得,sin 2,221BAD r BD BAC sim r BC ∠=∠=而,r ,18021r BD BC BAD BAC==∠+∠︒所以于是 C BO 1∆∽D BO 2∆,根据平行关系得CMK ∆∽KND ∆∽CBD ∆,所以KMBN r BD BC ND NK MK MC 且四边形,r 21===为平行四边形,BN=MK,延长垂线FN 交⊙2O 于1F ,因,r 21r BD BC =则⊙1O 上优弧BEC 与⊙2O 上BD 所对的优弧B DF 1的度数相等,又因M,N 分别是两圆对应弦CB 、BD 上的点,且所以,r 21r BD BC MK CM BN CM ===⊿CME ∽⊿N 1F B, ⊿BME ∽⊿N 1F D,从而⊿BEC ∽⊿D 1F B,由⊿BEM ∽⊿N 1F D ∽FBN ∆,得FN BN BM EM =,注意BM=KN,BN=KM,上式成为FNKMKN EM =,根据⊿CMK ∽⊿KND,得EMK KNF CMK FND EMC KND CMK ∆∴∠=∠︒=∠=∠∠=∠,,90,所以而∽FNK ∆,而,,BD FN BC EM⊥⊥又据条件.,,,//,//KF KE KM FN KN EM BC KN BD KM ⊥⊥◊由此所以。

2007年高考江西卷(文科数学)

2007年高考江西卷(文科数学)

2007年普通高等学校招生全国统一考试文科数学(江西卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{0,1}M =,{012345}I =,,,,,,则I C M 为A .{01},B .{2345},,,C .{02345},,,,D .{12345},,,, 2.函数5tan(21)y x =+的最小正周期为A .4π B .2πC .πD .2π 3.函数1()lg 4xf x x -=-的定义域为A .(1,4)B .[1,4)C .(,1)(4,)-∞+∞D .(,1](4,)-∞+∞4.若tan 3α=,4tan 3β=,则tan()αβ-等于 A .3- B .13- C .3 D .135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为A .2-B .1-C .1D .26.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为 A .132 B .164 C .332 D .3647.连接抛物线24x y =的焦点F 与点(1,0)M 所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为A .1-+.32-.1.32+8.若π02x <<,则下列命题中正确的是A .3sin πx x <B .3sin πx x >C .224sin πx x <D .224sin πx x >9.四面体ABCD 的外接球球心在CD 上,且2CD =,AB =两点A B ,间的球面距离是A .π6B .π3C .2π3D .5π610.设p :32()21f x x x mx =+++在()-∞+∞,内单调递增,q :43m ≥,则p 是q的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 设在内单调递增,,11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是A .214h h h >>B .123h h h >>C .324h h h >>D .241h h h >>12.设椭圆22221x y a b +=(0a b >>)的离心率为12e =,右焦点为(,0)F c ,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .以上三种情形都有可能 二、填空题:本大题共4小题,每小题4分,共16分.13.在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(0,0)O ,(1,1)B ,则AB AC ⋅= .14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= . 15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(3,1),则函数1()y f x -=的图象必经过点 .7.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则有下列四个命题 A .点H 是1A BD ∆的垂心 B .AH 垂直平面11CB DC .二面角111C BD C --D .点H 到平面1111A B C D 的距离为34其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数210()21xc cx x cf x k c x -+<<⎧⎪=⎨⎪+≤<⎩,在区间(0,1)内连续,且29()8f c =. (Ⅰ)求实数k 和c 的值;(Ⅱ)解不等式()18f x >+. 18.(本小题满分12分)如图,函数2cos()y x ωθ=+(x R ∈,π02θ≤≤)的图象与y轴交于点,且在该点处切线的斜率为2-. (Ⅰ)求θ和ω的值;(Ⅱ)已知点(,0)2A π,点P 是该函数图象上一点,点(Q x 是PA 的中点,当02y =0[,]2x ππ∈时,求0x 的值. 19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成.苗.的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (Ⅰ)求甲、乙两种果树至少有一种果树成苗..的概率; (Ⅱ)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)111右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =. (Ⅰ)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (Ⅱ)求AB 与平面11AAC C 所成的角的大小; (Ⅲ)求此几何体的体积.21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (Ⅰ)求最小的自然数n ,使2007n a ≥; (Ⅱ)求和:212321232n nn T a a a a =-+--. 22.(本小题满分14分)设动点P 到点1(1,0)F -和2(1,0)F 的距离分别为1d 和2d ,122F PF θ=∠,且存在常数λ(01λ<<),使得212sin d d θλ=.(Ⅰ)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(Ⅱ)如图,过点2F 的直线与双曲线C 的右支交于A ,B 两点.问:是否存在λ,使1F AB ∆是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.ACOBA 1B 1C 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二○○七年全国高中数学联赛江西省预赛试卷2007年9月23日上午(8∶30-11∶00)考生注意:1、本试卷共三大题(15个小题),全卷满分150分.2、用钢笔、签字笔或圆珠笔作答.3、解题书写不要超出装订线.4、不能使用计算器.一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分.1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ).A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;2、设 ()11xf x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +=== 则()2007f x =( ).A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 3、设α为锐角,x =y 2sin cos sin cos z αααα=+,则,,x y z 的大小顺序为( ).A 、x y z ≥≥;B 、 x z y ≥≥;C 、z x y ≥≥;D 、z y x ≥≥;4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A 、24;B 、36;C 、72;D 、84.52,则其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π.6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为A B CDk 的等差数列,则并集1759A A 中的元素个数为( ).A 、119B 、120;C 、151;D 、154.二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上.7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += .8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MOMF的最大值为 .9、计算01sin10= . 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 .11、把一个长方体切割成k 个四面体,则k 的最小值是 .12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a , 则2007a = .三、解答题(本题满分60分,每小题20分)13、数列{}n a 满足:()()111,211n n n na a a n na +==++;令12,k k x a a a =+++ 12111,1,2,k k y k a a a =+++= ;求 1nk k k x y =∑.14、 如图,ABC ∆的外心为O ,E 是AC 的中点,直线OE 交AB 于D ,点,M N 分别是BCD ∆的外心与内心,若2AB BC =,证明:DMN ∆为直角三角形.15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.二○○七年全国高中数学联赛江西省预赛试题解答2007年9月23日上午(8∶30-11∶00)考生注意:1、本试卷共三大题(15个小题),全卷满分150分.2、用钢笔、签字笔或圆珠笔作答.3、解题书写不要超出装订线.4、不能使用计算器.一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分. 1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( )A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;答案:C ;解:若a b >,则22222a c b c bc +>+≥,不合条件,排除,A D ,又由()222a c c b c -=-,故a c -与b c -同号,排除B ;且当b a c >>时,222a c bc +=有可能成立,例如取()(),,3,5,1a b c =,故选C . 2、设 ()11xf x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +=== 则()2007f x =( )A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 答案:B ;解:()()1121111,11f x f x f x x f x++===---, ()()323423111,111f f x f x f x x f x f ++-====-+-,据此,()()414211,1n n x f x f x x x+++==--,()()4341,1n n x f x f x x x +-==+,因2007为43n +型,故选B . 3、设α为锐角,x =y =2sin cos sin cos z αααα=+,则,,x y z 的大小顺序为( )A 、x y z ≥≥;B 、 x z y ≥≥;C 、z x y ≥≥;D 、z y x ≥≥;答案:A;解:sin cos 1sin cos x y αααα+=≥=+,2sin cos sin cos z y αααα=≤==+,故x y z ≥≥.4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A 、24;B 、36;C 、72;D 、84.答案:D ;解:选两色有24C 种,一色选择对角有2种选法,共计24212C =种;选三色有34C 种,其中一色重复有13C 种选法,该色选择对角有2种选法,另两色选位有2种,共计432248⨯⨯⨯=种;四色全用有4!24=种(因,,,A B C D 为固定位置),合计84种.52,则其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π.答案:A ;解:设底面正方形边长为1,棱锥的高为h ,侧面三角形的高为l ,则AC2l =,则sin 2h PMH l ∠==,3PMH π∠=.6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ).A 、119B 、120;C 、151;D 、154.答案:C ;解:用k A 表示集k A 的元素个数,设1k A n =+,由20071nk =+,得2006n k=,于是172006111917A =+=,59200613559A =+=,175910032006131759A A A ==+=⨯ ;从而 AB CD175917591003119353151A A A A A =+-=+-= .二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上.7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += .答案:1010332356+++; 解:据条件,10102,3是关于t 的方程33156x y t t +=++的两个根,即()233560t x y t -+--+= 的两个根,所以1010332356x y +=+--;1010332356x y +=+++.8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MOMF的最大值为 .22y px =,则顶点及焦点坐标为()0,0,,02p O F ⎛⎫⎪⎝⎭,若设点M 坐标为(),M x y ,则22222222242MO x y x px p MF p x px x y ++⎛⎫== ⎪⎝⎭⎛⎫++-+ ⎪⎝⎭()222222224313234444x px x px px x px x p x px ++=≤=+++++,故MO MF ≤(当()(),,M x y p p =或()(),,M x y p p =时取等号)9、计算01sin10= . 答案:4.解:001sin10cos10-=()000000012cos102sin 3010241sin10cos10sin 202⎛⎫ ⎪-⎝⎭==. 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 .答案:2214536x y +=;解:设直线l 上的点为(),9P t t +,取()13,0F -关于直线l 的对称点()9,6Q -,据椭圆定义,12222a PF PF PQ PF QF =+=+≥== ,当且仅当2,,Q P F 共线,即22PF QF K K =,也即96312t t +=--时,上述不等式取等号,此时5t =-, 点P 坐标为()5,4P -,据3,c a ==得,2245,36a b ==,椭圆的方程为2214536x y +=. 11、把一个长方体切割成k 个四面体,则k 的最小值是 .答案:5;解:据等价性,只须考虑单位正方体的切割情况,先说明4个不够,若为4个,因四面体的面皆为三角形,且互不平行,则正方体的上底至少要切割成两个三角形,下底也至少要切割成两个三角形,每个三角形的面积12≤,且这四个三角形要属于四个不同的四面体,以这种三角形为底的四面体,其高1≤,故四个不同的四面体的体积之和112411323⎛⎫≤⨯⨯⨯=< ⎪⎝⎭,不合;所以5k ≥,另一方面,可将单位正方体切割成5个四面体; 例如从正方体1111ABCD A BC D -中间挖出一个四面体11A BC D ,剩下四个角上的四面体,合计5个四面体.12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a ,则2007a = .答案:133113; 解:简称这种数为“好数”,则一位好数有3个;两位好数有3412⨯=个;三位好数有23448⨯=个;…,k 位好数有134k -⨯个;1,2,k = ,记1134nk n k S -==∑,因562007S S <<,52007984S -=,即第2007个好数为第984个六位好数;而六位好数中,首位为1的共有541024=个,前两位为10,11,12,13的各有44256=个,因此第2007个好数的前两位数为13,且是前两位数为13的第9843256216-⨯=个数;而前三位为130,131,132,133的各64个,则2007a 的前三位为133,且是前三位数为133的第21636424-⨯=个数;1A而前四位为1330,1331,1332,1333的各16个,则2007a 的前四位为1331,且是前四位数为1331的第24168-=个数;则2007a 的前五位为13311,且是前五位数为13311的第844-=个数,则2007133113a =.三、解答题(本题满分60分,每小题20分)13、数列{}n a 满足:()()111,211n n n na a a n na +==++;令12,k k x a a a =+++ 12111,1,2,k k y k a a a =+++= ;求 1nk k k x y =∑解:改写条件式为()11111n nn a na +-=+,则()()()112211111111111122n n n n n na na n a n a n a a a a ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ ()121n n =-+=+,所以()11n a n n =+,111111111k kk i i i k x a i i k k ==⎛⎫==-=-= ⎪+++⎝⎭∑∑; ()2111111kk k kk i i i i i y i i i i a ======+=+=∑∑∑∑()()()()()121112623k k k k k k k k ++++++=; ()()()()22111121112233236nnk kk k n n n n n x y k k ==+++⎛⎫=+=+⋅ ⎪⎝⎭∑∑()()21311436n n n n +++=.14、 如图,ABC ∆的外心为O ,E 是AC 的中点,直线OE 交AB 于D ,点,M N 分别是B C D ∆的外心与内心,若2AB BC =,证明:DMN ∆为直角三角形.证:由于点,O M 皆在BC 的中垂线上,设直线OM 交BC 于P ,交M 于F ,则P 是BC 的中点,F 是 BC的中点; 因N 是BCD ∆的内心,故,,D N F 共线,且FP BC ⊥. 又 OE 是AC 的中垂线,则DC DA =,而, DF OE 为BDC ∠的内、外角平分线,故有OD DF ⊥,则OF 为M 的直径,所以,OM MF =,又因1122BNF BDC DBC ∠=∠+∠NBF =∠,则NF BF =. 作NH BD ⊥于H ,则有,()12DH BD DC BC =+- ()12BD DA BC =+-()1122AB BC BC BP =-==,且12N D H B D C F B P ∠=∠=∠,所以,Rt NDH Rt FBP ∆≅∆,故得 DN BF NF ==,因此,MN 是FOD ∆的中位线,从而MN ∥OD ,而OD DN ⊥,则MN DN ⊥.故DMN ∆为直角三角形.证二:记,,BC a CD b BD c ===,因DE 是AC 的中垂线,则A D C D b ==,由条件2b c a += ○1延长DN 交M 于F ,并记,FN e DN x ==,则FB FC F N e ===,对圆内接四边形BDCF 用托勒密定理得FC BD FB CD BC DF ⋅+⋅=⋅,即()e c e b a x e +=+○2,由○1、○2得()2ae a x e =+,所以x e =,即N 是弦DF 的中点,而M 为外心,所以MN DF ⊥,故DMN ∆为直角三角形.15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.解:称(),,,a b c d 为n 的数码组,则{},,,1,2,,9a b c d M ∈= ; 一、当数码组只含一个值,为(),,,,1,2,,9a a a a a = ,共得9个n 值; 二、当数码组恰含二个值,a b ,()a b >.()1、数码组为(),,,a a a b 型,则任取三个数码皆可构成三角形,对于每个{}2,,9a ∈ ,b 可取1a -个值,则数码组个数为()92136a a =-=∑,对于每组(),,,a a a b ,b 有4种占位方式,于是这种n 有364144⨯=个.()2、数码组为(),,,a b b b 型,()a b >,据构成三角形条件,有2b a b <<,共得16个数码组,对于每组(),,,a b b b ,a 有4种占位方式,于是这种n 有16464⨯=个.()3、数码组为(),,,a a b b 型,()a b >,据构成三角形条件,有2b a b <<,同上得16个数码组,对于每组(),,,a a b b ,两个a 有246C =种占位方式,于是这种n 有16696⨯=个.以上共计1446496304++=个.三、当数码组恰含三个值,,a b c ,()a b c >>.()1、数码组为(),,,a b c c 型,据构成三角形条件,则有2c b a c <<<,这种(),,,a b c c 有14组,每组中,a b 有2412A =种占位方式,于是这种n 有1412168⨯=个.()2、数码组为(),,,a b b c 型,c b a b c <<<+,此条件等价于{}1,2,,9M = 中取三个不同的数构成三角形的方法数,有34组,每组中,a b 有2412A =种占位方式,于是这种n 有3412408⨯=个.()3、数码组为(),,,a a b c 型,c b a b c <<<+,同情况()2,有2434408A =个n 值.以上共计168408408984++=个n 值.四、,,,a b c d 互不相同,则有d c b a c d <<<<+,这种,,,a b c d 有16组,每组有4!个排法,共得164!384⨯=个n 值.综上,全部四位三角形数n 的个数为93049843841681+++=个.。

相关文档
最新文档