第10部分圆锥曲线

合集下载

圆锥曲线专题题型小结ppt课件

圆锥曲线专题题型小结ppt课件

2、两条直线 l1 : y k1x b1,l2 : y k2x b2 垂直:则 k1k2 1
3、一元二次方程根与系数的关系:若一元二次方程 ax2 bx c 0(a 0) 有两
个根 x1, x2 ,

x1
x2
b a
, x1x2
c a

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
★ 变式1:过点P(8,1)的直线与双曲线 x2 y2 1
4
相交于A,B两点,且P为AB的中点,这样的直线 AB是否存在,如果存在,求出直线AB的直线方 程,若不存在,请说明理由。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

E(xE ,
yE ), F (xF ,
yF ) ,则
xE
(3 2k)2 12 3 4k 2
,
yE
k xE
3 2
k
以 - k代k得:xF
(3 2k)2 12 3 4k 2
,
yF
-k xF
3 2
k
KEF
yF xF
yE xE
k(xF xE ) 2k xF xE
1 2
即直线 EF 的斜率为定值,其值为 1 2
直线与圆锥曲线的位置关系
1.有关位置关系的问题:
例 1:已知直线 l : y kx 1与椭圆 C : x2 y2 1 4m
始终有交点,求 m 的取值范围
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

高中数学压轴培优教程—圆锥曲线篇

高中数学压轴培优教程—圆锥曲线篇

高中数学压轴培优教程圆锥曲线篇目录第一章基础篇1.1曲线与方程 (1)1.2顶角最大问题 (19)1.3渐近线性质 (25)1.4共焦点问题 (35)1.5面积问题 (49)1.6抛物线的性质 (67)1.7定点问题 (83)1.8定值问题 (111)1.9最值与范围问题 (161)第二章技法篇2.1垂径定理与第三定义 (189)2.2点差法与定比点差法 (205)2.3点乘双根法 (225)2.4齐次化巧解双斜率问题 (233)2.5同构式方程简化运算 (251)2.6非对称韦达定理 (265)第三章观点篇3.1椭圆的共轭直径 (279)3.2圆锥曲线等角定理 (293)3.3蒙日圆及其应用 (307)3.4阿基米德三角形 (321)3.5椭圆中的蝴蝶模型 (335)3.6曲线系及其应用 (347)3.7极点极线与调和点列 (363)参考文献 (411)第二章 技法篇2192.2 点差法与定比点差法一、知识纵横1、点差法的原理(1)假设点1111(,),(,)A x y B x y 在有心二次曲线22221±=x y a b 上,且弦AB 的中点为00(,)M x y .,A B 代入曲线,有22112222222211⎧±=⎪⎪⎨⎪±=⎪⎩x y a b x y a b ,两式作差,得1212121222()()()()0+−+−±=x x x x y y y y a b ;左右两边同除以1212()()++x x x x ,得1212221212110+−±⋅⋅=+−y y y y a b x x x x .变形得220201⋅=±=−AB y b k e x a ,其中e 为有心二次曲线的离心率(圆的离心率0=e ).(2)抛物线22=y px ,任意弦AB 的中点为00(,)M x y ,,A B 代入曲线,有21122222⎧=⎪⎨=⎪⎩y px y px ,两式作差,得121212()()2()+−=−y y y y p x x ,左右两边同除以12()−x x ,得0⋅=AB k y p .2、有心二次曲线实仿射平面的有一个对称中心的常态二次曲线称为有心二次曲线,所有有心二次曲线都是椭圆或双曲线. 3、点差法基本题型(1)求以定点为中点的弦所在直线的方程 (2)过定点的弦和平行弦的中点轨迹问题 (3)求与中点弦有关的圆锥曲线的方程 (4)圆锥曲线上两点关于某直线对称问题与中点有关的的几何特征:对称、垂直平分、等腰三角形、菱形、平行四边形等. 4、点差法在双曲线中的适用条件已知双曲线22221(0,0)−=>>x y a b a b,任意弦AB 的中点00(,)M x y ,若当中点00(,)M x y 满足22002201−x y a b ≤≤,则这样的双曲线的中点弦不存在(如图阴影部分);若当中点00(,)M x y 满足2200221−>x y a b 或2200220−<x y a b,则这样的双曲线的中点弦存在.高中数学压轴培优教程———圆锥曲线篇5、定比分点若λ=AM MB ,则称点M 为点,A B 的λ定比分点. 当0λ>时,点M 在线段AB 上,称为内分点;当0(1)λλ<≠−时,点M 在线段AB 的延长线上,称为外分点.定比分点坐标公式:若点1122(,),(,)A x y B x y ,λ=AM MB ,则点M 的坐标为1212(,)11λλλλ++++x x y y M . 6、定比点差法原理:若λ=AM MB ,λ=−AN NB ,则称,M N 调和分割,A B ,根据定义,那么,A B 也调和分割,M N .定理:设,A B 为有心二次曲线22221±=x y a b上的两点,若存在,M N 两点,满足λ=AM MB ,λ=−AN NB ,则一定有221⋅⋅±=M N M Nx x y y a b . 证明:(1)设点1122(,),(,)A x y B x y ,(,),(,)M M N N M x y N x y , 因为λ=AM MB ,λ=−AN NB , 则由定比分点坐标公式可得1212(,)11λλλλ++++x x y y M ,1212(,)11λλλλ−−−−x x y y N (1)λ≠±, 将,A B 代入曲线,有221122222222 1 1 ⎧±=⎪⎪⎨⎪±=⎪⎩①②x y a b x y a b ,2222222222 λλλλ⨯±=②③得x y a b ①-③,得21212121222()()()()1λλλλλ+−+−±=−x x x x y y y y a b. 这样就得到了12121212221111111λλλλλλλλ+−+−⋅⋅±⋅⋅=+−+−x x x x y y y y a b ,则221⋅⋅±=M N M N x x y y a b .(2)若点(,)M M M x y 为异于原点的定点,则点N 在直线221⋅⋅±=M M x x y ya b 上. 7、定比点差法基本题型(1)求弦长被坐标轴分界的两段的比值范围;(2)简化证明过定点的直线问题的运算以及定值问题;二、典型例题第二章 技法篇2211、 点差法关于点差法的研究,在解析几何中有着广泛的应用,主要有以下四种基本题型. 1.1、求以定点为中点的弦所在直线的方程例1.已知双曲线2212−=y x ,过()1,1B 能否作直线l ,使l 与双曲线交于,P Q 两点,且B 是线段PQ 的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由. 【解析】假设这样的直线存在,设点11(,)P x y 、22(,)Q x y 点B 是线段PQ 的中 121222+=⎧⎨+=⎩x x y y ,221122221212⎧−=⎪⎪⎨⎪−=⎪⎩y x y x 两式相减得:121212121()()()()02+−−+−=x x x x y y y y , 左右两边同除以1212()()+−x x x x ,得121212121102+−−⋅⋅=+−y y y y x x x x ,即001111022−⋅⋅=−⋅=PQ PQ y k k x ,解得2=PQ k ,又直线l 过,,P Q B 三点,所以l 的方程为12(1)−=−y x ,即210−−=x y .联立直线与双曲线2212210⎧−=⎪⎨⎪−−=⎩y x x y ,消去y 得22430,162480−+=∆=−=−<x x , 此方程无实数解,与假设矛盾,所以满足题设的直线不存在.【注】本题如果忽视对判别式的考察,将得出错误的结果,请务必小心.由此题可看到中点弦问题中判断点的M 位置非常重要.若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在. 1.2、求过定点的弦或平行弦的中点轨迹例2.已知椭圆22143+=x y 的弦AB 所在直线过点(1,1)E ,求弦AB 中点F 的轨迹. 【解析】设1122(,),(,)A x y B x y ,则弦AB 的中点(,)F x y , 若直线AB 的斜率存在,将,A B 代入椭圆,的22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y , 两式作差,得12121212()()()()043+−+−+=x x x x y y y y ,左右两边同除以1212()()+−x x x x ,高中数学压轴培优教程———圆锥曲线篇得1212121211043+−+⋅⋅=+−y y y y x x x x ,即121211043−+⋅⋅=−y y y x x x ,又四点,,,A B E F 共线, 所以直线EF 的斜率11−−y x 等于直线AB 的斜率1212−−y y x x ,则1110431−+⋅⋅=−y y x x ,整理得2234340+−−=x y x y .若直线AB 的斜率不存在,则AB 的方程为1=x ,代入椭圆方程解得,A B 的坐标为33(1,),(1,)22−,所以(1,0)F 也满足上述方程.故2234340+−−=x y x y 为所求点F 的轨迹方程.【注】不难看出,在求满足一定条件的动弦的中点轨迹方程时,利用点差法可以大大减少计算量,简化推理过程.1.3、求与中点弦有关的圆锥曲线的方程例3.已知中心在原点,一焦点为F 的椭圆被直线:32=−l y x 截得的弦的中点的横坐标为12,求椭圆的方程.【解析】设椭圆的方程为22221+=y x a b ,则2250−=a b ┅┅①设弦端点11(,)P x y 、22(,)Q x y ,弦PQ 的中点00(,)M x y ,则012=x , 001322=−=−y x 所以12021+==x x x ,12021+==−y y y ,P Q 两点代入椭圆方程,得22112222222211⎧+=⎪⎪⎨⎪+=⎪⎩y x a b y x a b ,两式相减得1212121222()()()()0+−+−+=y y y y x x x x a b , 即221212()()0−−+−=b y y a x x ,所以 212212−=−y y a x x b ,即 223=a b┅┅② 联立①②解得275=a ,225=b ,故所求椭圆的方程是2217525+=y x . 1.4、圆锥曲线上两点关于某直线对称问题例4.已知椭圆22143+=x y ,试确定的m 取值范围,使得对于直线4=+y x m ,椭圆上总有不同的两点关于该直线对称.【解析】设111(,)P x y ,222(,)P x y 为椭圆上关于直线4=+y x m 的对称两点,00(,)P x y 为弦12PP 的中点,第二章 技法篇223则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式作差得:12121212()()()()043+−+−+=x x x x y y y y , 左右两边同除以1212()()+−x x x x ,得1212121211043+−+⋅⋅=+−y y y y x x x x ,由题意可知:1202+=x x x ,1202+=y y y ,121214−=−−y y x x , 所以003=y x ,即00(,3)P x x .由P 在直线4=+y x m 上得00034=+⇒=−x x m x m ,即(,3)−−P m m .因为弦12PP 的中点P 必在椭圆内,所以22()(3)143−−+<m m,解得<m . 例5.已知椭圆2222:1(0)+=>>x y E a b a b的离心率=e ,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆E 的方程.(2)设直线l 与椭圆相交于不同的两点,A B ,已知点(,0)−A a ,点0(0,)Q y 在线段AB 的垂直平分线上,且4⋅=QA QB ,求0y 的值.【解析】(1)由==c e a ,得2234=a c .由222=−c a b ,得2=a b . 由题意可知12242⋅⋅=a b ,即2=ab .解方程组22=⎧⎨=⎩a b ab ,得2,1==a b .所以椭圆E 的方程为2214+=x y .(2)设1122(,),(,)A x y B x y ,线段AB 的中点为33(,)M x y ,当直线l 与x 轴重合时,(2,0),(2,0)−A B ,于是00(2,),(2,)→→=−−=−QA y QB y . 由2000(2,)(2,)44⋅=−−⋅−=−+=QA QB y y y,解得0=±y 当直线l 不过原点O 且不平行于x 轴时,于是321213,−==−l OM y y y k k x x x , 又221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减,得121212121()()()()04+−++−=x x x x y y y y ,左右两边同除以1212()()+−x x x x ,得2112211214−+⋅=−−+y y y y x x x x , 所以3314⋅=−l y k x ,则3314=−⋅l xk y ,高中数学压轴培优教程———圆锥曲线篇又333330330333124114⎧==−⋅⎪+⎪⎨−−⎪⋅=−⋅⋅=−⎪⎩l ly x k x y y y x y y k x y x ,所以30223330134(2)49⎧=−⋅⎪⎪⎨⎪+=−=−⋅⎪⎩y y x x y y ,因为M 为线段AB 的中点,所以2322=+x x ,231302223=−==−⋅y y y y y ,20303055(2,)(22,)2(22)433⋅=−−⋅+−=−++=QA QB y x y x y ,解得2305212=−x y ,所以22203300455(2)(2)(22)91212−⋅=+=−−+y x x y y,解得0=y ,综上所述:0=±y05=±y . 2、定比点差法关于点差法的研究,在解析几何中有着广泛的应用,下面主要从三方面来研究. 2.1求弦长被坐标轴分界的两段的比值范围例6.已知椭圆22194+=x y ,过定点(0,3)P 的直线与椭圆交于两点,A B (可重合),求PA PB 的取值范围.【解析】设1122(,),(,)A x y B x y ,λ=AP PB ,则12120131λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩x x y y ,即120λ+=x x ,123(1)λλ+=+y y ,将,A B 两点代入椭圆方程:221122222221,(1)94,(2)94λλλ⎧+=⎪⎪⎨⎪+=⎪⎩x y x y , 2(1)(2)λ−⋅得212121212()()()()194λλλλλ+−+−+=−x x x x y y y y ,即124(1)3λλ−=−y y所以:132135(1)(1)2366λλλ=++−=+y ,又因为1[2,2]∈−y ,则1[5,]5λ∈−−,1[,5]5∈PA PB. 【注】根据两个调和调和定比分点的联立,将坐标求出与比值的关系式,两个定比分点的式子将问题解决,这就是定比点差法的核心.例7.已知椭圆2222:1(0)+=>>x y C a b b a的上下两焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于,M N 两点,2∆MNFC .第二章 技法篇225(1)求椭圆C 的标准方程.(2)已知O 为坐标原点,直线:=+L y kx m 与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4λ+=OA OB OP ,求m 的取值范围. 【解析】(1)由题设条件得椭圆的方程为:2214y x +=.(2)当0m =时,1λ=−,显然成立;当0m ≠时,4OA OB OP λ+=144OP OA OB λ⇒=+,因为,,A P B 三点共线,所以3λ=;所以3AP PB =, 设1122(,),(,)A x y B x y ,所以121233(,)1313x x y y P ++++,所以1234y y m +=,将,A B 两点代入椭圆方程:22112222 1 4 1 4y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②得:12121212(3)(3)(3)(3)84y y y y x x x x +−+−+=−, 即1283y y m−=−,由上可知:224(2,2)33y m m =+∈−, 所以2(3,3)m m+∈−,解得:(2,1)(1,2)m ∈−−,综上所述:m 的取值范围为(2,1)(1,2){0}−−.2.2简化证明过定点的直线问题的运算以及定值问题例8.设椭圆2222:1(0)+=>>x y C a b a b过点M,且左焦点为1(F .(1)求椭圆C 的方程;(2)当过点(4,1)P 的动直线l 与椭圆C 相交于两不同点,A B 时,在线段AB 上取点Q ,满足⋅=⋅AP QB AQ PB ,证明:点Q 总在某定直线上.【解析】(1)由题意:222222212,1,=+==−c c a b a b,解得224,2==a b , 所以椭圆C 的方程为22142+=x y . (2)证明:设点为(,)Q x y ,12(,)A x y ,22(,)B x y . 由题设知,,,AP PB AQ QB 均不为零,记λ==AP AQ PBQB,则01λλ>≠且,又,,,A P B Q 四点共线,将点(4,1)P 代入椭圆方程得2241142+>,则点P 在椭圆外,又因为点Q 在线段AB 上,从而λ=−AP PB ,λ=AQ QB ,高中数学压轴培优教程———圆锥曲线篇于是12124,1(1)1,1λλλλ−⎧=⎪⎪−⎨−⎪=⎪−⎩x x y y 1212,1(2),1λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩x x x y x y 又点AB 在椭圆C 上,即221122221,(3)421,(4)42⎧+=⎪⎪⎨⎪+=⎪⎩x y x y 2(3)(4)λ−⋅,得212121212()()()()142λλλλλ+−+−+=−x x x x y y y y ,即12121212()()()()111411211λλλλλλλλ+−+−⋅⋅+⋅⋅=+−+−x x x x y y y y , 将(1),(2)代入得1,2202+=+−=即yx x y . 综上所述,点(,)Q x y 总在定直线220+−=x y 上.例9.已知12(,0),(,0)−F c F c 为有心二次曲线2222:1(0)±=>>x y E a b a b 的左、右两个焦点,P 为曲线上任意一点,直线12,PF PF 分别交曲线E 异于P 的点,A B ,设11λ=PF F A ,22μ=PF F B ,证明:λμ+为定值.【解析】证明:设112200(,),(,),(,)A x y B x y P x y ,因为11λ=PF F A ,可得011101λλλλ+⎧=−⎪⎪+⎨+⎪=⎪+⎩x x c y y ,将1100(,),(,)A x y P x y ,代入曲线方程有2200222211221,(1)1,(2)⎧±=⎪⎪⎨⎪±=⎪⎩x y a b x y a b ,2(2)λ⨯得222221122,(3)λλλ+=x y a b ,(1)(3)−得20101010122()()()()1λλλλλ+−+−±=−x x x x y y y y a b. 两边同除以21λ−整理得01010101221111111λλλλλλλλ+−+−⋅⋅±⋅⋅=+−+−x x x x y y y y a b ,所以01211λλ−−⋅=−x x c a ,即201(1)λλ−=−a x x c .又01,1λλ+−=+x x c即01(1)λλ+=−+x x c .两式相加得:222202λ−+=−a c a c x c c同理:222202μ+−=−a c a c x c c ,所以22222λμ++=⋅−a c a c. 【注】若将11λ=PF F A ,22μ=PF F B ,换成11λ=AF F B ,22μ=BF F P ,则有2222112λμ++=⋅−a c a c 为定值,11()()24μλλμλμλμ++=++≥,得22min 22()2λμ−+=⋅+a c a c .第二章 技法篇227例10.已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为23,半焦距为(0)>c c ,且1−=a c ,经过椭圆的左焦点F ,斜率为11(0)≠k k 的直线与椭圆交于,A B 两点,O 为坐标原点.(1)求椭圆C 的标准方程; (2)当11=k 时,求∆AOB S 的值;(3)设(1,0)R ,延长,AR BR 分别于椭圆交于,C D 两点,直线CD 的斜率为2k ,求证:12k k 为定值. 【解析】(1)由题意:得231⎧=⎪⎨⎪−=⎩c a a c 解得32=⎧⎨=⎩a c 所以2225=−=b a c ,故椭圆C 的标准方程22195+=x y . (2)由(1),知(2,0)−F 设1122(,),(,)A x y B x y ,则12187+=−x x ,12914=−x x ,12|||=−=AB xx 307=, 设O 点到直线AB 的距离为d,则=d1130||227∆=⋅=⨯AOB S AB d . (3)设AB 直线方程:(2)=+y k x ,11223344(,),(,),(,),(,)A x y B x y C x y D x y ,λ=AR RC ,μ=BR BD , 将,,,A B C D 坐标代入椭圆得:221122331,(1)951,(2)95⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,222222441,(3)951,(4)95⎧+=⎪⎪⎨⎪+=⎪⎩x y x y 2(1)(2)λ−得:213131313()()()()195λλλλλ−+−++=−x x x x y y y y ,2(3)(4)μ−得:224242424()()()()195μμμμμ−+−++=−x x x x y y y y ,13131101λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩x x y y ,24241101μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩x x y y ,所以1391λλ−=−x x ,2491λμ−=−x x , 由上式得:125445λλ=−⎧⎪⎨=−⎪⎩x x ,245445μμ=−⎧⎪⎨=−⎪⎩x x , 所以12123434224444(5)(5)λμλμλμλμ−−++−−+−==−−−−−+y y kx kkx ky y x x (54)2(54)2117()7441144()λμλμλμλμλμ−+−+−+−−===−+−−k kk kk k .【注】综上可知,若出现相交弦共点在坐标轴上的时候,常规联立非常繁琐,那么将坐标变换成比值,达到事半功倍的效果,其结果就是几步秒杀.例11.已知椭圆22143+=x y ,点(4,0)P ,过点P 作椭圆的割线PAB ,C 为B 关于x 轴的对称点,求证:直线AC 恒过定点.【解析】设1122(,),(,)A x y B x y ,则22(,)−C x y ,设AC 与x 轴的交点为(,0)M m ,λ=AP PB ,μ=AM MC ,则1212(,)11λλλλ++++x x y y P ,1212(,)11μμμμ+−++x x y y M , 于是124(1)λλ+=+x x ,120λ+=y y ,12(1)μμ+=+x x m ,120 (1)μ−=y y ,则μλ=−, 由点,A B 在椭圆上得:221122221,(1)431,(2)43⎧+=⎪⎪⎨⎪+=⎪⎩x y x y , 2(1)(2)μ−⨯得:212121212()()()()143μμμμμ+−+−+=−x x x x y y y y ,所以124(1)μμ−−=x x m ,124(1)λλ++=x x m,由(1)可知:1=m , 综上可知:直线AC 恒过定点(1,0).【注】因为,,A B P 三点共线,,,A C M 三点也共线,且,,A B C 三点都在椭圆上,我们用定比点差法去解决这个问题.例12.(2018·全国卷Ⅰ)设椭圆22:12+=x C y 的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程. (2)设O 为坐标原点,证明:∠=∠OMA OMB .【解析】(1)由已知得(1,0),F l 的方程为1=x ,由已知可得点A的坐标为或(1,,所以AM的方程为2=−y x2=−y x (2)当l 与x 轴重合时,00∠=∠=OMA OMB .当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠=∠OMA OMB .当l 与x 轴不重合也不垂直时,设11(,)A x y ,22(,)B x y ,点B 关于x 轴对称的点22(,)'−B x y ,229根据几何性质可得:令ON 为∠ANB 的角平分线,AB 与x 轴交点为2F ,下面通过证明N 与M 重合来证明∠=∠OMA OMB ,根据角平分线定理有:22=='AF AN AN F B NB NB ,令λ'=AN NB ,则12(,0)1λλ++x x N ,由122211λλλ−=−⇒=−x x AF F B ,,A B 代入椭圆方程221122221,(1)21,(2)2⎧+=⎪⎪⎨⎪+=⎪⎩x y x y 2(1)(2)λ−⨯得:212121212()()()()12λλλλλ+−++−=−x x x x y y y y ,即21212121011(2,0)21112λλλλλλ+−−⋅⋅+⋅=⇒=⇒+−−F N x x x x x x y y N ,即N 与M 重合,所以∠=∠OMA OMB . 例13.(2018·北京文)已知椭圆2222:1(0)+=>>x y M a b a bk 的直线l 与椭圆M 有两个不同的交点,A B ,(1)求椭圆M 的方程.(2)若1=k ,求||AB 的最大值.(3)设(2,0)−P ,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若,C D 和点71(,)44−Q 共线,求k .【解析】(1)由题意得2=cc=c e a=a 2221=−=b a c ,所以椭圆M 的标准方程为2213+=x y .(2)设直线AB 的直线方程为=+y x m ,由2213=+⎧⎪⎨+=⎪⎩y x m x y ,消去y 可得2246330++−=x mx m , 则2223644(33)48120∆=−⨯−=−>m m m ,即24<m ,1122(,),(,)A x y B x y ,1232+=−mx x ,212334−=m x x ,12|||=−=AB x x=, 易得当20=m时,max ||=AB ||AB.(3)设11223344(,),(,),(,),(,)A x y B x y C x y D x y ,λ=AP PC ,2424(,)(2,0)11μμμμ++=−++x x y y P ,有22112233 1 (1)3 1 (2)3⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,2(1)(2)λ−⨯得:213131313()()()()13λλλλλ+−++−=−x x x x y y y y , 即13(2)()13(1)λλ−−=−x x ,1311333171244(3)172441λλλλλλ−⎧⎧=−=−−⎪⎪⎪⎪−⇒⎨⎨+⎪⎪=−−=−⎪⎪⎩+⎩x x x x x x , 同理2422443171244(4)172441μλλλλλ−⎧⎧=−=−−⎪⎪⎪⎪−⇒⎨⎨+⎪⎪=−−=−⎪⎪⎩+⎩x x x x x x 故121()(5)4λμ−=−−x x ,同时1324λμ⎧=⎪−⎪⎨⎪=⎪−⎩y y y y ,由于CD 过定点71(,)44−Q , 故21341234111114444()(6)711144444μλλμλμ−−−−−−=⇒=⇒−=−−+−−−y y y y y y x x , 结合(5)(6)可得12121−=−y y x x ,即1=k . 例14.已知点(0,1)P ,椭圆22:(1)4+=>x C y m m 上两点,A B 满足2=AP PB ,则当m 为何值时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,22(,),(0,1)B x y P ,则22112222,(1)4,(2)4⎧+=⎪⎪⎨⎪+=⎪⎩x y m x y m ,由2=AP PB 得121220122112+⎧=⎪⎪+⎨+⎪=⎪⎩+x x y y , 2(1)(2)2−⋅得222222212122(2)(12)4−⋅+−⋅=−x x y y m ,即1212121222221412121212+−+−⋅⋅+⋅=+−+−x x x x y y y y m ,则,122−=−y y m ,1223+=y y ,则234+=my ,所以2223()44++=x m m , 即2221094−+−=m m x ,当5=m 时,()22max 4=x ,则2max2=x .三、方法总结点差法是解决圆锥曲线与直线的关系中常用到的一种方法.当直线与圆锥曲线相交的问题涉及到相交弦的中点时,宜应用点差法求解,即将直线被圆锥曲线截得的弦的两端点坐标代入圆锥曲线方程,得到两个等式,再将两个等式作差,转化得到弦的中点坐标与直线斜率的关系,进而解决问题.在解答圆锥曲线231的某些问题时,若果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程.当1λ=时,点M 为弦AB 的中点.若1λ≠时,点M 不再是中点,就成了定比分点.这时就会出现12λ+x x 这样形式的式子,若果再凑出12λ−x x ,我们就会想到222121212()()λλλ+−=−⋅x x x x x x ,则在有心二次曲线的方程上乘以2λ再作差,就会得到这样的式子,因此我们想到了“定比点差法”.定比点差法实际上是直线的参数方程的变异形式,只不过将其中的t 变作了λ,也就是说只要是共线点列的问题都可以在考虑运用直线的参数方程的同时考虑定比点差法.定比点差法在处理圆锥曲线上过定点的直线的证明题时往往可以起到简化运算的作用.但定比点差法无法应用于抛物线,并且它采用的参数λ在解析几何问题中并不通用,在求解具体的斜率、弦长与面积时往往会引起运算上的麻烦(当然,求坐标还是很简便的),所以并不是所有的共线问题都适用用定比点差法解决.综上所述,在研究点差法及定比点差法时,主要核心思想统一体现为减元、消元以及方程的思想.四.巩固练习1.已知椭圆()222210+=>>x y a b a b 的一条准线方程是1=x ,有一条倾斜角为4π的直线交椭圆于、A B 两点,若AB 的中点为11,24⎛⎫− ⎪⎝⎭C ,则椭圆方程为 .【答案】2211124+=x y【解析】设()()1122,,、A x y B x y ,则121211,2+=−+=x x y y , 且2211221+=x y a b ①, 2222221+=x y a b②, −①②得:2222121222−−=−x x y y a b ,()()221212221212112+−−∴=−=−⋅−+b x x y y b x x a y y a ,21221221−∴===−AB y y b k x x a,222∴=a b ③又21=a c ,2∴=a c ④ 而222=+a b c ⑤由③④⑤可得212=a ,214=b ,所求椭圆方程为2211124+=x y . 2.已知椭圆221259+=x y 上不同的三点()()11229,,4,,,5⎛⎫⎪⎝⎭A x yBC x y 与焦点()4,0F 的距离成等差数列.(1)求证:128+=x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 【解析】(1)略; (2)解128+=x x ,∴设线段AC 的中点为()04,D y .又、A C 在椭圆上,∴22111259+=x y ①,22221259+=x y ②,−①②得:22221212259−−=−x x y y , ()()1212121200998362525225+−∴=−=−⋅=−−+x x y y x x y y y y . ∴直线DT 的斜率02536=DT y k ,∴直线DT 的方程为()0025436−=−y y y x .令0=y ,得6425=x ,即64,025⎛⎫ ⎪⎝⎭T ,∴直线BT 的斜率9055644425−==−k . 3.若抛物线2:=C y x 上存在不同的两点关于直线():3=−l y m x 对称,则实数m 的取值范围是 .【答案】(【解析】当0=m 时,显然满足.当0≠m 时,设抛物线C 上关于直线():3=−l y m x 对称的两点分别为()()1122,,、P x y Q x y ,且PQ 的中点为()00,M x y ,则211=y x ①,222=y x ②, −①②得:221212−=−y y x x ,1212120112−∴===−+PQ y y k x x y y y , 又1=−PQ k m ,02∴=−m y . 中点()00,M x y 在直线():3=−l y m x 上,()003∴=−y m x ,于是052=x . 中点M 在抛物线2=y x 内部,200∴<y x ,即2522⎛⎫−< ⎪⎝⎭m,解得<m综上可知,所求实数m的取值范围是(.4.(2011浙江理)设1F ,2F 分别为椭圆2213+=x y 的左、右焦点,点A ,B 在椭圆上,若125=F A F B ,则点A 的坐标是 .233解答:记直线1F A 反向延长交椭圆于1B ,由125=F A F B 及椭圆对称性得1115=AF F B ,设11(,)A x y ,22(,)B x y,(F .①定比分点公式得:12125155015+⎧=⎪⎪+⎨+⎪=⎪+⎩x x yy 1212550⎧+=−⎪⇒⎨+=⎪⎩x x y y ②又⎧+=⎪⎪⎨⎪+=⎪⎩221122221(1)31(2)3x y x y 221122221(1)4252525(3)3x y x y ⎧+=⎪⎪⇒⎨⎪+=⎪⎩③由(1)-(3)得+−++−=−12121212(5)(5)(5)(5)243x x x x y y yy ⇒−=125x x ,又+=−125x x ⇒=10x ⇒±(0,1)A .5.(2009江理)双曲线()222210,0−=>>x y a b a b的右顶点A 作斜率为1−的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12=AB BC ,则双曲线的离心率是( )ABCD【答案】C【解析】设11(,)C x y ,22(,)B x y ,(,0)A a ,由12=AB BC ,由12=AB BC 得121212112102112⎧+⎪=⎪⎪+⎪⎨⎪+⎪=⎪+⎪⎩a x x y y 12123230−=−⎧⇒⎨−=⎩x x a y y . 又22112222222200⎧−=⎪⎪⎨⎪−=⎪⎩x y a b x y a b 2211222222220 990 ⎧−=⎪⎪⇒⎨⎪−=⎪⎩①②x y a b x y a b , 由①-②得:1212121222(3)(3)(3)(3)0+−+−−=x x x x y y y y a b 1230⇒+=x x ,又1232−=−x x a所以1=−x a ,所以(,)−C a b ,所以01−=−=−−AC b k a a2⇒=ba ⇒=e 6.已知椭圆22162+=x y 的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11λ=PF F A ,22μ=PF F B .若2λ=,求μ的值.【解析】设()00,P x y ,11(,)A x y ,22(,)B x y , 由11λ=PF F A 得()0101010111001λλλλλλλ+⎧−=⎪⎧+=−+⎪⎪+⇒⎨⎨++=⎪⎩⎪=⎪+⎩x x c x x c y y y y 由22μ=PF F B 得()02020********μμμμμμμ+⎧=⎪⎧+=−++⎪⎪⇒⎨⎨++=⎪⎩⎪=⎪+⎩x x c x x c y y y y由22002222112211⎧+=⎪⎪⎨⎪+=⎪⎩x y a bx y a b ⇒2200222222211221 λλλ⎧+=⎪⎪⎨⎪+=⎪⎩①②x y a bx y ab235由①-②得:()()()()010*******21λλλλ−+−++=−x x x x y y y yx ab()()()()()()20101201111λλλλλλ−+⇒=⇒−=−−−+x x x x a a x x c ,又()()011λλ+=−+x x c所以222202λ−+=−a c a c x c c ,同理可得222202μ−+=−+a c a c x c c 所以()()2222222222108λμλμμ−+++=⋅⇒+=⋅=⇒=−a c a c a c c c a c . 7.已知椭圆22:12+=xy C ,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112+=PA PB PQ,求点Q 的轨迹方程.【解析】设11(,)A x y ,22(,)B x y ,()00,Q x y ,由112+=PA PB PQ 22−+⇒+=⇒+=PQ PQ PA AQ PB QB PA PB PA PB0−⇒+=⇒=AQ QB PA AQ PAPBPBQB,记()0λλ==>AP AQ PBQB,即λ=−AP PB ,λ=AQ QB .由λ=−AP PB 得:()()1212121222112121λλλλλλλλ−⎧=⎪⎧−=−⎪⎪−⇒⎨⎨−−=−⎪⎪⎩=⎪−⎩x x x x y y y y由λ=AQ QB 得:()()1201201212001111λλλλλλλλ+⎧=⎪⎧+=+⎪⎪+⇒⎨⎨++=+⎪⎪⎩=⎪+⎩x x x x x x y y y y y y又221122222222⎧+=⎪⎨+=⎪⎩x y x y 221122222222 222 λλλ⇒⎪⎧+=⎪⎨+=⎩①②x y x y 由①-②得:()()()()()212121212221λλλλλ+⋅−+⋅+⋅−=−x x x x y y y y ()()()()()20021141121λλλλλ⇒+⋅−+⋅+⋅−=−x y 00242⇒+=x y ,即00210+−=x y .注意到在椭圆内,故点Q 的轨迹方程为()2221022+−=+<x y x y .8.(2019全国卷理)已知抛物线2:3=C y x 的焦点为F ,斜率为32的直线l 与C 的交点分别为,A B ,与x 轴的交点为P .(1)若4+=AF BF ,求直线l 的方程; (2)若3=AP PB ,求AB .【答案】(1)3728=−y x ;(2)=AB 【解析】(1)设直线l 的方程为:32=+y x m ,与抛物线方程联立可得:()22239330342⎧=⎪⇒+−+=⎨=+⎪⎩y xx m x m y x m , 设()()1122,,,A x y B x y ,故()12413+=−x x m 由抛物线定义可得:()12431432+=++=−+=AF BF x x p m ,解得78=−m . 故直线方程为:3728=−y x . (2)设直线l 的方程为:32=+y x m ,联立22322032⎧=⎪⇒−+=⎨=+⎪⎩y xy y m y x m设()()()11220,,,0,,A x y B x y P x ,则1212 2 2 +=⎧⎪⎨⋅=⎪⎩①②y y y y m 由3=AP PB 可得()12030−=−y y ,即123=−y y ③237由①②解得1231=⎧⎨=−⎩y y ,代入③式得32=−m ,故直线方程为3322=−y x .解得:()53,3,13⎛⎫− ⎪⎝⎭,A B,故=AB .联系2675512809购买。

圆锥曲线知识点+例题+练习含答案(整理)(20201128025357)

圆锥曲线知识点+例题+练习含答案(整理)(20201128025357)

圆锥曲线一、椭圆:(1 )椭圆的定义:平面内与两个定点F I,F2的距离的和等于常数(大于厅芾2| L 的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意:2a |F1F2 |表示椭圆;2a |F1F21表示线段F1 F2;2a |F1F2|没有轨迹;(2)椭圆的标准方程、图象及几何性质:2 23.常用结论:(1)椭圆笃占i(a b 0)的两个焦点为F I,F2,过F i的直线交椭圆于A, B两 a b点,贝U ABF 2的周长= _______2 2(2)设椭圆务笃1(a b 0)左、右两个焦点为F1, F2,过F1且垂直于对称轴的直线 a b交椭圆于P,Q两点,则P,Q的坐标分别是_______________ | PQ | ___________ 、双曲线:(1)双曲线的定义:平面内与两个定点 F i , F 2的距离的差的绝对值等于常数(小于 | F 1F 2 |) 的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意:|PFj IPF 2I 2a 与 | PF 2 | | PF i | 2a ( 2a | F 1F 2 |)表示双曲线的一支。

2a | F 1F 2 |表示两条射线;2a | F 1F 2 |没有轨迹;(2)双曲线的标准方程、图象及几何性质:顶点 A 1( a,0), A 2(a,0)B 1(0, a),B 2(0,a)对称轴x 轴,y 轴;虚轴为 2b,实轴为2a 焦 占 八、、 八、、F 1( C ,0),F 2(C ,0)F 1 (0, C ), F 2(0,C )焦距El2C (C 0) 2 C2.2a b离心率e C (e 1) a(离心率越大,开口越大)渐近线b y —xaa y— xb通径2 b 2a(4)等轴双曲线为x 2 y 2 t 2,其离心率为 2中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准 方程2x~2 a2y1( a 0,b0)b2y~2a2(3)双曲线的渐近线:①求双曲线匚〔的渐近线,可令其右边的1为0,即得乂 .2 ' 2a 2b 22yb 2,因式分解得到A y 0。

高中数学圆锥曲线知识点总结(合集5篇)

高中数学圆锥曲线知识点总结(合集5篇)

高中数学圆锥曲线知识点总结(合集5篇)第一篇:高中数学圆锥曲线知识点总结高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。

用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。

其中定点叫焦点,定直线叫准线,常数e是离心率。

用集合表示为:(2)标准方程和性质:;注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

(3)参数方程:3、双曲线:(1)轨迹定义:(θ为参数);①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。

用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。

其中定点叫焦点,定直线叫准线,常数e是离心率。

用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。

用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形各性质(除切线外)均可在这个图中找到。

则椭圆的3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。

当e→1,c→a椭圆变扁,直至成为极限位置的线段也可认为是椭圆在e=1时的特例。

2021版新高考数学:圆锥曲线含答案

2021版新高考数学:圆锥曲线含答案
理由如下:
设M(x、y)、由已知得⊙M的半径为r=|x+2|、|AO|=2.
由于 ⊥ 、【关键点5:圆的几何性质向量化】
故可得x2+y2+4=(x+2)2、化简得M的轨迹方程为y2=4x.
因为曲线C:y2=4x是以点P(1、0)为焦点、以直线x=-1为准线的抛物线、所以|MP|=x+1.
因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1、所以存在满足条件的定点P.
由题设知 =1、 =m、于是k=- .①
由于点M(1、m)(m>0)在椭圆 + =1内、
∴ + <1、解得0<m< 、故k<- .
(2)由题意得F(1、0).设P(x3、y3)、
则(x3-1、y3)+(x1-1、y1)+(x2-1、y2)=(0、0).
由(1)及题设得
x3=3-(x1+x2)=1、y3=-(y1+y2)=-2m<0.【关键点2、设出点P、借助向量的建立变量间的关系、达到设而不求的目的】
【点评】从本题可以看出、圆的几何性质与数量关系的转化涵盖在整个解题过程中、向量在整个其解过程中起了“穿针引线”的作用、用活圆的几何性质可以达到事半功倍的效果.
途径四 设而不求、化繁为简
高考示例
方法与思维
(20xx·全国卷Ⅲ)已知斜率为k的直线l与椭圆C: + =1交于A、B两点、线段AB的中点为M(1、m)(m>0).
所以l的方程为y=-x+ 、代入C的方程、并整理得7x2-14x+ =0.
故x1+x2=2、x1x2= 、
代入②解得|d|= .【关键点3:借用根与系数的关系、达到设而不求的目的】
所以该数列的公差为 或- .
【点评】本题(1)涉及弦的中点坐标、可以采用“点差法”求解、设出点A、B的坐标、代入椭圆方程并作差、再将弦AB的中点坐标代入所得的差、可得直线AB的斜率;对于(2)圆锥曲线中的证明问题、常采用直接法证明、证明时常借助等价转化思想、化几何关系为数量关系、然后借助方程思想给予解答.

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。

若为椭圆上任意一点,则有。

椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。

注:①以上方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。

例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。

(2)椭圆的性质①范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。

若同时以代替,代替方程也不变,则曲线关于原点对称。

所以,椭圆关于轴、轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。

在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。

同理令得,即,是椭圆与轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。

由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,且,即;④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。

∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。

当且仅当时,两焦点重合,图形变为圆,方程为。

2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。

注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。

A10 专题十 圆锥曲线

A10 专题十 圆锥曲线

专题十 圆锥曲线【考点聚焦】考点1:椭圆的概念与性质. 考点2:双曲线的概念与性质. 考点3:抛物线的概念与性质.考点4:直线与圆锥曲线的位置关系. 考点5:轨迹问题.考点6:圆锥曲线的参数方程;极坐标;与代数、三角、平面向量的综合问题. 【自我检测】完成下面表格中内容:【重点∙难点∙热点】问题1:求圆锥曲线的标准方程、离心率、准线方程等.利用待定系数法求出相应的a ,b ,p 等.例1.设椭圆的中心在原点,坐标轴为对称轴, 一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程、离心率、准线方程及准线间的距离.思路分析:设所求椭圆方程为12222=+by ax 或)0(12222>>=+b a ay bx .根据题意列出关于a ,b ,c 方程组,从而求出a ,b ,c 的值,再求离心率、准线方程及准线间的距离.解:设椭圆的方程为12222=+by ax 或)0(12222>>=+b a ay bx ,则⎪⎩⎪⎨⎧+=-=-=222)12(4c b a c a c b ,解之得:24=a ,b =c =4.则所求的椭圆的方程为1163222=+yx或1321622=+yx,离心率22=e ;准线方程88±=±=y x 或,两准线的距离为16.点评:充分认识椭圆中参数a ,b ,c ,e 的意义及相互关系,在求标准方程时,已知条件常与这些参数有关.演变1:如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程点拨与提示 本题考查待定系数法求双曲线的方程,利用点P在曲线上和△P 1OP 2的面积建立关于参数a 、b 的两个方程,从而求出a 、b 的值问题2:圆锥曲线的几何性质由方程来讨论其性质.例2:设F 1、F 2为椭圆14922=+yx的两个焦点,P 为上一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求||||21PF PF 的值.思路分析:由已知,F 1不是直角顶点,所以只要对P 、F 2中哪一个是直角顶点分两种情况即可.解法1:由已知,|PF 1|>|PF 2|,|PF 1|+|PF 2|=6,|F 1F 2|=52, 若∠PF 2F 1为直角,则|PF 1|2=|PF 2|2+|F 1F 2|2,可解得:|PF 1|=314,|PF 2|=34,这时27||||21=PF PF .若∠F 2PF 1为直角,则|PF 1|2+|PF 2|2=|F 1F 2|2,可解得:|PF 1|=4,|PF 2|=2,这时2||||21=PF PF .解法2:由椭圆的对称性,不妨设P (x ,y)(其中x >0,y >0),)0,5(),0,5(21F F -.P 1若∠PF 2F 1为直角,则P (34,5),这时|PF 1|=314,|PF 2|=34,这时27||||21=PF PF .若∠PF 2F 1为直角,则由⎪⎪⎩⎪⎪⎨⎧-=-⋅+=+15514922x y x y yx ,解得:)554,553(P . 于是|PF 1|=4,|PF 2|=2,这时2||||21=PF PF .点评:由椭圆的方程,熟练准确地写出其几何性质(如顶点,焦点,长、短轴长,焦距,离心率,焦半径等)是应对考试必备的基本功;在解法2中设出了P 点坐标的前提下,还可利用|PF 1|=a +e x ,|PF 2|=a -e x 来求解.演变2:已知双曲线的方程为1422=-yx, 直线l 通过其右焦点F 2,且与双曲线的右支交于A 、B 两点,将A 、B 与双曲线的左焦点F 1连结起来,求|F 1A |²|F 1B |的最小值点拨与提示:由双曲线的定义得:|A F 1|=25(x 1+54)=25x 1+2,|B F 1|=25x 2+2,|F 1A|²|F 1B|=(25x 1+2)(25x 2+2)=45x 1x 2+5(x 1+x 2)+4 ,将直线方程和双曲线的方程联立消元,得x 1+x 2=145822-kk , x 1x 2= ─1442022-+kk .本题要注意斜率不存在的情况.问题3:有圆锥曲线的定义的问题利用圆锥曲线的第一、第二定义求解.例3:已知某椭圆的焦点F 1(-4,0),F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个焦点为B ,且=10,椭圆上不同两点A (x 1,y 1),C(x 2,y 2)满足条件|F 2A |,|F 2B |,|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标.思路分析:因为已知条件中涉及到椭圆上的点到焦点的距离,所以可以从椭圆的定义入手.解:(1)由椭圆的定义及已知条件知:2a =|F 1B |+|F 2B |=10,所以a =5,又c =3,故b =4.故椭圆的方程为192522=+yx.由点B (4,y 0)在椭圆上,得|F 2B |=|y 0|=59,因为椭圆的右准线方程为425=x ,离心率54=e .所以根据椭圆的第二定义,有,545)425(54||112x x A F -=-=222545)425(54||x x C F -=-=.因为|F 2A |,|F 2B |,|F 2C |成等差数列,1545x -+5925452⨯=-x ,所以: x 1+x 2=8,从而弦AC 的中点的横坐标为4221=+x x点评:涉及椭圆、双曲线上的点到两个焦点的距离问题,常常要注意运用第一定义,而涉及曲线上的点到某一焦点的距离,常常用圆锥曲线的统一定义.对于后者,需要注意的是右焦点与右准线对应,不能弄错.演变3:已知椭圆C 的中心在原点,左焦点为F 1,其右焦点F 2和右准线分别是抛物线3692+-=x y的顶点和准线. ⑴求椭圆C 的方程;⑵若点P 为椭圆上C 的点,△PF 1F 2的内切圆的半径为75,求点P 到x 轴的距离;⑶若点P 为椭圆C 上的一个动点,当∠F 1PF 2为钝角时求点P 的取值范围.点拨与提示:本题主要复习圆锥曲线的基本知识,待定系数法和定义法等通性通法的运用.根据抛物线确定抛物线的顶点和准线方程,从而得到椭圆的标准方程.解题时注意椭圆的定义的运用.问题4:直线与圆锥曲线位置关系问题利用数形结合法或将它们的方程组成的方程组转化为一元二次方程,利用判别式、韦达定理来求解或证明.例4:抛物线C 的方程为)0(2<=a ax y ,过抛物线C 上一点P (x 0,y 0)(x 0≠0)作斜率为k 1,k 2的两条直线分别交抛物线C 于A(x 1,y 1)B(x 2,y 2)两点(P ,A,B 三点互不相同),且满足)10(012-≠≠=+λλλ且k k .(Ⅰ)求抛物线C 的焦点坐标和准线方程;(Ⅱ)设直线AB 上一点M ,满足MA BM λ=,证明线段P M 的中点在y 轴上; (Ⅲ)当λ=1时,若点P 的坐标为(1,-1),求∠P AB 为钝角时点A 的纵坐标1y 的取值范围.思路分析:将直线方程和抛物线方程组成的方程组转化为一元二次方程,用韦达定理来求解.解:(Ⅰ)由抛物线C 的方程2ax y =(0<a )得,焦点坐标为)41,0(a,准线方程为ay 41-=.(Ⅱ)证明:设直线PA 的方程为)(010x x k y y -=-,直线PB 的方程为)(020x x k y y -=-.点),(00y x P 和点),(11y x A 的坐标是方程组0102()y y k x x y ax -=-⎧⎪⎨=⎪⎩ ①②的解.将②式代入①式得000112=-+-y x k x k ax ,于是ak x x 101=+,故011x ak x -=③又点),(00y x P 和点),(22y x B 的坐标是方程组0202()y y k x x y ax -=-⎧⎪⎨=⎪⎩ ④ ⑤的解.将⑤式代入④式得000222=-+-y x k x k ax .于是220k x x a+=,故220k x x a=-.由已知得,12k k λ-=,则012x k ax --=λ. ⑥设点M 的坐标为),(M M y x ,由MA BM λ=,则λλ++=112x x x M .将③式和⑥式代入上式得0001x x x x M -=+--=λλ,即00=+x x M .∴线段PM 的中点在y 轴上.(Ⅲ)因为点)1,1(-P 在抛物线2ax y =上,所以1-=a ,抛物线方程为2x y -=.由③式知111--=k x ,代入2x y -=得211)1(+-=k y .将1=λ代入⑥式得211x k =-,代入2x y -=得222)1(+-=k y .因此,直线PA 、PB 分别与抛物线C 的交点A 、B 的坐标为2111(1,21)A k k k -----,2111(1,21)B k k k --+-.于是2111(2,2)AP k k k =++ ,11(2,4)AB k k =,2111111112(2)4(2)2(2)(21)AP AB k k k k k k k k ⋅=+++=++. 因PAB ∠为钝角且P 、A 、B 三点互不相同,故必有0AP AB ⋅<.求得1k 的取值范围是12k <-或1102k -<<.又点A 的纵坐标1y 满足211(1)y k =-+,故当12k <-时,11y <-;当1102k -<<时,1114y -<<-.即11(,1)(1,)4y ∈-∞--- 点评:解析几何解题思维方法比较简单,但对运算能力的要求比较高,平时练习要注意提高自己的运算能力.演变4. (05年重庆)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(. (1) 求双曲线C 的方程; (2) 若直线l :2+=kx y 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点),求k 的取值范围.问题5:轨迹问题根据已知条件求出轨迹方程,再由方程说明轨迹的位置、形状、大小等特征.例5. (05年江西)如图,M 是抛物线上y 2=x 上的一点,动弦ME 、M F 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线E F 的斜率为定值; (2)若M 为动点,且∠EM F =90°,求△EM F 的重心G 的轨迹思路分析:(1)由直线M F (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去y 0即得到G 的轨迹方程(参数法).解:(1)设M (y 20,y 0),直线ME 的斜率为k (l>0)则直线M F 的斜率为-k ,方程为200().y y k x y -=-∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消200(1)0x ky y y ky -+-=得解得2021(1),F F ky ky y x kk--=∴=∴02200022211214(1)(1)2E F EF E Fky ky y y k k k k ky ky ky x x y k kk-+---====---+--(定值) 所以直线E F 的斜率为定值.(2)90,45,1,EM F M AB k ∠=∠== 当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E FM E F y y y y x x x x y y y y x x x x ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122().9273y x x =->点评:这是一道重要的数学问题,几乎是高考数学每年的必考内容之一,此类问题一定要“大胆假设,细心求解”,根据题目要求先将题目所涉及的未知量都可以设出来,然后根据题目把所有的条件都变成等式,一定可以求出来,当然求的过程中,采取适当的小技巧,例如化简或适当分类讨论,可以大为简化过程,而且会尽量多多得分,同时这一类题目也需要很强的计算能力.演变5:已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x ac a P F +=||1;(Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1M F 2的面积S=.2b 若存在,求∠F 1M F 2的正切值;若不存在,请说明理由.点拨与提示:本题在求点T 的轨迹用的是代入法:即用T 点的坐标将Q 点的坐标表示出来,再代入Q 所满足的曲线方程即可.问题6:与圆锥曲线有关的定值、最值问题建立目标函数,转化为函数的定值、最值问题.例6:点A 、B 分别是椭圆1203622=+yx长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线A P 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.思路分析:设椭圆上动点坐标为(x ,y ),用该点的横坐标将距离d 表示出来,利用求函数最值的方法求d 的最小值. [解](1)由已知可得点A(-6,0),F (0,4)设点P (x ,y ),则AP={x +6, y },FP ={x -4, y },由已知可得22213620(6)(4)0x yx x y ⎧+=⎪⎨⎪+-+=⎩则22x +9x -18=0, x =23或x =-6.由于y >0,只能x =23,于是y =235. ∴点P 的坐标是(23,235)(2) 直线A P 的方程是x -3y +6=0. 设点M(m ,0),则M 到直线A P 的距离是26+m .于是26+m =6+m ,又-6≤m ≤6,解得m =2.椭圆上的点(x ,y )到点M 的距离d 有 222222549(2)4420()15992d x yx xx x=-+=-++-=-+, 由于-6≤m ≤6, ∴当x =29时,d 取得最小值15点评:解决有关最值问题时,首先要恰当地引入变量(如点的坐标、角、斜率等),的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).点拨与提示:(1)待定系数法;(2)利用夹角公式将∠F 1PF 2的正切值用y 0表示出来,利用基本不等式求其最值.演变7:(05年全国)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB +与(3,1)a =- 共线. (1)求椭圆的离心率; (2)设M 为椭圆上任意一点,且(,)O M O A O B R λλλμ=+∈,证明22λμ+为定值.点拨与提示:(1)将AB 的方程与椭圆方程联立成方程组,然后求解;(2)将M 点的坐标用A 、B 的坐标表示出来,代入到椭圆方程,结合韦达定理求解.问题7:与圆锥曲线有关的对称问题利用中心对称以及轴对称的概念和性质来求解或证明.例7:过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l对称,试求直线l 与椭圆C 的方程思路分析: 本题是典型的求圆锥曲线方程的问题,解法一,将A 、B 两点坐标代入圆锥曲线方程,两式相减得关于直线AB 斜率的等式,再利用对称点所连线段被对称轴垂直平分来列式求解;解法二,用韦达定理解法一 由e =22=ac ,得21222=-ab a ,从而a 2=2b 2,c =b设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-y 22)=0,.)(221212121y y x x x x y y ++-=--设AB 中点为(x 0,y 0),则k AB =-02y x ,又(x 0,y 0)在直线y =21x 上,y 0=21x 0,于是-02y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点(b ,0)关于l 的对称点设为(x ′,y ′),⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y bx y 11 1221解得则 由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=9,1692=a∴所求椭圆C 的方程为2291698y x +=1,l 的方程为y =-x +1解法二 由e =21,22222=-=ab a ac 得,从而a 2=2b 2,c =b设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1),将l 的方程代入C 的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0,则x 1+x 2=22214kk+,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =-2212kk+直线l y =21x 过AB 的中点(2,22121y y x x ++),则2222122121kkkk +⋅=+-,解得k =0,或k =-1若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一点评:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强 待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题,成为解决本题的关键.注意在设直线方程时要对直线斜率是否存在进行讨论.演变8:(05年湖南)已知椭圆C :22ax +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB . (Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.点拨与提示:(1)由A 、B 的坐标求出M 点的坐标(x 0,y 0),代入椭圆的方程即可;(2)利用等腰三角形的性质|PF 1|=|F 1F 2|来求λ的值.专题小结1、求曲线方程常利用待定系数法,求出相应的a ,b ,p 等.要充分认识椭圆中参数a ,b ,c ,e 的意义及相互关系,在求标准方程时,已知条件常与这些参数有关.2、涉及椭圆、双曲线上的点到两个焦点的距离问题,常常要注意运用第一定义,而涉及曲线上的点到某一焦点的距离,常常用圆锥曲线的统一定义.对于后者,需要注意的是右焦点与右准线对应,不能弄错.3、直线与圆锥曲线的位置关系问题,利用数形结合法或将它们的方程组成的方程组转化为一元二次方程,利用判别式、韦达定理来求解或证明.4、对于轨迹问题,要根据已知条件求出轨迹方程,再由方程说明轨迹的位置、形状、大小等特征.求轨迹的常用方法有直接法、定义法、参数法、代入法、交轨法等.5、与圆锥曲线有关的对称问题,利用中心对称以及轴对称的概念和性质来求解或证明.【临阵磨枪】一.选择题1.椭圆的焦距是它的两条准线间距离的31,则它的离心率为( )A . 23 B. 33 C. 36 D. 662.动点M (x ,y )到点F (4,0)的距离,比到直线x +5=0的距离不1,则点M 的轨迹方程为( )A. x +4=0B. x -4=0C. y 2=8x D. y 2=16x 3.设定点M (3,310)与抛物线y 2=2x 上的点P 的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点的坐标为( )A. (0,0)B. (1,2)C. (2,2)D. (21,81-)4.抛物线的顶点在原点,焦点在y 轴上,抛物线上一点P (m,-3)到焦点的距离为5,则抛物线的准线方程是( )A. y =4B. y =-4C. y =2D. y =-2 5.设F (c ,0)为椭圆)0(12222>>=+b a by ax 的右焦点,椭圆上的点与点F 的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离是)(21m M +的点是( )A.(ab c ±,) B.(0,b ±) C.(ab c ±-,) D.以上都不对6 中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为( )12575D.17525C.1252752B .1752252A.22222222=+=+=+=+yxyxy xy x7 斜率为1的直线l 与椭圆42x+y 2=1相交于A 、B 两点,则|AB |的最大值为( ) A 2B554C5104 D51088 抛物线y =ax 2与直线y =kx +b (k ≠0)交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A x 3=x 1+x 2B x 1x 2=x 1x 3+x 2x 3C x 1+x 2+x 3=0D x 1x 2+x 2x 3+x 3x 1=09 已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC的面积最大时,m 等于( )A 3B49C25D2310 设u ,v ∈R ,且|u |≤2,v >0,则(u -v )2+(vu 922--)2的最小值为( ) A 4B 2C 8D 2211 直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________12 在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________13 A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA =2π,则椭圆离心率的范围是_________14 已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________15 已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p(1)求a 的取值范围(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值16 已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另一条直线l 经过点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围17 如图,弧ADB 为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|PA |+|PB |的值不变(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DNDM =λ,求λ的取值范围18 已知圆C 1的方程为(x -2)2+(y -1)2=320,椭圆C 2的方程为2222by ax +=1(a >b >0),C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程19.P 、Q 、M 、N 四点都在椭圆2212yx +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ 共线,MF与FN 共线,且0PF MF ⋅= .求四边形PMQN 的面积的最小值和最大值.参考答案:1.B 提示:依题意有ca c 22312⋅=,∴33=a c .2.D 提示:依题意M 到点F 的距离与到直线x =-4的距离相等地,则M 的轨迹方程为y 2=16x .3.C 提示:连接PF ,则d 1+d 2=|P M |+|PF |≥|M F |,知d 1+d 2的最小值为|M F |,当且仅当M 、P 、F 三点共线时,等号成立,而直线M F 的方程为)21(34-=x y ,与y 2=2x 联立可得x =2,y =2. 4.C 提示:依题意准线方程为y =2p ,且2p -(-3)=5,∴2p =2,故选C.5.B 提示:M =a +c ,m=a -c ,∴)(21m M +=a ,应选B.6.C 提示 由题意,可设椭圆方程为2222bx ay +=1,且a 2=50+b 2,即方程为222250bx by++=1 将直线3x -y -2=0代入,整理成关于x 的二次方程 由x 1+x 2=1可求得b 2=25,a 2=757 C 提示 弦长|AB |=55422t -⋅⋅≤5104 答案 C8 D 提示 解方程组⎩⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=a k ,x 1x 2=-a b ,x 3=-k b,代入验证即可 答案 B9 B 提示 由题意知A (1,1),B (m ,m ),C (4,2) 直线AC 所在方程为x -3y +2=0,点B 到该直线的距离为d|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC ∵m∈(1,4),∴当23=m 时,S △ABC 有最大值,此时m 9答案 B10 C 提示 考虑式子的几何意义,转化为求圆x 2+y 2=2上的点与双曲线xy =9上的点的距离的最小值 选C11.4522yx+=1 提示 所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF |欲使2a 最小,只需在直线l 上找一点P 使|PF 1|+|PF 2|最小,利用对称性可解12. 8x -y -15=0 提示 设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2)即⇒+=--21212116y y x x y y k AB =8 故所求直线方程为y =8x -151322<e <1 提示 设椭圆方程为2222by ax +=1(a >b >0),以OA 为直径的圆:x 2-ax +y 2=0,两式联立消y 得222ab a -x 2-ax +b 2=0 即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2ea -a ,0<x 2<a ,即0<2ea -a <a 22⇒<e <114 (-∞,-3]∪[1,+∞) 提示 设P (t ,t 2-1),Q (s ,s 2-1),∵BP ⊥PQ ,∴ts ts t t----⋅+-)1()1(11222=-1,即t 2+(s -1)t -s +1=0,∵t ∈R ,∴必须有Δ=(s -1)2+4(s -1)≥0 即s 2+2s -3≥0,解得s ≤-3或s ≥115 解 (1)设直线l 的方程为 y =x -a ,代入抛物线方程得(x -a )2=2px ,即x 2-2(a +p )x +a 2=0∴|AB |=224)(42a p a -+⋅≤2p ∴4ap +2p 2≤p 2,即4ap ≤-p 2,又∵p >0,∴a(2)设A (x 1,y 1)、B (x 2,y 2),AB 的中点 C (x ,y ), 由(1)知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p∴线段AB 的垂直平分线的方程为y -p =-(x -a -p ), 从而N 点坐标为(a +2p ,0),点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221pap p p ap a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 216 解 设A (x 1,y 1),B (x 2,y 2) 由⎩⎨⎧=--=1122y x kx y ,得(1-k 2)x 2+2kx -2=0,又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k 解得-2<k <-1.222),22,1(22)1,2(,222,0).2(221221211120111,12),,(22222200200221000-<+>--∈-+∴--∈-+==+-+=∴-+=+--=+--=-=+-=+=b b k kk k kb x x k ky l k k k k k x y l kkx y kk x x x y x Q 或即又则令的方程为的斜率为则设17 解 (1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系,∵|PA |+|PB |=|QA |+|QB |=2521222=+>|AB |=4∴曲线C 为以原点为中心,A 、B 为焦点的椭圆设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴a =5,c =2,b =1∴曲线C 的方程为52x+y 2=1(2)设直线l 的方程为y =kx +2,代入52x+y 2=1,得(1+5k 2)x 2+20kx +15=0Δ=(20k )2-4³15(1+5k 2)>0,得k 23由图可知21x x DNDM ==λ由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x kk x x将x 1=λx 2代入得⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x ,两式相除得)15(380)51(15400)1(2222kk k+=+=λλ+316)51(3804,320515,3510,532222<+<<+<∴<<∴>kk kk即331,0,316)1(42<λ<∴>=λ<λλ+<∴解得DNDM ①,21DNDM x x ==λ M 在D 、N 中间,∴λ<1②又∵当k 不存在时,显然λ=31=DNDM (此时直线l 与y 轴重合)18 解 由e =22,可设椭圆方程为22222by bx+=1,又设A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=4,y 1+y 2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,即(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0 化简得2121x x y y --=-1,故直线AB 的方程为y =-x +3,代入椭圆方程得3x 2-12x +18-2b 2=0 有Δ=24b 2-72>0,又|AB |=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b 2=8故所求椭圆方程为81622yx+=119.解:如图,由条件知MN 和P Q 是椭圆的两条弦,相交于焦点F (0,1),且P Q ⊥MN ,直线P Q 、NM 中至少有一条存在斜率,不妨设P Q 的斜率为K ,又P Q 过点F (0,1),故P Q 的方程为y =kx +1将此式代入椭圆方程得(2+2k )2x +2kx -1=0设P 、Q 两点的坐标分别为(1x ,1y),(2x ,2y ),则1222x x kk==++从而222221212228(1)||()()(2)k PQ xx y y k +=-+-=+亦即22)||2k PQ k+=+(1)当k ≠0时,MN 的斜率为-1k,同上可推得221(1(1))||12()k M N k+-=+-故四边形面积22222222114(1)(1)4(2)1||||122(2)(2)52k k k kS PQ M N k k kk++++===++++令u =221k k +得4(2)12(1)5252u S uu+==-++∵u =221k k+≥2当k =±1时u =2,S=169且S 是以u 为自变量的增函数,∴1629S ≤<②当k =0时,MN 为椭圆长轴,|P.∴S=12|P Q||MN|=2综合①②知四边形P MQN 的最大值为2,最小值为169.【挑战自我】 已知椭圆1222=+yax (a >1),直线l 过点A (-a ,0)和点B (a ,t a )交椭圆于M ,直线MO 交椭圆于点N.(1)用a ,t 表示△AMN 的面积S ;(2)若t ∈[1,2],a 为定值,求S 的最大值.解:(1)由于直线AB 的方程为t x -2y +a t=0, 由⎩⎨⎧=+=+-222202a y a x at y tx 得M ⎪⎪⎭⎫⎝⎛++--22223244,44a t taa t a a t ,由椭圆的对称性知N ⎪⎪⎭⎫ ⎝⎛+-+-22223244,44a t taa t a a t , ∴ S =22222224||4|4444|21a t t a a t ta a t ta a +=+++∙∙. (2)∵t ∈[1,2],S =ta ta at t a 222224444+=+=记]2,1[,4)(2∈+=t t a tt f ,∵,4)`(22ta t f -=由,04)`(22=-=ta t f 得at 2=,∵a >1,∴当221<≤a即1<a ≤2时,f(t)在[1,2]上有唯一的极值点at 2=,∴这时a t f 4)(min = 当12<a即a >2时,,04)`(22>-=ta t f 这说明f(t)在[1,2]上是增函数,所以2min 4)1()(a t f +==因此,⎪⎩⎪⎨⎧>+≤<=2442122mina aa a a S .【答案及点拨】演变1:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图的直角坐标系设双曲线方程为2222by ax -=1(a >0,b >0) 由e 2=2222)213()(1=+=a b ac ,得3=a b ∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x设点P 1(x 1,23x 1),P 2(x 2,-23x 2)(x 1>0,x 2>0),则由点P 分21P P 所成的比λ=21PP P P =2,得P 点坐标为(22,322121x x x x -+),又点P 在双曲线222294ay ax -=1上,所以222122219)2(9)2(ax x ax x --+=1,即(x 1+2x 2)2-(x 1-2x 2)2=9a 2,整理得8x 1x 2=9a 2 ①,427131241321sin ||||211312491232tan 1tan 2sin 21349||,21349||212121121212222212121121=⋅⋅=⋅⋅=∴=+⨯=+==+==+=∆x x OP P OP OP S OxP Ox P OP P x x x OP x x x OP OP P 又即x 1x 2=29②由①、②得a 2=4,b 2=9,故双曲线方程为9422yx-=1演变2:设A(x 1,y 1),B(x 2,y 2),A 到双曲线的左准线x = ─ca2= ─54的距离d=|x 1+54|=x 1+54,由双曲线的定义,dAF ||1=e=25,∴|A F 1|=25(x 1+54)=25x 1+2,同理,|B F 1|=25x 2+2,∴|F 1A|²|F 1B|=(25x 1+2)(25x 2+2)=45x 1x 2+5(x 1+x 2)+4 (1)双曲线的右焦点为F 2(5,0),(1)当直线的斜率存在时设直线AB 的方程为:y =k(x ─5), 由⎪⎩⎪⎨⎧=--=14)5(22y x x k y 消去y 得 (1─4k 2)x 2+85k 2x ─20k 2─4=0,∴x 1+x 2=145822-kk , x 1x 2= ─1442022-+kk , 代入(1)整理得|F 1A|²|F 1B|=1452514402222-++-kk kk +4=1456522-+kk +4=14485)41(6522-+-k k+4=481+)14(4852-k ∴|F 1A|²|F 1B|>481;(2)当直线AB 垂直于x 轴时,容易算出|A F 2|=|B F 2|=21,∴|A F 1|=|B F 1|=2a +21=29(双曲线的第一定义), ∴|F 1A|²|F 1B|=481由(1), (2)得:当直线AB 垂直于x 轴时|F 1A|²|F 1B|演变3:⑴抛物线的顶点为(4,0),准线方程为425449=+=x , 设椭圆的方程为()012222>>=+b a by ax ,则有c =4,又4252=ca,∴9,2522==b a ∴椭圆的方程为192522=+yx⑵设椭圆内切圆的圆心为Q ,则()575212121212121=++⨯=++=∆∆∆∆F F PF PFS S S S F QF QPF QPF PF F设点P 到x 轴的距离为h ,则5421=⨯⨯h ∴25410==h .⑶设点P 的坐标为(x 0,y 0),由椭圆的第二定义得: 002001545,545x ex a PF x ex a PF +=-=-=+=由∠F 1PF 2为钝角知:2212221F F PF PF <+∴4754750<<-x 即为所求.演变4:(Ⅰ)设双曲线方程为22221x y ab-= ).0,0(>>b a由已知得.1,2,2,32222==+==bb ac a 得再由故双曲线C 的方程为.1322=-yx(Ⅱ)将得代入13222=-+=yxkx y .0926)31(22=---kx x k由直线l与双曲线交于不同的两点得2222130,)36(13)36(1)0.k k k ⎧-≠⎪⎨∆=+-=->⎪⎩即.13122<≠kk且 ① 设),(),,(B B A A y x B y x A ,则229,,22,1313A B A B A B A B x x x x O A O B x x y y kk-+==⋅>+>--由得而2((1)()2A B A B A B A B A B A B x x y y x x kx kx k x x x x +=+++=++++22222937(1)2.131331k k kkk -+=+++=---于是222237392,0,3131k k k k +-+>>--即解此不等式得.3312<<k②由①、②得 .1312<<k故k的取值范围为(1,33--⋃演变5:(Ⅰ)证法一:设点P 的坐标为).,(y x 由P ),(y x 在椭圆上,得.)()()(||222222221x aca xa b b c x y c x F +=-++=++=由0,>+-≥+≥a c x ac a a x 知,所以 .||1x ac a P F +=证法二:设点P 的坐标为).,(y x 记,||,||2211r P F r P F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a c a r P F cx r r a r r +===-=+得(Ⅱ)解法一:设点T 的坐标为).,(y x当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△Q F 1F 2中,a Q F OT ==||21||1,所以有.222a yx =+综上所述,点T 的轨迹C 的方程是.222a y x =+解法二:设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥.又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x ,因此⎩⎨⎧='-='.2,2y y c x x ① 由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+(Ⅲ)解法 C 上存在点M (00,y x )使S=2b 的充要条件是:⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20cby ≤ 上式代入③得.0))((2224220≥+-=-=cba cba cb a x于是,当cba 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.当cba 2≥时,记cx y k k cx y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan 212121=+-=∠k k k k MF F演变6:(I)设椭圆方程为22221y x ab+=(0a b >>),半焦距为c , 则21||aM A a c=-,11||A F a c =-,由题意,得 22222()24a a a c c a a b c ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,1a b c ===,故椭圆方程为22143yx+=(II )设P (0,),||1m y m >当00y =时,120F PF ∠=③ ④当00y ≠时, 12102F P F P F M π<∠<∠<,∴只需求12tan F PF ∠的最大值即可.直线1PF 的斜率011y K m =+,直线2P F 的斜率02,1y K m =-02112221202||tan ||11y K K F PF K K m y -∴∠==+-+2||y ≤=0||y 时,12F PF ∠最大, 演变7:设椭圆方程为),0,(),0(12222c F b a by ax >>=+则直线AB 的方程为1,2222=+-=by ax c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a .令),,(),,(2211y x B y x A 则 .,22222222122221b a ba c a x xb a ca x x +-=+=+1212(,),OA OB x x y y +=++由(3,1),a O A O B a =-+ 与共线,得12123()()0.y y x x +++=又1122,y x c y x c =-=-,∴12123(2)()0x x c x x +-++= ∴1232c x x +=即222232a c c a b=+,∴223a b =∴3c ==3c e a ==(II )证明:由(I )知223b a =,所以椭圆12222=+by ax 可化为22233b yx =+.设(,)O M x y =,由已知得1122(,)(,)(,)x y x y x y λμ=+ 1212,.x x x y y y λμλμ=+⎧∴⎨=+⎩ ),(y x M 在椭圆上, .3)(3)(2221221b y y x x =+++∴μλμλ即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ① 由(I )知.21,23,23222221c bc ac x x ===+∴22222122238a c ab x xc a b-==+∴1212121233()()x x y y x x x c x c +=++--222212123943()330.22x x x x c c c c c =-++=-+=又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ故22μλ+为定值1.演变8:(Ⅰ)因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B的坐标分别是).,0(),0,(a ea -设M 的坐标是),,(),(),,(0000a eay e a x AB AM y x λλ=+=得由 所以⎪⎩⎪⎨⎧=-=.)1(0a y ea x λλ 因为点M 在椭圆上,所以 ,1220220=+b y a x 即.11)1(,1)()]1([22222222=-+-=+-eeba aeaλλλλ所以,0)1()1(2224=-+--λλe e 解得.1122e e -=-=λλ即(Ⅱ)解:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BA F 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|.设点P 的坐标是),(00y x ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=⎪⎪⎩⎪⎪⎨⎧+-=+-=+-.1)1(2,13.22102202200000e a e y c e e x a c x e y e c x y 解得 由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++-两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e于是32112=-=e λ. 即当32=λ时,△PF 1F 2为等腰三角形.。

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

第十章 圆锥曲线与方程第四讲 圆锥曲线的综合问题拓展变式1。

[2017浙江,21,15分]如图10—4—2,已知抛物线x 2=y ,点A (−12,14),B (32,94),抛物线上的点P (x ,y )(−12<x 〈32)。

过点B 作直线AP 的垂线,垂足为Q.图10—4-2(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值。

2。

[2020全国卷Ⅰ,21,12分][文]已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a 〉1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ =8。

P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D.(1)求E 的方程;(2)证明:直线CD 过定点。

3.[2021武汉四地六校高三联考]已知椭圆C:x2a2+y2b2=1(a〉b〉0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线√7x−√5y+12=0相切。

(1)求椭圆C的方程.(2)已知A(-4,0),过点R(3,0)作与x轴不重合的直线l交椭圆C于P,Q两点,连接AP,AQ,分别交直线x=163于M,N两点,若直线MR,NR的斜率分别为k1,k2,问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.4。

[2021湖北省部分重点中学摸底联考]已知点A(1,−√32)在椭圆C:x2a2+y2b2=1(a〉b>0)上,O为坐标原点,直线l:xa2−√3y2b2=1的斜率与直线OA的斜率之积为−14.(1)求椭圆C的方程。

(2)不经过点A的直线m:y=√32x+t(t≠0)与椭圆C交于P,Q两点,P关于原点的对称点为R(与点A不重合),直线AQ,AR与y轴分别交于点M,N,求证:|AM|=|AN|.5。

[2020山西大同一联]已知椭圆C的中心在原点,焦点在坐标轴上,直线y=32x与椭圆C在第一象限内的交点是M,点M在x 轴上的射影恰好是椭圆C的右焦点F2,椭圆C的另一个焦点是F1,且MF1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF2⃗⃗⃗⃗⃗⃗⃗⃗ =94。

2012高考一轮复习——浙江省各地市11年试题分类大汇编第10部分圆锥曲线

2012高考一轮复习——浙江省各地市11年试题分类大汇编第10部分圆锥曲线

浙江省各地市2011年高考数学最新联考试题分类大汇编第10部分:圆锥曲线 一、选择题:8.(浙江省温州市2011年高三第一次适应性测试理科)已知双曲线(>0)mx y m -=221的右顶点为A ,若该双曲线右支上存在两点,B C 使得ABC ∆为等腰直角三角形,则该双曲线的离心率e 的取值范围是 ( ▲ )A. B .(1,2) C. D .(1,3)8.A【解析】e ==1m =时,e =渐近线方程为y x =±。

由对称性可设00000,,,,.A B x x C x x ⎛⎫⎛⎛--+ ⎪⎪ ⎝⎭⎝⎝把00,B x x ⎛- ⎝代入双曲线方程得()20110.m m x m +-+-=显然1m =时,01,x =不满足ABC ∆为等腰直角三角形这一条件,即e ≠由选择支可排除B,C,D.9.(浙江省温州市2011年高三第一次适应性测试文科)双曲线(>0)mx y m -=221的右顶点为A ,若该双曲线右支上存在两点,BC 使得ABC ∆为等腰直角三角形,则实数m 的值可能为( ▲ )A .12 B .1 C .2 D .39.A【解析】由对称性可设00000,,,,.A B x x C x x ⎛⎫⎛⎛--+ ⎪⎪ ⎝⎭⎝⎝把00,B x x ⎛- ⎝代入双曲线方程得()20110.m m x m +-+-=显然1m =时,01,x =不满足ABC ∆为等腰直角三角形这一条件;当2m =时,011x =-+<不满足ABC ∆为等腰直角三角形这一条件;当3m =时,013x =<不满足ABC ∆为等腰直角三角形这一条件。

5.(浙江省宁波市2011年高三“十校联考”理科)设双曲线以椭圆221259xy+=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的离心率为( B )A .2B.2 C .32 D.28.(浙江省宁波市2011年高三“十校联考”文科)已知A ,B ,P 是双曲线22221xy ab-=上不同的三点,且A ,B 连线经过坐标原点,若直线PA ,PB 的斜率乘积23P A P B k k ⋅=,则该双曲线的离心率为( D )A.2 B.2 CD.37.(浙江省台州市2011年高三调考理科)双曲线)0,(12222>=-b a by xx的渐近线上任意一点P到两个焦点的距离之差的绝对值与2a 的大小关系为( C ) A .恒等于2a B .恒大于2a C .恒小于2a D .不确定 9.(浙江省台州市2011年高三调考理科)已知抛物线)0(22>=p px y 的焦点为F ,F 关于原点的对称点为P .过F 作为x 轴的垂线交抛物线于M ,N 两点.有下列四个命题:①△PMN 必为直角三角形;②△PMN 不一定为直角三角形;③直线PM 必与抛物线相切;④直线PM 不一定与抛物线相切.其中正确的命题是( A ) A .①③ B .①④ C .②③ D .②④9.(浙江省台州市2011年高三调考文科)已知F 为双曲线)0,0(1:2222>>=-b a by ax C 的右焦点,P 为双曲线C 右支上一点,且位于x 轴上方,M 为直线c ax 2-=上一点,O 为坐标原点,已知OM OF OP +=,且||||OF OM =,则双曲线C 的离心率为( A )A .2B .251+C .2D .47.(浙江省嘉兴市2011届高三下学期教学测试二理科)已知双曲线的顶点与焦点分别是椭圆)0(12222>>=+b a by ax 的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( D )A .31B .21C .33D .225. (浙江省金华十校2011年高三模拟考试文科)如果椭圆22221(0)xy a b ab+=>>的离心率为2,那么双曲线22221xy ab-=的离心率为( A )A.2 B .54 CD .25.(浙江省金华十校2011年高三模拟考试理科已知双曲线22221(0,0)xy a b ab-=>>的左右焦点是F1,F2,设P 是双曲线右支上一点,121F F F P 在上的投影的大小恰好为1||F P 且它们的夹角为6π,则双曲线的离心率e 为 ( C )A.12+ B.2C1+ D1+7. (浙江省衢州市2011年4月高三教学质量检测理科)已知,,A B P 是双曲线22221xy ab-=上不同的三点,且,A B 连线经过坐标原点,若直线,PA PB 的斜率乘积3PA PB k k = ,则该双曲线的离心率为( C )AB .2CD9. (浙江省衢州市2011年4月高三教学质量检测理科)已知椭圆2222:1(0)x y C a b ab+=>>的离心率为2,短轴长为2,过右焦点F 且斜率为(0)k k >的直线与椭圆C 相交于A B 、两点.若3AF FB =,则k =( B ).1ABC .2D 二、填空题:16.(浙江省温州市2011年高三第一次适应性测试理科)已知抛物线24y x=的弦AB 的中点的横坐标为2,则AB的最大值为 ▲ .16. 6【解析】当直线A B斜率不存在时AB =当直线A B 斜率k 存在时,设中点坐标为()2,t ,()()1122,,,,A x yB x y 则1242k y y t==+,()22y t x t-=-,与24y x=联立得212122,28y y t y y t +==-,()()2222212123636,4t ABy y t ⎛⎫=+-=--+≤ ⎪⎝⎭ 6.AB ≤16.(浙江省金华十校2011年高三模拟考试文科)已知P 是椭圆22143xy+=上不同于左顶点A 、右顶点B 的任意一点,记直线PA ,PB 的斜率分别为1212,,k k k k ⋅则的值为 ;34-12.(浙江省金华十校2011l 过抛物线24y x =的焦点且与该抛物线交于A ,B 两点,则|AB|= ;163 16. (浙江省衢州市2011年4月高三教学质量检测理科)把抛物线2y x=绕焦点F 按顺时针方向旋转45,设此时抛物线上的最高点为P ,则PF =. 12三、解答题:21.(浙江省温州市2011年高三第一次适应性测试理科) (本题满分15分)已知,A B 是椭圆C:()222210xy a b ab+=>>的左,右顶点,B(2,0),过椭圆C 的右焦点F 的直线交于其于点M, N, 交直线4x =于点P ,且直线PA ,PF ,PB的斜率成等差数列. (Ⅰ)求椭圆C 的方程;(Ⅱ)若记,A M B A N B ∆∆的面积分别为12,S S 求12S S的取值范围.x,439221+-=m y y ② ……………9分①2/②得,,434221221221y y t m my y y y =+-=++令 …………11分,433163104381011222+-=++=+=+m m m tt t t 则.331,31012<<<+≤∴t tt 即 …………… 13分,212121t y AB y AB S S ANBAMB ==∆∆)3,31(∈∴∆∆A N B A M BS S ……………15分22.(浙江省温州市2011年高三第一次适应性测试文科)(本题满分15分)如图,已知过()3,2T -的动直线l 与抛物线2:4C y x=交于P ,Q (I )证明:直线AP 与直线AQ 的斜率乘积恒为定值2-;(II )以PQ 为底边的等腰三角形APQ 有几个? 请说明理由. 22.(本小题满分15分)解:(I )设直线l 的方程为()32++=y m x ………………1分 由()⎩⎨⎧=++=x y y m x 4322得012842=---m my y ………………2分 设()11,y x P ,()22,y x Q则128,42121--==+m y y m y y ………………3分 24241212212211+⋅+=----=y y x y x y k k AQ AP()242162121-=+++=y y y y ………………8分(II )PQ 的中点坐标为⎪⎭⎫ ⎝⎛++2,22121y y x x ,即⎪⎪⎪⎪⎭⎫ ⎝⎛++2,244212221y y y y , ()64442442212212221++=-+=+m m y y y y y y ,所以PQ 的中点坐标为()m m m 2,3222++, ………………11分由已知得mm mm -=-++-1322222,即01223=-++m m m . ………………12分 设()1223-++=m m m m f ,则()02232>++='m m m f ,()m f 在R 上是增函数,又()10-=f ,()31=f ,故()m f 在()1,0内有一个零点,函数()m f 有且只有一个零点,即方程01223=-++m m m 有唯一实根.所以满足条件的等腰三角形有且只有一个. ………………15分 21.(浙江省嘉兴市2011届高三下学期教学测试二理科)(本题满分15分) 设直线l 与抛物线)0(22>=p px y交于A 、B 两点,已知当直线l 经过抛物线的焦点且与x轴垂直时,OAB ∆的面积为21(O 为坐标原点). (Ⅰ)求抛物线的方程;(Ⅱ)当直线l 经过点)0()0,(>a a P 且与x 轴不垂直时,若在x 轴上存在点C ,使得ABC ∆为正三角形,求a 的取值范围.21.(Ⅰ)由条件可得p AB 2||=,O 点到AB 距离为2p,∴2212221pp p S AOB =⨯⨯=∆, …4分,21>=∆p S AOB 得: 1=p ,∴ 抛物线的方程为xy22=. …6分(Ⅱ)设),(11y x A ,),(22y x B ,AB 的中点为),(00y x M , 又设)0,(t C ,直线l 的方程为a my x +=(0≠m ).由⎩⎨⎧=+=x y a my x 22,得0222=--a my y .∴)2(42a m+=∆,m y y 221=+,a y y 221-=. …8分所以my y y =+=2210,从而amx +=20.∵ABC ∆为正三角形,∴ABMC ⊥,||23||AB MC =.由ABMC ⊥,得1100-=⋅-m tx y ,所以12++=a m t . …10分由||23||AB MC =,得2212212020)()(23)(y y x x y t x -+-⋅=+-,即)2(4)1(23)(22222a mmm t a m +⋅+=+-+,又∵12-=-+t a m ,(第21∴)2)(1(31222a mmm++=+,从而2612m a -=.… 13分∵0≠m ,∴02>m ,∴610<<a .∴a 的取值范围)61,0(. …15分21. (浙江省衢州市2011年4月高三教学质量检测理科)(本题满分15分)在平面直角坐标系xo y中,过定点(,0)C p 作直线m 与抛物线22(0)y px p =>相交于A 、B 两点.(I )设(,0)N p -,求NA NB的最小值;(II )是否存在垂直于x 轴的直线l ,使得l 被以A C 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.222''22211111()(2)441()()2PHo P o Hx p a x p a p x a p a ∴=-=+---=-+-2211(2)4()()2PQPH a p x a p a ⎡⎤∴==-+-⎢⎥⎣⎦…………………13分 令12a p-=0得12a p=.此时PQ p=为定值.故满足条件的直线l 存在,1 2p…………………15分其方程为x=。

高中数学圆锥曲线知识全归纳

高中数学圆锥曲线知识全归纳

圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。

高中数学圆锥曲线结论(最完美版本)

高中数学圆锥曲线结论(最完美版本)

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。

高中数学-圆锥曲线知识点(教师版)

高中数学-圆锥曲线知识点(教师版)

圆锥曲线回归课本椭圆部分一、椭圆的定义及其方程1、(1)椭圆的第一定义:平面内到两个定点21,F F 的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,两定点21,F F 叫做椭圆的焦点,两焦点间的距离叫椭圆的焦距(2)椭圆的第二定义:平面内到定点F 的距离与到定直线l )(l F ∉的距离之比为常数)10(<<e e 的点的轨迹叫做椭圆,其中定点F 叫做椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率注:椭圆上的点到焦点的距离与到相应准线的距离之比等于椭圆的离心率说明:(1)“平面内”这个条件不能少,否则轨迹为椭球(2)椭圆上的点到两个焦点的距离之和为常数,记为a 2;两焦点之间的距离称为焦距,记为c 2,即cF F 221=(3)为什么要求212F F a >?①若212F F a >,则轨迹为椭圆②若212F F a =,则轨迹为线段21F F ③若212F F a <,则轨迹不存在2、椭圆的方程①焦点在x 轴上的椭圆的标准方程:)0(12222>>=+b a b y a x ②焦点在y 轴上的椭圆的标准方程:)0(12222>>=+b a bx a y ③中心在原点、焦点在坐标轴上椭圆的一般方程为),0,0(122n m n m ny mx ≠>>=+④椭圆)0(12222>>=+b a b y a x 的参数方程为ϕϕϕ(sin cos ⎩⎨⎧==b y a x 为参数)二、椭圆的几何性质:标准方程)0(12222>>=+b a b y a x )0(12222>>=+b a bx a y 图像范围by b a x a ≤≤-≤≤-,bx b a y a ≤≤-≤≤-,对称性关于x 轴、y 轴成轴对称;关于原点成中心对称关于x 轴、y 轴成轴对称;关于原点成中心对称顶点坐标)0,(),0,(21a A a A -),0(),,0(21b B b B -),0(),,0(21a A a A -)0,(),0,(21b B b B -焦点坐标)0,(),0,(21c F c F -),0(),,0(21c F c F -长、短半轴长长半轴长为a ,短半轴长为b长半轴长为a ,短半轴长为b通径长a b 22a b 22离心率=e ac =e ac c b a ,,的关系222c b a +=222c b a +=注:1.离心率对椭圆形状的影响:因为22222221ab a b a ac ace -=-===,所以离心率e 越大,椭圆越扁,离心率e 越小,椭圆越圆三、直线与椭圆的位置关系1.点),(00y x P 与椭圆)0(12222>>=+b a by a x 的位置关系:①点P 在椭圆上⇔1220220=+by a x ;②点P 在椭圆外(不含焦点的区域)⇔122220>+by a x ;③点P 在椭圆内(含焦点的区域)⇔1220220<+by a x ;2.直线与椭圆的位置关系:联立直线l :m kx y +=与椭圆12222=+b y a x 的方程得2)(222222222=-+++b a m a kmx a x b k a ①0>∆⇔直线l 与椭圆相交②0=∆⇔直线l 与椭圆相切③0<∆⇔直线l 与椭圆相离3.弦长公式(1)斜率为k 的直线上两点),(),,(2211y x B y x A 间的距离公式:=AB 2121x x k -+=21211y y k-+(2)弦长公式:斜率为k 的直线交椭圆12222=+b y a x 于),(),,(2211y x B y x A 两点,则=AB 2121x x k -+=2122124)(1x x x x k -++=21211y y k -+=2122124)(11y y y y k-++4.点差法①设椭圆)0(12222>>=+b a b y a x 不与轴垂直的弦AB 的中点为P ,则=⋅OP AB k k 1222-=-e a b ②椭圆设)0(12222>>=+b a b x a y 不与轴垂直的弦AB 的中点为P ,则=⋅OP AB k k 11222-=-e b a 5.椭圆的焦点三角形的性质:设P 是椭圆)0(12222>>=+b a b y a x 上不同于左右顶点的一点,21,F F 是左右焦点,θ=∠21PF F ,则①=⋅21PF PF θcos 122+b ;②焦点三角形21F PF 的面积=∆21F PF S 2tan 2θb =0yc ,当点P 为短轴端点时,21F PF S ∆最大,③焦点三角形周长为定值ca 22+④当且仅当点P 位于短轴端点时21PF F ∠最大⑤2sinθ≥e 6.椭圆上的点对顶点的张角:设椭圆)0(12222>>=+b a by a x 的左右顶点为B A ,,点P 是椭圆上不同于B A ,的任意一点,则当且仅当点P 位于上下顶点处时,APB ∠最大7.焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF 0ex a +,=2PF 0ex a -,记忆方式:长加短减(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF 0ey a +,=2PF 0ey a -,记忆方式:长加短减8.椭圆上点到焦点和中心的距离(1)椭圆上的点到左焦点的距离的最大的点为右顶点,最大值为c a +;最小的点为左顶点,最小值为ca -(2)椭圆上的点到中心的距离的最大的点为长轴端点,最大距离为a ;最小的点为短轴端点,最小距离为b 9.焦点弦长(1)设过椭圆12222=+by a x 焦点F 的直线交椭圆于),(),,(2211y x B y x A 两点,则①过左焦点的弦长=AB )(221x x e a ++;②过右焦点的弦长=AB )(221x x e a +-;(2)设焦点弦AB 的过焦点的倾斜角为θ,则=AF θcos 2c a b -;=BF θcos 2c a b +;①焦点弦长=AB θ2222cos 2c a ab -;②焦点弦最短为通径长a b 22;③焦点弦最长为长轴a 2(3)①设椭圆)0(12222>>=+b a by a x 的焦点弦AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则椭圆的离心率11cos +-=λλθe 或1112+-+=λλk e ②若椭圆为焦点在y 轴上的椭圆,则11sin +-=λλθe 10.椭圆的切线(1)椭圆12222=+by a x 在其上一点),(00y x P 处的切线方程是12020=+b y y a x x (2)过椭圆12222=+by a x 外一点),(00y x P 作椭圆的切线PB P A ,,切点弦AB 所在直线的方程为12020=+by y a x x 11.椭圆的焦点弦为直径的圆的性质:以椭圆的焦点弦为直径的圆与椭圆相应的准线相离双曲线部分一、双曲线的定义1.(1)双曲线的第一定义:平面内与两个定21,F F 的距离之差的绝对值等于常数(大于0且小于21F F )的点的轨迹叫做双曲线,定点21,F F 叫做椭圆的焦点注:(1)“平面内”这一个条件不可少,否则轨迹为双曲面(2)为什么常数a 2小于c 2?①若c a 22=,则轨迹是两条射线②若c a 22>,则轨迹是不表示任何轨迹③若02=a ,则轨迹是线段21F F 的垂直平分线(2)双曲线的第二定义:平面内到定点F 的距离与到定直线l )(l F ∉的距离之比为常数e )1(>e 的点的轨迹叫做双曲线,其中定点F 叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 叫做双曲线的离心率注:双曲线上的点到焦点的距离与到相应准线的距离之比等于双曲线的离心率2、双曲线的方程①焦点在x 轴上的双曲线的标准方程:)0,0(12222>>=-b a b y a x ②焦点在y 轴上的双曲线的标准方程:)0,0(12222>>=-b a bx a y ③中心在原点、焦点在坐标轴上双曲线的一般方程为)0(122>=-mn ny mx ④双曲线)0(12222>>=-b a b y a x 的参数方程为ϕϕϕ(tan sec ⎩⎨⎧==b y a x 为参数)二、双曲线的几何性质:标准方程)0,0(12222>>=-b a b y a x )0,0(12222>>=-b a bx a y图像范围Ry a x ∈≥,Rx a y ∈≥,对称性关于x 轴、y 轴成轴对称;关于原点成中心对称关于x 轴、y 轴成轴对称;关于原点成中心对称顶点坐标)0,(),0,(21a A a A -),0(),,0(21a A a A -焦点坐标)0,(),0,(21c F c F -),0(),,0(21c F c F -长、短半轴长实半轴长为a ,虚半轴长为b实半轴长为a ,虚半轴长为b通径长a b 22a b 22离心率=e ac =e ac c b a ,,的关系222b a c +=222b a c +=渐近线x ab y ±=x ba y ±=注:(1)离心率对双曲线开口大小的影响:因为2222)(1a b a b a ace +=+==,所以离心率e 越大,双曲线开口越大,离心率e 越小,双曲线越小(2)①双曲线12222=-b y a x 的渐近线方程为02222=-b y a x ,即xa b y ±=双曲线12222=-b x a y 的渐近线方程为02222=-bx a y ,即xb a y ±=②与双曲线12222=-b y a x 有相同渐近线的双曲线的方程为)0(2222≠=-λλby a x 3.双曲线中参数c b a ,,的几何意义:过双曲线)0,0(12222>>=-b a by a x 的焦点F 作双曲线的渐近线的垂线,垂足为M ,则(1)=FM b ;(2)=OM a ;(3)c OF =;(4)M 在焦点F 相应的准线上三、两类特殊的双曲线1.等轴双曲线:(1)等轴双曲线的定义:我们把实轴长和虚轴长相等的双曲线叫等轴双曲线。

高中数学圆锥曲线十大题型 专题10以椭圆为情景的探索性问题 (学生版+解析版)

高中数学圆锥曲线十大题型 专题10以椭圆为情景的探索性问题 (学生版+解析版)

10 以椭圆为情景的探索性问题典例分析角度一、以探索多边形形状为情景的问题1、已知椭圆C :(),直线不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与的斜率的乘积为定值; (Ⅱ)若l 过点,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.2.已知椭圆的一个焦点在直线上,且离心率.(1)求该椭圆的方程;(2)若与是该椭圆上不同的两点,且线段的中点在直线上,试证: 轴上存在定点,对于所有满足条件的与,恒有;(3)在(2)的条件下, 能否为等腰直角三角形?并证明你的结论. 角度二、以探索定点存在性为情景的问题1、如图,椭圆E :2222+1(0)x y a b a b=>>,过点(0,1)P 的动直线l 与椭圆相交于,A B 两点,当直线l 平行与x 轴时,直线l 被椭圆E截得的线段长为 (1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.2229x y m +=0m >l l (,)3mm 22221(0)x y a b a b+=>>:10l x -=12e =P Q PQ T l x R P Q RP RQ =PQR∆角度三、以探索直线与圆锥曲线位置关系为情景的问题1、椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,右顶点为A ,上顶点为B ,且满足向量120BF BF ⋅=.(1)若(2,0)A ,求椭圆的标准方程;(2)设P 为椭圆上异于顶点的点,以线段PB 为直径的圆经过1F ,问是否存在过2F 的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.2、已知抛物线2:4C y x =与过点(2,0)的直线l 交于,M N 两点.(1)若MN =l 的方程; (2)若12MP MN =,PQ y ⊥轴,垂足为Q ,探究:以PQ 为直径的圆是否过定点?若是,求出该定点的坐标;若不是,请说明理由.角度四、以探索定值存在性为情景的问题1、已知定点()30A -,,()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C 。

高中数学圆锥曲线总结

高中数学圆锥曲线总结

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中数学圆锥曲线总结地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容数学圆锥曲线总结1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。

若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。

4.圆锥曲线的几何性质:椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。

(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。

高中数学 第十章第五节圆锥曲线与方程课件 北师大选修21

高中数学 第十章第五节圆锥曲线与方程课件 北师大选修21
2a2(1-b2) 2a2 ①代入②可得 a2+b2 -a2+b2+1=0,
即 a2+b2=2a2b2,
所以a12+b12=2 为定值.
(2)因为 e=ca,b2=a2-c2,由(1)可知 a2+b2=2a2b2,
化简得
a2=2(21--ee22
1
1
)=2+2(1-e2),
因为 e∈ 33, 22,所以54≤a2≤32,即 25≤a≤ 26.
所以直线过定点(3,0),即 F 为(3,0). 设椭圆 C 的方程为xa22+yb22=1(a>b>0),
c=3, 则a+c=8,
a2=b2+c2,
a=5, 解得b=4,
c=3.
x2 y2 故所求椭圆 C 的方程为25+16=1,
m2 n2 (2)因为点 P(m,n)在椭圆 C 上运动,所以25+16=1.
求直线被二次曲线截得的弦长,通常是将直线与二次曲线方 程联立,得到关于x(或y)的一元二次方程,然后利用根与系数的 关系及弦长公式求解.
1.(2008 年辽宁卷)在平面直角坐标系 xOy 中,点 P 到两点(0,- 3)、 (0, 3)的距离之和等于 4,设点 P 的轨迹为 C. (1)写出 C 的方程; (2)设直线 y=kx+1 与 C 交于 A、B 两点.k 为何值时O→A⊥O→B?此时|A→B| 的值是多少?
=1
的两个焦点为
F1、F2,过
F1
作垂直于
x
轴的直线与椭圆相交,一个交点为 P,则|P→F2|等于( )
3 A. 2 B. 3
7 C.2 D.4
【解析】 a=2,b=1,c= 3.可设 F1(- 3,0),F2( 3,0).
将 x=-
3代入椭圆得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省各地市2011年高考数学最新联考试题分类大汇编第10部分:圆锥曲线一、选择题:10. (山东省济南市2011年2月高三教学质量调研理科)已知点12,F F 分别是双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是A .)3,1(B .)22,3(C .),21(+∞+D .)21,1(+10.D 【解析】22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,22222,,2,.b b F Ac F B c a a ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭22222240,210,11bF A F B c e e e a ⎛⎫⋅=->--<<<+ ⎪⎝⎭6. (山东省青岛市2011年3月高考第一次模拟理科)以坐标轴为对称轴,原点为顶点且过圆222690x y x y +-++=圆心的抛物线方程是( D )A .2233y x y x ==-或B .23y x = C .2293y x y x =-=或 D .22-9y x y x ==或7. (山东省青岛市2011年3月高考第一次模拟文科)已知实数m 是2,8的等比中项,则双曲线221y x m -=的离心率为 ( A )AB.CD10.(山东省济宁市2011年3月高三第一次模拟文科) 椭圆31222y x +=1的一个焦点为F1,点P 在椭圆上.如果线段PF1的中点M 在y 轴上,那么点M 的纵坐标是( A )A .±43B .±23C .±22D .±4311.(山东省临沂市2011年3月高三第一次教学质量检测理科)设P 是椭圆221258x y +=上一点,M 、N 分别是两圆:22(4)1x y ++=和23(4)1x y -+=上的点,则||||PM PN +的最小值、最大值的分别为( C )A .9,12B .8,11C .8,12D .10,1213.(山东省淄博市2011年3月高三下学期模拟考试理科)若双曲线221x ky +=的离心率是2,则实数k 的值是13-.13-.8. (山东省烟台市2011年1月“十一五”课题调研卷理科)已知双曲线22221x y a b -=的一个焦点与抛物线24y x =( D ) A.224515y x -=B.22154x y -= c 22154y x -= D.225514y x -=4.(山东省烟台市2011年1月“十一五”课题调研卷文科)与椭圆2214x y +=共焦点且过点(2,1)P 的双曲线方程是 ( B )A .2214x y -=B .2212x y -=C .22133x y -=D .2212y x -=11. (山东省潍坊三县2011届高三阶段性教学质量检测理科)设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 ( C )A .21B .1C .2D .不确定11. (山东省潍坊三县2011届高三阶段性教学质量检测文科)设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率, P 为两曲线的一个公共点,且满足021=⋅PF PF,则2212221)(e e e e +的值为 ( C )A .21B .1C .2D .不确定二、填空题:13. (山东省济南市2011年2月高三教学质量调研文科) 抛物线x=2y2的焦点坐标是-. ( ,810)16.(山东省青岛市2011年3月高考第一次模拟文科)点P 是曲线2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值是14.(山东省济宁市2011年3月高三第一次模拟理科)如图,正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率为_______. 141;13.(山东省临沂市2011年3月高三第一次教学质量检测理科)双曲线的渐近线方程为34y x=±,则双曲线的离心率是 。

53或5413.(山东省淄博市2011年3月高三下学期模拟考试文科)若双曲线221x ky +=的离心率是2,则实数k 的值是13-.16. (山东省烟台市2011年1月“十一五”课题调研卷理科)椭圆22221(0)x y a b a b +=>>的左、右焦点分别是F1,F2,过F2作倾斜角为120︒的直线与椭圆的一个交点为M ,若MF1垂直于x 轴,则椭圆的离心率为216. (山东省烟台市2011年1月“十一五”课题调研卷文科)已知抛物线24y x =与直线240x y +-=相交于A 、B 两点,抛物线的焦点为F ,那么||||FA FB +=7ADFECB三、解答题:21. (山东省济南市2011年2月高三教学质量调研理科)(本小题满分12分)已知椭圆C :)0(12222>>=+b a b y a x 的右焦点为F ,离心率22=e ,椭圆C 上的点到F 的距离的最大值为12+,直线l 过点F 与椭圆C 交于不同的两点,.A B (1) 求椭圆C 的方程;(2) 若223||=AB ,求直线l 的方程.21. (1) 由题意知,1222+=+=c a a c ,,所以1,2==c a ,从而1=b ,19. (山东省济南市2011年2月高三教学质量调研文科) (本小题满分12分)已知椭圆22221(0)x y C a b a b +=>>:的离心率为,其中左焦点F(-2,0).(1) 求椭圆C 的方程;(2) 若直线y=x+m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x2+y2=1上,求m 的值.19. 解:(1)由题意,得2222,.c a c a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩………………………………………………3分解得2.a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=.…………………………………………6分(2) 设点A 、B 的坐标分别为(x1,y1),(x2, y2),线段AB 的中点为M(x0,y0),由221,84.x y y x m ⎧+=⎪⎨⎪=+⎩消y 得,3x2+4mx+2m2-8=0,……………………………………………8分Δ=96-8m2>0,∴-23<m <23.∴,322210m x x x -=+=∴300mm x y =+=.………………………………………10分∵点M(x0,y0)在圆x2+y2=1上,222()()133m m ∴-+=,m ∴=.………………………………………………… 12分 22. (山东省青岛市2011年3月高考第一次模拟理科) (本小题满分14分)已知圆1C :22(1)8x y ++=,点2(1C ,0),点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)设、M N 分别是曲线W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若1+22OM ON OC =uuu r uuu r uuu r,O 为坐标原点,求直线MN 的斜率k ;(Ⅲ)过点(0S ,1)3-且斜率为k 的动直线l 交曲线W 于,A B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,求出D 的坐标,若不存在,说明理由.(Ⅲ)直线l 方程为13y kx =-,联立直线和椭圆的方程得:221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩ 得229(12)12160k x kx +--=…………9分 由题意知:点)31,0(-S 在椭圆内部,所以直线l 与椭圆必交与两点, 设).,(),,(2211y x B y x A 则121222416,3(12)9(12)k x x x x k k +==-++假设在y 轴上存在定点),0(m D ,满足题设,则1122(,),(,)DA x y m DB x y m =-=-因为以AB 为直径的圆恒过点D ,则1122(,)(,)0DA DB x y m x y m ⋅=-⋅-=,即:1212()()0x x y m y m +--= (*)因为112211,33y kx y kx =-=-则(*)变为21212121212()()()x x y m y m x x y y m y y m +--=+-++…………11分21212121111()()()3333x x kx kx m kx kx m =+----+-+ 221212121(1)()()339k x x k m x x m m =+-+++++222216(1)1421()9(21)33(21)39k k k m m m k k +=--++++++ 222218(1)(9615)9(21)m k m m k -++-=+由假设得对于任意的R k ∈,0DA DB ⋅=恒成立,即221096150m m m ⎧-=⎪⎨+-=⎪⎩解得1m =……13分 因此,在y 轴上存在满足条件的定点D ,点D 的坐标为(0,1).………………14分 22.(山东省青岛市2011年3月高考第一次模拟文科)(本小题满分14分)已知圆221:(1)8C x y ++=,点2(1,0)C ,点Q 在圆1C 上运动, 2QC 的垂直平分线交1QC 于点P .(Ⅰ) 求动点P 的轨迹W 的方程;(Ⅱ) 设,M N 是曲线W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若122OM ON OC +=,O 为坐标原点,求直线MN 的斜率k ;(Ⅲ)过点)31,0(-S 且斜率为k 的动直线l 交曲线W 于,A B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,求出D 的坐标,若不存在,说明理由.由题意知:点)31,0(-S 在椭圆内部,所以直线l 与椭圆必交与两点, 设).,(),,(2211y x B y x A 则121222416,3(12)9(12)k x x x x k k +==-++假设在y 轴上存在定点),0(m D ,满足题设,则1122(,),(,)DA x y m DB x y m =-=-因为以AB 为直径的圆恒过点D ,则1122(,)(,)0DA DB x y m x y m ⋅=-⋅-=,即:1212()()0x x y m y m +--= (*) 因为112211,33y kx y kx =-=-则(*)变为21212121212()()()x x y m y m x x y y m y y m +--=+-++…………12分21212121111()()()3333x x kx kx m kx kx m =+----+-+ 221212121(1)()()339k x x k m x x m m =+-+++++222218(1)(9615)9(21)m k m m k -++-=+由假设得对于任意的R k ∈,0DA DB ⋅=恒成立,即221096150m m m ⎧-=⎪⎨+-=⎪⎩解得1m =. 因此,在y 轴上存在满足条件的定点D ,点D 的坐标为(0,1).………………14分 21.(山东省济宁市2011年3月高三第一次模拟理科)( 本题满分12分 )已知点(,0)(0)F a a >,动点M 、P 分别在x 、y 轴上运动,满足0PM PF ⋅=,N 为动点,并且满足0PN PM +=.(1)求点N 的轨迹C 的方程;(2)过点(,0)F a 的直线l (不与x 轴垂直)与曲线C 交于A B 、两点,设点(,0)K a -,KA 与KB 的夹角为θ,求证:02πθ<<. 21.解:(1)设(,),(0,),0(,2)N x y P b PM PN M x b y +=∴--202M x b y y b ∴-=∴= 在轴上①又a b x abx b y PMPF 21=-=-⋅-∴⊥∴=⋅ ②由①②可得,24y ax =(也可用作直线:l x a '=-,运用抛物线的定义得出) (2)设:()AB l y k x a =-2()4y k x a y ax =-⎧⎨=⎩由可得22222(24)0k x a k a x a k -++= 设1122(,),(,)A x yB x y 221212224,ak a x x x x a k +∴+==1122A (,),(,)K x a y KB x a y =+=+ ·2004))(1())(1(])([])([))(())(())((22212221222121222121212212121πθ<<∴>=+-+++=++-++++=--+++=+++=⋅∴ka x x k a a x x k a x x a x x k a x x a x x a x a x k a x a x y y a x a x21.(山东省济宁市2011年3月高三第一次模拟文科)已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)求抛物线C 的方程。

相关文档
最新文档