2003考研数学三【解析版】【无水印】
考研真题及详解-考研数三(2003-2017年)历年真题
2003年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 设其导函数在处连续,则的取值范围是_________.(2) 已知曲线与轴相切,则可以通过表示为_________.(3) 设,而表示全平面,则=_________.(4) 设维向量,为阶单位矩阵,矩阵,,其中的逆矩阵为,则_________.(5) 设随机变量和的相关系数为,若,则与的相关系数为_________.(6) 设总体服从参数为的指数分布,为来自总体的简单随机样本,则当时,依概率收敛于_________.二、选择题:7~12小题,每小题4分,共24分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(7) 设为不恒等于零的奇函数,且存在,则函数:(A) 在处左极限不存在(B) 有跳跃间断点(C) 在处右极限不存在(D) 有可去间断点(8) 设可微函数在点取得极小值,则下列结论正确的是:(A) 在处的导数等于零(B) 在处的导数大于零(C) 在处的导数小于零(D) 在处的导数不存在.(9) 设,,,则下列命题正确的是:(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不确定.(D) 若绝对收敛,则与敛散性都不确定.(10) 设三阶矩阵,若的伴随矩阵的秩等于,则必有:(A) 或(B) 或(C) 且(D)且.(11) 设均为维向量,下列结论不正确的是:(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,有(C) 线性无关的充分必要条件是此向量组的秩为.(D) 线性无关的必要条件是其中任意两个向量线性无关.(12) 将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},= {正、反面各出现一次},={正面出现两次},则事件:(A) 相互独立(B) 相互独立(C)两两独立(D) 两两独立.三、解答题:13~22小题,共102分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(13) (本题满分8分)设,试补充定义使得在上连续.(14) (本题满分8分)设具有二阶连续偏导数,且满足,又,求(15) (本题满分8分)计算二重积分,其中积分区域(16) (本题满分9分)求幂级数的和函数及其极值.(17) (本题满分9分)设,其中函数在内满足以下条件:,且,(I) 求所满足的一阶微分方程;(II) 求出的表达式.(18) (本题满分8分)设函数在上连续,在内可导,且.试证必存在,使(19) (本题满分13分)已知齐次线性方程组其中试讨论和满足何种关系时,(I) 方程组仅有零解;(II) 方程组有非零解.在有非零解时,求此方程组的一个基础解系.(20) (本题满分13分)设二次型,其中二次型的矩阵的特征值之和为,特征值之积为.(I) 求的值;(II) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵.(21) (本题满分13分)设随机变量的概率密度为是的分布函数.求随机变量的分布函数.(22) (本题满分13分)设随机变量与独立,其中的概率分布为而的概率密度为,求随机变量的概率密度.2004年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分. 请将答案写在答题纸指定位置上.(1) 若,则_________,_________.(2) 函数由关系式确定,其中函数可微,且,则_________.(3) 设则_________.(4) 二次型的秩为_________.(5) 设随机变量服从参数为的指数分布,则=_________.(6) 设总体服从正态分布,总体服从正态分布,和分别是来自总体和的简单随机样本,则_________.二、选择题:7~14小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(7) 函数在下列哪个区间内有界:(A)(B)(C).(D) .(8) 设在内有定义,且,则:(A) 必是的第一类间断点.(B) 必是的第二类间断点.(C) 必是的连续点.(D) 在点处的连续性与a的取值有关.(9) 设,则:(A) 是的极值点,但不是曲线的拐点.(B) 不是的极值点,但是曲线的拐点.(C)是的极值点,且是曲线的拐点.(D) 不是的极值点,也不是曲线的拐点.(10) 设有以下命题:①若收敛,则收敛.②若收敛,则收敛.③若,则发散.④若收敛,则,都收敛.则以上命题中正确的是:(A) ①②.(B) ②③.(C) ③④.(D) ①④.(11) 设在上连续,且,则下列结论中错误的是:(A) 至少存在一点,使得>.(B) 至少存在一点,使得>.(C) 至少存在一点,使得.(D) 至少存在一点,使得=.(12) 设阶矩阵与等价,则必有:(A) 当时,(B) 当时,.(C) 当时,.(D) 当时,.(13) 设阶矩阵的伴随矩阵若是非齐次线性方程组的互不相等的解,则对应的齐次线性方程组的基础解系:(A) 不存在(B) 仅含一个非零解向量(C) 含有两个线性无关的解向量(D) 含有三个线性无关的解向量.(14) 设随机变量服从正态分布,对给定的,数满足,若,则=(A)(B)(C)(D) .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分8分)求.(16) (本题满分8分)求,其中是由圆和所围成的平面区域(如图).(17) (本题满分8分)设在上连续,且满足,.证明:.(18) (本题满分9分)设某商品的需求函数为,其中价格,为需求量.(I) 求需求量对价格的弹性(>);(II) 推导(其中为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为.求:(I) 所满足的一阶微分方程;(II)的表达式.(20) (本题满分13分)设,,,,试讨论当为何值时,(I) 不能由线性表示;(II) 可由唯一地线性表示,并求出表示式;(III) 可由线性表示,但表示式不唯一,并求出表示式.(21) (本题满分13分)设阶矩阵.(I) 求的特征值和特征向量;(II) 求可逆矩阵,使得为对角矩阵.(22) (本题满分13分)设为两个随机事件,且,,,令求(I) 二维随机变量的概率分布;(II) 与的相关系数;(III) 的概率分布.(23) (本题满分13分)设随机变量的分布函数为其中参数.设为来自总体的简单随机样本,(I) 当时,求未知参数的矩估计量;(II) 当时,求未知参数的最大似然估计量;(III) 当时,求未知参数的最大似然估计量.2005年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 极限=_________.(2) 微分方程满足初始条件的特解为_________.(3) 设二元函数,则_________.(4) 设行向量组,,,线性相关,且,则_________.(5) 从数中任取一个数,记为,再从中任取一个数,记为,则=_______ __.(6) 设二维随机变量的概率分布为若随机事件与相互独立,则=_________,=_________.二、选择题:7~14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 当取下列哪个值时,函数恰好有两个不同的零点:(A) .(B)(C)(D) .(8) 设,,,其中,则:(A)(B) .(C)(D) .(9) 设若发散,收敛,则下列结论正确的是:(A) 收敛,发散(B)收敛,发散(C) 收敛(D) 收敛(10)设,下列命题中正确的是:(A) 是极大值,是极小值(B) 是极小值,是极大值(C) 是极大值,也是极大值(D) 是极小值,也是极小值.(11)以下四个命题中,正确的是:(A)若在内连续,则在内有界(B) 若在内连续,则在内有界(C) 若在内有界,则在内有界(D) 若在内有界,则在内有界(12) 设矩阵=满足,其中是的伴随矩阵,为的转置矩阵.若为三个相等的正数,则为:(A)(B)(C)(D)(13) 设是矩阵的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是:(A)(B)(C)(D)(14) 设一批零件的长度服从正态分布,其中均未知.现从中随机抽取个零件,测得样本均值,样本标准差,则的置信度为的置信区间是:(A)(B)(C)(D)(注:大纲已不要求)三、解答题:本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.(15) (本题满分8分)求.(16) (本题满分8分)设具有二阶连续导数,且,求.(17) (本题满分9分)计算二重积分,其中.(18) (本题满分9分)求幂级数在区间内的和函数.(19) (本题满分8分)设在上的导数连续,且,,.证明:对任何,有.(20) (本题满分13分)已知齐次线性方程组(I) 和 (II)同解,求的值.(21) (本题满分13分)设为正定矩阵,其中分别为阶,阶对称矩阵,为矩阵.(I) 计算,其中;(II) 利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.(22) (本题满分13分)设二维随机变量的概率密度为求:(I) 的边缘概率密度;(II) 的概率密度;(Ⅲ) .(23) (本题满分13分)设为来自总体的简单随机样本,其样本均值为,记.求:(I) 的方差;(II)与的协方差;(III) 若是的无偏估计量,求常数.2006年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分. 请将答案写在答题纸指定位置上.(1) _________.(2) 设函数在的某邻域内可导,且,则_________.(3) 设函数可微,且,则在点处的全微分_________.(4) 设矩阵,为阶单位矩阵,矩阵满足,则_________.(5) 设随机变量与相互独立,且均服从区间上的均匀分布,则_______ __.(6) 设总体的概率密度为为总体的简单随机样本,其样本方差,则=_________.二、选择题:7~14小题,每小题4分,共32分. 下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数具有二阶导数,且,为自变量在处的增量,与分别为在点处对应的增量与微分,若,则:(A)(B)(C)(D)(8)设函数在处连续,且,则:(A) 存在(B) 存在(C) 存在(D) 存在(9)若级数收敛,则级数:(A) 收敛(B) 收敛(C) 收敛(D) 收敛(10) 设非齐次线性微分方程有两个的解为任意常数,则该方程的通解是:(A)(B)(C)(D)(11) 设均为可微函数,且已知是在约束条件下的一个极值点,下列选项正确的是:(A) 若(B) 若(C) 若(D) 若(12) 设均为维列向量,是矩阵,下列选项正确的是:(A) 若线性相关,则线性相关(B) 若线性相关,则线性无关(C) 若线性无关,则线性相关(D) 若线性无关,则线性无关(13) 设为阶矩阵,将的第行加到第行得,再将的第列的倍加到第列得,记,则:(A)(B)(C)(D) .(14) 设随机变量服从正态分布,随机变量服从正态分布,且,则必有:(A)(B)(C)(D)三、解答题:15~23小题,共94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15) (本题满分7分)设,求(I) ;(II) .(16) (本题满分7分)计算二重积分,其中是由直线所围成的平面区域.(17) (本题满分10分)证明:当时,.(18) (本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于.(I) 求的方程;(II) 当与直线所围成平面图形的面积为时,确定的值.(19) (本题满分10分)求幂级数的收敛域及和函数.(20) (本题满分13分)设维向量组,,,,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21) (本题满分13分)设阶实对称矩阵的各行元素之和均为,向量是线性方程组的两个解.(I) 求的特征值与特征向量;(II) 求正交矩阵和对角矩阵,使得;(III) 求及,其中为阶单位矩阵.(22) (本题满分13分)设随机变量的概率密度为令,为二维随机变量的分布函数.求:(I) 的概率密度;(II) ;(III) .(23) (本题满分13分)设总体的概率密度为其中是未知参数(),为来自总体的简单随机样本.记为样本值中小于的个数,求:(I) 的矩估计;(II) 的最大似然估计.2007年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~10小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1) 当时,与等价的无穷小量是:(A)(B)(C)(D) .(2) 设函数在处连续,则下列命题错误的是:(A) 若存在,则(B) 若存在,则.(C) 若存在,则存在.(D) 若存在,则存在.(3) 如图,连续函数在区间上的图形分别是直径为的上、下半圆周,在区间上的图形分别是直径为的上、下半圆周,设则下列结论正确的是:(A)(B)(C)(D)(4) 设函数连续,则二次积分等于:(A)(B)(C)(5) 设某商品的需求函数为,其中分别表示需要量和价格,如果该商品需求弹性的绝对值等于,则商品的价格是:(A)(B)(C)(D)(6) 曲线渐近线的条数为:(A)(B)(C)(D)(7) 设向量组线性无关,则下列向量组线性相关的是:(A)(B)(C)(D)(8) 设矩阵,,则与:(A) 合同,且相似(B) 合同,但不相似(C) 不合同,但相似(D) 既不合同,也不相似(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第次命中目标的概率为:(A)(B)(C)(D)(10) 设随机变量服从二维正态分布,且与不相关,分别表示的概率密度,则在条件下,的条件概率密度为:(A)(B)(C)(D) .二、填空题:11~16小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(11) _________.(12) 设函数,则_________.(13) 设是二元可微函数,则_________.(14) 微分方程满足的特解为=_________.(15) 设矩阵则的秩为_________.(16) 在区间中随机地取两个数,则这两数之差的绝对值小于的概率为_________.三、解答题:17~24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17) (本题满分10分)设函数由方程确定,试判断曲线在点附近的凹凸性. (18) (本题满分11分)设二元函数计算二重积分,其中.设函数在上连续,在内二阶可导且存在相等的最大值,又,=,证明:(I) 存在使得;(II) 存在使得(20) (本题满分10分)将函数展开成的幂级数,并指出其收敛区间.(21) (本题满分11分)设线性方程组①与方程②有公共解,求的值及所有公共解.(22) (本题满分11分)设阶实对称矩阵的特征值是的属于的一个特征向量.记,其中为阶单位矩阵.(I) 验证是矩阵的特征向量,并求的全部特征值与特征向量;(II) 求矩阵.(23) (本题满分11分)设二维随机变量的概率密度为(I) 求;(II)求的概率密度.设总体的概率密度为,其中参数未知,是来自总体的简单随机样本,是样本均值.(I) 求参数的矩估计量;(II) 判断是否为的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设函数在区间上连续,则是函数的:(A) 跳跃间断点(B) 可去间断点(C) 无穷间断点(D) 振荡间断点.(2) 如图,曲线段方程为,函数在区间上有连续的导数,则定积分等于:(A) 曲边梯形面积(B) 梯形面积(C) 曲边三角形面积(D) 三角形面积.(3) 设则:(A) 存在,存在(B) 不存在,存在(C) 存在,不存在(D) ,都不存在.(4) 设函数连续.若,其中区域为图中阴影部分,则(A)(B)(C)(D)(5) 设为阶非零矩阵,为阶单位矩阵,若,则:(A) 不可逆,不可逆(B) 不可逆,可逆(C) 可逆,可逆(D) 可逆,不可逆.(6) 设,则在实数域上与合同的矩阵为:(A)(B)(C)(D)(7) 随机变量独立同分布,且的分布函数为,则分布函数为:(A)(B)(C)(D)(8) 设随机变量,且相关系数,则:(A)(B)(C)(D)二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 设函数在内连续,则_________.(10) 设函数,则_________.(11) 设,则_________.(12) 微分方程满足条件的解是_________.(13) 阶矩阵的特征值为,为三阶单位矩阵,则_________.(14) 设随机变量服从参数为的泊松分布,则_________.三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分9分)求极限.(16) (本题满分10分)设是由方程所确定的函数,其中具有阶导数且.(I) 求;(II) 记,求.计算其中.(18) (本题满分10分)设是周期为的连续函数,(I) 证明对任意的实数,都有;(II) 证明是周期为的周期函数.(19) (本题满分10分)设银行存款的年利率为,并依年复利计算.某基金会希望通过存款万元实现第一年提取万元,第二年提取万元,,第年取出万元,并能按此规律一直提取下去,问至少应为多少万元?(20) (本题满分12分)设元线性方程组,其中,,,(I) 证明行列式;(II) 当为何值时,该方程组有唯一解,并求;(III) 当为何值时,该方程组有无穷多解,并求通解.(21) (本题满分10分)设为阶矩阵,为的分别属于特征值特征向量,向量满足.(I) 证明线性无关;(II) 令,求.设随机变量与相互独立,概率分布为,的概率密度为记.求:(I) ;(II) 求的概率密度.(23) (本题满分11分)设是总体的简单随机样本.记,,(I) 证明是的无偏估计量;(II) 当时,求.2009年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数为:(A) .(B) .(C) .(D) 无穷多个.(2)当时,与是等价无穷小:(A) .(B).(C) .(D) .(3)使不等式成立的的范围是:(A) .(B) .(C) .(D) .(4)设函数在区间上的图形为:则函数的图形为:(A)(B)(C)(D)(5)设均为阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为:(A) .(B) .(C) .(D).(6)设均为阶矩阵,为的转置矩阵,且.若,则为:(A) .(B) .(C).(D) .(7)设事件与事件互不相容,则:(A) .(B) .(C) .(D) .(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为.记为随机变量的分布函数,则函数的间断点个数为:(A).(B) .(C) .(D) .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)_________.(10)设,则_________.(11)幂级数的收敛半径为_________.(12)设某产品的需求函数为,其对价格的弹性,则当需求量为件时,价格增加元会使产品收益增加_________元.(13)设,.若矩阵相似于,则_________.(14)设为来自二项分布总体的简单随机样本,和分别为样本均值和样本方差,记统计量,则_________.三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求二元函数的极值.(16) (本题满分10分)计算不定积分.(17) (本题满分10分)计算二重积分,其中.(18)(本题满分11分)(I) 证明拉格朗日中值定理:若函数在上连续,在可导,则存在,使得.(II) 证明:若函数在处连续,在内可导,且,则存在,且.(19)(本题满分10分)设曲线,其中是可导函数,且.已知曲线与直线及所围成的曲边梯形绕轴旋转一周所得的立体体积值是该曲边梯形面积值的倍,求该曲线方程.(20)(本题满分11分)设,(I) 求满足的所有向量;(II) 对(I)中的任意向量,证明:线性无关.(21)(本题满分11分)设二次型.(I) 求二次型的矩阵的所有特征值;(II) 若二次型的规范形为,求的值.(22)(本题满分11分)设二维随机变量的概率密度为(I) 求条件概率密度;(II) 求条件概率.(23)(本题满分11分)袋中有个红球,个黑球与个白球.现有放回地从袋中取两次,每次取一个球,以分别表示两次取球所取得的红球、黑球与白球的个数.(I) 求;(II) 求二维随机变量的概率分布.2010年全国硕士研究生入学统一考试数学(三)试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.)(1)若,则等于(A) .(B) .(C) .(D) .(2)设是一阶线性非齐次微分方程的两个特解,若常数使是该方程的解,是该方程对应的齐次方程的解,则:(A) .(B) .(C) .(D) .(3)设函数具有二阶导数,且,若是的极值,则在取极大值的一个充分条件是:(A) .(B) .(C) .(D) .(4)设,则当充分大时有:(A) .(B) .(C) .(D) .(5)设向量组可由向量组线性表示,下列命题正确的是:(A) 若向量组线性无关,则.(B) 若向量组线性相关,则.(C) 若向量组线性无关,则.(D) 若向量组线性相关,则.(6)设为阶实对称矩阵,且,若的秩为,则相似于:(A).(B) .(C) .(D) .(7)设随机变量的分布函数则=(A) 0.(B) .(C) .(D) .(8)设为标准正态分布的概率密度,为上均匀分布的概率密度,若为概率密度,则应满足:(A).(B) .(C) .(D) .二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.)(9)设可导函数由方程确定,则_________.(10)设位于曲线下方,轴上方的无界区域为,则绕轴旋转一周所得空间区域的体积为_________.(11)设某商品的收益函数为,收益弹性为,其中为价格,且,则=________ _.(12)若曲线有拐点,则_________.(13)设为阶矩阵,且,则=_________.(14)设是来自总体的简单随机样本,记统计量,则_________.或演算步骤.)(15)(本题满分10分)求极限.(16)(本题满分10分)计算二重积分,其中由曲线与直线及围成. (17)(本题满分10分)求函数在约束条件下的最大值和最小值.(18)(本题满分10分)(I) 比较与的大小,说明理由;(II) 记,求极限.(19)(本题满分10分)设函数在上连续,在内存在二阶导数,且.(I) 证明存在,使;(II) 证明存在,使.(20)(本题满分11分)设,已知线性方程组存在个不同的解.(I) 求,;(II) 求方程组的通解.(21)(本题满分11分)设,正交矩阵使得为对角矩阵,若的第列为,求.(22)(本题满分11分)设二维随机变量的概率密度为,,,求常数及条件概率密度.(23)(本题满分11分)箱中装有个球,其中红、白、黑球的个数分别为个,现从箱中随机地取出个球,记为取出的红球个数,为取出的白球个数.(I) 求随机变量的概率分布;(II) 求.2011年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)已知当时,函数与是等价无穷小,则:(A) .(B) .(C) .(D) .(2)设函数在处可导,且,则=(A) .(B) .(C) .(D) .(3)设是数列,则下列命题正确的是:(A) 若收敛,则收敛.(B) 若收敛,则收敛.(C) 若收敛,则收敛.(D) 若收敛,则收敛.(4)设,,,则的大小关系是:(A) .(B) .(C) .(D) .(5)设为阶矩阵,将的第列加到第列得矩阵,再交换的第行与第行得单位矩阵,记,,则(A) .(B).(C) .(D) .(6)设为矩阵,是非齐次线性方程组的个线性无关的解,为任意常数,则的通解为:(A) .(B) .(C) .(D) .(7)设与为两个分布函数,其相应的概率密度与是连续函数,则必为概率密度的是:(A).(B) .(C) .(D) .(8)设总体服从参数为的泊松分布,为来自总体的简单随机样本,则对应的统计量和,有:(A) ,.(B) ,.(C) ,.(D) ,.(9)设,则_________.(10)设函数,则_________.(11)曲线在点处的切线方程为_________.(12)曲线,直线及轴所围成的平面图形绕轴旋转所成的旋转体的体积为______ ___.(13)设二次型的秩为,的各行元素之和为,则在正交变换下的标准形为_________.(14)设二维随机变量服从正态分布,则=_________.明、证明过程或演算步骤.(15) (本题满分10分)求极限.(16) (本题满分10分)已知函数具有二阶连续偏导数,是的极值,,求.(17) (本题满分10分)求.(18) (本题满分10分)证明方程恰有两个实根.(19) (本题满分10分)设函数在上具有连续导数,,且满足,,求的表达式.(20) (本题满分11分)设向量组不能由向量组线性表示.(I) 求的值;(II) 将用线性表示.(21) (本题满分11分)设为阶实对称矩阵,的秩为,且.(I) 求的所有特征值与特征向量;(II) 求矩阵.(22) (本题满分11分)设随机变量与的概率分布分别为且.(I) 求二维随机变量的概率分布;(II) 求的概率分布;(III) 求与的相关系数.(23) (本题满分11分)设二维随机变量服从区域上的均匀分布,其中是由与所围成的三角形区域.(I) 求边缘概率密度;(II) 求条件概率密度.2012年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线渐近线的条数为:(A) .(B) .(C) .(D) .(2)设函数,其中为正整数,则:(A) .(B) .(C).(D) .(3)设函数连续,则二次积分:(A) .(B) .(C) .(D) .(4)已知级数绝对收敛,级数条件收敛,则:(A).(B) .(C) .(D) .(5)设,其中为任意常数,则下列向量组线性相关的为:(A) .(B) .(C) .(D) .(6)设为阶矩阵,为阶可逆矩阵,且.若,,则:(A) .(B) .(C) .(D).(7)设随机变量与相互独立,且都服从区间上的均匀分布,则:(A) .(B) .(C) .(D) .(8)设为来自总体()的简单随机样本,则统计量的分布为:(A).(B) .(C) .(D) .(9)_________.(10)设函数,,则_________.(11)设连续函数满足,则_________.(12)由曲线和直线及在第一象限中围成的平面图形的面积为_________.(13)设为阶矩阵,,为的伴随矩阵.若交换的第行与第行得矩阵,则_________.(14)设是随机事件,与互不相容,则_________.证明过程或演算步骤.(15) (本题满分10分)求极限.(16) (本题满分10分)计算二重积分,其中是以曲线及轴为边界的无界区域.。
考研数三2003-2010年(历年真题+答案详解)word版333
2003年全国硕士研究生入学统一考试 数学三试题 ............................................................................................ 1 2003年考研数学(三)真题解析 .......................................................................................................................... 4 2004年全国硕士研究生入学统一考试 数学三试题 .......................................................................................... 17 2004年考研数学(三)真题解析 ........................................................................................................................ 21 2005年全国硕士研究生入学统一考试 数学三试题 .......................................................................................... 35 2005年考研数学(三)真题解析 ........................................................................................................................ 38 2006年全国硕士研究生入学统一考试 数学三试题 .......................................................................................... 49 2006年考研数学(三)真题解析 ........................................................................................................................ 53 2007年全国硕士研究生入学统一考试 数学三试题........................................................................................... 66 2007年考研数学(三)真题 ................................................................................................................................ 69 2008年全国硕士研究生入学统一考试 数学三试题 .......................................................................................... 77 2008年考研数学(三)真题解析 ........................................................................................................................ 80 2009年全国硕士研究生入学统一考试 数学三试题 .......................................................................................... 90 2009年全国硕士研究生入学统一考试 ................................................................................................................ 93 数学三试题解析 ..................................................................................................................................................... 93 2010年全国硕士研究生入学统一考试 数学三试题 ........................................................................................ 106 2010年全国硕士研究生入学统一考试 数学三.试题详解.. (111)2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________. (3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ] (3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则sααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分)计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2003年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. (3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=Ddxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx a x x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T T a E E AB αααα+-= =T T T T a a E αααααααα⋅-+-11=T T T T a a E αααααααα)(11-+-=T T T a a E αααααα21-+-=E aa E T =+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为 0.9 .【分析】 利用相关系数的计算公式即可.【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y ,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n n a 绝对收敛,即∑∞=1n n a 收敛,当然也有级数∑∞=1n n a 收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ]【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a bbb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则sααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有 02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C) s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D) s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可. 【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vfxu f y x g ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导. 五 、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则 tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t ⎰--+-ππ=.1A e -+-π 因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n x xx x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--='' 01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(3) 求F(x)所满足的一阶微分方程; (4) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-=.22x x Ce e -+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a ba A n nn n ++++=321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T =α【评注】 本题的难点在∑=-=ni iab 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (3) 求a,b 的值;(4) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得a=1,b=2.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可.注意应先确定Y=F(X)的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1. 对于]8,1[∈x ,有 .131)(3132-==⎰x dt t x F x设G(y)是随机变量Y=F(X)的分布函数. 显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1.对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤= =})1({}1{33+≤=≤-y X P y X P =.])1[(3y y F =+于是,Y=F(X)的分布函数为.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若【评注】 事实上,本题X 为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布: 当y<0时,G(y)=0; 当 1≥y 时,G(y)=1;当 01<≤y 时,})({}{)(y X F P y Y P y G ≤=≤= =)}({1y F X P -≤ =.))((1y y F F =- 十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为 ⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为 }{)(u Y X P u G ≤+==}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P =}22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P . 由于X 和Y 独立,可见G(u)= }2{7.0}1{3.0-≤+-≤u Y P u Y P=).2(7.0)1(3.0-+-u F u F 由此,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g =).2(7.0)1(3.0-+-u f u f【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.2004年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ] (11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 22122=所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布;(Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量;(Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x ae xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为 51)(cos lim )(cos sin lim00=-=-=--→→b b x xxb x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX n E n i i =--∑=, 2122])(11[2σY n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以, 当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f , 当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.。
2003数三考研真题
2003数三考研真题在2003年的数学三考研真题中,考察了多个数学领域的知识点。
本文将按照题目出现的顺序,对每一道题目进行解答和讨论,帮助考生更好地理解和掌握这些知识点。
题目一:已知矩阵A=[2a b; 12 2b],其中a、b为实数,若A的秩为1,则a=____。
解答一:根据题目中给出的信息,矩阵A的秩为1,即矩阵A的列向量线性相关。
我们可以设矩阵A的列向量为v1和v2,即:v1 = [2a; 12]v2 = [b; 2b]要使得v1和v2线性相关,可以通过以下方式得到:v2 = k * v1其中k为非零实数。
将v1和v2代入上述等式中,得到:[b; 2b] = k * [2a; 12]根据等式的对应元素相等,可以得到以下两个方程:b = 2ak2b = 12k将第二个方程除以2,然后代入第一个方程,可以得到:2ak = 12kb = 6由此可得,a = 3。
因此,答案为a=3。
题目二:设函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,证明存在x∈(0,1),使得f(x)=x。
解答二:根据题目中给出的条件,函数f(x)在区间[0,1]上连续且满足f(0)=0,f(1)=1。
我们可以构造一个辅助函数g(x) = f(x) - x。
首先,观察辅助函数g(x)在区间端点的取值:g(0) = f(0) - 0 = 0g(1) = f(1) - 1 = 0根据零值定理,由于g(x)在区间端点的取值为0,所以在区间内必然存在某一点x∈(0,1),使得g(x)=0。
因此,存在x∈(0,1),使得f(x)=x。
证毕。
题目三:已知函数f(x)为定义在[0,1]上的二阶可导函数,且满足f(0)=f(1)=0,证明存在ξ∈(0,1),使得f''(ξ)=-8π^2f(ξ)。
解答三:根据题目中给出的条件,函数f(x)为定义在[0,1]上的二阶可导函数,并且满足f(0)=f(1)=0。
我们可以利用罗尔定理进行证明。
考研数三2003-2013年(历年真题_答案详解)word版333
2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x a e xxx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题.【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4.【评注】一般地,已知)()(limx g x f = A ,(1) 若g(x) → 0,则f (x) → 0;(2) 若f (x) → 0,且A ≠ 0,则g(x) → 0.(2) 设函数f (u , v)由关系式f [xg(y) , y] = x + g(y)确定,其中函数g(y)可微,且g(y) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg(y),v = y ,可得到f (u , v)的表达式,再求偏导数即可.【详解】令u = xg(y),v = y ,则f (u , v) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(2v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dtx f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=211121112A , 由初等变换得⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A , 从而 2)(=A r , 即二次型的秩为2. 【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=, 其中,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P e 1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e 1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN , 1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=,故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3).[ A ]【分析】如f (x)在(a , b)内连续,且极限)(lim x f ax +→与)(lim x f bx -→存在,则函数f (x)在(a , b)内有界.【详解】当x ≠ 0 , 1 , 2时,f (x)连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x)在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x)在闭区间[a , b]上连续,则f (x)在闭区间[a , b]上有界;如函数f (x)在开区间(a , b)内连续,且极限)(lim x f a x +→与)(lim x f bx -→存在,则函数f (x)在开区间(a , b)内有界.(8) 设f (x)在(-∞ , +∞)内有定义,且ax f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则(A) x = 0必是g(x)的第一类间断点. (B) x = 0必是g(x)的第二类间断点.(C) x = 0必是g(x)的连续点.(D) g(x)在点x = 0处的连续性与a 的取值有关.[ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g(0)即可,通过换元x u 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f x f x g u x x ∞→→→=== a(令x u 1=),又g(0) = 0,所以, 当a = 0时,)0()(lim 0g x g x =→,即g(x)在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g(x)的第一类间断点,因此,g(x)在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x) = |x(1 - x)|,则(A) x = 0是f (x)的极值点,但(0 , 0)不是曲线y = f (x)的拐点. (B) x = 0不是f (x)的极值点,但(0 , 0)是曲线y = f (x)的拐点. (C) x = 0是f (x)的极值点,且(0 , 0)是曲线y = f (x)的拐点. (D) x = 0不是f (x)的极值点,(0 , 0)也不是曲线y = f (x)的拐点.[ C ]【分析】由于f (x)在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x)在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x) > 0,而f (0) = 0,所以x = 0是f (x)的极小值点. 显然,x = 0是f (x)的不可导点. 当x ∈ (-δ , 0)时,f (x) = -x(1 - x),02)(>=''x f ,当x ∈ (0 , δ)时,f (x) = x(1 - x),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x)的拐点.故选(C).【评注】对于极值情况,也可考查f (x)在x = 0的某空心邻域内的一阶导数的符号来判断.(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n nu 收敛.(2) 若∑∞=1n nu 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→n n n u u,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n nv 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→n n n u u可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b).(C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项.【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,)()(lim)(>--='+→a x a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--a x a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ B ]【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩.【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于(A)2αu . (B)21αu-. (C)21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 .【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可.【详解】 12sinlim 2+∞→x x x x =.212lim 2=+∞→x xx x(2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xe z yx +++=+,则=)0,1(dzdy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可.【详解】 )1ln(y xe e x zy x y x +++=∂∂++, y x xe yz y x +++=∂∂+11, 于是=)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21.【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有=1234123121112a a a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P = 4813.【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= 0.4 , b= 0.1 . 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有 }1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ B ] 【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且 a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B).(8)设σd y x I D⎰⎰+=221cos ,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小.【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是 22cos 0y x +≤)cos(22y x +≤≤222)cos(y x +因此<+⎰⎰σd y x D22cos <+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A).(9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n nn a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C) )(1212∑∞=-+n n n a a收敛. (D) )(1212∑∞=--n n n a a收敛. [ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛, 但∑∞=-112n n a与∑∞=12n na均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a发散,进一步排除(C),故应选(D). 事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值. [ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f sin cos )(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可.【详解】 设f(x)=x 1, 则f(x)及21)(x x f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但x x f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A) 33. (B) 3. (C) 31. (D) 3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由T A A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a的代数余子式,且32=⇒=⇒=A A AE A AA T 或1=A而3211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +- (B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ] 【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t n s x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t n s x μ, 故μ的置信度为0.90的置信区间是))1(1),1(1(22-+--n t nx n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).2006年考研数学(三)真题解析一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)()11lim 1.nn n n -→∞+⎛⎫= ⎪⎝⎭【分析】将其对数恒等化ln e NN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n-有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0nn n n →∞+⎛⎫-= ⎪⎝⎭.故()101lim e 1nn n n -→∞+⎛⎫== ⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可. 【详解】由题设知,()()e f x f x '=,两边对x 求导得()()()2e()ef x f x f x f x '''==,两边再对x 求导得 ()()23()2e ()2e f x f x f x f x ''''==,又()21f =,故 ()323(2)2e 2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .zx y =-【分析】利用二元函数的全微分公式或微分形式不变性计算.【详解】方法一:因为22(1,2)(1,2)(4)84zf x y xx∂'=-⋅=∂,()22(1,2)(1,2)(4)22zf x y y y∂'=-⋅-=-∂,所以()()()1,21,21,2d d d 4d 2d z z zx y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦.方法二:对()224z f x y =-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--,故()()1,2d (0)8d 2d 4d 2d zf x y x y'=-=-.(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2 . 【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 ()2B A E E -=于是有 4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤= 19.【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他. 则{}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤==⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则{}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2 2.ES = 【分析】利用样本方差的性质2ES DX =即可.【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰,22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x+∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e2e d 2e 2x x xx x +∞-+∞--+∞=-+=-=⎰,所以()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以 22ES DX ==.二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ A ]【分析】 题设条件有明显的几何意义,用图示法求解. 【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim1h f h h→=,则(A) ()()000f f -'=且存在 (B)()()010f f -'=且存在(C)()()000f f +'=且存在 (D)()()010f f +'=且存在 [ C ]【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim1h f h h→=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()20(0)lim ()lim 0x h f f x f h →→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f h t ++→→-'===.所以(0)f +'存在,故本题选(C ).(9)若级数1nn a∞=∑收敛,则级数(A) 1nn a∞=∑收敛 . (B )1(1)nnn a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112n n n a a ∞+=+∑收敛. [ D ]【分析】 可以通过举反例及级数的性质来判定.【详解】 由1nn a∞=∑收敛知11n n a∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D).或利用排除法:取1(1)nn a n =-,则可排除选项(A),(B);取(1)nn a =-.故(D)项正确.(10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ B ]【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是[]12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D ]【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=,整理得000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ A ] 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,sA A A ααα 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪⎪⎝⎭,则 (A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)T C PAP =. [ B ]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ , 而1110010001P --⎛⎫ ⎪= ⎪⎪⎝⎭,则有1C PAP -=.故应选(B). (14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ A ] 【分析】 利用标准正态分布密度曲线的几何意义可得. 【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则12112121σσ⎛⎫⎛⎫Φ->Φ- ⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭. 其中()x Φ是标准正态分布的分布函数.又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).2007年考研数学(三)真题解析一、选择题1.【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可. 【详解】当0x +→时,1-1,211122x -=, 故用排除法可得正确选项为(B ).事实上,000lim lim lim 1x x x +++→→→==,或lnln(1)ln(1()x x o x o o =+-=+= .所以应选(B )【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算.2.【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去进行判断,然后选择正确选项.【详解】取()||f x x =,则0()()lim0x f x f x x→--=,但()f x 在0x =不可导,故选(D ).事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f =.在(C )中,0()limx f x x →存在,则00()(0)()(0)0,(0)limlim 00x x f x f f x f f x x→→-'====-,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.3.【分析】本题实质上是求分段函数的定积分. 【详解】利用定积分的几何意义,可得221113(3)12228F πππ⎛⎫=-= ⎪⎝⎭,211(2)222F ππ==,202202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰. 所以 33(3)(2)(2)44F F F ==-,故选(C ).【评注】本题属基本题型. 本题利用定积分的几何意义比较简便.4.【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分.【详解】由题设可知,,sin 12x x y ππ≤≤≤≤,则01,arcsin y y x ππ≤≤-≤≤,故应选(B ).【评注】本题为基础题型. 画图更易看出. 5.【分析】本题考查需求弹性的概念.【详解】选(D ).商品需求弹性的绝对值等于 d 2140d 1602Q P PP P Q P-⋅==⇒=-, 故选(D ).【评注】需掌握微积分在经济中的应用中的边际,弹性等概念.6.【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断.【详解】()()11lim lim ln 1e ,lim lim ln 1e 0x x x x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以 0y =是曲线的水平渐近线;()001lim lim ln 1e x x x y x →→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线;()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xxx x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1lim lim ln 1e 0x x x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线.故选(D ).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意e x 当,x x →+∞→-∞时的极限不同.7.【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性.一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关. 但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ).或者因为()()122331123101,,,,110011ααααααααα-⎛⎫⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---线性相关,故选(A ).【评注】本题也可用赋值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.8……【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】 由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B 合同,故选(B ).【评注】若矩阵A 与B 相似,则A 与B 具有相同的行列式,相同的秩和相同的特征值. 所以通过计算A 与B 的特征值可立即排除(A )(C ).9.【分析】本题计算贝努里概型,即二项分布的概率. 关键要搞清所求事件中的成功次数. 【详解】p ={前三次仅有一次击中目标,第4次击中目标}12223(1)3(1)C p p p p p =-=-,故选(C ). 【评注】本题属基本题型.10.【分析】本题求随机变量的条件概率密度,利用X 与Y 的独立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解. 【详解】因为(),X Y 服从二维正态分布,且X 与Y 不相关,所以X 与Y 独立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,应选(A ). 【评注】若(),X Y 服从二维正态分布,则X 与Y 不相关与X 与Y 独立是等价的.二、填空题11.【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论.【详解】因为323233110222lim lim0,|sin cos |22112x x x x x x xx x x x x x x x →+∞→+∞++++===+<++, 所以3231lim (sin cos )02x x x x x x x →+∞+++=+.【评注】无穷小的相关性质:(1) 有限个无穷小的代数和为无穷小; (2) 有限个无穷小的乘积为无穷小; (3) 无穷小与有界变量的乘积为无穷小.12.【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解】()212,2323y y x x '==-++,则()1(1)2!()(23)n n n n n y x x +-=+,故()1(1)2!(0)3n n n n n y +-=. 【评注】本题为基础题型.13.【分析】本题为二元复合函数求偏导,直接利用公式即可. 【详解】利用求导公式可得1221z y f f x x y ∂''=-+∂, 1221z x f f y x y∂''=-∂, 所以122z z y x xy f f x y xy ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭. 【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性. 14…..【分析】本题为齐次方程的求解,可令yu x=. 【详解】令yu x=,则原方程变为 33d 1d d d 22u u x u x u u x u x+=-⇒=-.两边积分得 2111ln ln 222x C u -=--,即2111e e y u x x x C C=⇒=,将11x y ==代入左式得 e C =,故满足条件的方程的特解为 22e e x y x =,即y =,1e x ->. 【评注】本题为基础题型.15……….【分析】先将3A 求出,然后利用定义判断其秩.【详解】30100000100100000()1000100000000000A A r A ⎛⎫⎛⎫ ⎪ ⎪⎪⎪=⇒=⇒= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 【评注】本题为基础题型.16……….【分析】根据题意可得两个随机变量服从区间()0,1上的均匀分布,利用几何概型计算较为简便.【详解】利用几何概型计算. 图如下:所求概率2113214A D S S ⎛⎫- ⎪⎝⎭===.【评注】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.2008年考研数学(三)真题解析一、选择题 (1)【答案】B【详解】()()()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点. (2)【答案】C 【详解】00()()()()()()aaaaaxf x dx xdf x xf x f x dx af a f x dx'==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx⎰为曲边梯形ABOD 的面积,所以0()axf x dx'⎰为曲边三角形的面积.(3)【答案】B【详解】000(,0)(0,0)11(0,0)lim limlim 0xx x x x f x f e f x xx →→→---'===-0011lim lim 1xx x x e e x x ++→→--==,0011lim lim 1xx x x e e x x ---→→--==-故(0,0)x f '不存在.220000(0,)(0,0)11(0,0)lim limlim lim 00y y y y y y f y f e y f y yy y →→→→---'=====-所以(0,0)y f '存在.故选B .(4)【答案】A【详解】用极坐标得()222()2011,()v uuf r rDf u v F u v dv rdr v f r dr+===⎰⎰⎰所以 ()2Fvf u u ∂=∂.(5)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=. 故,E A E A -+均可逆. (6)【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---又()2121421E A λλλλ---==----,所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. (7)【答案】A 【详解】()(){}{}()()()()()2max ,Z Z Z Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==.(8)【答案】D【详解】 用排除法. 设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C由~(0,1),~(1,4)X N Y N ,得0,1,EX EY ==所以 ()()E Y E aX b aEX b =+=+01,a b =⨯+= 所以1b =. 排除()B . 故选择()D .二、填空题 (9)【答案】1【详解】由题设知||0c x ≥≥,所以22,()1,2,x x c f x x c x cx x c >⎧⎪=+-≤≤⎨⎪-<-⎩因为 ()22lim lim(1)1x cx cf x x c --→→=+=+,()22lim lim x cx cf x x c ++→→==又因为()f x 在(,)-∞+∞内连续,()f x 必在x c =处连续所以 ()()lim lim ()x c x cf x f x f c +-→→==,即2211c c c +=⇒=.(10)【答案】1ln 32【详解】222111112x xx x f x x x x x x ++⎛⎫+== ⎪⎝⎭⎛⎫++- ⎪⎝⎭,令1t x x =+,得()22t f t t =- 所以()()()22222111ln 2ln6ln 2ln32222x f x dx dx x x ==-=-=-⎰⎰.(11)【答案】4π【详解】()221()2DDDx y dxdy x dxdy x y dxdy -=+⎰⎰⎰⎰⎰⎰利用函数奇偶性21200124d r rdr ππθ==⎰⎰.(12)【答案】1y x =【详解】由dy y dx x -=,两端积分得1ln ln y x C -=+,所以1x C y =+,又(1)1y =,所以1y x =.(13)【答案】3【详解】A 的特征值为1,2,2,所以1A -的特征值为1,12,12,所以14A E --的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以143113B E --=⨯⨯=.(14)【答案】112e -【详解】由22()DX EX EX =-,得22()EX DX EX =+,又因为X 服从参数为1的泊松分布,所以1DX EX ==,所以2112EX =+=,所以{}21111222P X e e --===!.2009年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1)函数3()sin x x f x x π-=的可去间断点的个数为 (A)1. (B)2. (C)3. (D)无穷多个.【答案】C. 【解析】()3sin x x f x x π-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--==故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则(A)1a =,16b =-. (B )1a =,16b =. (C)1a =-,16b =-.(D )1a =-,16b =.【答案】A.【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则 222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b ax a →==-=-⋅ 36a b ∴=- 故排除(B)、(C).另外201cos lim3x a axbx →--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排(D).所以本题选(A).(3)使不等式1sin ln xtdt x t >⎰成立的x 的范围是(A)(0,1).(B)(1,)2π. (C)(,)2ππ.(D)(,)π+∞.【答案】A.【解析】原问题可转化为求111sin sin 1()ln xx x tt f x dt x dt dt t t t =-=-⎰⎰⎰11sin 11sin 0x x t t dt dt t t --==>⎰⎰成立时x 的取值范围,由1sin 0tt ->,()0,1t ∈时,知当()0,1x ∈时,()0f x >.故应选(A).(4)设函数()y f x =在区间[]1,3-上的图形为则函数()()0x F x f t dt=⎰的图形为(A)(B)(C)(D)【答案】D.【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增.⑤由于F(x)为连续函数结合这些特点,可见正确选项为(D).(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 (A)**32OB A O ⎛⎫⎪⎝⎭.(B)**23O B AO ⎛⎫⎪⎝⎭.(C)**32O A BO ⎛⎫⎪⎝⎭.(D)**23OA BO ⎛⎫⎪⎝⎭.【答案】B.【解析】根据CC C E*=,若111,C C C C C C*--*==分块矩阵O A B O ⎛⎫ ⎪⎝⎭的行列式221236O A A B B O ⨯=-=⨯=(),即分块矩阵可逆1111661O B BO A O A O A O B B O B O B O AO A O A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭。
2003考研数三真题与解析
2003 年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上 .1 若x 0,(1) 设 f ( x)x cos ,其导函数在 x0 处连续,则.0, x若x 0,的取值范围是(2) 已知曲线 yx 3 3a 2 x b 与 x 轴相切,则 b 2 可以通过 a 表示为 b 2.(3) 设 a0 , f (x)g( x)a,若 0 x 1,0,其他, 而 D 表示全平面,则If ( x) g( y x)dxdy =.D(4) 设 n 维向量( a,0, ,0, a) T ,a0 ; E 为 n 阶单位矩阵,矩阵 AET ,B E1T,其中 A 的逆矩阵为 B ,则 a .a(5) 设随机变量 X 和 Y 的相关系数为 0.9, 若Z X0.4 ,则 Y 与 Z 的相关系数为.(6) 设总体 X 服从参数为2 的指数分布, X 1, X 2 , , X n 为来自总体 X 的简单随机样本,则当 n时, Y n1 n X i2 依概率收敛于 .n i 1二、选择题:本题共 6 小题,每小题 4 分,共 24 分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内 .(1) 设 f ( x) 为不恒等于零的奇函数,且f (0) 存在,则函数 g( x)f ( x) ()x(A) 在 x 0 处左极限不存在 . (B) 有跳跃间断点 x 0 .(C) 在 x 0 处右极限不存在 .(D) 有可去间断点 x0 .(2) 设可微函数 f ( x, y) 在点 (x 0 , y 0 ) 取得极小值,则下列结论正确的是( )(A) f (x 0 , y) 在 y y 0 处的导数等于零 . (B) f (x 0 , y) 在 y y 0 处的导数大于零 .(C)f ( x 0 , y) 在 y y 0 处的导数小于零 .(D)f (x 0 , y) 在 yy 0 处的导数不存在 .(3) 设 p na na n , q na na n, n 1,2,,则下列命题正确的是()(A) 若a n 条件收敛,则p n 与q n 都收敛 .n 1n 1n 1(B) 若a n 绝对收敛,则p n 与q n 都收敛 .n 1n 1n 1a b (C) 若a n 条件收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1(D) 若a n 绝对收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1a b b(4) 设三阶矩阵 Ab ab ,若 A 的伴随矩阵的秩为1,则必有 ()b b a(A)a b 或 a 2b0 . (B) a b 或 a 2b 0 . (C) a b 且 a 2b0 .(D)a b 且 a 2b 0 .(5) 设1 ,2 , , s 均为 n 维向量,下列结论不正确的是( )(A) 若对于任意一组不全为零的数k 1, k 2 , , k s ,都有 k 11k2 2k s s 0 ,则1 ,2 , , s 线性无关 .(B) 若1, 2,,s 线性相关,则对于任意一组不全为零的数k 1 , k 2 , , k s ,都有k1 1k2 2k s s 0.(C) 1 ,2 ,,s 线性无关的充分必要条件是此向量组的秩为s.(D)1 ,2 ,, s 线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件: A 1 ={ 掷第一次出现正面} , A 2 ={ 掷第二次出现正面 } , A 3 ={ 正、反面各出现一次 } , A 4 ={ 正面出现两次 } ,则事件 ( )(A)A 1, A 2 , A 3 相互独立 . (B) A 2 , A 3 , A 4 相互独立 .(C)A 1 , A 2 , A 3 两两独立 .(D) A 2 , A 3 , A 4 两两独立 .三 、(本题满分 8 分)设 f ( x)1 1 1 , x [ 1 ,1) ,试补充定义 f (1)使得 f ( x) 在 [ 1,1] 上连xsin x(1 x) 22 续.四 、 (本题满分 8 分 )设 f (u, v) 具有二阶连续偏导数, 且满足2 f2 f1,又g( x, y) f [ xy,1(x 2 y 2 )] ,u 2v 222g2g求x 2y 2 .五 、 (本题满分 8 分 )计算二重积分Ie ( x 2 y 2 ) sin( x 2y 2 )dxdy.D其中积分区域 D{( x, y) x 2y 2}.六、 (本题满分 9 分 )求幂级数 1( 1) n x 2n ( x 1) 的和函数 f (x) 及其极值 .n 12n七、 (本题满分 9 分 )设 F ( x) f (x) g( x) , 其中函数 f (x), g (x) 在 ( ,) 内满足以下条件:f ( x) g( x) ,g ( x) f ( x) ,且 f (0)0 , f ( x)g (x)2e x .(1) 求 F ( x) 所满足的一阶微分方程;(2) 求出 F ( x) 的表达式 . 八、 (本题满分 8 分 )设函数f ( x) 在 [0, 3]上连续,在 (0, 3)内可导,且 f (0) f (1) f (2) 3, f (3)1 .试证:必存在(0,3) ,使 f ( ) 0.九、 (本题满分 13 分 )已知齐次线性方程组(a1 a1 x1 a1 x1a1 x1b)x1( a2a2 x2a2 x2a2 x2a3 x3a n x n0,b) x2a3 x3a n x n0,(a3b) x3a n x n0,a3 x3(a n b) x n0,n其中a i 0. 试讨论a1, a2,,a n和b满足何种关系时,i 1(1)方程组仅有零解;(2)方程组有非零解 . 在有非零解时,求此方程组的一个基础解系.十、 (本题满分13 分 )设二次型f (x1,x2,x3)XT222222(b0) ,AX ax1x2x3bx1x3中二次型的矩阵 A 的特征值之和为1,特征值之积为 -12.(1)求 a, b 的值;(2) 利用正交变换将二次型 f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、 (本题满分13分)设随机变量 X 的概率密度为1, 若x [1,8],f ( x)3x23其他 ;0,F(X ) 是 X 的分布函数.求随机变量 Y F (X ) 的分布函数.十二、 (本题满分13 分 )设随机变量X 与 Y 独立,其中X 的概率分布为X ~120.3,0.7而 Y 的概率密度为 f ( y) ,求随机变量 U X Y 的概率密度 g(u) .2003 年全国硕士研究生入学统一考试数学三试题解析一、填空题(1) 【答案】2【分析】无穷小量乘以有界函数的极限仍是无穷小量.【详解】是参变量, x 是函数f(x) 的自变量f ( x) f (0)x cos1lim x 1 cos1f(0)lim lim x0 ,x 0x0x0x x 0x要使该式成立,必须lim x10 ,即 1 .x 0当 x(,0)(0,) 时,f( x)x1 cos1x 2 sin1x x要使 f ( x)0 在x0 处连续,由函数连续的定义应有lim f( x)lim x1 cos 1x 2 sin1f (x) 0x0x 0x x由该式得出 2 .所以f( x) 在x0处右连续的充要条件是 2 .(2)【答案】 4a 6【详解】设曲线与x 轴相切的切点为( x0,0) ,则yx x00 .而 y 3x23a 2,有 3x023a2又在此点 y 坐标为0(切点在x轴上),于是有x033a2 x0 b 0,故b x033a2 x0x0 ( x023a2 ) ,所以22(322)224446.b x0x0aa a a(3)【答案】 a2【详解】本题积分区域为全平面,但只有当0 x 1,0 y x 1 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.If ( x) g( y=2dxdy= a21x 1212 dx dy a[( x 1) x]dx ax)dxdy a0x0 D0x 10y x 1(4) 【答案】 -1【详解】这里T为 n 阶矩阵,而T2a 2 为数,直接通过 AB E 进行计算并注意利用乘法的结合律即可.由题设,有AB (ET)(E 1T)=ET1 T1 TTaaaET1 T1 (T )T =ET1 T2aTaaaE( 1 2a 1 )TE ,1a1, a于是有1 2a0 ,即 2a 2a 1 0 ,解得 a1. 已知 a0 ,故 a1 .a2(5) 【答案】 0.9.【详解】利用方差和相关系数的性质D ( X a) DX , Cov( X ,Ya) Cov( X ,Y ) ,又因为 Z 仅是 X 减去一个常数,故方差不会变, Z 与 Y 的协方差也不会变,因此相关系数也不会变.Cov(Y, Z ) Cov (Y, X 0.4)E[(Y (X 0.4)] E(Y ) E( X0.4)E(XY) 0.4E(Y) E(Y) E( X )0.4E(Y)E(XY)E(Y )E( X ) Cov ( X ,Y ) ,且 D ZD X . 又 Cov (Y, Z ) Cov ( X , Y) ,所以Cov(Y, Z )Cov(X ,Y) XY0.9.D YD ZD XD Y(6) 【答案】1.2【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量X 1 , X 2 , , X n ,当方差一致有界时, 其算术平均值依概率收敛于其数学期望的算术平均值:1np1n).X iEX i (nn i 1n i 1【详解】本题中X 12, X 22 , , X n 2 满足大数定律的条件,且EX i 2 DX i(EX i ) 2 = 1(1)21 ,422因此根据大数定律有1 n 2依概率收敛于1 n2 1Y nX i EX i.n i 1n i 12二、选择题(1) 【答案】 (D)【详解】 方法 1:直接法:由f (x) 为奇函数知, f (0) 0 ;又由 g( x)f ( x) ,知g (x) 在xx 0 处没定义,显然 x 0 为 g( x) 的间断点,为了讨论函数g( x) 的连续性,求函数g(x) 在 x0 的极限.lim g ( x) lim f ( x) lim f (x) f (0) 导数的定义f (0)存在,x 0 x 0x x 0x故 x 0 为可去间断点.方法 2:间接法:取f ( x)x ,此时 g( x) =x1, x 0,可排除 (A) (B) (C)三项.x 0, x0,(2) 【答案】 ( A)【详解】 由函数 f ( x, y) 在点 ( x 0 , y 0 ) 处可微, 知函数 f ( x, y) 在点 ( x 0 , y 0 ) 处的两个偏导数都存在,又由二元函数极值的必要条件即得 f (x, y) 在点 (x 0 , y 0 ) 处的两个偏导数都等于零. 从而有df ( x 0 , y) fdyy y 0y( x, y ) ( x 0 , y 0 )选项 ( A) 正确.(3) 【答案】 ( B)【详解】由 p na n an, qna n an,知 0 pa , 0q a n2nnn2若a n 绝对收敛,则 a n 收敛 . 再由比较判别法,p n 与q n 都收敛,后者n 1n 1n 1n 1与 q n 仅差一个系数,故q n 也收敛,选 (B) .n 1n 1(4) 【答案】 (C)【分析】A 的伴随矩阵的秩为 1, 说明 A 的秩为 2,由此可确定a, b 应满足的条件.【详解】 方法 1:根据 A 与其伴随矩阵A 秩之间的关系n r Anr A *1 r A n 1 0 r An 1知秩 ( A )=2,它的秩小于它的列数或者行数,故有a b b 1 b b1 b b A b a b(a 2b) 1 a b(a 2b) 0 a b0 b b a1 b aa b( a 2b)( a b)2 0有 a 2b0 或 a b .当 a b 时,b b bAb b b b b b2 1 1 b b b3 1 10 0 00 0 0显然秩 A1 2 , 故必有 a b 且 a 2b0 . 应选 (C).n r An 方法 2:根据 A 与其伴随矩阵A 秩之间的关系, rA *1 r A n 1 ,0 r An 1知 r A *1 , r A2 . 对 A 作初等行变换a b b 2 1 13 1 1Ab a bb b aa b b b a a b 0 b aa b当 a b 时,从矩阵中可以看到A 的秩为 1,与秩 A2 ,不合题意 (排除 (A) 、 (B))故 ab ,这时ab bAb a a b 02 b a 3b aa bba 2b bb11 01b a0a b12 00110113故 a 2b0 ,且 ab 时,秩 ( A )=2 ,故应选.(5) 【答案】 (B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】 (A): 若对于任意一组不全为零的数k 1, k 2 , , k s ,都有 k 11k 22k s s 0 ,则1 ,2 ,,s 必线性无关 .因 为 若1, 2,, s 线 性 相 关 , 则 存 在 一 组 不 全 为 零 的 数 k 1, k 2 , , k s , 使 得k 11k 22ks s0 ,矛盾. 可见 (A) 成立.(B):若 1, 2, , s 线 性 相 关 , 则 存 在 一 组 ( 而 不 是 对 任 意 一 组 不 全 为 零 的 ) 数k 1 , k 2 , ,k s ,都有 k 11k2 2k ss0. (B) 不成立.(C)1 ,2 ,, s 线性无关,则此向量组的秩为s ;反过来,若向量组1 ,2 ,, s 的秩为 s ,则1 ,2 ,, s 线性无关,因此 (C)成立.(D)1 ,2 ,, s 线性无关,则其任一部分组线性无关, 则其中任意两个向量线性无关,可见 (D) 也成立.综上所述,应选 (B).【评注】 原命题与其逆否命题是等价的 . 例如,原命题:若存在一组不全为零的数k 1 , k 2 , , k s ,使得 k 1 1k2 2k ss0成立,则 1,2 ,, s 线性相关.其逆否命题为:若对于任意一组不全为零的数k 1 , k 2 , , k s ,都有 k 11k 22ks s0 ,则 1 , 2 , , s 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6) 【答案】 C【分析】 (1) A, B 两事件相互独立的充要条件:P AB P A P B(2) A, B,C 三事件相互独立的充要条件:(i) A, B, C 两两相互独立;(ii) P ABCP AP BP C【详解】 方法 1:因为1 ,P A 21 A 31 1 P A 1, P ,P A 4,且2224P A 1A 21 ,P A 1 A 31 11 ,P A 1 A2 A 30 ,4,P A 2 A 3,P A 2 A 4444可见有P A 1A 2 P A 1 P A 2 ,P A 1A 3 P A 1 P A 3 ,P A 2A 3PA 2PA 3,PA1A2A3PA1PA2PA3,PA2A4PA2PA4.故 A1 , A2 , A3两两独立但不相互独立; A2 , A3 , A4不两两独立更不相互独立,应选(C) .方法 2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见 (A) 不正确,因为如果正确,则(C)也正确,但正确答案不能有两个;同理,(B)也不正确 . 因此只要检查 (C) 和 (D)P A2 A3A4P0 PA2P A3111 P A4442故(D) 错,应选 (C).三【详解】为使函数 f ( x) 在1,1]上连续,只需求出函数 f (x) 在 x1的左极限 lim f( ) ,[x1x2然后定义 f (1) 为此极限值即可.lim f ( x)lim[11x 1]x 1x1x sin(1x)1lim[11]1lim(1 x) sin xsin x(1(1x)sin xx1x)x 1令 u 1 x ,则当 x 1 时, u0,所以lim f ( x)1lim u sin(1u)u sin(1u)x 1u01lim u sin(1u)1lim u sin(1u)u (sin cos u cos sin u)u sin u u 0u01lim u sin(1u)1limcos(1u)等2u2洛22u u0u01lim 2 sin(1u)10=1洛22=u0定义 f (1)1,从而有 lim f ( x)1f (1), f(x) 在 x1处连续.又 f ( x) 在[1,1) x12上连续,所以 f ( x) 在 [ 1,1] 上连续.2四【详解】由复合函数z f [( x, y), ( x, y)] 的求导法则,得g f( xy)f 1( x2y2 )f f 2y xx u x v x u vg f( xy)f 1 ( x2y2 )f f 2xy u y v x u y .v从而2 g y 2 f y 2 f x f x 2 f y 2 f xx2u2u v v u v v2y2 2 f2xy 2 f x2 2 f fu2u v v2v2 g x 2 f x 2 f y f y 2 f x 2 f yy2u2u v v u v v2x2 2 f2xy 2 f y2 2 f fu2u v v2v2 g 2 g2y22f( x2y2)2 f( x2y2)(2 f 2 f)=x2y2.所以x 2y2( x)2v2u2v2u五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设x r cos, y r sin,有I e ( x2y2) sin( x2y2 )dxdy e e ( x2 y2 ) sin( x2y2 ) dxdyD De2e r 2sin r2rdr e2e r2d2d sin0000记 A e t sin tdt ,则A e t sin tdt e t d cost e t cost000e1 e t d sin te1 e t sin t00因此A 1(1 e) , I e(1 e )2(1 e ).22t r 2r 2 dr 2 e e t sin tdt.e t costdte t sin tdt = e 1 A.六【分析】 (1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者.(2)等比级数求和公式x n 1 x x2x n1( 1 x 1)n 01x【详解】先对和函数 f (x)1( 1)n x2n求导n 12nf ( x)( 1)n x2 n 1x( 1)n x2 n 2x( 1)n x2nn 1n 1n0x( x2 ) n x1xn 01x2 1 x2对上式两边从0 到x积分x(t )dt x t dt f ( x) f (0)1ln(1 x2 )f0 1t 202由 f (0) 1,得f ( x) 11ln(1 x2 )( x 1).2为了求极值,对 f ( x) 求一阶导数,12x xf ( x)1 x2 1 x22令 f (x)0 ,求得唯一驻点 x0.由于1x2,f(0)10f ( x)x2 )(12由极值的第二充分条件,得 f ( x) 在 x0 处取得极大值,且极大值为 f (0) 1.七【分析】题目要求 F ( x) 所满足的微分方程,而微分方程中含有其导函数,自然想到对 F ( x)求导,并将其余部分转化为用 F ( x) 表示,导出相应的微分方程,然后再求解相应的微分方程即可.【详解】 (1) 方法1:由F ( x) f (x)g (x) ,有F (x) f (x) g( x) f ( x) g (x) =g2( x) f 2 ( x)[ f ( x) g(x)]2 2 f ( x) g( x) = (2e x) 22F ( x)可见 F ( x) 所满足的一阶微分方程为F (x)2F ( x)4e2x .相应的初始条件为 F (0) f (0) g(0) 0 .方法 2:由F (x) f ( x) g (x),有F ( x) f ( x)g( x) f (x)g ( x) =[ f ( x)]2[g ( x)] 2[ f ( x)g ( x)] 2 2 f ( x)g ( x)又由f ()() 2x. 有f ( x)xf (x)g( x)g (x) f (x)g ( x)2e ,,,于是x g x eF ( x)4e2 x 2 f (x) g( x)4e2 x2F ( x)可见 F ( x) 所满足的一阶微分方程为F (x)2F ( x)4e2x .相应的初始条件为 F (0) f (0) g(0)0(2)题 (1) 得到F ( x)所满足的一阶微分方程,求 F (x) 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程dyP( x) y Q( x) 的通解为dxy e P ( x ) dxQ( x)eP ( x) dxCdx2dx2x2dx 2 x4 x 2 x 2 x所以()e [ 4e dx C]= e [ 4e dx C ]=e Ce .F x e将 F(0)0 代入上式,得 01C, C 1 .所以 F ( x)e2 x e 2 x.八【分析】题目要证存在(0,3) ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知 f (3) 1 ,只需要再证明存在一点 c[0,3) ,使得 f (c) 1 f (3) ,然后在 [ c,3] 上应用罗尔定理即可.条件 f (0) f (1) f (2) 3 等价于f (0)f (1) f ( 2)1.问题转化为1介于 f (x) 的最3值之间,最终用介值定理可以达到目的.【详解】方法 1:因为f ( x)在[0,3]上连续,所以 f ( x) 在[0,2]上连续,则在[0,2]上必有最大值 M 和最小值m(连续函数的最大值最小值定理),于是m f (0)M , m f (1)M , m f (2) M .三式相加3m f (0) f (1) f (2) 3M .从而f ( 0 ) f( 1 )f( 2 )m31 M .由介值定理知,至少存在一点c[0,2] ,使f (c)f (0) f (1) f (2)1.3因为 f ( c) f (3) 1 ,且f (x)在[c,3]上连续,在(c,3)内可导,由罗尔定理知,必存在(c,3) (0,3) ,使 f ( )0.方法2:由于f (0) f (1) f (2) 3,如果 f (0), f (1), f (2) 中至少有一个等于1,例如f (2) 1 ,则在区间[ 2, 3]上对 f ( x) 使用罗尔定理知,存在(0, 2)(0, 3)使f ( ) 0. 如果 f (0), f (1), f (2) 中没有一个等于1,那么它们不可能全大于1,也不可能全小于1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间 (0, 2) 内至少存在一点使f () 1.在区间 [ ,3] 对 f ( x) 用罗尔定理知,存在( ,3) (0,3) ,使 f ( )0. 证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的 (-1) 倍加到其余各行,即可计算出行列式的值.【详解】方程组的系数行列式a1 b a2a3a na1a2 b a3a nA a1a2a3 b a na1a2a3a n bnb a i a2a3a ni 1nb a i a2b a3a ni 1nb a i a2a3b a ni1nb a i a2a3a n bi11a2a3a n1a2b a3a nn(b a i ) 1a2a3 b a ni11a2a3a n b1a2a3a nn 0b00n0 = b n 1 (b(b a i ) 0 0b a i ).i1i1000bn(1)当 A0 ,即b0且 b a i0 时,秩A n ,方程组仅有零解.i1(2)当 b0时,A0,原方程组的同解方程组为a1 x1a2 x2a n x n0.n0 可知,a i(i由a i1,2,, n) 不全为零.不妨设 a10 ,得原方程组的一个基础解系i1a2,1,0,,0)T,(a3,0,1,,0)T,, na n,0,0,,1)T.1(2a1(a1a1n时, A0.这时 b0 ,原方程组的系数矩阵可化为(3)当 b a ii 1na1a i a2a3a ni1na1a2a i a3a ni1A na1a2a3a i a ni 1na1a2a3a n a ii 1a1na i a2a3a ni 1n na i a i00将第 1行的(1)倍i1i 1n n加到其余各行a i0a i0i1i 1n na i00a ii1i1n从第 2行到第 n行a1i 1a i a2a3a n同乘以1倍1100n1010a ii110010000将第 i行的 ( a )倍1100i加到第 1行,.i 2,3,, n10001001由此得原方程组的同解方程组为x2x1, x3x1,, x n x1.原方程组的一个基础解系为(1,1, ,1)T .十【分析】特征值之和等于 A 的主对角线上元素之和,特征值之积等于 A 的行列式,由此可求出 a, b 的值;进一步求出 A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要 ),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.a0b【详解】 (1)二次型f的矩阵为A020. 设 A 的特征值为i (i 1,2,3) ,由题设得b02123a11a22a33 a 2 ( 2) 1,a0b123| A |0204a 2b212.b02解得 a 1,b2.(2)求矩阵 A 的特征值,令102E A020(2)2(3) 0,202得矩阵 A 的特征值122, 3 3.对于基础解系10 2 122, 解齐次线性方程组 (2EA) x 0 ,系数矩阵为 00 ,得 2 041 (2,0,1)T ,2(0,1,0)T .4 02对于 33 ,解齐次线性方程组 ( 3E A)x 0 ,系数矩阵为 0 5 0 ,得2 01基础解系3(1,0, 2)T .由于 1,2 ,3 已是正交向量组,为了得到规范正交向量组,只需将1, 2, 3 单位化,由此得1( 2 ,0, 1 )T , 2 (0,1,0)T , 3 ( 1 ,0,2 )T .5 55 5令矩阵2155Q1230 1 0 ,1 0255则 Q 为正交矩阵.在正交变换 XQY 下,有2 0 0 Q T AQ0 2 0 ,0 03且二次型的标准形为f2 y 12 2 y 223y 32 .【评注】本题求 a, b 也可先计算特征多项式,再利用根与系数的关系确定:二次型 f 的矩阵 A 对应特征多项式为abE A0 2 0(2)[ 2(a 2) (2ab 2 )].b2设 A 的特征值为1 , 2,3,则12,2 31232 (a 2) 1, 1 2 3a 2,2 3(2a b 2 ). 由题设得 2(2a b 2 )12.解得 a 1,b2 .第一步求参数见 《数学复习指南》 P361 重要公式与结论 4,完全类似例题见 《文登数学全真模拟试卷》数学三 P47 第九题.十一【分析】先求出分布函数 F ( x) 的具体形式,从而可确定 YF(X) ,然后按定义求 Y的分布函数即可.注意应先确定 Y F (x) 的值域范围 (0F(X)1) ,再对 y 分段讨论.【详解】易见,当 x1时, F (x) 0; 当 x 8时, F ( x) 1.对于 x [1,8] ,有x1 3 x 1.F ( x)dt133 t 2设 G ( y) 是随机变量 YF (x) 的分布函数. 显然,当 y0 时, G ( y) =0;当 y 1时,G ( y) =1 . 对于 y [ 0,1) ,有G ( y) P{ Yy} P{F(X) y}P{3 X 1y}P{ X ( y 1)3} F [( y 1)3 ] y.于是, YF ( x) 的分布函数为0,若 y 0,G ( y)y, 若 0y1,1,若 y 1.十二 【分析】本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.求二维随机变量函数的分布, 一般用分布函数法转化为求相应的概率. 注意 X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度 g(u) ,一般应先求分布函数G (u) P{ U u}P{ X Y u} ,在计算概率的时候,应充分利用X 只有可能取值 X 1和 X2.全概率公式:如果事件A 1, , A n 构成一个完备事件组,即它们是两两互不相容,其和为(总体的样本空间 ) ;并且0,1,2, , .则对任一事件B 有nP B P( A i )P(B | A i ).i 1【详解】设 F ( y) 是 Y 的分布函数,由全概率公式,得U X Y 的分布函数G (u) P{ X Y u}P{X 1}P{X Y 0.3P{ X Y u X 0.3P{Y u 1 X u X 1}P{ X2}P{ X Y u X 2} 1}0.7P{X Y u X2}1}0.7P{Y u 2 X2} .由于 X 和 Y 相互独立,所以P{Y u 1} P{ Y u1X 1}, P{Y u 2}P{ Y u 2 X2}所以G (u)0.3P{ Y u1}0.7 P{ Y u 2}0.3F (u1)0.7 F (u2).由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度g (u)G (u)0.3F(u1) 0.7F (u2) 0.3 f (u 1)0.7 f (u2).。
2003数一数三考研数学真题及解析
2003年全国硕士研究生入学统一考试数学一试题一、填空题(本题共6小题,每小题4分,满分24分.)(1))1ln(12)(cos lim x x x +→= .(2)曲面22y x z+=与平面042=-+z y x 平行的切平面的方程是.(3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a =.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5)设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧= 则=≤+}1{Y X P.(6)已知一批零件的长度X (单位:cm )服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40(cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值(1.96)0.975,(1.645)0.95.ΦΦ==)二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A ) 一个极小值点和两个极大值点. (B ) 两个极小值点和一个极大值点. (C ) 两个极小值点和两个极大值点. (D ) 三个极小值点和一个极大值点.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A ) n n b a <对任意n 成立.(B ) n n c b <对任意n 成立.(C ) 极限n n n c a ∞→lim 不存在.(D ) 极限n n n c b ∞→lim 不存在.(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且22200(,)lim1()x y f x y xyx y →→-=+,则 (A ) 点(0,0)不是(,)f x y 的极值点. (B ) 点(0,0)是(,)f x y 的极大值点. (C ) 点(0,0)是(,)f x y 的极小值点.(D ) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4)设向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则 (A ) 当s r <时,向量组II 必线性相关.(B ) 当s r>时,向量组II 必线性相关.(C ) 当s r <时,向量组I 必线性相关.(D ) 当s r >时,向量组I 必线性相关.(5)设有齐次线性方程组0Ax =和0Bx =,其中,A B 均为n m ⨯矩阵,现有4个命题: ①若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ②若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④若秩(A )=秩(B ),则0Ax =与0Bx =同解. 以上命题中正确的是(A ) ①②.(B ) ①③.(C ) ②④.(D ) ③④.(6)设随机变量21),1)((~X Y n n t X =>,则 (A ) )(~2n Yχ.(B ) )1(~2-n Yχ.(C ) )1,(~n F Y .(D ) ),1(~n F Y .过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五、(本题满分10分) 已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证:(1)dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--; (2).22sin sin π≥--⎰dx ye dy xex Ly六、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a (m ).根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深? (2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.设函数()f x 连续且恒大于零,222()22()()()()t D t f xy z dVF t f x y d σΩ++=+⎰⎰⎰⎰⎰,22()2()()()D t tt f x y d G t f x dxσ-+=⎰⎰⎰,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.十二、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数.从总体X 中抽取简单随机样本n X X X ,,,21 ,记12ˆmin(,,,X X θ=L )n X .(1)求总体X 的分布函数()F x ; (2)求统计量θˆ的分布函数)(ˆx F θ;(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年考研数学一试题答案与解析一、填空题(1)【分析】 属1∞型. 原式=1cos 1cos 1ln(1)lim[1(cos 1)].x x x x x -⋅-+→+-利用等价无穷小因子替换易求得2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 故原式=12.e -(2)【分析】 曲面在任意点(,,)P x y z 处的法向量{2,2,1}x y =-n ,n 与平面042=-+z y x 的法向量{2,4,1}=-0n 平行,λλ⇔=0n n 为某常数,即22,24,1.x y λλλ==-=- 从而1, 2.x y ==,又点P 在曲面上22(1,2)()5z x y P ⇒=+=⇒点处的{2,4,1}=-n .因此所求切面方程是0)5()2(4)1(2=---+-z y x ,即245x y z +-=.(3)【分析】 这是求傅氏系数的问题. 已知)()(2ππ≤≤-=x x x f 是以2π为周期的偶函数,按傅氏系数计算公式得2220002211cos 2sin 22sin 22a x xdx x d x x xdx ππππππ===-⎰⎰⎰=00111cos 2cos 2cos 2 1.xd x x x xdx ππππππ=-=⎰⎰(4)【分析】 设由基12,αα到基12,ββ的过渡矩阵为C ,则1212(,)(,)C ββαα=,即11212(,)(,).C ααββ-=那么,由111110231023011201120112⎡⎤⎡⎤⎡⎤→→⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ 可知应填:23.12⎡⎤⎢⎥--⎣⎦当然也可先求出11111,0101-⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦再作矩阵乘法而得到过渡矩阵.(5)【分析】 =≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰12016(12).4x x dx =-=⎰(6)【分析】 这是一个正态总体方差已知求期望值μ的置信区间问题,该类型置信区间公式为(,),I x x =+其中λ由{}0.95P U λ<=确定(~(0,1))U N 即 1.96λ=.将40,1,16, 1.96x n σλ====代入上面估计公式,得到μ的置信度为0.95的置信区间是(39.51,40.49).二、选择题(1)【分析】 由图,()f x 有三个驻点和一个不可导点0.x ='()f x 在三个驻点处,一个由正变负,两个由负变正,因而这三个驻点中一个是极大值点,两个是极小值点;而点0x =(()f x 的连续点)的左侧'()0f x >,0x =的右侧'()0f x <,0x =是()f x 由增变减的交界点,因而是极大值点.应选(C ).(2)【分析】 (A ),(B )显然不对,因为由数列极限的不等式性质只能得出数列“当n 充分大时”的情况,不可能得出“对任意n 成立”的性质.(C )也明显不对,因为“无穷小⋅无穷大”是未定型,极限可能存在也可能不存在. 故应选(D ).(3)【分析】 由条件000lim[(,)]0lim (,)(0,0)0.x x y y f x y xy f x y f →→→→⇒-=⇒==由极限与无穷小的关系⇒222(,)1(1)()f x y xyo x y -=++ (0).ρ=→⇒2222222(,)()(())()(0).f x y xy x y o x y xy o ρρ=++++=+→ 当y x =时,2(,)(0,0)[1(1)]0f x y f x o -=+>(0ρδ<<时), 当y x =-时,2(,)(0,0)[1(1)]0f x y f x o -=-+<(0ρδ<<时),其中δ是充分小的正数,因此,(0,0)不是(,)f x y 的极值点.应选(A ).(4)【分析】 根据定理“若12,,,s αααL可由12,,,t βββL 线性表出,且s t >,则12,,,s αααL 必线性相关”,即若多数向量可以由少数向量线性表出,则这多数向量必线性相关,故应选(D ).(5)【分析】 显然命题④错误,因此排除(C ),(D ).对于(A )与(B )其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B )”正确,知“若0Bx =的解均是0Ax =的解,则秩(A )≥秩(B )”正确,可见“若0Ax =与0Bx =同解,则秩(A )=秩(B )”正确.即命题③正确,所以应当选(B ).(6)【分析】 根据t 分布的性质,2~(1,)X F n ,再根据F 分布的性质21~(,1),F n X因此21~(,1)Y F n X=.故应选择(C ).三、【解】(1)曲线ln y x =在点0000(,)(ln )x y y x =处的切线方程为0001();y y x x x -=- 由切线过原点(0,0),得000,y x e ==,所以该切线方程为x y e=.从而,图形的D 面积为(如图)1() 1.2y eA e ey dy =-=-⎰ (2)切线y x e x =、轴与直线x e =所围三角形绕x e =旋转所得圆锥体的体积为211,3V e π=而曲线ln y x x =、轴与直线x e =所围曲边三角形绕x e =的旋转体体积为1222011()(2),22y V e e dy e e ππ=-=-+-⎰或者221112()ln (2).22e V e x xdx e e ππ=-=-+-⎰因此所求旋转体的体积为 212(5123).6V V V e e π=-=-+四、【分析与求解】 (1)因为'()f x 简单,先求'()f x 的展开式,然后逐项积分得()f x 的展开式.因2220112211()()'2(1)4,(,),121214221()12n n nn x f x x x x x x x∞=--'==-=--∈--++++∑ 又(0)4f π=,两边积分得221000(1)411()2(1)42,(,).442122n n x n n nn n n f x t dt x x n ππ∞∞+==-=--=-∈-+∑∑⎰因为()f x 在21=x 连续,21102(1)41(1)21221n n nn x n n xn n ∞∞+===--=++∑∑收敛,所以210(1)411()2,(,].42122n n n n f x x x n π∞+=-=-∈-+∑(2)令21=x ,得21001(1)41(1)()2.24212421n n n n n n f n n ππ∞∞+==--=-⋅=-++∑∑又0)21(=f ,因此0(1).214n n n π∞=-=+∑五、【分析与证明】用格林公式把第二类曲线积分转化为二重积分.(1)由格林公式,有左边曲线积分=sin sin sin sin [()()](),y x y x DDxe ye dxdy e e dxdy x y --∂∂--=+∂∂⎰⎰⎰⎰ 右边曲线积分=sin sin ().y x De e dxdy -+⎰⎰ 因为区域D 关于y x =对称⇒⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin (x 与y 互换). 因此dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=---.①(2)由(1)的结论,有sin sin sin sin sin sin ()()y x y x y yLDDxe dy ye dx e e dxdy e e dxdy ----=+=+⎰⎰⎰⎰⎰Ñ2222.DDdxdy π≥==⎰⎰⎰⎰六、【分析】 设第n 次打击后,桩被打进地下n x ,第n 次打击时,气锤所作的功为),3,2,1( =n W n . 由题设,已知当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,1n n W rW -=要求的是(n x n 3)=及lim .n n x →+∞【解】 通过求1nii W =∑直接求出nx .按功的计算公式:12211011,22x W kxdx kx ka ===⎰2312123,,,.nn x x x n x x x W kxdx W kxdx W kxdx -===⎰⎰⎰L相加得 21201.2nx n n W W W kxdx kx +++==⎰L又 21121n n n n W rW r W r W ---====L ,代入上式得21221111(1),.22n n r r r W kx W ka -++++==L 于是().n x a m ==因此3().x m ==lim ).n n x m →+∞=七、【证明】 (1)实质上是求反函数的一、二阶导数的问题.由反函数求导公式知y dy dx '=1,2211()'()'()'''y y x d x dx dx dy dy y y dy===⋅33''().y dxy y dy ''=-=-' 代入原微分方程,便得常系数的二阶线性微分方程.sin x y y =-''(*)(2)特征方程210r -=的两个根为1,21;r =±由于非齐次项()sin f x x =sin x e x αβ=,0,α=1β=,i i αβ±=±不是特征根,则设(*)的特解*cos sin y a x b x =+,代入(*)求得,10,2a b ==-,故x y sin 21*-=,于是(*)的通解为121()sin .2x x y x C e C e x -=+- 又由初始条件得1,121-==C C ,所求初值问题的解为.sin 21x e e y x x --=-八、【分析与证明】(1)分别作球坐标变换:sin cos ,sin sin ,cos x y z ρϕθϕθρϕ===与极坐标变换:cos ,sin .x r y r θθ==将()F t 中的分子与分母表成定积分,于是222220222()sin 2()().()()ttttd d f drf drF t d f r rdrf r rdrπππθϕρρϕρρθ==⎰⎰⎰⎰⎰⎰⎰下面求'()F t ,由它的符号讨论()F t 的单调性.由变限积分求导法得2222222022()()()()()2(())tttt f t f r rdr t f t f r r drF t f r rdr -'=⎰⎰⎰220220()()()20,[()]tttf t f r r t r drf r rdr -=>⎰⎰(0,)t ∈+∞.因此()F t 在),0(+∞单调增加.(2)如同题(1),先将()G t 表成定积分:22200022()()().2()()ttttd f r rdrf r rdrG t f r rdrf r drπθπ==⎰⎰⎰⎰⎰要证0t >时,2()(),F t G t π>即证2220022()(),()()t t ttf r r dr f r rdr f r rdrf r dr>⎰⎰⎰⎰即证222220()()[()]0.ttt f r dr f r r dr f r rdr ->⎰⎰⎰(*)我们将利用单调性证明这个不等式. 令222220()()()[()],tttt f r dr f r r dr f r rdr Φ=-⎰⎰⎰⇒2222222200'()()()()()2[()]()tttt f t f r r dr f t tf r dr f r rdr f t t Φ=+-⋅⎰⎰⎰2220()()()0t f t f r t r dr =->⎰,(0,)t ∈+∞又()t Φ在0t =处连续⇒()t Φ在[0,)+∞单调增加0t ⇒>时,()(0)0.t ΦΦ>=因此0t >时,).(2)(t G t F π>九、【解】由于322777232232223011E A λλλλλλλλλλ-------=---=--------2111(7)(1)232(1)(7),011λλλλλ=-----=---故A 的特征值为.7,1321===λλλ因为7,i A λ==∏若,A αλα=则.AA ααλ*=所以,A *的特征值为:7,7,1.由于1B P A P -*=,即A *与B 相似,故B 的特征值为7,7,1.从而2B E +的特征值为9,9,3.因为11111()()(),AB P P A P P P A P ααααλ--*--*-===按定义可知矩阵B 属于特征值Aλ的特征向量是1Pα-.因此2B E +属于特征值2+λA的特征向量是1Pα-.由于,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,而当1λ=时,由222111()0,222000,222000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=---→⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦得到属于1λ=的线性无关的特征向量为111,0α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦210.1α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 当7λ=时,由422121(7)0,242011,224000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 得到属于7λ=的特征向量为311.1α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦那么1111,0P α-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1211,1P α--⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1301.1P α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦故2B E +属于特征值9λ=的全部特征向量为121111,01k k -⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦12,k k 是不全为零的任意常数. 而2B E +属于特征值3λ=的全部特征向量为301,1k ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中3k 为非零的任意常数.十、【解】必要性:若三条直线交于一点,则线性方程组23,23,23ax by c bx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩(*)有唯一解,故()()2r A r A ==.于是0.A =由于23111236()23a bc A b c a a b c b c a c a b c a b--=-=++---2226()()a b c ab c ab ac bc =++++---2223()[()()()],a b c a b b c c a =++-+-+-(* *)由321,,l l l 是三条不同直线,知a b c ==不成立,那么0)()()(222≠-+-+-a c c b b a .故必有.0=++c b a充分性:若0,a b c ++=由(**)知0=A ,故秩() 3.r A <由22222132()2[()]2[()]0,224a b ac b a a b b a b b b c =-=-++=-++≠(否则0a b c ===.)知秩() 2.r A =于是()() 2.r A r A ==因此,方程组(*)有唯一解,即三条直线321,,l l l 交于一点.十一、【解】 (1)易见,X 服从超几何分布,其分布参数为123,3n N N ===,根据超几何分布的期望公式,可直接得到1123.2N EX nN N ==+(2)设A 表示事件“从乙箱中任意取出的一件产品是次品”,由于{0},{1},{2}X X X ===和{3}X =构成完备事件组,因此根据全概率公式,有3300(){}{}{}6k k kP A P X k P A X k P X k =======⋅∑∑3011131{}.66624k kP X k EX =====⋅=∑十二、【解】 (1)2(),1,()().0,x xx e F x f t dt x θθθ---∞≥⎧-==⎨<⎩⎰(2)}),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤=θθ 12121{min(,,,)}1{,,,}n n P X X X x P X x X x X x =->=->>>L L 121{}{}{}n P X x P X x P X x =->>>L1[1()]nF x =--=2(),1,.0,n x x e x θθθ--≥⎧-⎨<⎩(3)ˆθ的概率密度为 2()ˆˆ,2,()'().0,n x x ne f x F x x θθθθθ-->⎧==⎨≤⎩因为2()ˆ1ˆ()2,2n x E xf x dx nxe dx nθθθθθθ+∞+∞---∞===+≠⎰⎰ 所以ˆθ作为θ的矩估计量不具有无偏性.。
2003考研数三真题及解析
2003年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 设10,cos ,()0,0,x x f x xx λ⎧≠⎪=⎨=⎪⎩若若 其导函数在0x =处连续,则λ的取值范围是.(2) 已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b .(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=,T aE B αα1+=,其中A 的逆矩阵为B ,则a = .(5) 设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为.(6) 设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于.二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设()f x 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) (A) 在0x =处左极限不存在. (B) 有跳跃间断点0x =. (C) 在0x =处右极限不存在. (D) 有可去间断点0x =.(2) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A) ),(0y x f 在0y y =处的导数等于零. (B)),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.(3) 设2nn n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是 ( )(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.a b =(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(4) 设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 ( )(A) a b =或20a b +=. (B) a b =或20a b +≠.(C) a b ≠且20a b +=. (D) a b ≠且20a b +≠.(5) 设s ααα,,,21Λ均为n 维向量,下列结论不正确的是 ( )(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则sααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件( ) (A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立. (C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立.三 、(本题满分8分)设1111(),[,1)sin (1)2f x x x x x πππ=+-∈-,试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=, 求.2222y gx g ∂∂+∂∂五 、(本题满分8分)计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数()f x 及其极值.七、(本题满分9分)设()()()F x f x g x =, 其中函数(),()f x g x 在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且(0)0f =, .2)()(x e x g x f =+(1) 求()F x 所满足的一阶微分方程; (2) 求出()F x 的表达式.八、(本题满分8分)设函数()f x 在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3,(3)1f f f f ++==. 试证:必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分)已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=ni i a 试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T , 中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求,a b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .2003年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】2>λ【分析】无穷小量乘以有界函数的极限仍是无穷小量. 【详解】λ是参变量,x 是函数()f x 的自变量10001cos()(0)1(0)limlim lim cos 00x x x x f x f x f x x x xλλ-→→→-'====-,要使该式成立,必须10lim 0x x λ-→=,即1λ>.当(,0)(0,)x ∈-∞+∞U 时,1211()cos sin f x x x x xλλλ--'=+要使()0f x '=在0x =处连续,由函数连续的定义应有120011lim ()lim cos sin ()0x x f x x x f x x x λλλ--→→⎛⎫''=+== ⎪⎝⎭ 由该式得出2λ>. 所以()f x '在0x =处右连续的充要条件是2>λ.(2)【答案】64a【详解】设曲线与x 轴相切的切点为0(,0)x ,则00x x y ='=. 而2233y x a '=-,有22033x a =又在此点y 坐标为0(切点在x 轴上),于是有320030x a x b -+=,故 322200003(3)b x a x x x a =-=-,所以 .44)3(6422202202a a a x a x b =⋅=-=(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(5)【答案】0.9.【详解】利用方差和相关系数的性质DX a X D =+)(,(,)(,)Cov X Y a Cov X Y +=,又因为Z 仅是X 减去一个常数,故方差不会变,Z 与Y 的协方差也不会变,因此相关系数也不会变.(,)(,0.4)[((0.4)]()(0.4)Cov Y Z Cov Y X E Y X E Y E X =-=---()0.4()()()0.4()E XY E Y E Y E X E Y =--+ ()()()(,)E XY E Y E X Cov X Y =-=,且()().D Z D X = 又(,)Cov Y Z (,)Cov X Y =,所以0.9.XY ρ===(6)【答案】12. 【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21Λ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i 【详解】本题中22221,,,n X X X Λ满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+, 因此根据大数定律有∑==n i i n X n Y 121依概率收敛于()2111.2n i i E X n ==∑二、选择题(1)【答案】()D【详解】方法1:直接法:由()f x 为奇函数知,(0)0f =;又由xx f x g )()(=,知()g x 在0x =处没定义,显然0x =为()g x 的间断点,为了讨论函数()g x 的连续性,求函数()g x 在0x →的极限.000()()(0)lim ()lim lim (0)0x x x f x f x f g x f x x →→→-'===-导数的定义存在, 故0x =为可去间断点.方法2:间接法:取()f x x =,此时()g x =,0,0,0,1=≠⎩⎨⎧=x x x x 可排除()A ()B ()C 三项.(2)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(3)【答案】()B 【详解】由2nn n a a p +=,2nn n a a q -=,知0n n p a ≤≤,0n n q a ≤-≤若∑∞=1n n a 绝对收敛,则∑∞=1n n a 收敛. 再由比较判别法,∑∞=1n n p 与()1n n q ∞=-∑都收敛,后者与1n n q ∞=∑仅差一个系数,故1n n q ∞=∑也收敛,选(B).(4)【答案】(C)【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定,a b 应满足的条件. 【详解】方法1:根据A 与其伴随矩阵A *秩之间的关系()()()()1101*n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩知秩(A )=2,它的秩小于它的列数或者行数,故有11(2)1(2)0010a b b b b b b A b a b a b a b a b a bb b ab aa b==+=+--2(2)()0a b a b =+-=有02=+b a 或a b =.当a b =时,[][]()[][]()211311000000b b b b b b A b b b b b b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦显然秩()12A =≠, 故必有 a b ≠且02=+b a . 应选(C).方法2:根据A 与其伴随矩阵A *秩之间的关系,()()()()1101*n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩,知()1*r A =,()2r A =. 对A 作初等行变换[][]()[][]()21131100a b b a b b A b a b b a a b b b a b a a b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当a b =时,从矩阵中可以看到A 的秩为1,与秩()2A =,不合题意(排除(A)、(B)) 故a b ≠,这时[]()[]()[][][][]231213201100100101001b a b a a b b a b b a b b b A b a a b b a a b ÷-÷-+++⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦故02=+b a ,且a b ≠时,秩(A )=2,故应选.(5)【答案】(B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21Λ,都有 02211≠+++s s k k k αααΛ, 则s ααα,,,21Λ必线性无关.因为若s ααα,,,21Λ线性相关,则存在一组不全为零的数s k k k ,,,21Λ,使得02211=+++s s k k k αααΛ,矛盾. 可见(A)成立.(B): 若s ααα,,,21Λ线性相关,则存在一组(而不是对任意一组不全为零的)数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ (B)不成立.(C) s ααα,,,21Λ线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21Λ的秩为s ,则s ααα,,,21Λ线性无关,因此(C)成立.(D) s ααα,,,21Λ线性无关,则其任一部分组线性无关,则其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21Λ,使得02211=+++s s k k k αααΛ成立,则s ααα,,,21Λ线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)【答案】C【分析】(1) ,A B 两事件相互独立的充要条件:{}{}{}P AB P A P B =(2) ,,A B C 三事件相互独立的充要条件:(i),,A B C 两两相互独立; (ii){}{}{}{}P ABC P A P B P C =⋅⋅【详解】方法1:因为{}112P A =,{}212P A =,{}312P A =,{}414P A =,且 {}1214P A A =,{}1314P A A =,{}2314P A A =,{}2414P A A =,{}1230P A A A =,可见有{}{}{}1212P A A P A P A =,{}{}{}1313P A A P A P A =,{}{}{}2323P A A P A P A =, {}{}{}{}123123P A A A P A P A P A ≠,{}{}{}2424P A A P A P A ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).方法2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见(A)不正确,因为如果正确,则(C)也正确,但正确答案不能有两个;同理,(B)也不正确. 因此只要检查(C)和(D){}{}{}{}{}2342341110244P A A A P P A P A P A =∅=≠⋅⋅=⨯⨯故(D)错,应选(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+-令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim 2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r rr t I e x y dxdy e e x y dxdye e d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则0000sin cos cos cos t t t t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【分析】(1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者.(2) 等比级数求和公式2011(11)1n n n x x x x x x∞==+++++=-<<-∑L L【详解】先对和函数21()1(1)2nnn x f x n ∞==+-∑求导211()(1)nn n f x x∞-='=-∑2221(1)(1)nn n n n n x xx x ∞∞-===-=--∑∑2221()11n n x x x x x x ∞=-=--=-⋅=++∑ 对上式两边从0到x 积分200()1xxt f t dt dt t '=-+⎰⎰21()(0)ln(1)2f x f x ⇒-=-+ 由(0)1f =, 得21()1ln(1)(1).2f x x x =-+<为了求极值,对()f x 求一阶导数,2212()211x xf x x x-'=-⋅=++ 令0)(='x f ,求得唯一驻点0x =. 由于2221()(1)x f x x -''=-+, 01)0(<-=''f 由极值的第二充分条件,得()f x 在0x =处取得极大值,且极大值为(0)1f =.七【分析】题目要求()F x 所满足的微分方程,而微分方程中含有其导函数,自然想到对()F x 求导,并将其余部分转化为用()F x 表示,导出相应的微分方程,然后再求解相应的微分方程即可. 【详解】(1) 方法1:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +2[()()]2()()f x g x f x g x =+-=2(2)2()x e F x -可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==. 方法2:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=22[()][()]f x g x ''+2[()()]2()()f x g x f x g x ''''=+-又由.2)()(x e x g x f =+ 有()()2x f x g x e ''+=,)()(x g x f =',)()(x f x g =',于是22()42()()42()x x F x e f x g x e F x '=-=-可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==(2) 题(1)得到()F x 所满足的一阶微分方程,求()F x 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解为 ()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 所以 ]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰- =.22x x Ce e -+将(0)0F =代入上式,得01,1C C =+=-. 所以 .)(22x x e e x F --=八【分析】题目要证存在)3,0(∈ξ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知(3)1f =,只需要再证明存在一点[0,3)c ∈,使得)3(1)(f c f ==,然后在[,3]c 上应用罗尔定理即可. 条件(0)(1)(2)3f f f ++=等价于13)2()1()0(=++f f f .问题转化为1介于()f x 的最值之间,最终用介值定理可以达到目的.【详解】方法1:因为()f x 在[0,3]上连续,所以()f x 在[0,2]上连续,则在[0,2]上必有最大值M 和最小值m (连续函数的最大值最小值定理),于是M f m ≤≤)0(,M f m ≤≤)1(,M f m ≤≤)2(.三式相加 3(0)(1)(2)3.m f f f M ≤++≤ 从而 (0)(1)(2)1.3f f f m M ++≤=≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为()(3)1f c f ==, 且()f x 在[,3]c 上连续,在(,3)c 内可导,由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf方法2:由于(0)(1)(2)3f f f ++=,如果(0),(1),(2)f f f 中至少有一个等于1,例如(2)1f =,则在区间[2,3]上对()f x 使用罗尔定理知,存在(0,2)(0,3)ξ∈⊂使.0)(='ξf 如果(0),(1),(2)f f f 中没有一个等于1,那么它们不可能全大于1,也不可能全小于1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间(0,2)内至少存在一点η使()1f η=.在区间[,3]η对()f x 用罗尔定理知,存在(,3)(0,3)ξη∈⊂,使.0)(='ξf 证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值. 【详解】方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++=ΛM M M M M ΛΛΛ321321321321 231231231231nin i n in i nin i nin i b a a a a b a a b a a b a a a b a b a a a a b====+++=++++∑∑∑∑L LL M M M M M L23232312311()11nn ni n i n a a a a b a a b a a a ba a a a b=+=+++∑L L L M M M M M L 2311000()000000n ni i a a a b b a b b==+∑L L L M M M M M L =).(11∑=-+ni i n a b b(1) 当0A ≠,即0≠b 且01≠+∑=ni i a b 时,秩()A n =,方程组仅有零解.(2) 当0b =时,0A =,原方程组的同解方程组为.02211=+++n n x a x a x a Λ由01≠∑=ni i a 可知,),,2,1(n i a i Λ=不全为零.不妨设01≠a ,得原方程组的一个基础解系T a a )0,,0,1,(121Λ-=α,Ta a )0,,1,0,(132Λ-=α,.)1,,0,0,(,1T n na a ΛΛ-=α (3) 当∑=-=ni i a b 1时,0A =. 这时0≠b ,原方程组的系数矩阵可化为1231123112311231nin i nini ni n i nn i i a a a a a a a a a a A a a a a a aa a a a ====⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑L LLM M M M L1231111111001(1)000nin i nniii i nni i i i n ni i i i a a a a a a a a a a a =======⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑∑∑∑L LLu u u u u u u u u u u u u u u u u u r M M M M L将第行的倍加到其余各行12311211001101011nin i n ii a a a a a n a ==⎡⎤-⎢⎥⎢⎥-⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦∑∑L L L M M MM u u u u u u u u u u u u u u u u u u r L从第行到第行同乘以倍 0000()11001.2,3,,10001001i i a i n ⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥-⎣⎦LL M M M M L L u u u u u u u u u u u u u u u u u u u r L将第行的倍加到第行,由此得原方程组的同解方程组为12x x =,13x x =,1,x x n =Λ .原方程组的一个基础解系为.)1,,1,1(T Λ=α十【分析】 特征值之和等于A 的主对角线上元素之和,特征值之积等于A 的行列式,由此可求出,a b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】(1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为(1,2,3)i i λ=,由题设得1231122332(2)1a a a a λλλ++=++=++-=,21230||0204212.02a bA a b b λλλ===--=--解得1,2a b ==-.(2) 求矩阵A 的特征值,令210202(2)(3)022E A λλλλλλ---=-=-+=-+,得矩阵A 的特征值.3,2321-===λλλ对于,221==λλ 解齐次线性方程组0)2(=-x A E ,系数矩阵为102000204-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,得基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,系数矩阵为402050201--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]12300100Q ηηη⎤⎥⎥==⎢⎥⎢⎥,则Q 为正交矩阵. 在正交变换X QY =下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】本题求,a b 也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ 由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得1,2a b ==-.第一步求参数见《数学复习指南》P361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P47第九题.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论. 【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度()g u ,一般应先求分布函数(){}{}G u P U u P X Y u =≤=+≤,在计算概率的时候,应充分利用X 只有可能取值1X =和2X =.全概率公式:如果事件1,,n A A L 构成一个完备事件组,即它们是两两互不相容,其和为Ω(总体的样本空间);并且()0,1,2,,.i P A i n >=L 则对任一事件B 有()1()(|)ni i i P B P A P B A ==∑.【详解】设()F y 是Y 的分布函数,由全概率公式,得U X Y =+的分布函数}{)(u Y X P u G ≤+={1}{1}{2}{2}P X P X Y u X P X P X Y u X ==+≤=+=+≤= 0.3{1}0.7{2}P X Y u X P X Y u X =+≤=++≤= 0.3{11}0.7{22}P Y u X P Y u X =≤-=+≤-=.由于X 和Y 相互独立,所以 {1}{11}P Y u P Y u X ≤-=≤-=,{2}{22}P Y u P Y u X ≤-=≤-= 所以 ()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g 0.3(1)0.7(2).f u f u =-+-。
2003考研数学三真题及答案
2003考研数学三真题及答案一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 设10,cos ,()0,0,x x f x xx λ⎧≠⎪=⎨=⎪⎩若若 其导函数在0x =处连续,则λ的取值范围是. (2) 已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b .(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则 ⎰⎰-=Ddxdyx y g x f I )()(= .(4) 设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵T E A αα-=, Ta E B αα1+=,其中A 的逆矩阵为B ,则a = .(5) 设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为 .(6) 设总体X 服从参数为2的指数分布,nX X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i in X n Y 121依概率收敛于.二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设()f x 为不恒等于零的奇函数,且)0(f '存在,则函数x x f x g )()(=( )(A) 在0x =处左极限不存在. (B) 有跳跃间断点0x =. (C) 在0x =处右极限不存在. (D) 有可去间断点0x =.(2) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A)),(0y x f 在y y =处的导数等于零. (B)),(0y x f 在y y =处的导数大于零.(C) ),(0y x f 在y y =处的导数小于零. (D)),(0y x f 在y y =处的导数不存在.(3) 设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是 ( )(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.a b =(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(4) 设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 ( ) (A) a b =或20a b +=. (B) a b =或20a b +≠. (C) a b ≠且20a b +=. (D) a b ≠且20a b +≠. (5) 设s ααα,,,21 均为n 维向量,下列结论不正确的是 ( )(A) 若对于任意一组不全为零的数sk k k ,,,21 ,都有2211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若sααα,,,21 线性相关,则对于任意一组不全为零的数sk k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) sααα,,,21 线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件( )(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立. (C)321,,A A A 两两独立. (D)432,,A A A 两两独立.三 、(本题满分8分)设1111(),[,1)sin (1)2f x x x x x πππ=+-∈-,试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=, 求.2222y gx g ∂∂+∂∂五 、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数()f x 及其极值.七、(本题满分9分)设()()()F x f x g x =, 其中函数(),()f x g x 在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且(0)0f =,.2)()(xe x g xf =+ 求()F x 所满足的一阶微分方程; 求出()F x 的表达式. 八、(本题满分8分)设函数()f x 在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3,(3)1f f f f ++==.试证:必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中.01≠∑=ni ia试讨论na a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. 求,a b 的值;利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X , 而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .参考答案一、填空题 (1)【答案】2>λ【分析】无穷小量乘以有界函数的极限仍是无穷小量. 【详解】λ是参变量,x 是函数()f x 的自变量10001cos()(0)1(0)limlim lim cos 0x x x x f x f x f x x x x λλ-→→→-'====-,要使该式成立,必须10lim 0x x λ-→=,即1λ>.当(,0)(0,)x ∈-∞+∞时,1211()cos sinf x x x x x λλλ--'=+要使()0f x '=在0x =处连续,由函数连续的定义应有 120011lim ()lim cos sin ()0x x f x x x f x x x λλλ--→→⎛⎫''=+== ⎪⎝⎭由该式得出2λ>. 所以()f x '在0x =处右连续的充要条件是2>λ.(2)【答案】64a【详解】设曲线与x 轴相切的切点为0(,0)x ,则00x x y ='=. 而2233y x a '=-,有22033x a =又在此点y 坐标为0(切点在x 轴上),于是有320030x a x b -+=,故 322200003(3)b x a x x x a =-=-,所以 .44)3(6422202202a a a x a x b =⋅=-=(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdyx y g x f I )()(=20101x y x a dxdy≤≤≤-≤⎰⎰=112x xadx dy +⎰⎰122[(1)]ax x dx a=+-=⎰(4)【答案】-1【详解】这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==TT T T a a E αααααααα⋅-+-11 11()T T T T E a a αααααααα=-+-=TT T a a E αααααα21-+- 1(12)T E a Ea αα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(5)【答案】0.9.【详解】利用方差和相关系数的性质DX a X D =+)(,(,)(,)Cov X Y a Cov X Y +=,又因为Z 仅是X 减去一个常数,故方差不会变,Z 与Y 的协方差也不会变,因此相关系数也不会变.(,)(,0.4)[((0.4)]()(0.4)Cov Y Z Cov Y X E Y X E Y E X =-=--- ()0.4()()()0.4()E XY E Y E Y E X E Y =--+()()()(,)E XY E Y E X Cov X Y =-=,且()().D Z D X = 又(,)Cov Y Z (,)Cov X Y =,所以0.9.XY ρ===(6)【答案】12.【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量nX X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】本题中22221,,,nX X X 满足大数定律的条件,且22)(i i iEX DX EX +==21)21(412=+,因此根据大数定律有∑==n i i n X n Y 121依概率收敛于()2111.2n i i E X n ==∑二、选择题 (1)【答案】()D【详解】方法1:直接法:由()f x 为奇函数知,(0)0f =;又由x x f x g )()(=,知()g x 在0x =处没定义,显然0x =为()g x 的间断点,为了讨论函数()g x 的连续性,求函数()g x 在0x →的极限.0()()(0)lim ()limlim (0)0x x x f x f x f g x f x x →→→-'===-导数的定义存在,故0x =为可去间断点.方法2:间接法:取()f x x =,此时()g x =,0,0,0,1=≠⎩⎨⎧=x x x x 可排除()A ()B ()C 三项.(2)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(3)【答案】()B【详解】由2nn n a a p +=,2nn n a a q -=,知0n np a ≤≤,0n nq a ≤-≤若∑∞=1n na绝对收敛,则∑∞=1n na收敛. 再由比较判别法,∑∞=1n np与()1nn q ∞=-∑都收敛,后者与1nn q∞=∑仅差一个系数,故1nn q∞=∑也收敛,选(B).(4)【答案】(C)【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定,a b 应满足的条件. 【详解】方法1:根据A 与其伴随矩阵A *秩之间的关系()()()()1101*n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩知秩(A )=2,它的秩小于它的列数或者行数,故有11(2)1(2)0010a b b b b b b A b a b a b a b a b a bb b a b aa b==+=+--2(2)()0a b a b =+-=有02=+b a 或a b =. 当a b =时,[][]()[][]()211311000000b b b b b b A b b b b b b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦显然秩()12A =≠, 故必有 a b ≠且02=+b a . 应选(C).方法2:根据A 与其伴随矩阵A *秩之间的关系,()()()()1101*n r A nr A r A n r A n =⎧⎪==-⎨⎪<-⎩,知()1*r A =,()2r A =. 对A 作初等行变换[][]()[][]()21131100a b b a b b A b a b b a a b b b a b a a b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当a b =时,从矩阵中可以看到A 的秩为1,与秩()2A =,不合题意(排除(A)、(B))故a b ≠,这时[]()[]()[][][][]231213201100100101001b a b a a b b a b b a b b b A b a a b b a a b ÷-÷-+++⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦故02=+b a ,且a b ≠时,秩(A )=2,故应选.(5)【答案】(B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题. 【详解】(A): 若对于任意一组不全为零的数sk k k ,,,21 ,都有2211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关.因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得2211=+++s s k k k ααα ,矛盾. 可见(A)成立.(B): 若sααα,,,21 线性相关,则存在一组(而不是对任意一组不全为零的)数sk k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C)s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D)sααα,,,21 线性无关,则其任一部分组线性无关,则其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数sk k k ,,,21 ,使得2211=+++s s k k k ααα 成立,则sααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数sk k k ,,,21 ,都有2211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)【答案】C【分析】(1) ,A B 两事件相互独立的充要条件:{}{}{}P AB P A P B =(2) ,,A B C 三事件相互独立的充要条件: (i),,A B C 两两相互独立; (ii){}{}{}{}P ABC P A P B P C =⋅⋅【详解】方法1:因为{}112P A =,{}212P A =,{}312P A =,{}414P A =,且{}1214P A A =,{}1314P A A =,{}2314P A A =,{}2414P A A =,{}1230P A A A =,可见有{}{}{}1212P A A P A P A =,{}{}{}1313P A A P A P A =,{}{}{}2323P A A P A P A =,{}{}{}{}123123P A A A P A P A P A ≠,{}{}{}2424P A A P A P A ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).方法2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见(A)不正确,因为如果正确,则(C)也正确,但正确答案不能有两个;同理,(B)也不正确. 因此只要检查(C)和(D){}{}{}{}{}2342341110244P A A A P P A P A P A =∅=≠⋅⋅=⨯⨯故(D)错,应选(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+--1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim(1)sin x x xx x πππππ-→--=+-令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+- 01sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u u πππππ+→--=+⋅2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim2u u u πππππ+→+-+洛2201sin (1)lim 2u u ππππ+→-+洛110ππ+==定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v ∂∂=-∂∂从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂ 2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v ∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算. 作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()2222222sin()sin()sin sin sin .2xy xy DDt r r r t I e x y dxdy e e x y dxdye ed r rdr d r dre e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdte A t sin 0⎰-=π,则000sin cos cos cos ttt t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【分析】(1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者. (2) 等比级数求和公式 2011(11)1n nn x x x x x x ∞==+++++=-<<-∑【详解】先对和函数21()1(1)2nnn x f x n ∞==+-∑求导 211()(1)nn n f x x∞-='=-∑2221(1)(1)nn n nn n x xx x ∞∞-===-=--∑∑22201()11n n xx x x x x ∞=-=--=-⋅=++∑对上式两边从0到x 积分200()1xxt f t dt dt t '=-+⎰⎰21()(0)ln(1)2f x f x ⇒-=-+由(0)1f =, 得21()1ln(1)(1).2f x x x =-+<为了求极值,对()f x 求一阶导数,2212()211x xf x x x -'=-⋅=++ 令0)(='x f ,求得唯一驻点0x =. 由于2221()(1)x f x x -''=-+, 01)0(<-=''f由极值的第二充分条件,得()f x 在0x =处取得极大值,且极大值为(0)1f =.七【分析】题目要求()F x 所满足的微分方程,而微分方程中含有其导函数,自然想到对()F x 求导,并将其余部分转化为用()F x 表示,导出相应的微分方程,然后再求解相应的微分方程即可.【详解】(1) 方法1:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=)()(22x f x g + 2[()()]2()()f x g x f x g x =+-=2(2)2()x e F x -可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==. 方法2:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=22[()][()]f x g x ''+ 2[()()]2()()f x g x f x g x ''''=+-又由.2)()(xe x g xf =+ 有()()2x f xg x e ''+=,)()(x g x f =',)()(x f x g =',于是 22()42()()42()x x F x e f x g x e F x '=-=-可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==(2) 题(1)得到()F x 所满足的一阶微分方程,求()F x 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程()()dyP x y Q x dx +=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰所以]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰- =.22x xCe e-+将(0)0F =代入上式,得01,1C C =+=-.所以.)(22xx e e x F --=八【分析】题目要证存在)3,0(∈ξ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知(3)1f =,只需要再证明存在一点[0,3)c ∈,使得)3(1)(f c f ==,然后在[,3]c 上应用罗尔定理即可.条件(0)(1)(2)3f f f ++=等价于13)2()1()0(=++f f f .问题转化为1介于()f x 的最值之间,最终用介值定理可以达到目的.【详解】方法1:因为()f x 在[0,3]上连续,所以()f x 在[0,2]上连续,则在[0,2]上必有最大值M 和最小值m (连续函数的最大值最小值定理),于是M f m ≤≤)0(,M f m ≤≤)1(,M f m ≤≤)2(.三式相加 3(0)(1)(2)3.m f f f M ≤++≤从而(0)(1)(2)1.3f f f m M ++≤=≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为()(3)1f c f ==, 且()f x 在[,3]c 上连续,在(,3)c 内可导,由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf方法2:由于(0)(1)(2)3f f f ++=,如果(0),(1),(2)f f f 中至少有一个等于1,例如(2)1f =,则在区间[2,3]上对()f x 使用罗尔定理知,存在(0,2)(0,3)ξ∈⊂使.0)(='ξf如果(0),(1),(2)f f f 中没有一个等于1,那么它们不可能全大于1,也不可能全小于1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间(0,2)内至少存在一点η使()1f η=.在区间[,3]η对()f x 用罗尔定理知,存在(,3)(0,3)ξη∈⊂,使.0)(='ξf 证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值. 【详解】方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321231231231231nin i n in i nini nin i b a a a a b a a b a a b a a a ba b a a a a b====+++=++++∑∑∑∑23232312311()11nn ni n i n a a a a b a a b a a a ba a a a b=+=+++∑2311000()0000n ni i a a a bb a b b ==+∑=).(11∑=-+ni i n a b b(1) 当A ≠,即0≠b 且1≠+∑=ni i a b 时,秩()A n =,方程组仅有零解.(2) 当0b =时,A =,原方程组的同解方程组为.02211=+++n n x a x a x a由1≠∑=ni ia可知,),,2,1(n i a i =不全为零.不妨设01≠a ,得原方程组的一个基础解系T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α(3) 当∑=-=ni ia b 1时,A =. 这时0≠b ,原方程组的系数矩阵可化为1231123112311231nini nini nin i nn i i a a a a a a a a a a A a a a a a aa a a a ====⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑1231111111001(1)0000nin i nniii i nniii i n ni i i i a a a a a a a a a a a =======⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑∑∑∑将第行的倍加到其余各行12311211001101011nin i n ii a a a a a n a ==⎡⎤-⎢⎥⎢⎥-⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦∑∑从第行到第行同乘以倍000()11001.2,3,,10001001i i a i n ⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥-⎣⎦将第行的倍加到第行,由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = .原方程组的一个基础解系为.)1,,1,1(T =α十【分析】 特征值之和等于A 的主对角线上元素之和,特征值之积等于A 的行列式,由此可求出,a b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】(1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为(1,2,3)i i λ=,由题设得1231122332(2)1a a a a λλλ++=++=++-=,21230||0204212.02a bA a b b λλλ===--=--解得1,2a b ==-.(2) 求矩阵A 的特征值,令210202(2)(3)022E A λλλλλλ---=-=-+=-+,得矩阵A 的特征值.3,2321-===λλλ对于,221==λλ 解齐次线性方程组0)2(=-x A E ,系数矩阵为102000204-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,得基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,系数矩阵为402050201--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T)51,0,52(1=η,T)0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]12300100Q ηηη⎤⎥⎥==⎢⎥⎢⎥, 则Q 为正交矩阵. 在正交变换X QY =下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】本题求,a b 也可先计算特征多项式,再利用根与系数的关系确定: 二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ 由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得1,2a b ==-.第一步求参数见《数学复习指南》P361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P47第九题.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有 })({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性. 求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度()g u ,一般应先求分布函数(){}{}G u P U u P X Y u =≤=+≤,在计算概率的时候,应充分利用X 只有可能取值1X =和2X =. 全概率公式:如果事件1,,nA A 构成一个完备事件组,即它们是两两互不相容,其和为Ω(总体的样本空间);并且()0,1,2,,.i P A i n >=则对任一事件B 有()1()(|)ni i i P B P A P B A ==∑.【详解】设()F y 是Y 的分布函数,由全概率公式,得U X Y =+的分布函数}{)(u Y X P u G ≤+={1}{1}{2}{2}P X P X Y u X P X P X Y u X ==+≤=+=+≤=0.3{1}0.7{2}P X Y u X P X Y u X =+≤=++≤=0.3{11}0.7{22}P Y u X P Y u X =≤-=+≤-=.由于X 和Y 相互独立, 所以{1}{11}P Y u P Y u X ≤-=≤-=,{2}{22}P Y u P Y u X ≤-=≤-=所以 ()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+- 由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g 0.3(1)0.7(2).f u f u =-+-。
2003年数学三试题解析
2003年考研数学(三)试题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(2121012adx x x ady dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T a a E αααααααα)(11-+-=TT T a aE αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C) 三项,故应选(D). 【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.本题事实上相当于考查此结论.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a bbb a ,即有02=+b a 或a=b. 但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. (B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D)s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有 02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C)s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D)s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立. 【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可. 【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→=.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有dxdy y x e eI Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 t d te A t s i n 0⎰-=π,则 t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n xxx x f上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--='' 01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'=' =)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x+⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf 【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是 M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf 【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a ba A n n n n ++++=321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--- 由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = .原方程组的一个基础解系为.)1,,1,1(T =α【评注】 本题的难点在∑=-=n i i a b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(2020202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵 []⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ , 则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T , 且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(20020022b a a b b aA E +----=+----=-λλλλλλλ 设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得a=1,b=2.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。
2003年数学三真题答案解析
1
n
n i 1
Xi
p
1
n
n i 1
EX i (n
).
【详解】
这里
X
2 1
,
X
2 2
,
,
X
2 n
满足大数定律的条件,且
EX
2 i
DX i
(EX i )2 =
1 4
(1)2 2
1 2
,因此根据大数定律有
Yn
1 n
n i 1
X
2 i
依概率收敛于
1 n
n i 1
EX
2 i
1. 2
二、选择题(本题共 6 小题,每小题 4 分,满分 24 分. 每小题给出的四个选项中,只有一
价性.
12.. 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,
若成立,再检验是否相互独立.
【详解】 因为
P( A1 )
1 2
,
P( A2 )
1 2
,
P( A3 )
1 2
,
P( A4 )
1 4
,
且
P( A1 A2 )
1 4
, P( A1 A3 )
1 4
, P( A2 A3 )
2
)
2 u
f
2
(x2
y
2
)
2 v
f
2
= x2 y2.
【评注】 本题考查半抽象复合函数求二阶偏导.
15.. 【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.
【详解】 作极坐标变换: x =r cos θ, y =r sin θ,有
I e e(x2 y2 ) sin( x 2 y 2 )dxdy
最新-考研数学三历年真题及答案(2003-2013年)
最新-考研数学三历年真题及答案(2003-2013年)2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线bx a xy +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, TaE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,nX XX ,,,21为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ](2)设可微函数f(x,y)在点),(0y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.[ ](3)设2nn na a p+=,2nn na a q-=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(B) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(C) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定.(D) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定.[ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有(A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ](5)设sααα,,,21均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数sk k k ,,,21,都有2211≠+++s s k k k ααα ,则sααα,,,21线性无关.(B) 若sααα,,,21线性相关,则对于任意一组不全为零的数sk k k ,,,21,都有.02211=+++s s k k k ααα(C) sααα,,,21线性无关的充分必要条件是此向量组的秩为s. (D) sααα,,,21线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ]三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续. 四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y xy x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分)已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n nn x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中.01≠∑=n i ia试讨论na a a ,,,21和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x xx fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2003年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ.【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线bx ax y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有 03322=-='a xy ,有 .22a x=又在此点y 坐标为0,于是有300230=+-=b x a x , 故 .44)3(6422202202a a a x a x b=⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=Ddxdy x y g x f I )()(=dxdya x y x ⎰⎰≤-≤≤≤10,102 =.])1[(2121012a dx x x a dy dx a x x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, TaE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有 )1)((TTaE E AB αααα+-= =T T T Taa E αααααααα⋅-+-11 =T T T Ta a E αααααααα)(11-+-=T T Ta aE αααααα21-+-=Eaa E T=+--+αα)121(,于是有 0121=+--aa ,即 0122=-+a a,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为 0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) –E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+(6)设总体X 服从参数为2的指数分布,nXX X ,,,21为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于 21 . 【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量nX XX ,,,21,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X满足大数定律的条件,且22)(i i iEX DX EX+==21)21(412=+,因此根据大数定律有∑==ni i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ]【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可.【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0.于是有 )0(0)0()(lim )(lim )(lim 0f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点.【评注1】 本题也可用反例排除,例如f(x)=x,则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x xx 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.(2)设可微函数f(x,y)在点),(0y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.[ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(0y x 取得极小值,根据取极值的必要条件知0),(0='y x f y,即),(0y x f 在0yy =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0yy =处的导数即),(0y x f y';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y xy x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn na a p+=,2nn na a q-=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(B) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(C) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定.(D) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定.[ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】 若∑∞=1n n a 绝对收敛,即∑∞=1n na 收敛,当然也有级数∑∞=1n n a 收敛,再根据2nn na a p+=,2nn na a q-=及收敛级数的运算性质知,∑∞=1n np 与∑∞=1n nq 都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有(A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ]【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件.【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r(5)设sααα,,,21均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数sk k k ,,,21,都有2211≠+++s s k k k ααα ,则sααα,,,21线性无关.(B) 若sααα,,,21线性相关,则对于任意一组不全为零的数sk k k ,,,21,都有.02211=+++s s k k k ααα(C) sααα,,,21线性无关的充分必要条件是此向量组的秩为s. (D) sααα,,,21线性无关的必要条件是其中任意两个向量线性无关. [ B ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数sk k k ,,,21 ,都有 02211≠+++s s k k k ααα,则sααα,,,21必线性无关,因为若sααα,,,21线性相关,则存在一组不全为零的数sk k k ,,,21 ,使得 02211=+++s s k k k ααα,矛盾. 可见(A )成立.(B): 若sααα,,,21线性相关,则存在一组,而不是对任意一组不全为零的数sk k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C) sααα,,,21线性无关,则此向量组的秩为s ;反过来,若向量组sααα,,,21的秩为s ,则sααα,,,21线性无关,因此(C)成立.(D) sααα,,,21线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数sk k k ,,,21,使得2211=+++s s k k k ααα 成立,则sααα,,,21线性相关. 其逆否命题为:若对于任意一组不全为零的数sk k k ,,,21,都有2211≠+++s s k k k ααα ,则sααα,,,21线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P , 可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ=xx xx x πππππsin )1(sin )1(lim111---+-→ =xx x xx ππππππππcos )1(sin cos lim111-+---+-→ =xx x x x x ππππππππππsin )1(cos cos sin lim11221----+-→=.1π由于f(x)在)1,21[上连续,因此定义 π1)1(=f ,使f(x)在]1,21[上连续. 【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y xv xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】 vfxu f y x g ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂故vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂=.22y x+【评注】 本题考查半抽象复合函数求二阶偏导. 五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y xy x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I tsin 0⎰-=πππ. 记 tdt e A tsin 0⎰-=π,则 tt de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e te t t=⎰--πcos ttde=]sin cos [0tdt e te t t⎰--+-ππ=.1A e-+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分) 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】 .1)1()(1212∑∞=-+-=-='n n nxx x x f上式两边从0到x 积分,得).1ln(211)0()(22x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得 ).1(),1ln(211)(2<+-=x xx f令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--=''01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(3) 求F(x)所满足的一阶微分方程; (4) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由 )()()()()(x g x f x g x f x F '+'=' =)()(22x f x g +=)()(2)]()([2x g x f x g x f -+=(22)x e -2F(x),可见F(x)所满足的一阶微分方程为.4)(2)(2xe x F x F =+'(2) ]4[)(222C dx e e e x F dxxdx+⎰⋅⎰=⎰- =]4[42C dx e e xx+⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x xe ex F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(.故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f 因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n nn x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中.01≠∑=n i ia试讨论na a a ,,,21和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a ba A n nnn ++++=321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=n i iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为.02211=+++n n x a x a x a由01≠∑=n i ia可知,),,2,1(n i a i=不全为零. 不妨设01≠a,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132-=α,.)1,,0,0,(,1T nna a -=α当∑=-=ni i a b 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行na -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为 12x x=,13x x=,1,x xn= .原方程组的一个基础解系为 .)1,,1,1(T=α【评注】 本题的难点在∑=-=ni i a b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T)1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (3) 求a,b 的值;(4) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A设A 的特征值为).3,2,1(=i iλ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式 )3()2(220202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T)51,0,52(1=η,T)0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得a=1,b=2.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x xx fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可.注意应先确定Y=F(X)的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1.对于]8,1[∈x ,有 .131)(3132-==⎰x dt tx F x设G(y)是随机变量Y=F(X)的分布函数. 显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1.对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤==})1({}1{33+≤=≤-y X P y X P=.])1[(3y y F =+于是,Y=F(X)的分布函数为.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若【评注】 事实上,本题X 为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布:当y<0时,G(y)=0; 当 1≥y 时,G(y)=1;当 01<≤y 时,})({}{)(y X F P y Y P y G ≤=≤= =)}({1y F X P -≤=.))((1y y FF =-十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为 }{)(u Y X P u G ≤+==}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P=}22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P .由于X 和Y 独立,可见G(u)= }2{7.0}1{3.0-≤+-≤u Y P u Y P=).2(7.0)1(3.0-+-u F u F由此,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g=).2(7.0)1(3.0-+-u f u f【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.2004年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x ae x xx ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X XX 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ](9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点.(B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ](10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f . (D) 至少存在一点),(0b a x ∈,使得)(0x f = 0. [ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时,aB -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ](13) 设n 阶矩阵A 的伴随矩阵,0*≠A若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu -. (C) 21αu -. (D)αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求)cos sin 1(lim 2220xx x x -→.(16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22422和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadtt g dt t f )()(,x ∈ [a , b ),⎰⎰=b a b a dt t g dt t f )()(.证明:⎰⎰≤b a b a dx x xg dx x xf )()(. (18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分) 设Tα)0,2,1(1=, Tααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得APP1-为对角矩阵.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XYρ;(Ⅲ) 22Y XZ +=的概率分布.(23) (本题满分13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设nX XX ,,,21为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x ae x xx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题.【详解】因为5)(cos sin lim 0=--→b x ae x xx ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4.【评注】一般地,已知)()(lim x g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0, 则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可.【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u +, 所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数 的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x xx x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换 或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2. 【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++=2221232y y +=,其中 ,21213211x x x y++= 322x x y-=.所以二次型的秩为2. (5) 设随机变量X服从参数为λ的指数分布, 则=>}{DX X P e1. 【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案. 【详解】因为2121])(11[1σX X n E n i i =--∑=,2122])(11[2σY Y n E n j j =--∑=,故应填 2σ.【评注】本题是对常用统计量的数字特征的考查. 二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3). [ A ] 【分析】如f (x )在(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x ) 在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A). 【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f ax +→与)(limx f bx -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性 与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性.(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点.(B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ]【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x ) 的极小值点.显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.。
2003年数学三试题评析1
2003年数学三试题评析12003年考研数学(三)真题评注一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ.【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线bx ax y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有3322=-='a x y ,有.220a x =又在此点y 坐标为0,于是有300230=+-=b x a x ,故.44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】⎰⎰-=D dxdyx y g x f I )()(=dxdya x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx a x x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.完全类似例题见《数学复习指南》P.191【例8.16-17】 .(4)设n 维向量0,),0,,0,(<=a a a TΛα;E 为n 阶单位矩阵,矩阵TE A αα-=,TaE B αα1+=,其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((TTaE E AB αααα+-= =T T T Ta a E αααααααα⋅-+-11 =TT T T a a E αααααααα)(11-+-=TT T a a E αααααα21-+-=Eaa E T =+--+αα)121(,于是有0121=+--aa ,即122=-+a a ,解得.1,21-==a a由于A<0 ,故a=-1.【评注】完全类似例题见《数学复习指南》P.305第2大题第(5)小题 .(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为 0.9 .【分析】 利用相关系数的计算公式即可.【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y=)(4.0)()()(4.0)(Y E X E Y E Y E XY E +--=E(XY) –E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDXY X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+完全类似例题见《数学复习指南》P.475【例3.32】的【注】 .(6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i in X n Y 121依概率收敛于 21 . 【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量nX XX ,,,21Λ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X XΛ满足大数定律的条件,且22)(i i iEX DX EX +==21)21(412=+,因此根据大数定律有∑==n i in X n Y 121依概率收敛于.21112=∑=n i i EX n【评注】 大数定律见《数学复习指南》P.484 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ]【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可.【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有)0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点.【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x xx 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.本题事实上相当于考查此结论,详情可参见《考研数学大串讲》P.18的重要结论与公式.(2)设可微函数f(x,y)在点),(0y x 取得极小值,则下列结论正确的是(A)),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零. (D)),(0y x f 在0y y =处的导数不存在.[ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(0y x 取得极小值,根据取极值的必要条件知0),(0='y x f y,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(0y x f y';而),(0y x f 在0x x =处的导数即).,(0y x f x'【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn na a p+=,2nn na a q-=,Λ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(B) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(C) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定.(D) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】 若∑∞=1n na 绝对收敛,即∑∞=1n na 收敛,当然也有级数∑∞=1n n a 收敛,再根据2nn na a p+=,2nn na a q -=及收敛级数的运算性质知,∑∞=1n np 与∑∞=1n n q 都收敛,故应选(B).【评注】 完全类似例题见《文登数学全真模拟试卷》数学三P.23第二大题第(3)小题.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有(A) a=b 或a+2b=0. (B) a=b或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b且a+2b ≠0. [ C ]【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件.【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r完全类似例题见《数学复习指南》P.329【例3.31】.(5)设sααα,,,21Λ均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数sk k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则sααα,,,21Λ线性无关. (B) 若sααα,,,21Λ线性相关,则对于任意一组不全为零的数sk k k ,,,21Λ,都有.02211=+++ssk k k αααΛ(C) sααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D)sααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数sk k k ,,,21Λ,都有2211≠+++s s k k k αααΛ,则sααα,,,21Λ必线性无关,因为若sααα,,,21Λ线性相关,则存在一组不全为零的数sk k k ,,,21Λ,使得 02211=+++s s k k k αααΛ,矛盾. 可见(A )成立.(B): 若sααα,,,21Λ线性相关,则存在一组,而不是对任意一组不全为零的数sk k k ,,,21Λ,都有.02211=+++s s k k k αααΛ (B)不成立.(C) sααα,,,21Λ线性无关,则此向量组的秩为s ;反过来,若向量组sααα,,,21Λ的秩为s ,则sααα,,,21Λ线性无关,因此(C)成立.(D) sααα,,,21Λ线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数sk k k ,,,21Λ,使得02211=+++s s k k k αααΛ成立,则sααα,,,21Λ线性相关.其逆否命题为:若对于任意一组不全为零的数sk k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则sααα,,,21Λ线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.与本题完全类似例题见《数学复习指南》P.313【例3.4】.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A)321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C)321,,A A A 两两独立. (D)432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.本题考查两两独立与相互独立的差异,其要点可参见《数学复习指南》P.401 .三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续. 【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ=x x xx x πππππsin )1(sin )1(lim 111---+-→ =xx x x x ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f , 使f(x)在]1,21[上连续. 【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.完全类似例题在一般教科书上都可找到,或参见《文登数学全真模拟试卷》P.数学三P.24第三题.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂故vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂=.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.完全类似例题《数学复习指南》P.171【例7.20,7.22】.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y xy x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:θθsin ,cos r y r x ==,有dxdyy x e e I Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdtee I tsin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则 tt de e A --⎰-=int 0π=]cos sin [00⎰----ππtdt e tet t=⎰--π0cos ttde =]sin cos [00tdt e t e t t⎰--+-ππ=.1A e-+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分) 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n x x x x f上式两边从0到x 积分,得).1ln(211)0()(22x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得 ).1(),1ln(211)(2<+-=x xx f令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--=''1)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.完全类似例题见《数学题型集粹与练习题集》P.285数学三模拟试题(五)第八题.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0,.2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由 )()()()()(x g x f x g x f x F '+'=' =)()(22x f x g+=)()(2)]()([2x g x f x g x f -+=(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2xe x F x F =+'(2)]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e xx+⎰- =.22xxCe e -+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.完全类似例题在文登数学辅导班上介绍过,也可参见《文登数学全真模拟试卷》数学三P.17第三题.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是Mf m ≤≤)0(,Mf m ≤≤)1(, Mf m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f 因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.完全类似例题见《数学复习指南》P.128【例5.2】及P.131的【解题提示】.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ其中.01≠∑=ni ia试讨论na a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++=ΛM M M M M ΛΛΛ321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++nnx a x a x a Λ由01≠∑=ni ia可知,),,2,1(n i a iΛ=不全为零. 不妨设1≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121Λ-=α,T a a )0,,1,0,(132Λ-=α,.)1,,0,0,(,1T nna a ΛΛ-=α当∑=-=ni i a b 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211ΛM M M M ΛΛΛ(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211ΛM M M M ΛΛΛn ni ia a a a a( 将第n 行na -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---ΛΛM M M M ΛΛ由此得原方程组的同解方程组为12x x =,13x x=,1,x xn=Λ .原方程组的一个基础解系为.)1,,1,1(TΛ=α【评注】 本题的难点在∑=-=ni i a b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T)1,,1,1(Λ=α为方程组的一个非零解,即可作为基础解系. 完全类似问题2002年已考过,见2002年数学三第九题.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A设A 的特征值为).3,2,1(=i iλ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得 T)51,0,52(1=η,T)0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ, .12)2(22321-=+-=b a λλλ解得a=1,b=2.第一步求参数见《数学复习指南》P.361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P.47第九题.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。
2003年数学三试题评析1
2003年数学三试题评析12003年考研数学(三)真题评注一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ.【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线bx ax y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有3322=-='a x y ,有.220a x =又在此点y 坐标为0,于是有300230=+-=b x a x ,故.44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】⎰⎰-=D dxdyx y g x f I )()(=dxdya x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx a x x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.完全类似例题见《数学复习指南》P.191【例8.16-17】 .(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y=)(4.0)()()(4.0)(Y E X E Y E Y E XY E +--=E(XY) –E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDXY X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+完全类似例题见《数学复习指南》P.475【例3.32】的【注】 .(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i in X n Y 121依概率收敛于 21 . 【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量nX XX ,,,21,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X满足大数定律的条件,且22)(i i iEX DX EX +==21)21(412=+,因此根据大数定律有∑==n i in X n Y 121依概率收敛于.21112=∑=n i i EX n【评注】 大数定律见《数学复习指南》P.484 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ]【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可.【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有)0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点.【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x xx 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.本题事实上相当于考查此结论,详情可参见《考研数学大串讲》P.18的重要结论与公式.(2)设可微函数f(x,y)在点),(0y x 取得极小值,则下列结论正确的是(A)),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零. (D)),(0y x f 在0y y =处的导数不存在.[ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(0y x 取得极小值,根据取极值的必要条件知0),(0='y x f y,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(0y x f y';而),(0y x f 在0x x =处的导数即).,(0y x f x'【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn na a p+=,2nn na a q-=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(B) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(C) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定.(D) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】 若∑∞=1n na 绝对收敛,即∑∞=1n na 收敛,当然也有级数∑∞=1n n a 收敛,再根据2nn na a p+=,2nn na a q -=及收敛级数的运算性质知,∑∞=1n np 与∑∞=1n n q 都收敛,故应选(B).【评注】 完全类似例题见《文登数学全真模拟试卷》数学三P.23第二大题第(3)小题.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有(A) a=b 或a+2b=0. (B) a=b或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b且a+2b ≠0. [ C ]【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件.【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r完全类似例题见《数学复习指南》P.329【例3.31】.(5)设sααα,,,21均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数sk k k ,,,21,都有02211≠+++s s k k k ααα,则sααα,,,21线性无关. (B) 若sααα,,,21线性相关,则对于任意一组不全为零的数sk k k ,,,21 ,都有.02211=+++ssk k k ααα(C) sααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D)sααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数sk k k ,,,21,都有2211≠+++s s k k k ααα ,则sααα,,,21必线性无关,因为若sααα,,,21线性相关,则存在一组不全为零的数sk k k ,,,21,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若sααα,,,21线性相关,则存在一组,而不是对任意一组不全为零的数sk k k ,,,21,都有.02211=+++s s k k k ααα (B)不成立.(C) sααα,,,21线性无关,则此向量组的秩为s ;反过来,若向量组sααα,,,21的秩为s ,则sααα,,,21线性无关,因此(C)成立.(D) sααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数sk k k ,,,21,使得02211=+++s s k k k ααα成立,则sααα,,,21线性相关.其逆否命题为:若对于任意一组不全为零的数sk k k ,,,21 ,都有02211≠+++s s k k k ααα,则sααα,,,21线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.与本题完全类似例题见《数学复习指南》P.313【例3.4】.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A)321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C)321,,A A A 两两独立. (D)432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.本题考查两两独立与相互独立的差异,其要点可参见《数学复习指南》P.401 .三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续. 【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ=x x xx x πππππsin )1(sin )1(lim 111---+-→ =xx x x x ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f , 使f(x)在]1,21[上连续. 【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.完全类似例题在一般教科书上都可找到,或参见《文登数学全真模拟试卷》P.数学三P.24第三题.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂故vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂=.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.完全类似例题《数学复习指南》P.171【例7.20,7.22】.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y xy x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:θθsin ,cos r y r x ==,有dxdyy x e e I Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdtee I tsin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则 tt de e A --⎰-=int 0π=]cos sin [00⎰----ππtdt e tet t=⎰--π0cos ttde =]sin cos [00tdt e t e t t⎰--+-ππ=.1A e-+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分) 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n x x x x f上式两边从0到x 积分,得).1ln(211)0()(22x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得 ).1(),1ln(211)(2<+-=x xx f令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--=''1)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.完全类似例题见《数学题型集粹与练习题集》P.285数学三模拟试题(五)第八题.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0,.2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由 )()()()()(x g x f x g x f x F '+'=' =)()(22x f x g+=)()(2)]()([2x g x f x g x f -+=(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2xe x F x F =+'(2)]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e xx+⎰- =.22xxCe e -+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.完全类似例题在文登数学辅导班上介绍过,也可参见《文登数学全真模拟试卷》数学三P.17第三题.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是Mf m ≤≤)0(,Mf m ≤≤)1(, Mf m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f 因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.完全类似例题见《数学复习指南》P.128【例5.2】及P.131的【解题提示】.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中.01≠∑=ni ia试讨论na a a ,,,21和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++nnx a x a x a由01≠∑=ni ia可知,),,2,1(n i a i=不全为零. 不妨设1≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132-=α,.)1,,0,0,(,1T nna a -=α当∑=-=ni i a b 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行na -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x=,1,x xn= .原方程组的一个基础解系为.)1,,1,1(T=α【评注】 本题的难点在∑=-=ni i a b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T)1,,1,1( =α为方程组的一个非零解,即可作为基础解系. 完全类似问题2002年已考过,见2002年数学三第九题.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A设A 的特征值为).3,2,1(=i iλ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得 T)51,0,52(1=η,T)0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ, .12)2(22321-=+-=b a λλλ解得a=1,b=2.第一步求参数见《数学复习指南》P.361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P.47第九题.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则的取值范围是.【分析】 当0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当时,有显然当时,有,即其导函数在x=0处连续.(2)已知曲线与x 轴相切,则可以通过a 表示为 . 【分析】 曲线在切点的斜率为0,即,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到与a 的关系.【详解】 由题设,在切点处有,有又在此点y 坐标为0,于是有,故【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a>0,而D 表示全平面,则= .【分析】 本题积分区域为全平面,但只有当时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 =λ2>λ≠x 1>λ,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ2>λ)0(0)(lim 0f x f x '=='→b x a x y +-=2332b =2b 64a 0='y 2b 03322=-='a x y .220a x =0300230=+-=b x a x .44)3(6422202202a a a x a x b =⋅=-=,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==⎰⎰-=Ddxdy x y g x f I )()(2a 10,10≤-≤≤≤x y x ⎰⎰-=Ddxdy x y g x f I )()(dxdy ax y x ⎰⎰≤-≤≤≤10,102=【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量;E 为n 阶单位矩阵,矩阵 , , 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里为n 阶矩阵,而为数,直接通过进行计算并注意利用乘法的结合律即可.【详解】 由题设,有 = = = =, 于是有 ,即 ,解得 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若,则Y 与Z 的相关系数为 0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为= =E(XY) – E(X)E(Y)=cov(X,Y),.])1[(212112a dx x x a dy dx a x x=-+=⎰⎰⎰+0,),0,,0,(<=a a a T αT E A αα-=T aE B αα1+=T αα22a T =ααE AB =)1)((T T aE E AB αααα+-=T T T T aa E αααααααα⋅-+-11T T T T a a E αααααααα)(11-+-T T T a aE αααααα21-+-E aa E T =+--+αα)121(0121=+--aa 0122=-+a a .1,21-==a a 4.0-=X Z )4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y )(4.0)()()(4.0)(Y E X E Y E Y E XY E +--且于是有 cov(Y,Z)==【评注】 注意以下运算公式:, (6)设总体X 服从参数为2的指数分布,为来自总体X 的简单随机样本,则当时,依概率收敛于 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:【详解】 这里满足大数定律的条件,且=,因此根据大数定律有 依概率收敛于二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数 (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=可排除(A),(B),(C) 三项,故应选(D)..DX DZ =DZDY Z Y ),cov(.9.0),cov(==XY DYDX Y X ρDX a X D =+)().,cov(),cov(Y X a Y X =+n X X X ,,,21 ∞→n ∑==ni i n X n Y 12121n X X X ,,,21 ).(1111∞→→∑∑==n EX n X n ni i pn i i 22221,,,nX X X 22)(i i i EX DX EX +=21)21(412=+∑==n i i n X n Y 121.21112=∑=n i i EX n )0(f 'xx f x g )()(=)0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→,0,0,0,1=≠⎩⎨⎧=x x x x【评注2】 若f(x)在处连续,则. (2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是(A) 在处的导数等于零. (B )在处的导数大于零. (C) 在处的导数小于零. (D) 在处的导数不存在. [ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论. 【详解】 可微函数f(x,y)在点取得极小值,根据取极值的必要条件知,即在处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,在处的导数即;而在处的导数即【评注2】 本题也可用排除法分析,取,在(0,0)处可微且取得极小值,并且有,可排除(B),(C),(D), 故正确选项为(A).(3)设,,,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若绝对收敛,即收敛,当然也有级数收敛,再根据,及收敛级数的运算性质知,与都收敛,故应选(B).0x x =.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→),(00y x ),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(00y x 0),(00='y x f y ),(0y x f 0y y =),(0y x f 0y y =),(00y x f y '),(0y x f 0x x =).,(00y x f x '22),(y x y x f +=2),0(y y f =2nn n a a p +=2nn n a a q -=,2,1=n ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n a ∑∞=1n n a 2nn n a a p +=2nn n a a q -=∑∞=1n n p ∑∞=1n n q(4)设三阶矩阵,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b 0.(C) a b 且a+2b=0. (D) a b 且a+2b 0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有,即有或a=b.但当a=b 时,显然秩(A), 故必有 a b 且a+2b=0. 应选(C).【评注】 n (n 阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:(5)设均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数,都有,则必线性无关,因为若线性相关,则存在一组不全为零的数,使得 ,矛盾. 可见(A )成立.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ≠≠≠≠0))(2(2=-+=b a b a ab b b a bbb a 02=+b a 2≠≠)2≥.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 02211=+++s s k k k ααα(B): 若线性相关,则存在一组,而不是对任意一组不全为零的数,都有 (B)不成立.(C) 线性无关,则此向量组的秩为s ;反过来,若向量组的秩为s ,则线性无关,因此(C)成立.(D) 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数,使得成立,则线性相关. 其逆否命题为:若对于任意一组不全为零的数,都有,则线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件(A) 相互独立. (B) 相互独立.(C) 两两独立. (D) 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为,,,,且 ,,,, 可见有,,,,.故两两独立但不相互独立;不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα s ααα,,,21 sααα,,,21 s ααα,,,21 s ααα,,,21 s k k k ,,,21 02211=+++s s k k k ααα s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 1A 2A 3A 4A 321,,A A A 432,,A A A 321,,A A A 432,,A A A 21)(1=A P 21)(2=A P 21)(3=A P 41)(4=A P 41)(21=A A P 41)(31=A A P 41)(32=A A P 41)(42=A A P 0)(321=A A A P )()()(2121A P A P A A P =)()()(3131A P A P A A P =)()()(3232A P A P A A P =)()()()(321321A P A P A P A A A P ≠)()()(4242A P A P A A P ≠321,,A A A 432,,A A A三 、(本题满分8分) 设 试补充定义f(1)使得f(x)在上连续.【分析】 只需求出极限,然后定义f(1)为此极限值即可. 【详解】 因为 = === =由于f(x)在上连续,因此定义,使f(x)在上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ]1,21[)(lim 1x f x -→)(lim 1x f x -→])1(1sin 11[lim 1x x x x --+-→πππxx xx x πππππsin )1(sin )1(lim 111---+-→xx x xx ππππππππcos )1(sin cos lim 111-+---+-→xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→.1π)1,21[π1)1(=f ]1,21[+→0y 12222=∂∂+∂∂vfu f )](21,[),(22y x xy f y x g -=.2222yg x g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:,,直接利用复合函数求偏导公式即可,注意利用【详解】, 故 , 所以 =【评注】 本题考查半抽象复合函数求二阶偏导. 五 、(本题满分8分) 计算二重积分其中积分区域D=【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:,有=令,则 .记 ,则),(v u f g =)(21,22y x v xy u -==.22uv f v u f ∂∂∂=∂∂∂vfxu f y x g ∂∂+∂∂=∂∂.vfy u f x y g ∂∂-∂∂=∂∂v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂.22y x +.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π}.),{(22π≤+y x y x θθsin ,cos r y r x ==dxdy y x e e I Dy x)sin(22)(22+=⎰⎰+-π.sin 2022dr r re d er ⎰⎰-πππθ2r t =tdt e e I t sin 0⎰-=πππtdt e A t sin 0⎰-=π==== 因此 ,【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】上式两边从0到x 积分,得由f(0)=1, 得令,求得唯一驻点x=0. 由于t t de e A --⎰-=int 0π]cos sin [0⎰----ππtdt e t e t t ⎰--πcos t tde ]sin cos [0tdt e t e t t ⎰--+-ππ.1A e -+-π)1(21π-+=e A ).1(2)1(2πππππe e e I +=+=-∑∞=<-+12)1(2)1(1n nnx n x .1)1()(1212∑∞=-+-=-='n n n xxx x f ).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰).1(),1ln(211)(2<+-=x x x f 0)(='x f,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,,且f(0)=0, (1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由== =(2-2F(x), 可见F(x)所满足的一阶微分方程为(2)==将F(0)=f(0)g(0)=0代入上式,得 C=-1.,)1(1)(222x x x f +--=''01)0(<-=''f ),(+∞-∞)()(x g x f =')()(x f x g ='.2)()(x e x g x f =+)()()()()(x g x f x g x f x F '+'=')()(22x f x g +)()(2)]()([2x g x f x g x f -+2)x e .4)(2)(2x e x F x F =+']4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-]4[42C dx e e x x +⎰-.22x x Ce e -+于是【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使【分析】 根据罗尔定理,只需再证明存在一点c ,使得,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是, , . 故由介值定理知,至少存在一点,使因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在,使【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分).)(22x x e e x F --=)3,0(∈ξ.0)(='ξf )3,0[∈)3(1)(f c f ==13)2()1()0(=++f f f M f m ≤≤)0(M f m ≤≤)1(M f m ≤≤)2(.3)2()1()0(M f f f m ≤++≤]2,0[∈c .13)2()1()0()(=++=f f f c f )3,0()3,(⊂∈c ξ.0)(='ξf已知齐次线性方程组其中 试讨论和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式=(1) 当时且时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为由可知,不全为零. 不妨设,得原方程组的一个基础解系为,,⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a .01≠∑=ni i a n a a a ,,,21 ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321).(11∑=-+ni i n a b b0≠b 01≠+∑=ni i a b .02211=+++n n x a x a x a 01≠∑=ni i a ),,2,1(n i a i =01≠a T a a )0,,0,1,(121 -=αT a a )0,,1,0,(132 -=α.)1,,0,0,(,1T n n a a-=α当时,有,原方程组的系数矩阵可化为(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以倍)( 将第n 行倍到第2行的倍加到第1行,再将第1行移到最后一行)由此得原方程组的同解方程组为 ,, . 原方程组的一个基础解系为【评注】 本题的难点在时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然为方程组的一个非零解,即可作为基础解系.∑=-=ni i a b 10≠b ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211∑=-ni ia11→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a n a -2a -→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---12x x =13x x =1,x x n = .)1,,1,1(T =α∑=-=ni i a b 1T )1,,1,1( =α十、(本题满分13分) 设二次型,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为设A 的特征值为 由题设,有,解得 a=1,b= -2.(2) 由矩阵A 的特征多项式, 得A 的特征值对于解齐次线性方程组,得其基础解系 ,)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T .200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A ).3,2,1(=i i λ1)2(2321=-++=++a λλλ.12242002002321-=--=-=b a b ba λλλ)3()2(2020202012+-=+----=-λλλλλλA E .3,2321-===λλλ,221==λλ0)2(=-x A E T )1,0,2(1=ξ.)0,1,0(2T =ξ对于,解齐次线性方程组,得基础解系由于已是正交向量组,为了得到规范正交向量组,只需将单位化,由此得,,令矩阵,则Q 为正交矩阵. 在正交变换X=QY 下,有,且二次型的标准形为【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定: 二次型f 的矩阵A 对应特征多项式为设A 的特征值为,则由题设得,解得a=1,b=2.十一、(本题满分13分)33-=λ0)3(=--x A E .)2,0,1(3T -=ξ321,,ξξξ321,,ξξξT )51,0,52(1=ηT )0,1,0(2=η.)52,0,51(3T -=η[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T .322232221y y y f -+=)].2()2()[2(202022b a a bbaA E +----=+----=-λλλλλλλ321,,λλλ).2(,2,2232321b a a +-=-=+=λλλλλ1)2(2321=-+=++a λλλ.12)2(22321-=+-=b a λλλ设随机变量X 的概率密度为F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可.注意应先确定Y=F(X)的值域范围,再对y 分段讨论.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1. 对于,有设G(y)是随机变量Y=F(X)的分布函数. 显然,当时,G(y)=0;当时,G(y)=1.对于,有= =于是,Y=F(X)的分布函数为【评注】 事实上,本题X 为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布:当y<0时,G(y)=0; 当 时,G(y)=1;当 0时, = = 十二、(本题满分13分);],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f )1)(0(≤≤X F ]8,1[∈x .131)(3132-==⎰x dt t x F x0<y 1≥y )1,0[∈y })({}{)(y X F P y Y P y G ≤=≤=})1({}1{33+≤=≤-y X P y X P .])1[(3y y F =+.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若1≥y 1<≤y })({}{)(y X F P y Y P y G ≤=≤=)}({1y F X P -≤.))((1y y F F =-设随机变量X 与Y 独立,其中X 的概率分布为 ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为= =. 由于X 和Y 独立,可见G(u)==由此,得U 的概率密度=【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.⎪⎪⎭⎫ ⎝⎛7.03.021~X }{)(u Y X P u G ≤+=}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P }22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P }2{7.0}1{3.0-≤+-≤u Y P u Y P ).2(7.0)1(3.0-+-u F u F )2(7.0)1(3.0)()(-'+-'='=u F u F u G u g ).2(7.0)1(3.0-+-u f u f。