分层训练6 整式与分式(3)(含答案)
新冀教版数学八年级上册同步分层练习(分章节全册)含答案
第十二章 分式和分式方程 12.1 第1课时 分式及其基本性质知识点 1 分式的概念1.2017·贺州 下列式子中是分式的是( ) A.1π B.x 3 C.1x -1D.252.下列各式中,哪些是分式,哪些是整式? ①2019x ;②a π;③-x -3x ;④x 2+y ;⑤1+y x -y ;⑥2m 2m .知识点 2 分式有(无)意义的条件3.已知分式1x +2,当分母x +2≠________,即x ≠________时,分式有意义;反之,当x =________时,分式无意义.4.当x ________时,分式xx -5有意义;当x ______时,分式x +2x -1无意义.5.x 取何值时,下列分式有意义:(1)x +22x -3; (2)6(x +3)|x |-12; (3)x +6x 2+1.知识点 3 分式的值为0的条件6.已知分式x -2x +1,当分子x -2=________,且分母x +1≠________时,分式的值为0,故分式x -2x +1的值为0的条件是________.7.若分式x -yx -1的值为0,则x ,y 需要满足的条件为________.8.对于分式x -a3x -2,当x =a 时( )A .分式的值为0B .若a ≠23,则分式的值为0C .分式无意义D .若a =-23,则分式无意义9.当a 取何值时,下列分式的值为0? (1)2a -1a +2; (2)|a |-1a 2+1; (3)|a |-1a -1.知识点 4 分式的基本性质10.填空:(1)b a =( )am (m ≠0);(2)( )3xy 2=1xy ;(3)xy +x x 2=y +1( ). 11.下列各式从左到右的变形不正确的是( ) A .--5x 3y =5x -3y B.-y -6x =y6xC.3x -4y=-3x 4y D.-23y =-23y12.下列式子从左到右的变形一定正确的是( ) A.a b =a +m b +m B.a b =acbc C.ak bk =a b D.a b =a 2b2 13.教材“做一做”变式下列各分式中,与分式xx +y的值相等的是( ) A.-x -x -y B.x x -y C .-x x -y D .-x y -x14.如果把5x x +y 的x 与y 都扩大为原来的10倍,那么这个代数式的值( )A. 不变B. 扩大为原来的50倍C. 扩大为原来的10倍D. 缩小为原来的11015.若等式x x +1=x 2x 2+x成立,则x 必须满足________.16.不改变分式的值,把分式0.1x +0.2y0.3+y的分子、分母的各项系数都化为整数,得________.17.按要求做题.不改变分式的值,使下列分式的分子与分母的最高次项的系数为正.① 1-3x -x -2;②-x 2-2x +3x -1.18.2017·武汉洪山区校级模拟 下列关于分式的判断,正确的是( ) A .当x =2时,x +1x -2的值为0B .无论x 为何值,3x 2+1的值总为正数C .无论x 为何值,3x +1不可能得整数值D .当x ≠3时,x -3x有意义19.2018·莱芜若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .2+x x -y B .2y x 2 C .2y 33x 2 D .2y 2(x -y )220.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x 的取值范围是x ≠2;(3)当x =0时,分式的值为-1.你所写的分式是________.21.已知甲车用v km /h 的速度跑完AB 两地的路程用了2小时,乙车每小时比甲车慢5 km ,则乙车跑完AB 两地的路程需要________小时.22.已知x =-2时,分式x -b x +a 无意义,当x =4时此分式的值为0.求分式2ba 2-ab 的值.23.王老师在黑板上出了一道题:分式2x +6x 2-9和2x -3是不是同一分式?为什么?小强、小明两位同学是这样回答的:小强说:因为2x +6x 2-9=2(x +3)(x +3)(x -3)=2x -3,所以分式2x +6x 2-9和2x -3是同一分式.小明说:2x -3=2(x +3)(x +3)(x -3)=2x +6x 2-9,所以分式2x -3和2x +6x 2-9是同一分式.你同意他们的说法吗?若不同意,请说出你的理由.24.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:83=6+23=2+23=223 .我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:x -1x +1,x 2x -1这样的分式就是假分式;再如:3x +1,2xx 2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1;再如:x 2x -1=x 2-1+1x -1=(x +1)(x -1)+1x -1=x +1+1x -1.解决下列问题:(1)分式2x 是________分式(填“真”或“假”);(2)假分式x -1x +2可化为带分式________的形式;(3)如果分式2x -1x +1的值为整数,那么x 的整数值为________.教师详解详析1.C2.解:分式:①③⑤⑥.整式:②④.3.0 -2 -2 [解析] 分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.4.≠5 =1 [解析] xx -5有意义,则x -5≠0,解得x ≠5;分式x +2x -1无意义,则x -1=0,解得x =1.5.解:(1)要使x +22x -3有意义,则2x -3≠0,解得x ≠32,即当x ≠32时,x +22x -3有意义.(2)要使6(x +3)|x |-12有意义,则|x |-12≠0,解得x ≠±12,即当x ≠±12时,6(x +3)|x |-12有意义.(3)要使x +6x 2+1有意义,则x 2+1≠0,x 取任意实数时,x +6x 2+1均有意义.6.0 0 x =2 [解析] 分式的值为0的条件是分子等于0,且分母不等于0. 7.x =y 且x ≠1 [解析] 由题意,得x -y =0且x -1≠0,解得x =y 且x ≠1. 8.B9.解:(1)∵分式2a -1a +2的值为0,∴2a -1=0且a +2≠0,解得a =12.∴当a =12时,分式2a -1a +2的值为0. (2)∵分式|a |-1a 2+1的值为0,∴|a |-1=0且a 2+1≠0,解得a =±1.∴当a =±1时,分式|a |-1a 2+1的值为0. (3)∵分式|a |-1a -1的值为0,∴|a |-1=0且a -1≠0.解得a =-1.∴当a =-1时,分式|a |-1a -1的值为0. 10.(1)bm (2)3y (3)x 11.A 12.C13.A [解析] -x -x -y =-x -(x +y )=xx +y.故选A.14.A [解析] 分别用10x 和10y 去代换原分式中的x 和y ,得5×10x 10x +10y =10×5x10(x +y )=5xx +y,可见新分式与原分式的值相等.故选A. 15.x ≠-1且x ≠0 [解析] 当x ≠-1时,等号左边的分式有意义.分式的分子、分母同时乘(或除以)的相同的数或整式不能为0,故x ≠0.16.x +2y 3+10y [解析] 要想将分式的分子、分母的各项系数都化为整数,可将分式的分子、分母同乘10,即0.1x +0.2y 0.3+y =10(0.1x +0.2y )10(0.3+y )=x +2y3+10y.17.解:①3x -1x +2;②-x 2+2x -3x -1.18.B [解析] A 项,当x =2时,分母x -2=0,分式无意义,故A 错误;B 项,分母x 2+1≥1,因而3x 2+1的值一定是正数,故B 项正确;C 项,当x +1=1或x +1=-1时,3x +1的值是整数,故C 项错误;D 项,当x =0时,分母x =0,分式无意义,故D 项错误.19.D [解析] 根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍,A 项,2+3x 3x -3y ≠2+x x -y ,错误;B 项,6y 9x 2≠2y x 2,错误;C 项,54y 327x 2≠2y 33x 2,错误;D 项,18y 29(x -y )2=2y 2(x -y )2,正确.故选D.20.答案不唯一,如2x -2等 21.2v v -5 [解析] 由题意,得AB 两地的路程为2v km ,则乙车跑完AB 两地的路程需要2vv -5小时. 22.解:根据题意得-2+a =0,4-b =0,解得a =2,b =4,故2b a 2-ab =84-8=-2.23.解:不同意.2x -3和2x +6x 2-9不是同一分式.理由如下: 在分式2x -3中,分母x -3≠0,即x ≠3. 在分式2x +6x 2-9中,分母x 2-9≠0,即x ≠±3.∵两个分式中的x 的取值范围不同, ∴2x -3和2x +6x 2-9不是同一分式. 24.(1)真 (2)1-3x +2(3)0,-2,2,-4 [解析]2x -1x +1=2x +2-3x +1=2-3x +1.所以当x +1的值为3或-3或1或-1时,分式的值为整数.解得x =2或x =-4或x =0或x =-2.第2课时 分式的约分知识点 1 分式的约分1.(1)分式a 3a 中,分子与分母的公因式是________,约去公因式得________;(2)a 2-16a 2+8a +16=______________(分子、分母分解因式) =________.(约去公因式的结果) 2.下列等式中,不成立的是( ) A.2xy 26x 2y =y 3x B.x 2-y 2x -y =x -y C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =y x -y3.约分:(1)4x 2y6xy 2z =________;(2)y -x (x -y )3=________;(3)1-4x 22+4x =________.4.若长方形的面积是x 2-6x +9,长方形的长是x 2-9,则长方形的宽是________. 5.将下列分式约分:(1)10a 3bc-5a 2b 3c 2; (2)-2a (a +b )3b (a +b );(3)(a -x )2(x -a )3; (4)x 2-25x 2-10x +25.知识点 2 最简分式6.2017·睢宁县期中下列分式是最简分式的是( ) A.1-x x -1 B.x -1x 2-1 C.2x x 2+1D.42x7.下列分式:4x -34x ,x 2-1x 4-1,x 2+xy +y 2x +y ,a 2+3ab ab -3b 2,3x -y3x +y ,最简分式有________个.8.下列分式中,哪些是最简分式,那些不是最简分式?如果不是最简分式,请你将其化成最简分式.(1)12ab ;(2)x +y x 2+y 2;(3)2x -y y 2-4x 2;(4)m 2-2m +11-m 2.知识点 3 分式的化简求值9.若x =2019,则x 2-1x +1的值是________.10.化简m 2-163m -12得______________;当m =-1时,原式的值为__________.11.若x 2+x -2=0,则5x 2+x -1的值为________.12.若a =2b ≠0,则a 2-b 2a 2-ab 的值为________.13.先化简,再求值: (1)mn +n 2m 2-n 2,其中m =3,n =4;(2)x 2-4x 2+4x +4,其中x =3.14.化简16a 2-b 24a +b 时,小明、小华两位同学的化简过程如下:小明:16a 2-b 24a +b =(4a +b )(4a -b )4a +b=4a -b ;小华:16a 2-b 24a +b =(16a 2-b 2)(4a -b )(4a +b )(4a -b )=4a -b .对于他俩的解法,你的看法是( )A .都正确B .小明正确,小华不正确C .小华正确,小明不正确D .都不正确15.已知x 2-3x +1=0,则xx 2-x +1的值是( )A.12 B .2 C.13D .3 16.分式ax 2-25ay 2bx -5by 化为最简分式为__________.17.若2x +3y =0,则x -3yx +3y=________.18.已知x -y =xy ,则分式2x -5xy -2yy -2xy -x的值是________.19.指出下列解题过程是否存在错误,若存在,请加以改正并写出正确的答案. 题目:当x 为何值时,分式x 2-1(x +1)(x -2)有意义?解:x 2-1(x +1)(x -2)=(x -1)(x +1)(x +1)(x -2)=x -1x -2.由x -2≠0,得x ≠2.所以当x ≠2时,分式x 2-1(x +1)(x -2)有意义.20.2017·东台市月考约分:(1)2a (a -1)8ab 2(1-a ); (2)(x +y )2-10(x +y )+25(x +y )2-25.21.已知x +y =2,x -y =12,求2x 2-2y 2x 2+2xy +y 2的值.22.请从下列三个代数式中任选两个构成一个分式,并化简该分式. x 2-4xy +4y 2;x 2-4y 2;x -2y .23.“约去”指数:如33+1333+23=3+13+2,53+2353+33=5+25+3,…你见过这样的约分吗?面对这荒谬的约分,一笑之后,再认真检验,发现其结果竟然正确!这是什么原因?仔细观察式子,我们可作如下猜想:a3+b3a3+(a-b)3=a+ba+(a-b),试说明此猜想的正确性.[供参考:x3+y3=(x+y)(x2-xy+y2)]教师详解详析1.(1)a a 2 (2)(a -4)(a +4)(a +4)2 a -4a +42.B [解析] 因为x 2-y 2x -y =(x +y )(x -y )x -y =x +y ,故知选项B 不成立,因此选B .3.(1)2x 3yz (2)-1(x -y )2 (3)1-2x 2[解析] (1)4x 2y 6xy 2z =2x 3yz;(2)y -x (x -y )3=-(x -y )(x -y )3=-1(x -y )2; (3)1-4x 22+4x =(1+2x )(1-2x )2(1+2x )=1-2x 2.4.x -3x +3 [解析] x 2-6x +9x 2-9=(x -3)2(x +3)(x -3)=x -3x +3. 5.解:(1)10a 3bc -5a 2b 3c 2=-2a b 2c .(2)-2a (a +b )3b (a +b )=-2a3b .(3)(a -x )2(x -a )3=(x -a )2(x -a )3=1x -a. (4)x 2-25x 2-10x +25=(x +5)(x -5)(x -5)2=x +5x -5. 6.C7.4 [解析] x 2-1x 4-1=x 2-1(x 2-1)(x 2+1)=1x 2+1,故x 2-1x 4-1不是最简分式;4x -34x ,x 2+xy +y 2x +y ,a 2+3ab ab -3b 2,3x -y3x +y是最简分式.8.解:(1)(2)是最简分式;(3)(4)不是最简分式.(3)2x -y y 2-4x 2=2x -y -(2x -y )(2x +y )=-12x +y ; (4)m 2-2m +11-m 2=(m -1)2-(m +1)(m -1)=-m -1m +1.9.2018 [解析] x 2-1x +1=(x +1)(x -1)x +1=x -1=2019-1=2018.10.m +43 1 [解析] m 2-163m -12=(m +4)(m -4)3(m -4)=m +43 .当m =-1时,原式=-1+43=1. 11.5 [解析] ∵x 2+x -2=0, ∴x 2+x =2,∴原式=52-1=5.12.32 [解析] ∵a =2b ≠0,∴a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =2b +b 2b =32. 13.解:(1)mn +n 2m 2-n 2=n (m +n )(m +n )(m -n )=n m -n . 当m =3,n =4时,原式=43-4=-4.(2)x 2-4x 2+4x +4=(x +2)(x -2)(x +2)2=x -2x +2. 当x =3时,原式=15.14.B15.A [解析] ∵x 2-3x +1=0,∴x 2=3x -1, ∴原式=x 3x -1-x +1=12.16.a (x +5y )b[解析] 原式=a (x 2-25y 2)b (x -5y )=a (x -5y )(x +5y )b (x -5y )=a (x +5y )b .17.-3 [解析] 由已知2x +3y =0,得3y =-2x ,则x -3y x +3y =x -(-2x )x -2x =3x-x=-3. 18.1 [解析] 2x -5xy -2y y -2xy -x =2(x -y )-5xy -(x -y )-2xy =2xy -5xy-xy -2xy=1.19.[解析] 已知中没有明确指出x +1≠0,故x +1仍有可能为0,所以原式的分子、分母不能同时除以x +1,这是产生错误的根源.解:存在错误,分式的分子、分母同除以可能为零的代数式(x +1),扩大了x 的取值范围.正解:由(x +1)(x -2)≠0,得x +1≠0且x -2≠0,所以x ≠-1且x ≠2.即当x ≠-1且x ≠2时,分式x 2-1(x +1)(x -2)有意义.20.解:(1)2a (a -1)8ab 2(1-a )=-14b 2.(2)(x +y )2-10(x +y )+25(x +y )2-25=[(x +y )-5]2[(x +y )+5][(x +y )-5]=x +y -5x +y +5.21.[解析] 先化简,再将已知条件整体代入即可. 解:2x 2-2y 2x 2+2xy +y 2=2(x +y )(x -y )(x +y )2=2(x -y )x +y ,将x +y =2,x -y =12代入2(x -y )x +y ,得原式=2×122=12.22.解:答案不唯一,如x 2-4xy +4y 2x 2-4y 2=(x -2y )2(x +2y )(x -2y )=x -2yx +2y .23.证明:∵a 3+b 3a 3+(a -b )3=(a +b )(a 2-ab +b 2)(a +a -b )(a 2-a 2+ab +a 2-2ab +b 2) =(a +b )(a 2-ab +b 2)(a +a -b )(a 2-ab +b 2) =a +ba +(a -b ),∴a 3+b 3a 3+(a -b )3=a +b a +(a -b )正确.12.2 第1课时 分式的乘法知识点 分式的乘法1.(1)x 2y ·y x =( )·( )( )·( )=________;(2)x x -2·x -2x 2=( )·( )( )·( )=________. 2.计算a 2b 3·2b 23a 2的结果是( )A.2a 3B.2b 3C.2bD.23b 3.计算x 2-y 2x 2-6x +9·2x -6x +y 的结果是( )A.x -y x -3B.2x -3C.2x -2y x -3D.2x -y x -3 4.下列计算中错误的是( ) A.8y 23x 2·3x 4y 3=2xyB.x 2-4x 2-6x +9·x +3x +2=x -2x +3C.x 2-4x x +3·x +3x -4=xD.3x x -y ·2y x -y =6xy x 2-2xy +y 25.化简2x +2y 5a 2b ·10ab 2x 2-y 2的结果为________.6.计算:2a a +b ·a 2-b 22ab ·1a -b=________.7.化简2x +2y 5a 2b ·10ab 2x 2-y 2·a (x -y )的结果为________.8.计算:(1)-m 2n 3x ·-6xy5mn 2;(2)x -2x +3·x 2-9x 2-4x +4.9.计算:m 2n 2p ·⎝⎛⎭⎫-np 22m =________.10.计算:(1)(-x y )·(-y x )2·x 2y ;(2)x +1x ·(2x x +1)2.11.已知x -3y =0,求2x +yx 2-2xy +y 2·(x -y )的值.12.请你先化简,再从-1,0,1,2中选取一个使原式有意义且你又喜欢的数代入求值:m 3-m 2m 2-m ·m +11-m 2.13.在学习了分式的乘法之后,老师给出了这样一道题,计算:(a+1a)(a2+1a2)(a4+1a4)(a8+1a8)·(a2-1),同学们都感到无从下手,小明将a2-1变形为a(a-1a),然后用平方差公式很轻松地得出结论.知道他是怎么做得吗?请你写出解题过程.教师详解详析1.(1)x 2 y y x x (2)x x -2 x -2 x 2 1x2.D3.C [解析] 原式=(x +y )(x -y )(x -3)2·2(x -3)x +y =2x -2yx -3.故选C.4.B [解析] x 2-4x 2-6x +9·x +3x +2=(x -2)(x +2)(x -3)2·x +3x +2=(x -2)(x +3)(x -3)2=x 2+x -6x 2-6x +9.5.4b ax -ay6.1b [解析] 原式=2a a +b ·(a +b )(a -b )2ab ·1a -b =1b. 7.4b [解析] 原式=2(x +y )5a 2b ·10ab 2(x +y )(x -y )·a(x -y)=4b.8.解:(1)-m 2n 3x ·-6xy 5mn 2=(-m 2n )(-6xy )3x·5mn 2=6m 2nxy 15mn 2x =2my5n .(2)原式=x -2x +3·(x +3)(x -3)(x -2)2=x -3x -2.9.-mp2n10.解:(1)原式=-x y ·y 2x 2·x 2y =-x 3y 2x 2y 2=-x.(2)原式=x +1x ·4x 2(x +1)2=4xx +1.11.解:原式=2x +y (x -y )2·(x -y)=2x +y x -y .当x -3y =0时,x =3y ,所以原式=6y +y3y -y =7y 2y =72. 12.[解析] 原式有意义时,m 不等于-1,0,1.解:m 3-m 2m 2-m ·m +11-m 2=m 2(m -1)m (m -1) ·m +1(1-m )(1+m )=m 1-m ,要使原式有意义,只能取m =2,将m =2代入m1-m得其值为-2.13.解:原式=a(a -1a )(a +1a )(a 2+1a 2)(a 4+1a 4)(a 8+1a 8)=a(a 2-1a 2)(a 2+1a 2)(a 4+1a 4)(a 8+1a 8)=a(a 4-1a 4)(a 4+1a 4)(a 8+1a 8)=a(a 8-1a 8)(a 8+1a 8)=a(a 16-1a 16)=a 17-1a15.第2课时 分式的除法知识点 1 分式的除法1.(1)x y ÷1x =xy ·________=________;(2)1x -1÷x x 2-1=1x -1·________=________. 2.2018·藁城模拟 若3-2x x -1÷( )=1x -1,则( )中的式子为( )A .-3B .3-2xC .2x -3 D.13-2x3.计算:(1)3x -6x 2-4÷x +2x 2+4x +4; (2)2x -x 2x ÷(x 2-4).4.化简:(xy -x 2)÷x 2-2xy +y 2xy ÷x 2x -y.5.上海到北京的航线全程为s 千米,乘飞机需要a 小时.而上海到北京的铁路全长为m 千米,乘火车需要b 小时.那么飞机的平均速度是火车的平均速度的多少倍?知识点 2 分式的乘除混合运算 6.计算a ÷a b ·ba 的结果是( )A .aB .a 2 C.1a 2 D.b 2a 7.下列式子计算后的结果等于1a3的是( )A .a ·1a 2÷a 2 B .a ÷⎝⎛⎭⎫1a 2÷a 2 C .a ÷1a 2·a 2 D .a ÷⎝⎛⎭⎫1a 2·a 2 8.计算:(1)8x 2y 4·(-3x 4y 3)÷(-x 2y 2);(2)b 2a +b ÷a a 2-b 2·a 2a -b .9.使式子x +3x -3÷x +5x -4有意义的x 的值是( )A .x ≠3且x ≠-5B .x ≠3且x ≠4C .x ≠4且 x ≠-5D .x ≠3,x ≠4且x ≠-510.2018·邢台期末 给定一列分式:x 3y ,-x 5y 2,x 7y 3,-x 9y 4……(其中x ≠0),用任意一个分式做除数,去除它后面一个分式得到的结果是________;根据你发现的规律,试写出第9个分式________.11.许老师讲完了分式的乘除一节后,给同学们出了这样一道题:若x =-2019,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.一会儿,小明说:“老师,这道题目中的x =-2019是多余的.”请你判断小明的说法是否正确.12.小明在做习题“计算:16mn 2·()÷⎝⎛⎭⎫-8m 2n 33”时,由于不小心,“”处的代数式被污损看不清楚了,他翻开书,得知后面的答案为“5mn 2”,则“”处的代数式为________.教师详解详析1.(1)x x 2y (2)x 2-1x x +1x2.B [解析] ∵3-2x x -1÷( )=1x -1,∴3-2x x -1÷1x -1=3-2xx -1×(x -1)=3-2x . ∴( )中式子为3-2x .3.解:(1)原式=3(x -2)(x -2)(x +2)·(x +2)2x +2=3.(2)原式=2x -x 2x ·1x 2-4=x (2-x )x ·1(x +2)(x -2)=-1x +2.4.解:原式=-x(x -y)·xy(x -y )2·x -y x 2=-y. 5.解:s a ÷m b =s a ·b m =bs am.答:飞机的平均速度是火车的平均速度的bsam 倍.6.D [解析] 原式=a·b a ·b a =b 2a.7.A [解析] A 项,原式=1a ·1a 2=1a 3,符合要求;B 项,原式=a÷⎝⎛⎭⎫1a 2·1a 2=a÷1a 4=a·a 4=a 5,不符合要求;C 项,原式=a·a 2·a 2=a 5,不符合要求;D 项,原式=a÷1=a ,不符合要求.8.解:(1)原式=8x 2y 4·(-3x 4y 3)·(-2x 2y )=12x.(2)原式=b 2a +b ·(a +b )(a -b )a ·a 2a -b =ab 2.9.D [解析] 由题意,得x -3≠0,x -4≠0,x +5≠0,解得x ≠3,x ≠4,x ≠-5. 10.-x 2y x 19y911.解:小明的说法正确. 因为x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2= (x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1,即当x ≠0且x ≠±2时,分式的值都是1,所以小明的说法是正确的. 12.-5m 26n[解析] 5m n 2·⎝⎛⎭⎫-8m 2n 33÷16mn 2=5m n 2·⎝⎛⎭⎫-8m 2n 33·116mn 2=-8m 2n 3·5m 3×16mn 2·n 2=-5m 26n .12.3 第1课时 分式的加减知识点 1 同分母分式的加减1.(1)1a +2a =( )+( )a =________;(2)a +3a +2-a -1a +2=( )-( )a +2=________; (3)a a -5+55-a =a a -5-________=( )a -5=________. 2.2017·大连 计算3x (x -1)2-3(x -1)2的结果是( )A.x (x -1)2B.1x -1C.3x -1D.3x +13.下列计算正确的是( ) A.1a +1a =12aB.1(a -b )2+1(b -a )2=0C.m -n a -m +n a =0D.1a -b +1b -a =0 4.计算:(1)2a -1a +1a =________;(2)x 2x -2+42-x =________; (3)a +b a -b -a b -a -b a -b =________. 5.填空:1a 2-1+________=a -2a 2-1;________-32xy =42xy. 6.2018·宣化模拟若y =-x +3,且x ≠y ,则x 2x -y +y 2y -x 的值为________.7.计算:(1)2x x -2-3x -2x -2;(2)a 2-1a 2-2a +4a -52a -a 2.知识点 2 分式的通分8.将分式1a +b ,a a 2-b 2,bb -a 通分时,应选的公分母是( )A .(a 2-b 2)(a +b )(a -b )B .(a 2-b 2)(a +b )C .(a 2-b 2)(b -a )D .a 2-b 2 9.将b 3a ,-ab2c 通分可得__________.10.通分:(1)a 2b ,25a 2b 2c ; (2)1x 2-x ,-1x 2-2x +1.知识点 3 异分母分式的加减11.(1)1a +1b =( )ab +a ( )=a +b ( );(2)1x -1-1x =( )x (x -1)-x -1( )=1( ). 12.分式1x +1x (x -1)的化简结果为( )A .x B.1x 2 C.1x -1 D.xx -113.化简a b -b a -a 2+b 2ab 的结果是( )A .0B .-2bC .-2b a D.2ba14.计算:a a +2-4a 2+2a=________.15.某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了________小时完成任务.(用含m 的代数式表示)16.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题. 解:2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2)…第一步=2(x -2)-x +6…第二步 =2x -4-x +6…第三步 =x +2.…第四步小明的解法从第__________步开始出现错误,正确的化简结果是__________. 17.计算:(1)a +b ab -b +cbc ;(2)2x -2-8x 2-4;(3)x 2-2x +1x 2-1+2x +1.18.计算:a a +b -c +b b -c +a +c c -a -b=________.19.甲、乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用12v 的速度到达中点,再用2v 的速度到达B 地,那么下列结论中正确的是( )A .甲、乙同时到达B 地 B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与速度v 有关20.已知3x -5(x -3)(x +1)=a x -3+bx +1,则a 2+b 2的值是________.21.某水果店原来苹果的进价为a 元/千克(a >2),每千克加价2元售出,现在苹果的进价上涨了b 元/千克,该水果店打算在原零售价的基础上再上涨b 元/千克,那么:(1)原来苹果的利润率是多少? (2)现在苹果的利润率是多少? (3)苹果的利润率是提高了还是降低了?22.(1)计算11-x +11+x的值;(2)通过以上计算请你用一种你认为比较简便的方法计算m 的值:m =11-x +11+x+21+x 2+41+x 4.23.教材复习题B 组第2题变式我们把分子为1的分数叫做单位分数,如12,13,14,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如12=13+16,13 =14+112,14=15+120,… (1)根据对上述式子的观察,你会发现15=1□+1○,请写出□,○所表示的数(□<○);(2)进一步思考,单位分数1n =1△+1☆,(n 是不小于2的正整数)请写出△,☆所表示的式子(△<☆),并对等式加以验证.教师详解详析1.(1)1 2 3a (2)a +3 a -1 4a +2(3)5a -5 a -5 1 2.C3.D [解析] 1a +1a =2a ,故A 选项错误;1(a -b )2+1(b -a )2=2(a -b )2,故B 选项错误;m -n a -m +n a =(m -n )-(m +n )a =-2n a ,故C 选项错误;1a -b +1b -a =1a -b -1a -b=0,故D 选项正确. 4.(1)2 (2)x +2 (3)2aa -b5.a -3a 2-1 72xy [解析] a -2a 2-1-1a 2-1=a -2-1a 2-1=a -3a 2-1;42xy +32xy =72xy. 6.3 [解析] 由y =-x +3,得x +y =3,原式=x 2x -y -y 2x -y =x 2-y 2x -y =(x +y )(x -y )x -y =x +y =3.7.解:(1)原式=2x -(3x -2)x -2=-x +2x -2=-1.(2)原式=a 2-1-4a +5a 2-2a =(a -2)2a (a -2)=a -2a .8.D 9.2bc 6ac ,-3a 2b6ac[解析] ∵两个分式的分母分别为3a ,2c , ∴各系数的最小公倍数为3×2=6. 又∵a ,c 的最高次数为1,∴最简公分母为6ac .将b 3a ,-ab 2c 通分可得2bc 6ac ,-3a 2b 6ac . 10.解:(1)a 2b =5a 3bc 10a 2b 2c ,25a 2b 2c =410a 2b 2c .(2)1x 2-x =x -1x (x -1)2,-1x 2-2x +1=-xx (x -1)2. 11.(1)b ab ab (2)x x (x -1) x (x -1)12.C [解析] 原式=x -1x (x -1)+1x (x -1)=x -1+1x (x -1)=x x (x -1)=1x -1.13.C [解析] 原式=a 2-b 2-a 2-b 2ab =-2ba.14.a -2a [解析] a a +2-4a 2+2a =a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a .15.2400m (m +10)[解析] 根据题意,得240m -240m +10=240(m +10)m (m +10)-240m m (m +10)=2400m (m +10).16.二1x -2 [解析] 2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2)=2(x -2)-(x -6)(x +2)(x -2)=2x -4-x +6(x +2)(x -2)=x +2(x +2)(x -2)=1x -2.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是1x -2.17.解:(1)原式=c (a +b )abc -a (b +c )abc =(ac +bc )-(ab +ac )abc =bc -ab abc =c -aac .(2)原式=2(x +2)(x -2)(x +2)-8(x -2)(x +2)=2(x +2)-8(x -2)(x +2)=2(x -2)(x -2)(x +2)=2x +2.(3)原式=(x -1)2(x +1)(x -1)+2x +1=x -1x +1+2x +1=x +1x +1=1.18.1 [解析] a a +b -c +b b -c +a +c c -a -b =a a +b -c +b a +b -c -ca +b -c =a +b -c a +b -c=1.19.B [解析] 设从A 地到B 地的距离为2s ,因为甲的速度v 保持不变,∴甲所用的时间为2s v .∵乙先用12v 的速度到达中点,再用2v 的速度到达B 地,∴乙所用的时间为s 12v +s 2v =2s v +s 2v >2sv ,∴甲先到达B 地.故选B .20.5 [解析]a x -3+bx +1=(a +b )x +(a -3b )(x -3)(x +1)=3x -5(x -3)(x +1),所以⎩⎨⎧a +b =3,a -3b =-5,解得⎩⎨⎧a =1,b =2,所以a 2+b 2=5. 21.解:(1)原来苹果的利润率是2a .(2)现在苹果的利润率是2+ba +b.(3)2+b a +b -2a =ab -2b a (a +b )=b (a -2)a (a +b )>0, 因此苹果的利润率提高了.22.解:(1)原式=1+x +1-x 1-x 2=21-x 2. (2)原式=21-x 2+21+x 2+41+x 4=41-x 4+41+x 4=81-x 8.23.解:(1)15=16+130,所以□=6,○=30. (2)△=n +1,☆=n(n +1), 可得1n =1n +1+1n (n +1),右边=n n (n +1)+1n (n +1)=n +1n (n +1)=1n=左边,所以等式成立.12.3 第2课时 分式的混合运算知识点 1 分式的加减运算 1.化简1x +1-1x -1的结果是( )A.2x 2-1 B .-2x 2-1 C.2x x 2-1 D .-2x x 2-1 2.化简2x x 2+2x -x -6x 2-4的结果为( )A.1x 2-4B.1x 2+2xC.1x -2 D.x -6x -23.甲、乙两地相距s 千米,汽车从甲地到乙地按每小时v 千米的速度行驶,可按时到达;若每小时多行驶a 千米,则可提前________小时到达(填写最简结果).4.计算:(1)x x 2-4-12x -4;(2)9x -3-x -3;(3)1x -x x -1+1x 2-x .知识点 2 分式的混合运算5.(1)计算y a -xy ÷a 时,应先算________法,得________,再算________法,结果为________.(2)计算(a -b 2a )·aa -b 时,应先算________法,得________,再算________法,结果为________.6.化简x -4x 2-9÷⎝⎛⎭⎫1-1x -3的结果是( )A .x -4B .x +3 C.1x -3 D.1x +37.当m =-5时,分式⎝⎛⎭⎫m +2-5m -2·2m -43-m 的值是________. 8.计算:a a -2÷(1+4a 2-4)=________.9.计算:(1)⎝⎛⎭⎫x x -1-1x 2-x ÷(x +1);(2)⎝⎛⎭⎫a a +2+1a 2-4÷a -1a +2;(3)a -b a +2b ÷a 2-b 2a 2+4ab +4b 2-1.10.计算:(1)(a +2-5a -2)·2a -43-a ;(2)(x 2x -1-x +1)÷4x 2-4x +11-x .11.2017·南通 先化简,再求值:⎝⎛⎭⎫m +2-5m -2·2m -43-m ,其中m =-12.12.先化简,再求值:⎝⎛⎭⎫a a -b -1÷ba 2-b 2,其中a =1+π,b =1-π.13.计算⎝⎛⎭⎫1-11-a ⎝⎛⎭⎫1a 2-1的结果为( ) A .-a +1a B.a -1a C.a1-a D.a +11-a14.一项工作,甲单独完成需a 小时,乙单独完成需b 小时,则甲、乙两人合作完成需要( )A.⎝⎛⎭⎫1a +1b 小时B.1ab 小时 C.1a +b 小时 D.ab a +b小时 15.教材复习题C 组第1题变式已知1x -1y =5,则分式2x +3xy -2y x -2xy -y 的值为( )A .1B .5 C.137 D.13316.(1)化简:(3a +1+a +3a 2-1)÷aa -1;(2)若(1)中a 为正整数,分式的值也为正整数,请直接写出所有符合条件的a 的值.17.教材习题A 组第2题变式先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选一个适当的数代入求值.18.若5x +4x 2+x -2=A x -1+Bx +2,求A ,B .19.在数学运算中,同学们发现一类特殊的等式.例如:2+21=2×21,3+32=3×32,4+43=4×43,5+54=5×54,… (1)特例验证:请再写出一个具有上述特征的等式:________. (2)猜想结论:用含n (n 为正整数)的式子表示上述等式为:________.(3)证明推广:(2)中的等式一定成立吗?若成立,请证明;若不成立,说明理由.教师详解详析1.B [解析]1x +1-1x -1=x -1(x +1)(x -1)-x +1(x +1)(x -1)=x -1-x -1(x +1)(x -1)=-2(x +1)(x -1)=-2x 2-1.2.C [解析] 原式=2x +2-x -6(x +2)(x -2)=2(x -2)-(x -6)(x +2)(x -2)=x +2(x +2)(x -2)=1x -2.3.sa v (v +a ) [解析] s v -s v +a =s v +sa -s v v (v +a )=sav (v +a ).4.解:(1)原式=2x -(x +2)2(x +2)(x -2)=12x +4.(2)原式=9-(x +3)(x -3)x -3=18-x 2x -3.(3)原式=x -1x (x -1)-x 2x (x -1)+1x (x -1)=x -1-x 2+1x (x -1) =-x (x -1)x (x -1)=-1.5.(1)除 y a -xay 减 y 2-x ay(2)减 a 2-b 2a ·aa -b乘 a +b6.D [解析] x -4x 2-9 ÷⎝⎛⎭⎫1-1x -3=x -4(x +3)(x -3) ÷x -3-1x -3=x -4(x +3)(x -3) ·x -3x -4=1x +3. 7.4 [解析] 原式=m 2-4-5m -2 ·2(m -2)-(m -3)=(m +3)(m -3)(m -2) ·2(m -2)-(m -3)=-2(m+3).当m =-5时,原式=-2×(-5+3)=-2×(-2)=4.8.a +2a [解析] 原式=a a -2÷a 2-4+4a 2-4=a a -2·(a +2)(a -2)a 2=a +2a . 9.解:(1)原式=⎣⎡⎦⎤x 2x (x -1)-1x 2-x ·1x +1=x 2-1x (x -1)·1x +1=1x.(2)原式=⎣⎢⎡⎦⎥⎤a 2-2a (a +2)(a -2)+1(a +2)(a -2) ·a +2a -1=(a -1)2(a +2)(a -2) ·a +2a -1=a -1a -2. (3)原式=a -b a +2b ·(a +2b )2(a +b )(a -b )-1=a +2b a +b -1=a +2b -(a +b )a +b =ba +b .10.解:(1)原式=a 2-4-5a -2·2a -43-a =()a +3()a -3a -2·2()a -23-a =-2(a +3)=-2a -6.(2)原式=x 2-(x 2-2x +1)x -1÷(2x -1)21-x =2x -1x -1·1-x (2x -1)2=-12x -1.11.解:⎝⎛⎭⎫m +2-5m -2 ·2m -43-m =m 2-4-5m -2 ·2(m -2)3-m =-(m +3)(m -3)m -2·2(m -2)m -3=-2(m +3).把m =-12代入,得原式=-2×⎝⎛⎭⎫-12+3=-5. 12.解:⎝⎛⎭⎫a a -b -1÷ba 2-b2=⎝⎛⎭⎪⎫a a -b -a -b a -b ·(a +b )(a -b )b=b a -b·(a +b )(a -b )b=a +b .当a =1+π,b =1-π时, 原式=1+π+1-π=2.13.A [解析] 原式=1-a -11-a ·1-a 2a 2=-a 1-a ·(1-a )(1+a )a 2=-a +1a . 14.D [解析] 1÷⎝⎛⎭⎫1a +1b =1÷a +b ab =aba +b(时). 15.A [解析] 将已知等式整理,得y -xxy=5,即x -y =-5xy ,则原式=2(x -y )+3xy x -y -2xy =-10xy +3xy-5xy -2xy=1.16.解:(1)原式=4a a 2-1·a -1a =4a +1. (2)由分式的值为正整数可得:a +1的值为1或2或4,解得a =0或a =1或a =3.因为a 为正整数,所以a ≠0;当a =1时,分式无意义,所以a ≠1,所以a 的值为3.17.解:⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1=x -2x -1·(x +1)(x -1)(x -2)2=x +1x -2.∵2x -1<6,∴2x <7,∴x <72.由题意,知x ≠±1且x ≠2,所以正整数x 只能取3. 把x =3代入上式,得原式=3+13-2=4.18.解:∵A x -1+Bx +2=A (x +2)+B (x -1)(x -1)(x +2)=Ax +2A +Bx -B(x -1)(x +2)=(A +B )x +(2A -B )x 2+x -2,∴5x +4x 2+x -2=(A +B )x +(2A -B )x 2+x -2,比较得⎩⎨⎧A +B =5,2A -B =4,解得⎩⎪⎨⎪⎧A =3,B =2.19.解:(1)6+65=6×65.(2)n +1+n +1n =(n +1)·n +1n .(3)等式成立,证明如下: 左边=n 2+n n +n +1n =n 2+2n +1n ,右边=(n +1)2n =n 2+2n +1n .∴左边=右边,等式成立.12.4 分式方程知识点 1 分式方程的有关概念 1.下列方程不是分式方程的是( ) A.x -3x =1 B.x x +1+1x -1=1C.3x +4y =2D.12-x -23=x 2.已知x =2是分式方程kx x -1-2k x =2的解,那么k 的值为( )A .2B .1C .0D .-1 知识点 2 解分式方程3.2018·衡水模拟 在解分式方程3x -1+x +21-x=2时,去分母后变形正确的是( )A .3-(x +2)=2(x -1)B .3-x +2=2(x -1)C .3-(x +2)=2D .3+(x +2)=2(x -1)4.2018·哈尔滨 方程12x =2x +3的解为( )A .x =-1B .x =0C .x =35D .x =15.2018·安国期末 分式方程6x -1=x +5x (x -1)有增根,则增根为( )A .x =0B .x =1C .x =1或x =0D .x =-56.2017·齐齐哈尔模拟 若关于x 的分式方程x x -2=2+ax -2的解为正数,则a 的取值范围是( )A .a >4B .a <4C .a <4且a ≠2D .a <2且a ≠07.当x =________时,分式x +3x -1的值等于2. 8.若分式2x -1与3x +3的值相等,则x =_______________.9.在解分式方程x x -3=2+3x -3时,雷希同学的解法如下:解:方程两边同时乘(x -3),得x =2+3,……① 解得x =5,……②经检验,x =5是原方程的解.……③。
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
2020年人教版八年级数学上册 分层练习作业本 《从分数到分式》(含答案)
第十五章 分式15.1__分式__15.1.1 从分数到分式1.下列式子是分式的是( )A. B. C.+y D.x 2x x +1x 2x 32.若代数式在实数范围内有意义,则实数x 的取值范围是( )1x -3A .x <3B .x >3C .x≠3D .x =33.使分式无意义的x 的值是( )2x +12x -1A .x =-B .x =C .x≠-D .x≠121212124.分式的值为零,则x 的值为( )|x|-3x +3A .3 B .-3 C .±3 D .任意实数5.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后每一分钟收费b 元,如果某人打该长途电话被收费8元,则此人打长途电话的时间是( )A.min B. min C. min D. min 8-a b 8a +b 8-a +b b 8-a -b b6.在①,②-,③x 2-,④(a 2+2ab +b 2),⑤,⑥中,是整式的有__ 3b a2ab 3133y219-2xy xy 45__,是分式的有__ __(填写序号).7.当x =6时,分式的值等于__ __.51-x8.当x =__ __时,分式的值为0.x -22x +59.如果分式的值为0,则x 的值应为_ __.3x2-27x -310.求使下列分式有意义的x 的取值范围:(1);(2);(3).2x -2x -14x |x|-4x (x -1)(x +5)11.(1)当x =-1时,求分式的值;x -12x2+1(2)已知a 2-4a +4与|b -1|互为相反数,求的值.a -b a +b12. 给出4个整式:2,x +2,x -2,2x +1:(1)从上面的4个整式中选择2个整式,写出一个分式.(2)从上面的4个整式中选择2个整式进行运算,使运算结果为二次三项式.请你列出一个算式,并写出运算过程.参考答案【知识管理】1.整式 A B2.不能为0 不能为0 B≠03.不为零 B≠0【归类探究】例1 例2 (1)x≠0 (2)x≠-2 (3)x≠ (4)x≠±132例3 (1)x =1 (2)x =-5【当堂测评】1.A 2.B 3.C 4.2【分层作业】1.B 2.C 3.B 4.A 5.C6.②④⑥ ①③⑤ 7.-1 8.2 9.-310.(1)x≠1 (2)x≠±4 (3)x≠1且x≠-511.(1)- (2)231312.(1)答案不唯一 (2)答案不唯一。
2022中考真题分类6——分式(参考答案)
2022中考真题分类——分式(参考答案)一、分式概念1.(2022·湖南怀化)代数式25x ,1π,224x +,x 2−23,1x ,12x x ++中,属于分式的有( ) A .2个B .3个C .4个D .5个2.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________.3.(2022·内蒙古包头)1x在实数范围内有意义,则x 的取值范围是___________.【答案】1x ≥−且0x ≠【分析】根据二次根式与分式有意义的条件求解即可.【详解】解:由题意得:x +1≥0,且x ≠0,解得:1x ≥−且0x ≠,故答案为:1x ≥−且0x ≠.【点睛】本题考查二次根式与分式有意义的条件,熟练掌握二次根式有意义的条件:被开方数为非负数;分式有意义的条件:分母不等于零是解题的关键.4.(2022·湖南娄底)函数y =的自变量x 的取值范围是_______. 10,10x x 即x 解得: 1.x >故答案为:1x >二、分式计算(选填题)5.(2022·四川眉山)化简422a a +−+的结果是( ) A .1B .22a a +C .224a a −D .2a a +6.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( )A .fv f v −B .f v fv −C .fv v f −D .v f fv−7.(2022·湖北襄阳)化简分式:ma mb a b a b +++=_____.8.(2022·辽宁沈阳)化简:21111x x x −⎛⎫−⋅= ⎪+⎝⎭______. 【答案】1x −##1x −+9.(2022·江苏苏州)化简2222x xx x−−−的结果是______.10.(2022·四川自贡)化简:223423244a aa aa a−−⋅+−+++=____________.11.(2022·广西玉林)若x是非负整数,则表示22242(2)x xx x−−++的值的对应点落在下图数轴上的范围是()A.①B.②C.③D.①或②12.(2022·山东济南)若m-n=2,则代数式222m n mm m n−⋅+的值是()A.-2B.2C.-4D.413.(2022·湖南郴州)若23a bb−=,则ab=________.【详解】解:23 a bb−=b,,14.(2022·河北)若x和y互为倒数,则112x yy x⎛⎫⎛⎫+−⎪⎪⎝⎭⎝⎭的值是()A.1B.2C.3D.415.(2022·四川成都)已知2272a a −=,则代数式2211a a a a a−−⎛⎫−÷ ⎪⎝⎭的值为_________. 【答案】72##3.5##312 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变16.(2022·四川南充)已知a >b >0,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .17.(2022·山东菏泽)若22150a a−−=,则代数式2442a aaa a−⎛⎫−⋅⎪−⎝⎭的值是________.【答案】15【分析】先按分式混合运算法则化简分式,再把已知变形为a2−2a=15,整体代入即可.18.(2022·湖北鄂州)若实数a 、b 分别满足a 2−4a +3=0,b 2−4b +3=0,且a ≠b ,则11a b+的值为 _____.19.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =____________.20.(2022·四川达州)0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______. 【详解】解:a 111a S =+2221S a =+…,1001001S a =+100S ++=1故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab=,找出的规律是本题的关键.21.(2022·湖北随州)已知m是整数,则根据==可知m有最小值3721⨯=.设n于1的整数,则n的最小值为______,最大值为______.22.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n个数记为na,且满足21112n n na a a+++=.则4a=________,2022a=________.,三、分式计算(解答题)23.(2022·内蒙古·)先化简,再求值:2344111x x x x x −+⎛⎫−−÷ ⎪−−⎝⎭,其中3x =.24.(2022·辽宁阜新)先化简,再求值:2691122a a a a a −+⎛⎫÷− ⎪−−,其中4a =.25.(2022·山东东营)先化简,再求值:221122y x y x y x xy y⎛⎫−÷⎪−+++⎝⎭,其中3,2x y ==. )()22x y y+ )()22x y y+ 时,原式=+−x x 26.(2022·辽宁朝阳)先化简,简求值:22234+4243x x x x x x x x −÷−−+++,其中212x −⎛⎫= ⎪⎝⎭. 2222332x x x x x x x x2233x x x x x 33x x x x =2142x −⎛⎫== ⎪⎭,27.(2022·辽宁丹东)先化简,再求值:224+−x x ÷24x x −−1x ,其中x =sin 45°.28.(2022·山东枣庄)先化简,再求值:(2x x −−1)÷22444x x x −−+,其中x =−4. 22)(2)(2)(x x x −−+222x x −+ 22x =−4时,原式=242−+=−1.【点睛】本题主要考查了分式的混合运算,熟练地掌握分式的运算法则将分式进行约分化简是解题的关键29.(2022·内蒙古鄂尔多斯)先化简,再求值:(22969a a a −−++1)÷226a a −,其中a =4sin 30°−(π−3)0.30.(2022·四川绵阳)先化简,再求值:3x y x y x yx x y x y⎛⎫−−+−÷⎪−−⎝⎭,其中1x=,100y=31.(2022·辽宁大连)计算2224214424x x x x x x x−+÷−−+−. 22222122x x x x x x x 211.x xx 【点睛】本题考查的是分式的混合运算,掌握键.32.(2022·广东深圳)先化简,再求值:2222441,x x x x x x −−+⎛⎫−÷ ⎪−⎝⎭其中 4.x =33.(2022·山东聊城)先化简,再求值:44422a a a a a a −−⎛⎫÷−− ⎪−⎝⎭,其中112sin 452a −⎛⎫=︒+ ⎪⎝⎭.34.(2022·湖南郴州)先化简,再求值:22a b a b a b ⎛⎫÷+ ⎪−+−⎝⎭,其中1a ,1b =.35.(2022·辽宁锦州·)先化简,再求值:2211211x x x x ⎛⎫÷−+ ⎪−++−⎝⎭,其中|1x =+.x 36.(2022·黑龙江)先化简,再求值:22221111a a a a a ⎛⎫−−−÷ ⎪−+⎝⎭,其中2cos301a =︒+.37.(2022·贵州毕节)先化简,再求值:2241442a a a a −⎛⎫÷− ⎪+++,其中2a =.38.(2022·湖北荆州)先化简,再求值:222212a b a b a b a ab b ⎛⎫−÷ ⎪−+−+⎝⎭,其中113a −⎛⎫= ⎪⎝⎭,()02022b =−.39.(2022·湖南湘潭)先化简,再求值:22211391x x x x x x x +÷−⋅−−+,其中2x =. 【答案】x +2,4【分析】先运用分式除法法则和乘法法则计算,再合并同类项.40.(2022·新疆)先化简,再求值:22931121112a aa a a a a⎛⎫−−÷−⋅⎪−+−−+⎝⎭,其中2a=.41.(2022·四川达州)化简求值:222112111a a aa a a a⎛⎫−+÷+⎪−+−−⎝⎭,其中31a.31a 时,原式=【点睛】本题考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.42.(2022·山东滨州)先化简,再求值:344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,其中10(1tan 45π2)a −=︒+−。
中考数学复习《分式方程》专项提升训练(附答案)
中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
中考数学总复习 分层提分训练 整式与分式(2)(以真题为例)
整式与分式(3)因式分解一级训练1.(2012年湖南常德)分解因式:m 2-n 2=____________. 2.(2012年四川成都)分解因式:x 2-5x =____________. 3.(2012年上海)分解因式:xy -x =____________. 4.(2012年云南)分解因式:3x 2-6x +3=____________. 5.(2011年安徽)因式分解:a 2b +2ab +b =______________. 6.(2011年安徽芜湖)因式分解:x 3-2x 2y +xy 2=___________. 7.(2011年山东潍坊)分解因式:a 3+a 2-a -1=________________. 8.若非零实数a ,b 满足4a 2+b 2=4ab ,则b a=______. 9.把a 3-4ab 2因式分解,结果正确的是( )A .a (a +4b )(a -4b )B .a (a 2-4b 2) C .a (a +2b )(a -2b ) D .a (a -2b )210.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )[如图1-4-3(1)],把余下的部分拼成一个矩形[如图1-4-3(2)],根据两个图形中阴影部分的面积相等,可以验证( )图1-4-3A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b ) D .(a +2b )(a -b )=a 2+ab -2b 211.(2011年河北)下列分解因式正确的是( )A .-a +a 3=-a (1+a 2) B .2a -4b +2=2(a -2b ) C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)212.分解因式:(x +y )2-(x -y )2.二级训练13.如图1-4-4,把边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙).若拼成的矩形的一边长为3,则另一边长是( )图1-4-4A.2m +3 B .2m +6 C .m +3D .m +614.(2011年四川凉山州)分解因式:-a 3+a 2b -14ab 2=______________.15.对于任意自然数n ,(n +11)2-n 2是否能被11整除?为什么?三级训练16.已知实数x ,y 满足xy =5,x +y =7,求代数式x 2y +xy 2的值.17.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.参考答案1.(m -n )(m +n ) 2.x (x -5) 3.x (y -1) 4.3(x -1)25.b (a +1)2 6.x (x -y )2 7.(a +1)2(a -1) 8.2 9.C 10.C 11.D 12.解:原式=[]x +y -x -y []x +y +x -y=2y ·2x =4xy . 13.A 解析:m +32-m23=2m +3.14.-a ⎝ ⎛⎭⎪⎫a -12b 215.解:能.理由如下:因为(n +11)2-n 2=(n +11+n )·(n +11-n ) =(2n +11)·11,所以能被11整除. 16.解:x 2y +xy 2=xy (x +y )=5×7=35. 17.解:对a 2c 2-b 2c 2=a 4-b 4进行变形. ∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a 2-b 2)=(a 2-b 2)·(a 2+b 2) . ∴c 2=a 2+b 2或a 2-b 2=0.∴△ABC 是直角三角形或等腰三角形.。
什么是整式什么是分式
什么是整式什么是分式
整式为单项式和多项式的统称,是有理式的一部分。
形如A/B(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
整式的定义
整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
由数与字母的积或字母与字母的积所组成的代数式叫做单项式,单独一个数或一个字母也是单项式。
由有限个单项式的代数和组成的代数式叫做多项式。
分式的定义
一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。
当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
分式的条件
(1)分式有意义条件:分母不为0。
(2)分式值为0条件:分子为0且分母不为0。
(3)分式值为正(负)数条件:分子分母同号得正,异号得负。
(4)分式值为1的条件:分子=分母≠0。
(5)分式值为-1的条件:分子分母互为相反数,且都不为0。
初中数学分式的化简求值专项训练题6(附答案详解)
17.先化简,再求值: ,其中 - 1.
18.解答下列各题:
(1)解方程:
(2)先化简,再求值: ,其中 满足Leabharlann 19.先化简,后求值: ,其中 .
20.(1)解不等式组 .
(2)分解因式: .
(3)先化简,再求值: ,其中 .
(4)解分式方程: .
6.先化简,再求值: ÷(a﹣1﹣ ),其中a为不等式组 的正整数解.
7.先化简 ,再从-2、-1、0、1、2中选一个你认为合适的数作为 的值代入求值.
8.先化简,再求代数式(1+ ) 的值,其中m=2sin60°+1.
9.先化简,再求值: ,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
解:
解不等式组
解得
∴ ,
∴不等式组的整数解是 ,
∴当 时,原式 .
【点睛】
本题考查分式的化简,一元一次不等式组的解法;熟练掌握分式的化简技巧,准确解一元一次不等式组是解题的关键.
14.
【解析】
【分析】
根据分式的性质化简,再由 可得 的值,代入使分式有意义的x的值计算即可.
【详解】
解:
由 可得 或 ,
把 , 代入上式
= .
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
6. ,1
【解析】
【分析】
直接将括号里面通分运算,进而利用分式的混合运算法则化简,进而解不等式组计算得出答案
【详解】
解:原式 ,
∵
解①得: ,
解②得: ,
解得:1≤x≤2,
∴不等式组的正整数解为1,2,
∵ 时,分式无意义,因此, ,
新冀教版数学八年级上册同步分层练习(分章节全册)含答案
第十二章 分式和分式方程 12.1 第1课时 分式及其基本性质知识点 1 分式的概念1.2017·贺州 下列式子中是分式的是( ) A.1π B.x 3 C.1x -1D.252.下列各式中,哪些是分式,哪些是整式? ①2019x ;②a π;③-x -3x ;④x 2+y ;⑤1+y x -y ;⑥2m 2m .知识点 2 分式有(无)意义的条件3.已知分式1x +2,当分母x +2≠________,即x ≠________时,分式有意义;反之,当x =________时,分式无意义.4.当x ________时,分式xx -5有意义;当x ______时,分式x +2x -1无意义.5.x 取何值时,下列分式有意义:(1)x +22x -3; (2)6(x +3)|x |-12; (3)x +6x 2+1.知识点 3 分式的值为0的条件6.已知分式x -2x +1,当分子x -2=________,且分母x +1≠________时,分式的值为0,故分式x -2x +1的值为0的条件是________.7.若分式x -yx -1的值为0,则x ,y 需要满足的条件为________.8.对于分式x -a3x -2,当x =a 时( )A .分式的值为0B .若a ≠23,则分式的值为0C .分式无意义D .若a =-23,则分式无意义9.当a 取何值时,下列分式的值为0? (1)2a -1a +2; (2)|a |-1a 2+1; (3)|a |-1a -1.知识点 4 分式的基本性质10.填空:(1)b a =( )am (m ≠0);(2)( )3xy 2=1xy ;(3)xy +x x 2=y +1( ). 11.下列各式从左到右的变形不正确的是( ) A .--5x 3y =5x -3y B.-y -6x =y6xC.3x -4y=-3x 4y D.-23y =-23y12.下列式子从左到右的变形一定正确的是( ) A.a b =a +m b +m B.a b =acbc C.ak bk =a b D.a b =a 2b2 13.教材“做一做”变式下列各分式中,与分式xx +y的值相等的是( ) A.-x -x -y B.x x -y C .-x x -y D .-x y -x14.如果把5x x +y 的x 与y 都扩大为原来的10倍,那么这个代数式的值( )A. 不变B. 扩大为原来的50倍C. 扩大为原来的10倍D. 缩小为原来的11015.若等式x x +1=x 2x 2+x成立,则x 必须满足________.16.不改变分式的值,把分式0.1x +0.2y0.3+y的分子、分母的各项系数都化为整数,得________.17.按要求做题.不改变分式的值,使下列分式的分子与分母的最高次项的系数为正.① 1-3x -x -2;②-x 2-2x +3x -1.18.2017·武汉洪山区校级模拟 下列关于分式的判断,正确的是( ) A .当x =2时,x +1x -2的值为0B .无论x 为何值,3x 2+1的值总为正数C .无论x 为何值,3x +1不可能得整数值D .当x ≠3时,x -3x有意义19.2018·莱芜若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .2+x x -y B .2y x 2 C .2y 33x 2 D .2y 2(x -y )220.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x 的取值范围是x ≠2;(3)当x =0时,分式的值为-1.你所写的分式是________.21.已知甲车用v km /h 的速度跑完AB 两地的路程用了2小时,乙车每小时比甲车慢5 km ,则乙车跑完AB 两地的路程需要________小时.22.已知x =-2时,分式x -b x +a 无意义,当x =4时此分式的值为0.求分式2ba 2-ab 的值.23.王老师在黑板上出了一道题:分式2x +6x 2-9和2x -3是不是同一分式?为什么?小强、小明两位同学是这样回答的:小强说:因为2x +6x 2-9=2(x +3)(x +3)(x -3)=2x -3,所以分式2x +6x 2-9和2x -3是同一分式.小明说:2x -3=2(x +3)(x +3)(x -3)=2x +6x 2-9,所以分式2x -3和2x +6x 2-9是同一分式.你同意他们的说法吗?若不同意,请说出你的理由.24.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:83=6+23=2+23=223 .我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:x -1x +1,x 2x -1这样的分式就是假分式;再如:3x +1,2xx 2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1;再如:x 2x -1=x 2-1+1x -1=(x +1)(x -1)+1x -1=x +1+1x -1.解决下列问题:(1)分式2x 是________分式(填“真”或“假”);(2)假分式x -1x +2可化为带分式________的形式;(3)如果分式2x -1x +1的值为整数,那么x 的整数值为________.教师详解详析1.C2.解:分式:①③⑤⑥.整式:②④.3.0 -2 -2 [解析] 分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.4.≠5 =1 [解析] xx -5有意义,则x -5≠0,解得x ≠5;分式x +2x -1无意义,则x -1=0,解得x =1.5.解:(1)要使x +22x -3有意义,则2x -3≠0,解得x ≠32,即当x ≠32时,x +22x -3有意义.(2)要使6(x +3)|x |-12有意义,则|x |-12≠0,解得x ≠±12,即当x ≠±12时,6(x +3)|x |-12有意义.(3)要使x +6x 2+1有意义,则x 2+1≠0,x 取任意实数时,x +6x 2+1均有意义.6.0 0 x =2 [解析] 分式的值为0的条件是分子等于0,且分母不等于0. 7.x =y 且x ≠1 [解析] 由题意,得x -y =0且x -1≠0,解得x =y 且x ≠1. 8.B9.解:(1)∵分式2a -1a +2的值为0,∴2a -1=0且a +2≠0,解得a =12.∴当a =12时,分式2a -1a +2的值为0. (2)∵分式|a |-1a 2+1的值为0,∴|a |-1=0且a 2+1≠0,解得a =±1.∴当a =±1时,分式|a |-1a 2+1的值为0. (3)∵分式|a |-1a -1的值为0,∴|a |-1=0且a -1≠0.解得a =-1.∴当a =-1时,分式|a |-1a -1的值为0. 10.(1)bm (2)3y (3)x 11.A 12.C13.A [解析] -x -x -y =-x -(x +y )=xx +y.故选A.14.A [解析] 分别用10x 和10y 去代换原分式中的x 和y ,得5×10x 10x +10y =10×5x10(x +y )=5xx +y,可见新分式与原分式的值相等.故选A. 15.x ≠-1且x ≠0 [解析] 当x ≠-1时,等号左边的分式有意义.分式的分子、分母同时乘(或除以)的相同的数或整式不能为0,故x ≠0.16.x +2y 3+10y [解析] 要想将分式的分子、分母的各项系数都化为整数,可将分式的分子、分母同乘10,即0.1x +0.2y 0.3+y =10(0.1x +0.2y )10(0.3+y )=x +2y3+10y.17.解:①3x -1x +2;②-x 2+2x -3x -1.18.B [解析] A 项,当x =2时,分母x -2=0,分式无意义,故A 错误;B 项,分母x 2+1≥1,因而3x 2+1的值一定是正数,故B 项正确;C 项,当x +1=1或x +1=-1时,3x +1的值是整数,故C 项错误;D 项,当x =0时,分母x =0,分式无意义,故D 项错误.19.D [解析] 根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍,A 项,2+3x 3x -3y ≠2+x x -y ,错误;B 项,6y 9x 2≠2y x 2,错误;C 项,54y 327x 2≠2y 33x 2,错误;D 项,18y 29(x -y )2=2y 2(x -y )2,正确.故选D.20.答案不唯一,如2x -2等 21.2v v -5 [解析] 由题意,得AB 两地的路程为2v km ,则乙车跑完AB 两地的路程需要2vv -5小时. 22.解:根据题意得-2+a =0,4-b =0,解得a =2,b =4,故2b a 2-ab =84-8=-2.23.解:不同意.2x -3和2x +6x 2-9不是同一分式.理由如下: 在分式2x -3中,分母x -3≠0,即x ≠3. 在分式2x +6x 2-9中,分母x 2-9≠0,即x ≠±3.∵两个分式中的x 的取值范围不同, ∴2x -3和2x +6x 2-9不是同一分式. 24.(1)真 (2)1-3x +2(3)0,-2,2,-4 [解析]2x -1x +1=2x +2-3x +1=2-3x +1.所以当x +1的值为3或-3或1或-1时,分式的值为整数.解得x =2或x =-4或x =0或x =-2.第2课时 分式的约分知识点 1 分式的约分1.(1)分式a 3a 中,分子与分母的公因式是________,约去公因式得________;(2)a 2-16a 2+8a +16=______________(分子、分母分解因式) =________.(约去公因式的结果) 2.下列等式中,不成立的是( ) A.2xy 26x 2y =y 3x B.x 2-y 2x -y =x -y C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =y x -y3.约分:(1)4x 2y6xy 2z =________;(2)y -x (x -y )3=________;(3)1-4x 22+4x =________.4.若长方形的面积是x 2-6x +9,长方形的长是x 2-9,则长方形的宽是________. 5.将下列分式约分:(1)10a 3bc-5a 2b 3c 2; (2)-2a (a +b )3b (a +b );(3)(a -x )2(x -a )3; (4)x 2-25x 2-10x +25.知识点 2 最简分式6.2017·睢宁县期中下列分式是最简分式的是( ) A.1-x x -1 B.x -1x 2-1 C.2x x 2+1D.42x7.下列分式:4x -34x ,x 2-1x 4-1,x 2+xy +y 2x +y ,a 2+3ab ab -3b 2,3x -y3x +y ,最简分式有________个.8.下列分式中,哪些是最简分式,那些不是最简分式?如果不是最简分式,请你将其化成最简分式.(1)12ab ;(2)x +y x 2+y 2;(3)2x -y y 2-4x 2;(4)m 2-2m +11-m 2.知识点 3 分式的化简求值9.若x =2019,则x 2-1x +1的值是________.10.化简m 2-163m -12得______________;当m =-1时,原式的值为__________.11.若x 2+x -2=0,则5x 2+x -1的值为________.12.若a =2b ≠0,则a 2-b 2a 2-ab 的值为________.13.先化简,再求值: (1)mn +n 2m 2-n 2,其中m =3,n =4;(2)x 2-4x 2+4x +4,其中x =3.14.化简16a 2-b 24a +b 时,小明、小华两位同学的化简过程如下:小明:16a 2-b 24a +b =(4a +b )(4a -b )4a +b=4a -b ;小华:16a 2-b 24a +b =(16a 2-b 2)(4a -b )(4a +b )(4a -b )=4a -b .对于他俩的解法,你的看法是( )A .都正确B .小明正确,小华不正确C .小华正确,小明不正确D .都不正确15.已知x 2-3x +1=0,则xx 2-x +1的值是( )A.12 B .2 C.13D .3 16.分式ax 2-25ay 2bx -5by 化为最简分式为__________.17.若2x +3y =0,则x -3yx +3y=________.18.已知x -y =xy ,则分式2x -5xy -2yy -2xy -x的值是________.19.指出下列解题过程是否存在错误,若存在,请加以改正并写出正确的答案. 题目:当x 为何值时,分式x 2-1(x +1)(x -2)有意义?解:x 2-1(x +1)(x -2)=(x -1)(x +1)(x +1)(x -2)=x -1x -2.由x -2≠0,得x ≠2.所以当x ≠2时,分式x 2-1(x +1)(x -2)有意义.20.2017·东台市月考约分:(1)2a (a -1)8ab 2(1-a ); (2)(x +y )2-10(x +y )+25(x +y )2-25.21.已知x +y =2,x -y =12,求2x 2-2y 2x 2+2xy +y 2的值.22.请从下列三个代数式中任选两个构成一个分式,并化简该分式. x 2-4xy +4y 2;x 2-4y 2;x -2y .23.“约去”指数:如33+1333+23=3+13+2,53+2353+33=5+25+3,…你见过这样的约分吗?面对这荒谬的约分,一笑之后,再认真检验,发现其结果竟然正确!这是什么原因?仔细观察式子,我们可作如下猜想:a3+b3a3+(a-b)3=a+ba+(a-b),试说明此猜想的正确性.[供参考:x3+y3=(x+y)(x2-xy+y2)]教师详解详析1.(1)a a 2 (2)(a -4)(a +4)(a +4)2 a -4a +42.B [解析] 因为x 2-y 2x -y =(x +y )(x -y )x -y =x +y ,故知选项B 不成立,因此选B .3.(1)2x 3yz (2)-1(x -y )2 (3)1-2x 2[解析] (1)4x 2y 6xy 2z =2x 3yz;(2)y -x (x -y )3=-(x -y )(x -y )3=-1(x -y )2; (3)1-4x 22+4x =(1+2x )(1-2x )2(1+2x )=1-2x 2.4.x -3x +3 [解析] x 2-6x +9x 2-9=(x -3)2(x +3)(x -3)=x -3x +3. 5.解:(1)10a 3bc -5a 2b 3c 2=-2a b 2c .(2)-2a (a +b )3b (a +b )=-2a3b .(3)(a -x )2(x -a )3=(x -a )2(x -a )3=1x -a. (4)x 2-25x 2-10x +25=(x +5)(x -5)(x -5)2=x +5x -5. 6.C7.4 [解析] x 2-1x 4-1=x 2-1(x 2-1)(x 2+1)=1x 2+1,故x 2-1x 4-1不是最简分式;4x -34x ,x 2+xy +y 2x +y ,a 2+3ab ab -3b 2,3x -y3x +y是最简分式.8.解:(1)(2)是最简分式;(3)(4)不是最简分式.(3)2x -y y 2-4x 2=2x -y -(2x -y )(2x +y )=-12x +y ; (4)m 2-2m +11-m 2=(m -1)2-(m +1)(m -1)=-m -1m +1.9.2018 [解析] x 2-1x +1=(x +1)(x -1)x +1=x -1=2019-1=2018.10.m +43 1 [解析] m 2-163m -12=(m +4)(m -4)3(m -4)=m +43 .当m =-1时,原式=-1+43=1. 11.5 [解析] ∵x 2+x -2=0, ∴x 2+x =2,∴原式=52-1=5.12.32 [解析] ∵a =2b ≠0,∴a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =2b +b 2b =32. 13.解:(1)mn +n 2m 2-n 2=n (m +n )(m +n )(m -n )=n m -n . 当m =3,n =4时,原式=43-4=-4.(2)x 2-4x 2+4x +4=(x +2)(x -2)(x +2)2=x -2x +2. 当x =3时,原式=15.14.B15.A [解析] ∵x 2-3x +1=0,∴x 2=3x -1, ∴原式=x 3x -1-x +1=12.16.a (x +5y )b[解析] 原式=a (x 2-25y 2)b (x -5y )=a (x -5y )(x +5y )b (x -5y )=a (x +5y )b .17.-3 [解析] 由已知2x +3y =0,得3y =-2x ,则x -3y x +3y =x -(-2x )x -2x =3x-x=-3. 18.1 [解析] 2x -5xy -2y y -2xy -x =2(x -y )-5xy -(x -y )-2xy =2xy -5xy-xy -2xy=1.19.[解析] 已知中没有明确指出x +1≠0,故x +1仍有可能为0,所以原式的分子、分母不能同时除以x +1,这是产生错误的根源.解:存在错误,分式的分子、分母同除以可能为零的代数式(x +1),扩大了x 的取值范围.正解:由(x +1)(x -2)≠0,得x +1≠0且x -2≠0,所以x ≠-1且x ≠2.即当x ≠-1且x ≠2时,分式x 2-1(x +1)(x -2)有意义.20.解:(1)2a (a -1)8ab 2(1-a )=-14b 2.(2)(x +y )2-10(x +y )+25(x +y )2-25=[(x +y )-5]2[(x +y )+5][(x +y )-5]=x +y -5x +y +5.21.[解析] 先化简,再将已知条件整体代入即可. 解:2x 2-2y 2x 2+2xy +y 2=2(x +y )(x -y )(x +y )2=2(x -y )x +y ,将x +y =2,x -y =12代入2(x -y )x +y ,得原式=2×122=12.22.解:答案不唯一,如x 2-4xy +4y 2x 2-4y 2=(x -2y )2(x +2y )(x -2y )=x -2yx +2y .23.证明:∵a 3+b 3a 3+(a -b )3=(a +b )(a 2-ab +b 2)(a +a -b )(a 2-a 2+ab +a 2-2ab +b 2) =(a +b )(a 2-ab +b 2)(a +a -b )(a 2-ab +b 2) =a +ba +(a -b ),∴a 3+b 3a 3+(a -b )3=a +b a +(a -b )正确.12.2 第1课时 分式的乘法知识点 分式的乘法1.(1)x 2y ·y x =( )·( )( )·( )=________;(2)x x -2·x -2x 2=( )·( )( )·( )=________. 2.计算a 2b 3·2b 23a 2的结果是( )A.2a 3B.2b 3C.2bD.23b 3.计算x 2-y 2x 2-6x +9·2x -6x +y 的结果是( )A.x -y x -3B.2x -3C.2x -2y x -3D.2x -y x -3 4.下列计算中错误的是( ) A.8y 23x 2·3x 4y 3=2xyB.x 2-4x 2-6x +9·x +3x +2=x -2x +3C.x 2-4x x +3·x +3x -4=xD.3x x -y ·2y x -y =6xy x 2-2xy +y 25.化简2x +2y 5a 2b ·10ab 2x 2-y 2的结果为________.6.计算:2a a +b ·a 2-b 22ab ·1a -b=________.7.化简2x +2y 5a 2b ·10ab 2x 2-y 2·a (x -y )的结果为________.8.计算:(1)-m 2n 3x ·-6xy5mn 2;(2)x -2x +3·x 2-9x 2-4x +4.9.计算:m 2n 2p ·⎝⎛⎭⎫-np 22m =________.10.计算:(1)(-x y )·(-y x )2·x 2y ;(2)x +1x ·(2x x +1)2.11.已知x -3y =0,求2x +yx 2-2xy +y 2·(x -y )的值.12.请你先化简,再从-1,0,1,2中选取一个使原式有意义且你又喜欢的数代入求值:m 3-m 2m 2-m ·m +11-m 2.13.在学习了分式的乘法之后,老师给出了这样一道题,计算:(a+1a)(a2+1a2)(a4+1a4)(a8+1a8)·(a2-1),同学们都感到无从下手,小明将a2-1变形为a(a-1a),然后用平方差公式很轻松地得出结论.知道他是怎么做得吗?请你写出解题过程.教师详解详析1.(1)x 2 y y x x (2)x x -2 x -2 x 2 1x2.D3.C [解析] 原式=(x +y )(x -y )(x -3)2·2(x -3)x +y =2x -2yx -3.故选C.4.B [解析] x 2-4x 2-6x +9·x +3x +2=(x -2)(x +2)(x -3)2·x +3x +2=(x -2)(x +3)(x -3)2=x 2+x -6x 2-6x +9.5.4b ax -ay6.1b [解析] 原式=2a a +b ·(a +b )(a -b )2ab ·1a -b =1b. 7.4b [解析] 原式=2(x +y )5a 2b ·10ab 2(x +y )(x -y )·a(x -y)=4b.8.解:(1)-m 2n 3x ·-6xy 5mn 2=(-m 2n )(-6xy )3x·5mn 2=6m 2nxy 15mn 2x =2my5n .(2)原式=x -2x +3·(x +3)(x -3)(x -2)2=x -3x -2.9.-mp2n10.解:(1)原式=-x y ·y 2x 2·x 2y =-x 3y 2x 2y 2=-x.(2)原式=x +1x ·4x 2(x +1)2=4xx +1.11.解:原式=2x +y (x -y )2·(x -y)=2x +y x -y .当x -3y =0时,x =3y ,所以原式=6y +y3y -y =7y 2y =72. 12.[解析] 原式有意义时,m 不等于-1,0,1.解:m 3-m 2m 2-m ·m +11-m 2=m 2(m -1)m (m -1) ·m +1(1-m )(1+m )=m 1-m ,要使原式有意义,只能取m =2,将m =2代入m1-m得其值为-2.13.解:原式=a(a -1a )(a +1a )(a 2+1a 2)(a 4+1a 4)(a 8+1a 8)=a(a 2-1a 2)(a 2+1a 2)(a 4+1a 4)(a 8+1a 8)=a(a 4-1a 4)(a 4+1a 4)(a 8+1a 8)=a(a 8-1a 8)(a 8+1a 8)=a(a 16-1a 16)=a 17-1a15.第2课时 分式的除法知识点 1 分式的除法1.(1)x y ÷1x =xy ·________=________;(2)1x -1÷x x 2-1=1x -1·________=________. 2.2018·藁城模拟 若3-2x x -1÷( )=1x -1,则( )中的式子为( )A .-3B .3-2xC .2x -3 D.13-2x3.计算:(1)3x -6x 2-4÷x +2x 2+4x +4; (2)2x -x 2x ÷(x 2-4).4.化简:(xy -x 2)÷x 2-2xy +y 2xy ÷x 2x -y.5.上海到北京的航线全程为s 千米,乘飞机需要a 小时.而上海到北京的铁路全长为m 千米,乘火车需要b 小时.那么飞机的平均速度是火车的平均速度的多少倍?知识点 2 分式的乘除混合运算 6.计算a ÷a b ·ba 的结果是( )A .aB .a 2 C.1a 2 D.b 2a 7.下列式子计算后的结果等于1a3的是( )A .a ·1a 2÷a 2 B .a ÷⎝⎛⎭⎫1a 2÷a 2 C .a ÷1a 2·a 2 D .a ÷⎝⎛⎭⎫1a 2·a 2 8.计算:(1)8x 2y 4·(-3x 4y 3)÷(-x 2y 2);(2)b 2a +b ÷a a 2-b 2·a 2a -b .9.使式子x +3x -3÷x +5x -4有意义的x 的值是( )A .x ≠3且x ≠-5B .x ≠3且x ≠4C .x ≠4且 x ≠-5D .x ≠3,x ≠4且x ≠-510.2018·邢台期末 给定一列分式:x 3y ,-x 5y 2,x 7y 3,-x 9y 4……(其中x ≠0),用任意一个分式做除数,去除它后面一个分式得到的结果是________;根据你发现的规律,试写出第9个分式________.11.许老师讲完了分式的乘除一节后,给同学们出了这样一道题:若x =-2019,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.一会儿,小明说:“老师,这道题目中的x =-2019是多余的.”请你判断小明的说法是否正确.12.小明在做习题“计算:16mn 2·()÷⎝⎛⎭⎫-8m 2n 33”时,由于不小心,“”处的代数式被污损看不清楚了,他翻开书,得知后面的答案为“5mn 2”,则“”处的代数式为________.教师详解详析1.(1)x x 2y (2)x 2-1x x +1x2.B [解析] ∵3-2x x -1÷( )=1x -1,∴3-2x x -1÷1x -1=3-2xx -1×(x -1)=3-2x . ∴( )中式子为3-2x .3.解:(1)原式=3(x -2)(x -2)(x +2)·(x +2)2x +2=3.(2)原式=2x -x 2x ·1x 2-4=x (2-x )x ·1(x +2)(x -2)=-1x +2.4.解:原式=-x(x -y)·xy(x -y )2·x -y x 2=-y. 5.解:s a ÷m b =s a ·b m =bs am.答:飞机的平均速度是火车的平均速度的bsam 倍.6.D [解析] 原式=a·b a ·b a =b 2a.7.A [解析] A 项,原式=1a ·1a 2=1a 3,符合要求;B 项,原式=a÷⎝⎛⎭⎫1a 2·1a 2=a÷1a 4=a·a 4=a 5,不符合要求;C 项,原式=a·a 2·a 2=a 5,不符合要求;D 项,原式=a÷1=a ,不符合要求.8.解:(1)原式=8x 2y 4·(-3x 4y 3)·(-2x 2y )=12x.(2)原式=b 2a +b ·(a +b )(a -b )a ·a 2a -b =ab 2.9.D [解析] 由题意,得x -3≠0,x -4≠0,x +5≠0,解得x ≠3,x ≠4,x ≠-5. 10.-x 2y x 19y911.解:小明的说法正确. 因为x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2= (x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1,即当x ≠0且x ≠±2时,分式的值都是1,所以小明的说法是正确的. 12.-5m 26n[解析] 5m n 2·⎝⎛⎭⎫-8m 2n 33÷16mn 2=5m n 2·⎝⎛⎭⎫-8m 2n 33·116mn 2=-8m 2n 3·5m 3×16mn 2·n 2=-5m 26n .12.3 第1课时 分式的加减知识点 1 同分母分式的加减1.(1)1a +2a =( )+( )a =________;(2)a +3a +2-a -1a +2=( )-( )a +2=________; (3)a a -5+55-a =a a -5-________=( )a -5=________. 2.2017·大连 计算3x (x -1)2-3(x -1)2的结果是( )A.x (x -1)2B.1x -1C.3x -1D.3x +13.下列计算正确的是( ) A.1a +1a =12aB.1(a -b )2+1(b -a )2=0C.m -n a -m +n a =0D.1a -b +1b -a =0 4.计算:(1)2a -1a +1a =________;(2)x 2x -2+42-x =________; (3)a +b a -b -a b -a -b a -b =________. 5.填空:1a 2-1+________=a -2a 2-1;________-32xy =42xy. 6.2018·宣化模拟若y =-x +3,且x ≠y ,则x 2x -y +y 2y -x 的值为________.7.计算:(1)2x x -2-3x -2x -2;(2)a 2-1a 2-2a +4a -52a -a 2.知识点 2 分式的通分8.将分式1a +b ,a a 2-b 2,bb -a 通分时,应选的公分母是( )A .(a 2-b 2)(a +b )(a -b )B .(a 2-b 2)(a +b )C .(a 2-b 2)(b -a )D .a 2-b 2 9.将b 3a ,-ab2c 通分可得__________.10.通分:(1)a 2b ,25a 2b 2c ; (2)1x 2-x ,-1x 2-2x +1.知识点 3 异分母分式的加减11.(1)1a +1b =( )ab +a ( )=a +b ( );(2)1x -1-1x =( )x (x -1)-x -1( )=1( ). 12.分式1x +1x (x -1)的化简结果为( )A .x B.1x 2 C.1x -1 D.xx -113.化简a b -b a -a 2+b 2ab 的结果是( )A .0B .-2bC .-2b a D.2ba14.计算:a a +2-4a 2+2a=________.15.某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了________小时完成任务.(用含m 的代数式表示)16.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题. 解:2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2)…第一步=2(x -2)-x +6…第二步 =2x -4-x +6…第三步 =x +2.…第四步小明的解法从第__________步开始出现错误,正确的化简结果是__________. 17.计算:(1)a +b ab -b +cbc ;(2)2x -2-8x 2-4;(3)x 2-2x +1x 2-1+2x +1.18.计算:a a +b -c +b b -c +a +c c -a -b=________.19.甲、乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用12v 的速度到达中点,再用2v 的速度到达B 地,那么下列结论中正确的是( )A .甲、乙同时到达B 地 B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与速度v 有关20.已知3x -5(x -3)(x +1)=a x -3+bx +1,则a 2+b 2的值是________.21.某水果店原来苹果的进价为a 元/千克(a >2),每千克加价2元售出,现在苹果的进价上涨了b 元/千克,该水果店打算在原零售价的基础上再上涨b 元/千克,那么:(1)原来苹果的利润率是多少? (2)现在苹果的利润率是多少? (3)苹果的利润率是提高了还是降低了?22.(1)计算11-x +11+x的值;(2)通过以上计算请你用一种你认为比较简便的方法计算m 的值:m =11-x +11+x+21+x 2+41+x 4.23.教材复习题B 组第2题变式我们把分子为1的分数叫做单位分数,如12,13,14,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如12=13+16,13 =14+112,14=15+120,… (1)根据对上述式子的观察,你会发现15=1□+1○,请写出□,○所表示的数(□<○);(2)进一步思考,单位分数1n =1△+1☆,(n 是不小于2的正整数)请写出△,☆所表示的式子(△<☆),并对等式加以验证.教师详解详析1.(1)1 2 3a (2)a +3 a -1 4a +2(3)5a -5 a -5 1 2.C3.D [解析] 1a +1a =2a ,故A 选项错误;1(a -b )2+1(b -a )2=2(a -b )2,故B 选项错误;m -n a -m +n a =(m -n )-(m +n )a =-2n a ,故C 选项错误;1a -b +1b -a =1a -b -1a -b=0,故D 选项正确. 4.(1)2 (2)x +2 (3)2aa -b5.a -3a 2-1 72xy [解析] a -2a 2-1-1a 2-1=a -2-1a 2-1=a -3a 2-1;42xy +32xy =72xy. 6.3 [解析] 由y =-x +3,得x +y =3,原式=x 2x -y -y 2x -y =x 2-y 2x -y =(x +y )(x -y )x -y =x +y =3.7.解:(1)原式=2x -(3x -2)x -2=-x +2x -2=-1.(2)原式=a 2-1-4a +5a 2-2a =(a -2)2a (a -2)=a -2a .8.D 9.2bc 6ac ,-3a 2b6ac[解析] ∵两个分式的分母分别为3a ,2c , ∴各系数的最小公倍数为3×2=6. 又∵a ,c 的最高次数为1,∴最简公分母为6ac .将b 3a ,-ab 2c 通分可得2bc 6ac ,-3a 2b 6ac . 10.解:(1)a 2b =5a 3bc 10a 2b 2c ,25a 2b 2c =410a 2b 2c .(2)1x 2-x =x -1x (x -1)2,-1x 2-2x +1=-xx (x -1)2. 11.(1)b ab ab (2)x x (x -1) x (x -1)12.C [解析] 原式=x -1x (x -1)+1x (x -1)=x -1+1x (x -1)=x x (x -1)=1x -1.13.C [解析] 原式=a 2-b 2-a 2-b 2ab =-2ba.14.a -2a [解析] a a +2-4a 2+2a =a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a .15.2400m (m +10)[解析] 根据题意,得240m -240m +10=240(m +10)m (m +10)-240m m (m +10)=2400m (m +10).16.二1x -2 [解析] 2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2)=2(x -2)-(x -6)(x +2)(x -2)=2x -4-x +6(x +2)(x -2)=x +2(x +2)(x -2)=1x -2.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是1x -2.17.解:(1)原式=c (a +b )abc -a (b +c )abc =(ac +bc )-(ab +ac )abc =bc -ab abc =c -aac .(2)原式=2(x +2)(x -2)(x +2)-8(x -2)(x +2)=2(x +2)-8(x -2)(x +2)=2(x -2)(x -2)(x +2)=2x +2.(3)原式=(x -1)2(x +1)(x -1)+2x +1=x -1x +1+2x +1=x +1x +1=1.18.1 [解析] a a +b -c +b b -c +a +c c -a -b =a a +b -c +b a +b -c -ca +b -c =a +b -c a +b -c=1.19.B [解析] 设从A 地到B 地的距离为2s ,因为甲的速度v 保持不变,∴甲所用的时间为2s v .∵乙先用12v 的速度到达中点,再用2v 的速度到达B 地,∴乙所用的时间为s 12v +s 2v =2s v +s 2v >2sv ,∴甲先到达B 地.故选B .20.5 [解析]a x -3+bx +1=(a +b )x +(a -3b )(x -3)(x +1)=3x -5(x -3)(x +1),所以⎩⎨⎧a +b =3,a -3b =-5,解得⎩⎨⎧a =1,b =2,所以a 2+b 2=5. 21.解:(1)原来苹果的利润率是2a .(2)现在苹果的利润率是2+ba +b.(3)2+b a +b -2a =ab -2b a (a +b )=b (a -2)a (a +b )>0, 因此苹果的利润率提高了.22.解:(1)原式=1+x +1-x 1-x 2=21-x 2. (2)原式=21-x 2+21+x 2+41+x 4=41-x 4+41+x 4=81-x 8.23.解:(1)15=16+130,所以□=6,○=30. (2)△=n +1,☆=n(n +1), 可得1n =1n +1+1n (n +1),右边=n n (n +1)+1n (n +1)=n +1n (n +1)=1n=左边,所以等式成立.12.3 第2课时 分式的混合运算知识点 1 分式的加减运算 1.化简1x +1-1x -1的结果是( )A.2x 2-1 B .-2x 2-1 C.2x x 2-1 D .-2x x 2-1 2.化简2x x 2+2x -x -6x 2-4的结果为( )A.1x 2-4B.1x 2+2xC.1x -2 D.x -6x -23.甲、乙两地相距s 千米,汽车从甲地到乙地按每小时v 千米的速度行驶,可按时到达;若每小时多行驶a 千米,则可提前________小时到达(填写最简结果).4.计算:(1)x x 2-4-12x -4;(2)9x -3-x -3;(3)1x -x x -1+1x 2-x .知识点 2 分式的混合运算5.(1)计算y a -xy ÷a 时,应先算________法,得________,再算________法,结果为________.(2)计算(a -b 2a )·aa -b 时,应先算________法,得________,再算________法,结果为________.6.化简x -4x 2-9÷⎝⎛⎭⎫1-1x -3的结果是( )A .x -4B .x +3 C.1x -3 D.1x +37.当m =-5时,分式⎝⎛⎭⎫m +2-5m -2·2m -43-m 的值是________. 8.计算:a a -2÷(1+4a 2-4)=________.9.计算:(1)⎝⎛⎭⎫x x -1-1x 2-x ÷(x +1);(2)⎝⎛⎭⎫a a +2+1a 2-4÷a -1a +2;(3)a -b a +2b ÷a 2-b 2a 2+4ab +4b 2-1.10.计算:(1)(a +2-5a -2)·2a -43-a ;(2)(x 2x -1-x +1)÷4x 2-4x +11-x .11.2017·南通 先化简,再求值:⎝⎛⎭⎫m +2-5m -2·2m -43-m ,其中m =-12.12.先化简,再求值:⎝⎛⎭⎫a a -b -1÷ba 2-b 2,其中a =1+π,b =1-π.13.计算⎝⎛⎭⎫1-11-a ⎝⎛⎭⎫1a 2-1的结果为( ) A .-a +1a B.a -1a C.a1-a D.a +11-a14.一项工作,甲单独完成需a 小时,乙单独完成需b 小时,则甲、乙两人合作完成需要( )A.⎝⎛⎭⎫1a +1b 小时B.1ab 小时 C.1a +b 小时 D.ab a +b小时 15.教材复习题C 组第1题变式已知1x -1y =5,则分式2x +3xy -2y x -2xy -y 的值为( )A .1B .5 C.137 D.13316.(1)化简:(3a +1+a +3a 2-1)÷aa -1;(2)若(1)中a 为正整数,分式的值也为正整数,请直接写出所有符合条件的a 的值.17.教材习题A 组第2题变式先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选一个适当的数代入求值.18.若5x +4x 2+x -2=A x -1+Bx +2,求A ,B .19.在数学运算中,同学们发现一类特殊的等式.例如:2+21=2×21,3+32=3×32,4+43=4×43,5+54=5×54,… (1)特例验证:请再写出一个具有上述特征的等式:________. (2)猜想结论:用含n (n 为正整数)的式子表示上述等式为:________.(3)证明推广:(2)中的等式一定成立吗?若成立,请证明;若不成立,说明理由.教师详解详析1.B [解析]1x +1-1x -1=x -1(x +1)(x -1)-x +1(x +1)(x -1)=x -1-x -1(x +1)(x -1)=-2(x +1)(x -1)=-2x 2-1.2.C [解析] 原式=2x +2-x -6(x +2)(x -2)=2(x -2)-(x -6)(x +2)(x -2)=x +2(x +2)(x -2)=1x -2.3.sa v (v +a ) [解析] s v -s v +a =s v +sa -s v v (v +a )=sav (v +a ).4.解:(1)原式=2x -(x +2)2(x +2)(x -2)=12x +4.(2)原式=9-(x +3)(x -3)x -3=18-x 2x -3.(3)原式=x -1x (x -1)-x 2x (x -1)+1x (x -1)=x -1-x 2+1x (x -1) =-x (x -1)x (x -1)=-1.5.(1)除 y a -xay 减 y 2-x ay(2)减 a 2-b 2a ·aa -b乘 a +b6.D [解析] x -4x 2-9 ÷⎝⎛⎭⎫1-1x -3=x -4(x +3)(x -3) ÷x -3-1x -3=x -4(x +3)(x -3) ·x -3x -4=1x +3. 7.4 [解析] 原式=m 2-4-5m -2 ·2(m -2)-(m -3)=(m +3)(m -3)(m -2) ·2(m -2)-(m -3)=-2(m+3).当m =-5时,原式=-2×(-5+3)=-2×(-2)=4.8.a +2a [解析] 原式=a a -2÷a 2-4+4a 2-4=a a -2·(a +2)(a -2)a 2=a +2a . 9.解:(1)原式=⎣⎡⎦⎤x 2x (x -1)-1x 2-x ·1x +1=x 2-1x (x -1)·1x +1=1x.(2)原式=⎣⎢⎡⎦⎥⎤a 2-2a (a +2)(a -2)+1(a +2)(a -2) ·a +2a -1=(a -1)2(a +2)(a -2) ·a +2a -1=a -1a -2. (3)原式=a -b a +2b ·(a +2b )2(a +b )(a -b )-1=a +2b a +b -1=a +2b -(a +b )a +b =ba +b .10.解:(1)原式=a 2-4-5a -2·2a -43-a =()a +3()a -3a -2·2()a -23-a =-2(a +3)=-2a -6.(2)原式=x 2-(x 2-2x +1)x -1÷(2x -1)21-x =2x -1x -1·1-x (2x -1)2=-12x -1.11.解:⎝⎛⎭⎫m +2-5m -2 ·2m -43-m =m 2-4-5m -2 ·2(m -2)3-m =-(m +3)(m -3)m -2·2(m -2)m -3=-2(m +3).把m =-12代入,得原式=-2×⎝⎛⎭⎫-12+3=-5. 12.解:⎝⎛⎭⎫a a -b -1÷ba 2-b2=⎝⎛⎭⎪⎫a a -b -a -b a -b ·(a +b )(a -b )b=b a -b·(a +b )(a -b )b=a +b .当a =1+π,b =1-π时, 原式=1+π+1-π=2.13.A [解析] 原式=1-a -11-a ·1-a 2a 2=-a 1-a ·(1-a )(1+a )a 2=-a +1a . 14.D [解析] 1÷⎝⎛⎭⎫1a +1b =1÷a +b ab =aba +b(时). 15.A [解析] 将已知等式整理,得y -xxy=5,即x -y =-5xy ,则原式=2(x -y )+3xy x -y -2xy =-10xy +3xy-5xy -2xy=1.16.解:(1)原式=4a a 2-1·a -1a =4a +1. (2)由分式的值为正整数可得:a +1的值为1或2或4,解得a =0或a =1或a =3.因为a 为正整数,所以a ≠0;当a =1时,分式无意义,所以a ≠1,所以a 的值为3.17.解:⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1=x -2x -1·(x +1)(x -1)(x -2)2=x +1x -2.∵2x -1<6,∴2x <7,∴x <72.由题意,知x ≠±1且x ≠2,所以正整数x 只能取3. 把x =3代入上式,得原式=3+13-2=4.18.解:∵A x -1+Bx +2=A (x +2)+B (x -1)(x -1)(x +2)=Ax +2A +Bx -B(x -1)(x +2)=(A +B )x +(2A -B )x 2+x -2,∴5x +4x 2+x -2=(A +B )x +(2A -B )x 2+x -2,比较得⎩⎨⎧A +B =5,2A -B =4,解得⎩⎪⎨⎪⎧A =3,B =2.19.解:(1)6+65=6×65.(2)n +1+n +1n =(n +1)·n +1n .(3)等式成立,证明如下: 左边=n 2+n n +n +1n =n 2+2n +1n ,右边=(n +1)2n =n 2+2n +1n .∴左边=右边,等式成立.12.4 分式方程知识点 1 分式方程的有关概念 1.下列方程不是分式方程的是( ) A.x -3x =1 B.x x +1+1x -1=1C.3x +4y =2D.12-x -23=x 2.已知x =2是分式方程kx x -1-2k x =2的解,那么k 的值为( )A .2B .1C .0D .-1 知识点 2 解分式方程3.2018·衡水模拟 在解分式方程3x -1+x +21-x=2时,去分母后变形正确的是( )A .3-(x +2)=2(x -1)B .3-x +2=2(x -1)C .3-(x +2)=2D .3+(x +2)=2(x -1)4.2018·哈尔滨 方程12x =2x +3的解为( )A .x =-1B .x =0C .x =35D .x =15.2018·安国期末 分式方程6x -1=x +5x (x -1)有增根,则增根为( )A .x =0B .x =1C .x =1或x =0D .x =-56.2017·齐齐哈尔模拟 若关于x 的分式方程x x -2=2+ax -2的解为正数,则a 的取值范围是( )A .a >4B .a <4C .a <4且a ≠2D .a <2且a ≠07.当x =________时,分式x +3x -1的值等于2. 8.若分式2x -1与3x +3的值相等,则x =_______________.9.在解分式方程x x -3=2+3x -3时,雷希同学的解法如下:解:方程两边同时乘(x -3),得x =2+3,……① 解得x =5,……②经检验,x =5是原方程的解.……③。
七年级数学上 4.4整式 分层训练含答案
4.4整式1.单项式、单项式的系数和单项式的次数等概念:(1)单项式:____________或____________相乘组成的代数式叫做单项式;单独一个____________或一个____________也叫单项式.(2)单项式的系数:单项式中的____________叫做这个单项式的系数.(3)单项式的次数:一个单项式中,____________叫做这个单项式的次数.2.多项式、多项式的项和多项式的次数等概念:(1)多项式:由几个____________组成的代数式叫做多项式.(2)多项式的项:在多项式中,每个____________叫做多项式的项.(3)常数项:____________的项叫做常数项.(4)多项式的次数:多项式中,次数____________的项的次数就是这个多项式的次数.3.整式:____________与____________统称为整式.A 组基础训练1.(绍兴中考)下列几个式子中:7x ,3π,0,4a 2+a -5,1x -1,x 2y3,12ab +1,单项式的个数是()A .3个B .4个C .5个D .6个2.多项式-x 2-12x -1的各项分别是()A .-x 2,12x ,1B .-x 2,-12x ,-1C .x 2,12x ,1D .x 2,-12x ,-13.下列叙述中,错误的是()A .-a 的系数是-1,次数是1B .单项式ab 2c 3的系数是1,次数是5C .2x -3是一次二项式D .3x 2+xy -8是二次三项式4.一个四次多项式,它的任何一项的次数必是()A .都小于4B .都等于4C .都不小于4D .都不大于45.如果单项式-3a 2b n c 2与54x 4y 5的次数相同,则n =____________.6.请写出一个只含两个字母的二次三项式:____________.7.(1)如果整式x n-2-5x+2是关于x的三次三项式,那么n=____________;(2)若(m+1)2x2y n-1是关于x,y的六次单项式,则m≠____________,n=____________;(3)含有字母x,y,z,系数为1的五次单项式共有____________个.8.下列代数式中,哪些是整式,哪些是单项式,哪些是多项式?2a,3x,a+b,-2x+x 2,-53x2y,a2+ab+b2,1a+b,2xy.9.指出下列各式是不是单项式,如果是,请指出各单项式的系数与次数.(1)2m3n2;(2)-abc25;(3)x+1;(4)2πr;。
中考数学总复习分层提分训练《整式与分式(1)整式》含答案
整式与分式(1) 整式一级训练1.(安徽)计算(-2x 2)3的结果是( )A .-2x 5B .-8x 6C .-2x 6D .-8x 5 2.(广东清远)下列选项中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 2 3.(广东深圳)下列运算正确的是( )A .2a +3b =5abB .a 2·a 3=a 5C .(2a )3=6a 3D .a ÷a 2=a 34.(广东佛山)多项式1+xy -xy 2的次数及最高次数的系数是( )A .2,1B .2,-1C .3,-1D .5,-15.(浙江金华)下列各式能用完全平方式进行分解因式的是( )A .x 2+1B .x 2+2x -1C .x 2+x +1D .x 2+4x +4 6.(湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( ) A .(x -2)2+3 B .(x +2)2-4 C .(x +2)2-5 D .(x +2)2+4 7.计算:(1)(3+1)(3-1)=____________; (2)(a 2b )2÷a =________;(3)(-2a )·⎝⎛⎭⎫14a 3-1=________. 8.(江苏南通)单项式3x 2y 的系数为______.9.(广东梅州)若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为______. 10.(安徽)计算:(a +3)(a -1)+a (a -2).11.(湖南益阳)已知x -1=3,求代数式(x +1)2-4(x +1)+4的值.二级训练a+1 cm 12.(安徽芜湖)如图1-4-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为()的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()图1-4-1A.(2a2+5a) cm2 B.(3a+15) cm2 C.(6a+9) cm2 D.(6a+15) cm213.(辽宁丹东)图1-4-2(1)是一个边长为(m+n)的正方形,小颖将图中的阴影部分拼成图1-4-2(2)的形状,由图能验证的式子是()图1-4-2A.(m+n)2-(m-n)2=4mn B.(m+n)2-(m2+n2)=2mnC.(m-n)2+2mn=m2+n2 D.(m+n)(m-n)=m2-n214.先化简,再求值:(a+b)2+(a-b)(2a+b)-3a2,其中a=-2-3,b=3-2. 15.(江苏南通)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b) (2a-b),其中a=2,b=1.16.(四川巴中)若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.三级训练17.(广东)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数____的平方,第8行共有____个数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是________,第n行共有______个数;(3)求第n行各数之和.18.(广东珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×______=______×25;②______×396=693×______;(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明.参考答案1.B 2.A 3.B 4.C 5.C 6.C 7.(1)2 (2)a 3b 2 (3)-12a 4+2a 8.39.3 10.2a 2-311.解:原式=[(x +1)-2]2=(x -1)2, ∵x -1=3,∴(x -1)2=(3)2=3. 12.D 13.B14.解:原式=a 2+2ab +b 2+2a 2-ab -b 2-3a 2=a b . 又a =-2-3,b =3-2,故ab =(-2-3)(3-2)=(-2)2-(3)2=1. 15.解:原式=2a (2a -b ), 又a =2,b =1,故2a (2a -b )=12. 16.解:由2x -y +|y +2|=0, 得2x -y =0,y +2=0, ∴x =-1,y =-2.又[(x -y )2+(x +y )(x -y )]÷2x =(x 2-2xy +y 2+x 2-y 2)÷2x =x -y , ∴x -y =-1-(-2)=1. 17.解:(1)64 8 15 (2)n 2-2n +2 n 2 2n -1(3)第n 行各数之和:n 2-2n +2+n 22×(2n -1)=(n 2-n +1)(2n -1).18.解:(1)①275 572 ②63 36 (2)“数字对称等式”一般规律的式子为:(10a +b )×[100b +10(a +b )+a ]=[100a +10(a +b )+b ]×(10b +a ).证明如下: ∵左边两位数的十位数字为a ,个位数字为b ,∴左边的两位数是10a +b ,三位数是100b +10(a +b )+a , 右边的两位数是10b +a ,三位数是100a +10(a +b )+b ,∴左边=(10a +b )×[100b +10(a +b )+a ]=(10a +b )(100b +10a +10b +a ) =(10a +b )(110b +11a )=11(10a +b )(10b +a ),右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a) =(110a+11b)(10b+a)=11(10a+b)(10b+a),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).。
2019年秋北师大版深圳专用数学七年级上册同步分层训练第三章整式及其加减自我综合评价(三)含答案
自我综合评价(三)[测试范围:第三章 整式及其加减 时间:40分钟 分值:100分]一、选择题(每小题3分,共24分)1.有下列式子:x 2+1,1a +4,3ab 27,bca,-5x ,0.其中整式的个数是( )A .6B .5C .4D .3 2.下列说法中,不正确的是( ) A .单项式与多项式统称为整式 B .单项式x 2yz 的系数为1 C .xy +x +3是二次三项式 D .x 的次数是03.下列各组中的两项,不是同类项的是( ) A .2x 2y 与-2x 2y B .x 3与3x C .-3ab 2c 3与0.6c 3b 2a D .1与184.下列计算正确的是( ) A .3a +2b =5ab B .5a 2-3a 2=2C .3-2(a -2b )=3-2a +2bD .2a 2b -5a 2b =-3a 2b5.如图3-Z -1,淇淇和嘉嘉做数学游戏:图3-Z-1假设嘉嘉抽到牌的点数为x,淇淇猜中的结果为y,则y等于()A.2 B.3 C.6 D.x+36.若x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为()A.-1 B.1 C.-2 D.27.某校组织若干师生到某爱国基地进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是() A.200-60x B.140-15xC.200-15x D.140-60x图3-Z-28.我国南宋数学家杨辉用图3-Z-2中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为() A.1,6,15 B.6,15,20C.15,20,15 D.20,15,6二、填空题(每小题3分,共21分)9.若3x m +5y 与x 3y 是同类项,则m =________.10.每年5月份的第二个星期日为母亲节,小娜在今年的母亲节这一天送给妈妈一束鲜花,她选了3枝百合,6枝郁金香,9枝康乃馨.若百合每枝a 元,郁金香每枝b 元,康乃馨每枝c 元,则小娜购买这束鲜花的费用是____________元.11.若a -b =2,则代数式5+2a -2b 的值是________.12.某市鼓励市民节约用水,如果每户每月用水不超过15立方米,那么按每立方米 a 元收费;如果超过15立方米,那么超过部分按每立方米(a +0.5)元收费.如果某户居民在一个月内用水35立方米,那么该居民这个月缴纳的水费是__________元.13.根据如图3-Z -3所示的程序计算,若输入x 的值为1,则输出y 的值为________.图3-Z -314.已知a 1=-32,a 2=1,a 3=-710,a 4=917,a 5=-1126,…,则a 8=________.15.用同样大小的黑色棋子按图3-Z -4所示的规律摆放,则第⑦个图案中有________个黑色棋子,个图案中有________个黑色棋子.图3-Z -4三、解答题(共55分) 16.(10分)合并同类项: (1)x -(3x +y )+(x -5y );(2)(3x2-4)-(2x2-5x+6)+(x2-5x).17.(9分)先化简,再求值:5(3a2b-ab2)-4(-ab2+3a2b),其中a=-2,b=3.18.(10分)如图3-Z-5所示,池塘边有一块长为20米、宽为10米的长方形土地,现在将其余三面都留出宽为x米的小路,中间余下的长方形部分做菜地.(1)用代数式表示:①菜地的长、宽;②菜地的周长.(2)计算当x=1时,菜地的周长.图3-Z-519.(12分)李老师给学生出了一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b+3a3+6a3b-3a2b -10a3的值.题目出完后,小聪说:“老师给的条件a=0.35,b=-0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁的说法有道理?为什么?20.(14分)某商场销售同一品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元.国庆节期间商场决定开展促销活动,活动期间向顾客提供两种优惠方案(顾客只能选择其中一种):方案一:买一副乒乓球拍送一盒乒乓球;方案二:乒乓球拍和乒乓球都按定价的90%付款.现某顾客要到该商场购买乒乓球拍20副,乒乓球x盒(x>20).(1)若该顾客按方案一购买,则需付款________元;若该顾客按方案二购买,则需付款__________元(用含x 的代数式表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算.详解详析【作者说卷】本套试卷共分三种题型:选择题、填空题和解答题,其中易、中、难之比为7∶2∶1,主要考查学生运用知识灵活解决问题的能力.考查的知识点有:字母表示数,如第7,10,12题;代数式求值及应用,如第11,17,19题;整式、同类项及合并同类项,如第2,3,4,5,6,7,8,9,15题;探索规律,如第8,14,15题.试卷紧扣教材,结合现实生活,提高学生运用数学知识解决实际问题的能力.1.C 2.D 3.B 4.D5.B [解析] 根据题意得(x ×2+6)÷2-x =x +3-x =3.故选B. 6.A7.C [解析] 因为学校租用45座的客车x 辆,则余下20人无座位,所以师生的总人数为45x +20.又因为租用60座的客车可少租用2辆,所以乘坐最后一辆60座客车的人数为45x +20-60(x -3)=45x +20-60x +180=200-15x .8.B9.-2 [解析] 根据同类项的概念中“相同字母的指数也相同”列方程求解,即m +5=3,得m =-2. 10.(3a +6b +9c ) 11.912.(35a +10) [解析] 收取的水费分为两部分,不超过15立方米,那么按每立方米 a 元收费,如果超过15立方米,那么超过部分按每立方米(a +0.5)元收费.用水35立方米,所以该户居民这个月缴纳的水费是(15a +20a +10)元,即(35a +10)元.13.4 [解析] 依据题中的计算程序列出算式12×2-4=-2.因为-2<0,所以应该按照计算程序继续计算.因为(-2)2×2-4=4,所以输出y 的值是4.14.1765 [解析] 由前5项可得a n =(-1)n ·2n +1n 2+1.当n =8时,a 8=(-1)8·2×8+182+1=1765. 15.19 (3n -2)16.解:(1)x-(3x+y)+(x-5y)=x-3x-y+x-5y=-x-6y.(2)(3x2-4)-(2x2-5x+6)+(x2-5x)=3x2-4-2x2+5x-6+x2-5x=2x2-10.17.解:5(3a2b-ab2)-4(-ab2+3a2b)=15a2b-5ab2+4ab2-12a2b=3a2b-ab2.当a=-2,b=3时,原式=3×(-2)2×3-(-2)×32=36+18=54.18.解:(1)①菜地的长为(20-2x)米,宽为(10-x)米.②菜地的周长为2[(20-2x)+(10-x)]=2(30-3x)=(60-6x)米.(2)当x=1时,60-6x=60-6×1=54,即菜地的周长为54米.19.解:小聪的说法有道理.理由:因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,多项式化简后的结果为0,与a,b的取值无关,所以小聪的说法有道理.20.解:(1)(5x+500)(4.5x+540)(2)当x=30时,按方案一购买,需付款:5×30+500=650(元);按方案二购买,需付款:4.5×30+540=675(元).因为650<675,所以按方案一购买较为合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时 分式
一级训练
1.若分式
x -1
(x -1)(x -2)
有意义,则x 应满足的条件是( )
A .x ≠1
B .x ≠2
C .x ≠1,且x ≠2
D .以上结果都不对 2.(2012年安徽)化简x 2x -1+x
1-x
的结果是( )
A .x +1
B .x -1
C .-x
D .x 3.在括号内填入适当的代数式,使下列等式成立:
(1)2ab =( )
2xa 2b 2; (2)a 3-ab 2(a -b )2=a ( )a -b
. 4.(2011年北京)若分式x -8x 的值为0,则x 的值等于________.
5.约分:56x 3yz 4
48x 5y 2z =________;x 2-9x 2-2x -3=________.
6.已知
a -
b a +b =15
,则a
b =________.
7.当x =_______时,分式x 2-2x -3
x -3的值为零.
8.(2012年广东湛江)计算:1x -1-x
x 2-1.
9.(2012年广东肇庆)先化简,再求值:⎝⎛⎭⎫1+1x -1÷x
x 2
-1,其中x =-4.
10.(2011年湖南邵阳)已知1x -1=1,求2x -1
+x -1的值.
11.(2012年广东珠海)先化简,再求值:⎝⎛⎭
⎫x x -1-1
x 2-x ÷(x +1),其中x = 2.
12.(2011年广东肇庆)先化简,再求值:a 2-4a -3·⎝⎛⎭⎫1-1a -2,其中a =-3.
13.(2012年浙江义乌)下列计算错误的是( )
A.0.2a +b 0.7a -b =2a +b 7a -b
B.x 3y 2x 2y 3=x y
C.a -b b -a
=-1 D.1c +2c =3c
14.(2010年广东清远)先化简,再求值:x 2+y 2x -y +2xy
y -x ,其中x =3+2,y =3- 2.
15.(2010年福建晋江)先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·
x 2
-1
x ,其中x =2-2.
16.(2011年湖南常德)先化简,再求值:⎝⎛⎭⎫1
x +1+x 2
-2x +1x 2-1÷x -1x +1,其中x =2.
17.已知x 2-3x -1=0,求x 2+1
x 2的值.
18.先化简,再求值:⎝⎛⎭⎫x -1x -x -2x +1÷2x 2
-x
x 2+2x +1,其中x 满足x 2-x -1=0.
第3课时 分式
1.C 2.D 3.(1)4xab (2)a +b 4.85.7z 36x 2y x +3x +1 6.3
2 7.-18.解:x +1(x +1)(x -1)-
x (x -1)(x +1)=1
x 2-1. 9.解:原式=x -1+1x -1
·(x -1)(x +1)x =x +1.
当x =-4时,原式=-3. 10.解:∵1
x -1
=1,∴x -1=1.
故原式=2+1=3. 11.2
2 12.-1 13.A 14.解:原式=x 2+y 2-2xy x -y =(x -y )2x -y =x -y .
当x =3+2,y =3-2时,原式=2 2. 15.解法一:
原式=⎣⎡⎦⎤3x (x +1)(x -1)(x +1)-x (x -1)(x -1)(x +1)·x 2
-1
x
=3x 2+3x -x 2+x (x -1)(x +1)·x 2-1x
=2x 2+4x (x -1)(x +1)·x 2-1
x =
2x (x +2)(x -1)(x +1)
·(x +1)(x -1)
x
=2(x +2).
当x =2-2时,原式=2(2-2+2)=2 2.
解法二:原式=3x x -1·x 2
-1x -x x +1·x 2
-1x =3x x -1·(x -1)(x +1)x -x x +1·(x -1)(x +1)
x
=3(x +1)-(x -1)=3x +3-x +1=2x +4. 当x =2-2时,原式=2(2-2)+4=2 2.
16.解:原式=⎣⎡⎦⎤1x +1+(x -1)2
(x +1)(x -1)·x +1x -1=x x +1·x +1x -1=x
x -1. 当x =2时,原式=2.
17.解:由x 2-3x -1=0,知x ≠0, 两边同除以x ,得x -1
x =3.
x 2+1
x 2=⎝⎛⎭⎫x -1x 2+2=32+2=11. 18.解:⎝
⎛⎭⎫x -1x -x -2x +1÷2x 2
-x
x 2+2x +1
=(x -1)(x +1)-x (x -2)x (x +1)÷2x 2-x x 2+2x +1
=2x -1x (x +1)×(x +1)2x (2x -1)
=x +1
x 2.
当x 2-x -1=0,即x 2=x +1时,原式=1.
第1课时 一元一次方程及其应用
参考答案
1.B 2.A 3.A 4.A 5.4 6.15(x +2)=330 7.解:x =5.
8.解:设到怀集旅游的人数为x 人,则到德庆旅游的人数为(2x -1)人,根据题意,得x +(2x -1)=200,解得x =67,则2x -1=133.
答:到怀集和德庆旅游的人数各是67人,133人. 9.16 10.1
7
11.解:两边同乘以10,可得30x -6=20x +5x +15. 得x =
215
12.解:合并同类项(9-k )x =7.
因为x ,k 均为整数,所以9-k =1,7,-1或-7,∴k =8,2,10,16.
13.解:设粗加工的质量为x ,则精加工的质量为3x +2 000,列式3x +2 000+x =10 000, 解得x =2 000(千克)
答:粗加工的质量为2 000千克
14.解:设乙厂家销售了x 把刀架,则刀片数量为50x (1-5)x +(0.55-0.05)×50x =2×8 400×(2.5-2),
即21x =8 400,得x =400,∴50x =20 000.
答:这段时间内乙厂家销售了400把刀架,20 000片刀片.。