角动量和角动量守恒
角动量以及角动量守恒
dLz dt
Jz
d
dt
J z miri2 i
? 质点系的角动量定理 M 外
Z轴分量
Mz
dLz dt
dL dt
质元 mi : Fi 对O点的力矩
M i roi Fi
roi Fi roi Fiz
(垂直z轴)
roi Fi ri Fi riz Fi
(垂直z轴)
z
Mz
vi
Oi
ri mi
r 2
v dS dt dv
at dt
v v0 at
S
v0t
1 2
at 2
v2 v02 2aS
d
dt
d
dt
z
v dS
r d P
O 匀变速定轴转动
0 t
0t
1 t2
2
2 02 2
5.4 刚体定轴转动的角动量定理 角动量守恒
对定轴的力矩和角动量
Mz
dLz dt
?
Li
Li roi mivi roi vi
Rg
LO Rmgt
、质点的角动量定理
一 力矩
刚体绕 O z 轴旋转
F 作用在点 P ,
r
F
P 的径矢 .
对转轴Z 的力矩
M rF
M Fd Fr sin
d : 力臂
F
F
Fi 0 , Mi 0
5
M
O dM zrP* F
F
F
Fi 0 , Mi 0
刚体内作用力和反作用力的力矩 (一对内力)
圆盘半径为 R, 总质量为 m .
解: Jz r2dm r2 ds R r 2 2 rdr
1. 刚体转动惯性大小的量度
角动量和角动量守恒定律
恒矢量
M 0
质点或质点系所受对参考点 O 的合外力矩为零 时,质点或系统对该参考点 O 的角动量为一恒矢量 . (1) 不受外力
(2) 力臂 d 0 (3) F // r
3 – 2 角动量 角动量守恒动量守恒。
质点在有心力作用下的运动:r 与 F 同向或
第三章 刚体力学
dp dL F, ? Lrp dt d t dL d dp dr (r p) r p dt dt d t dt dr dL dp v, v p 0 r r F dt dt dt 作用于质点的合力对参考点 O dL 的力矩 ,等于质点对该点 O 的角 M dt 动量随时间的变化率 .
L mR
2 32 12
2g 12 ( sin ) R
L mR (2g sin )
Lx 、Ly 、Lz 质点对x、y、z 轴的角动量 M y、 M x、 M z 质点对x、y、z 轴的力矩
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
1)求角动量和力矩某一方向的分量的方法
L ( xi yj zk ) ( pxi py j pz k ) M (xi yj zk) (Fxi Fy j Fz k)
rb
通过一点(力心)—— 力对力心的力矩为零。
当力 F 的作用线始终
vb
ra mva rb mvb ra v b va va rb
ra
r
F
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
举例: 将一个质量为m的小球系在轻绳的一端,放在 光滑的水平桌面上,轻绳的另一端从桌面中间的一 光滑小孔穿出。先使小球以一初速度在水平桌面上 作圆周运动,然后向下拉绳。 动画演示:模拟实验
定轴转动的角动量定理 角动量守恒定律
Iz
( 1 ml 2 12
mr 2 )
代入得 mgr cos 2mr dr
dt
v
dr dt
g cos 2
g
2
cos
t
7 lg 24v 0
cos(12v 7l
0t
)
L 0 J 常量
即:合外力为对转轴的力矩为零时,刚体的角动量守恒
讨论:
a.对于绕固定转轴转动的刚体,因J保持不变, 当合外力矩为零时,其角速度恒定。
当M z 0时, J =恒量 =恒量
b.若系统由若干个刚体构成,当合外力矩为零时,系
统的角动量依然守恒。J 大→ 小, J 小→ 大。
当M z 0时, Lz J11 J22 恒量
。这样,棒与物体相撞时,它们组成的系统所受的对
转轴O的外力矩为零,所以,这个系统的对O轴的角
动量守恒。我们用v表示物体碰撞后的速度,则
1
ml 2
mvl
1
ml 2
3
3
(2)
式中’为棒在碰撞后的角速度,它可正可负。
’取正值,表示碰后棒向左摆;反之,表示向右
摆。
第三阶段是物体在碰撞后的滑行过程。物体作匀减 速直线运动,加速度由牛顿第二定律求得为
例12、如图所示,长为L,质量为m1的均匀细棒 能绕一端在铅直平面内转动。开始时,细棒静止于
垂直位置。现有一质量为m2的子弹,以水平速度v0
射入细棒下断而不复出。求细棒和子弹开始一起运 动时的角速度?
题意分析:由于子弹射入细棒的时间极为短促,我们 可以近似地认为:在这一过程中,细棒仍然静止于垂 直位置。因此,对于子弹和细棒所组成的系统(也就 是研究对象)在子弹射入细棒的过程中,系统所受的 合外力(重力和轴支持力相等)对转轴O的力矩都为 零。根据角动量守恒定律,系统对于O轴的角动量守 恒。
刚体定轴转动的角动量定理和角动量守恒定律
刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
练习:1角动量守恒的条件是 。
0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。
角动量 角动量守恒定律
角动量与线动量关系
角动量与线动量的关系
角动量是线动量在物体绕某点或某轴 转动时的表现形式,二者之间存在密 切关系。
动量守恒定律
在不受外力作用的情况下,物体的总 动量(包括线动量和角动量)保持不 变,即动量守恒定律。
02
角动量守恒定律
守恒条件及适用范围
守恒条件
当系统不受外力矩作用时,系统的角动量守恒。即在没有外力矩的情况下,系统内部各部分之间的相 互作用力不会导致系统总角动量的改变。
06
总结与展望
课程内容回顾与总结
角动量的定义与性
质
角动量是物体绕某点或某轴转动 的动量,具有矢量性质,其大小 与物体的质量、速度和转动半径 有关。
角动量守恒定律的
表述
在没有外力矩作用的情况下,系 统内的角动量保持不变,即角动 量守恒。
角动量守恒定律的
应用
角动量守恒定律在天体物理、刚 体转动、分子运动等领域有广泛 应用,如行星运动、陀螺仪工作 原理等。
对未来研究方向的展望
角动量守恒定律在复 杂系统较成熟,但在复 杂系统中的应用还有待深入研究, 如多体问题、非线性问题等。
角动量与其他物理量 的关系研究
角动量与能量、动量等物理量之 间存在一定的联系,未来可以进 一步探讨它们之间的关系,以及 如何利用这些关系解决实际问题。
在机械工程中,飞轮储能系统被应用 于能量回收和节能领域。飞轮储能系 统利用刚体定轴转动的角动量守恒定 律,通过加速和减速飞轮来储存和释 放能量。这种储能方式具有高效率、 环保等优点,在电动汽车、风力发电 等领域具有广阔的应用前景。
04
质点和质点系相对于固定 点角动量守恒
质点相对于固定点角动量定义和性质
双星系统由两颗互相绕转的恒星组成。在双星系统中,两颗恒星的角动量守恒,因此它们的轨道周期、距离和质量之 间存在一定关系。
物理-定轴转动刚体的角动量定理和角动量守恒定律
或 Lz = I = 恒量
当刚体相对惯性系中某给定转轴的合外力矩为 零时,该刚体对同一转轴的角动量保持不变。
——对转轴的角动量守恒定律
二、定轴转动中的角动量守恒
说明 1、 关于该守恒定律的条件:
Mz Miz 0
特别地,若每一个力的力矩均为零,即 则
二、定轴转动中的角动量守恒
M iz ri Fi sini 0 的几种情况
10
f
20
O1 R1 A
R2 O2 fB
随堂练习
当两圆柱接触处无相对滑动时,两者转速相反
10
20
O1 R1 A
R2 O2 B
且两者接触点的线速率相等!
二、定轴转动中的角动量守恒
由定轴转动的角动量定理
Mz
dLz dt
若刚体所受对转轴的合外力矩 M z 0,则有
dLz d ( I ) 0
dt
dt
二、定轴转动中的角动量守恒
(3) 对共轴非刚体系(其中各质元到转轴的距离可 变则)系:统的转动惯量可变,此时系统对转轴的角动量守恒,
即:I =恒量
• 特别地,若各质元的 保持一致,
Lz =I =恒量
当 I 增大时, 就减小; 当 I 减小时, 就增大 。
二、定轴转动中的角动量守恒
例如:花样滑冰运动员在冰面上旋转时 运动了角动量守恒定律
(1)
(2)
(3)
二、定轴转动中的角动量守恒
2、对转轴的角动量守恒定律的适用范围: • 不仅适用于刚体, • 也适用于绕同一转轴转动的任意质点系。
二、定轴转动中的角动量守恒
3、对转轴的角动量守恒的几种典型表现 (1) 对定轴刚体:I 不变, 大小和方向均不变;
角动量角动量守恒定律
dr r
l
I r dm
2 m
R2
R1
2 l r dr
3
l
2
4 ( R2 R14 )
m 圆筒的体密度 2 , R2 R, I m R2 2 若R1 R2 R, I m R2
1 2 I m( R2 R12 ) 2
刚体绕OZ轴转动的角动量
a)力矩、角动量都是瞬时量,它们只能针对某 注意: 一时刻而言,它们都不是时间的累积效应。 b)力矩、角动量都是相对量,都必须指明它们 是相对于哪个轴或哪个点。 强调:对于刚体的定轴转动,我们只能用角动量来 描述,而不能用动量来描述。
8
3.转动惯量 1 .定义 刚体对固定轴的转动惯量等于各质元质量与其至 转轴的垂直距离的平方的乘积之和。
I ( Δmiri2 )
I是描述刚体转动惯性大小的物理量。
刚体的转动惯量与哪些物理量有关? ①.与刚体质量有关。 ②.与质量对轴的分布有关。 ③.与轴的位置有关。 在(SI)中,I 的单位:kgm2 量纲:ML2
9
2 .转动惯量的计算
Δmiri2 ) Ii 分立质点系 I (
质量连续分布的刚体
10
例2:半径为 R 质量为 M 的圆环,绕垂直于圆环平面 的质心轴转动,求转动惯量I。 解:分割质量元 dm圆环上各质量元到轴的距离相等,
M
I
0
R dm R
2
2 M 0
2 dm MR M
绕圆环质心轴的转动惯量为
o
R
dm
I MR
2
例2:在无质轻杆的 b 处 3b 处各系质量为 2m 和 m 的质点,可绕 o 轴转动,求:质点系的转动惯量I。 解:由转动惯量的定义
圆周运动:角动量和角动量守恒
角动量守恒在量子力学和粒子物理学中也有着重要的应用,对于理解微观世界的运动规律具有重要意义。
角动量守恒在未来的发展前景和影响将更加广泛,对于推动科学技术的发展和进步具有重要意义。
如何理解和掌握角动量守恒定律
6
学习角动量守恒定律的方法和技巧ຫໍສະໝຸດ 理解角动量守恒定律的难点和重点
角动量的定义:理解角动量的物理意义和数学表达式
角动量守恒可以帮助我们理解各种旋转运动现象,例如地球自转、陀螺旋转等。
角动量守恒还可以帮助我们解决一些实际问题,例如设计旋转机械、分析旋转物体的稳定性等。
角动量守恒在科技领域的应用价值
光学器件:利用角动量守恒原理,制造出高性能的光学器件,如光纤陀螺仪等
粒子加速器:利用角动量守恒原理,提高粒子加速器的性能和效率
角动量守恒定律
3
角动量守恒的条件
系统不受外力矩作用
系统的角动量守恒定律适用于旋转参考系和惯性参考系
系统的角动量变化率为零
系统内力矩之和为零
角动量守恒的证明方法
添加标题
添加标题
添加标题
添加标题
角动量守恒定律:L=mvr
牛顿第二定律:F=ma
角动量守恒的条件:系统不受外力矩作用
角动量守恒的证明:通过牛顿第二定律和角动量守恒定律,推导出角动量守恒的条件,从而证明角动量守恒定律。
角动量守恒定律:在圆周运动中,角动量保持恒定
角动量的大小:与物体的质量和速度成正比
角动量的变化:在圆周运动中,角动量不会发生变化,除非有外力作用
圆周运动中角动量守恒的证明
角动量守恒定律:在封闭系统中,系统内各物体的角动量之和保持不变
证明过程:假设物体在圆周运动中受到外力作用,根据牛顿第二定律,外力作用在物体上会产生加速度
角动量角动量守恒定律
确定细杆受的摩擦力矩
0
细杆的质量密度为:
m /l
分割质量元dm
m ,l o dm l / 2
l/2
x dx x
dm dx
质元受的摩擦力矩 dM dmgx
细杆受的摩擦力矩
M
l /2 l / 2
dM
20l /2 gxdx
1 mgl
4
始末两态的角动量为:L0 J 0 , L 0
( 2g sin )1 2
R
4-3角动量 角动量守恒定律
二、刚体定轴转动的角动量定理和角动量守恒定律
1. 刚体定轴转动的动量矩
质点对 Z 轴的动量矩… LZ mvr mr 2
刚体上任一质点对 Z 轴的动量矩为
LZi Δmviri Δmri2
且刚体上任一质点对 Z 轴的动 量矩具有相同的方向
当 M 0,L 恒矢量
当质点所受对参考点O的合力矩为
零时,质点对该参考点O的角动量为一
恒矢量.——质点的角动量守恒定律
讨论
(1) 守恒条件
F 0 M 0F过O点
(2) 有心力的动量矩守恒。
4-3角动量 角动量守恒定律
物理学
第五版
第四章 刚体转动
例 一半径为 R 的 光滑圆环置于竖直平面 内. 一质量为 m 的小球 穿在圆环上, 并可在圆 环上滑动. 小球开始时 静止于圆环上的点 A (该点在通过环心 O 的 水平面上),然后从 A
4-3角动量 角动量守恒定律
物理学
第五版
第四章 刚体转动
例 一质点m,速度为v,如图所示,A、B、C 分别为三
个参考点,此时m 相对三个点的距离分别为d1 、d2 、 d3 求 此时刻质点对三个参考点的动量矩
大学物理-角动量定理和角动量守恒定律
系统内物体之间的相互作用力矩不会改变系统的 总角动量。
角动量守恒的应用举例
天体运动
行星绕太阳公转、卫星绕地球运 行等天体运动中,角动量守恒定
律是重要的理论基础。
陀螺仪
陀螺仪利用角动量守恒原理,通过 高速旋转来保持方向稳定,广泛应 用于导航、制导和控制系统。
机械系统
在机械系统中,如旋转机械、齿轮 传动等,角动量守恒定律用于分析 系统的动态平衡和稳定性。
04 角动量定理与守恒定律的 实际意义
在天文学中的应用
描述行星和卫星的运动
角动量定理和守恒定律在天文学中用于描述行星和卫星围绕中心天体的运动。 这些定律帮助科学家理解天体的旋转和轨道运动,以及它们之间的相互作用。
预测天文现象
通过应用角动量定理和守恒定律,科学家可以预测天文现象,如行星的轨道变 化、卫星的旋转等。这些预测有助于更好地理解宇宙的演化。
在航天工程中的应用
航天器姿态控制
角动量定理和守恒定律在航天工程中用于控制航天器的姿态 。通过合理地布置航天器上的动量轮,可以调整航天器的角 动量,实现姿态的稳定和控制。
L = m × v × r,其中L是 角动量,m是质量,v是 速度,r是转动半径。
角动量单位
在国际单位制中,角动量 的单位是千克·米²/秒 (kg·m²/s)。
角动量定理表述
角动量定理
01
对于一个封闭系统,其总角动量保持不变,即系统内力的力矩
之和为零。
表述形式
02
dL/dt = ΣM = 0,其中dL/dt表示角动量的时间变化率,ΣM表
角动量守恒的应用
角动量守恒定律在许多物理现 象中都有应用,如行星运动、 陀螺仪等。
角动量定理和角动量守恒定律
角动量定理和角动量守恒定律
角动量定理和角动量守恒定律是描述刚体运动时的两个基本定律。
下面进行简单的介绍:
1. 角动量定理
角动量定理是描述角动量变化的定律。
它表示为:物体所受外力矩等于物体角动量对时间的变化率。
即
I*ω= ΔL/Δt
其中,I 为物体的转动惯量,ω为物体的角速度,L 为物体的角动量。
这个定理表明了一个物体的角动量发生变化时,必定受到了外部的力矩作用,即力矩等于角动量的变化率。
2. 角动量守恒定律
角动量守恒定律是描述角动量不变的定律,即如果没有外部力矩作用,系统的总角动量保持不变。
即:
L = L0
其中,L 为系统的总角动量,L0 为系统在某一时刻的总角动量。
这个定律表明,如果没有外部力矩作用,那么系统的总角动量保持不变。
如果一个物体在自由运动时,角动量发生变化,那么它将会改变自身的旋转状态(比如转速、方向等)。
总之,角动量定理和角动量守恒定律是描述刚体运动和角动量变化的基本定理,可以帮助我们更好地理解物体的运动和变化规律。
5.4 角动量与角动量守恒定律
(M i 外 M i内) M外 M内
i
5.4 角动量与角动量守恒定律
M外 M i外 ri Fi
(见后) M内 M i内 (ri f ij ) 0
i i j i
i
i
于是有:
M外
dL — 质点系角动量定理 dt
5.4 角动量与角动量守恒定律
二、质点的角动量定理 1. 质点的角动量定理 由 L r p 有:
dr d p dL d pr ( r p) dt dt dt dt v mv r F r F
1 ri r j f ij 0 2 i , j(i j )
5.4 角动量与角动量守恒定律
5.4 角动量与角动量守恒定律
dL 若: M 0 则: 0 L 常矢量 dt F 0 , M 0 F过O点:中心力(如行星受 中 心恒星的万有引力) L L r ( mv ) 常矢量 m (1) mv r sin =const, v F r
角动量是质点运动中的一个重要的物理量, 在物理学的许多领域都有着十分重要的应用。
5.4 角动量与角动量守恒定律
5.4 角动量与角动量守恒定律
一、质点对点的角动量
定义: 质点对O点的角动量
L r p r ( mv )
大小: L rmv sin
L
r o
t2 L2 M合外dt dL L2 L1 t1 L1
5.4 角动量与角动量守恒定律
合内力矩为零
Fi
mi
角动量、角动量守恒定律的分析
02
3
4. 求质量 m ,半径 R 的球体对直径的转动惯量
解:以距中心 r ,厚 dr 的球壳
R
dr
r
为积分元
o
dV 4r 2dr
m
m 4 R3
3
dJ
2 3
dm r 2
2mr 4dr R3
dm dV
J
R
dJ
0
2mr 4dr R3
2 5
mR2
注意: 对同轴的转动惯量才具有可加减性。
直于杆,分别过杆的中点和一端端点的轴的转动惯量。
解:(1) 轴过中点
dm
x
L2
ox
L 2
L
J
r 2dm
m L
1 3
L3 8
L
x2dm
x 2 2
L
L3 8
1 12
2
mL2
m dx L
m L
1 3
x3
2 L
2
(2) 轴过一端端点
dm
o
x
Lx
J r2dm x2dm L x2 mdx 0L m 1 x3 L 1 mL2 L3 0 3
o r m p
p
or
* 质点对某参考点的角动量反映质点绕该参考点旋
转运动的强弱。
*必须指明参考点,角动量才有实际意义。
2. 质点系角动量
L
系i统L内i vr所ii 有i vr质rcci 点 rvp对iii 同 无一有i':'参:r对i对考参质考点m心点i角vi 动o量r1pr的c1 矢crrp量2ir2i和
i
i
i
式中 J ri2mi
i
刚体对轴的转动惯量
物理-角动量定理与角动量守恒定律
dt
dt
i
当质点系相对惯性系中某给定参考点的合外力 矩为零时,该质点系对同一参考点的总角动量保持 不变。
——角动量守恒定律
当 M Mi 0,则L Li 恒矢量
Hale Waihona Puke 说明1、同一问题中应 用角动量定理或判断角动量守恒时, M 与 L 必须相对同一参考点计算!
2、如果相对某一特殊参考点,合外力矩为零,系统只 只对这一特殊点角动量守恒,但相对其他参考点的 角动量不一定也守恒;
当 M Mi 0,则L Li 恒矢量
说明
3、关于角动量守恒与动量守恒的条件:
一般地
(ri Fi ) 0 与
Fi 0 彼此独立!
角动量守恒与动量守恒也是相互独立的。
例:行星在绕太阳的公转过程:动量不守恒,
但对太阳的角动量守恒。
MS
rF
0
z LS
LS
r m
恒矢量
S
如直角坐标系中。沿 z 轴分量式为:
当 Mz Miz 0,则Lz Liz 恒量
5. 适用范围:惯性系;
讨论:为什么许多星系是扁盘状旋转结构?
银河系
讨论:为什么许多星系是扁盘状旋转结构?
初始角动量
径向
轴向
引力 收缩
L守恒
引力 收缩
速度增大 离心力增大
引力 收缩
达到平衡
高速旋转的盘形结构
dL L2 (t2 ) L1(t1 )
t1
L1 (t1 )
—— M在时间t t2 t1内的角冲量(冲量矩)
(积分式)
对同一参考点,质点所受合力在某一时间内的 角冲量等于同时间内角动量的增量 。
说明
•直角坐标系中的分量式(如Z轴分量式):
第五章 角动量角动量守恒定理
第五章角动量角动量守恒定理本章结构框图学习指导本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。
许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。
建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。
本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。
还请注意动量守恒在天体问题、粒子问题中的应用。
基本要求1.理解质点、质点系、定轴刚体的角动量概念。
2.理解定轴刚体的转动惯量概念,会进行简单计算。
3.理解力矩的物理意义, 会进行简单计算。
4.掌握刚体定轴转动定律,熟练进行有关计算。
5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定理,熟练进行有关计算。
6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
内容提要1.基本概念刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。
定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。
即:I的大小与刚体总质量、质量分布及转轴位置有关。
质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。
表5.1对质点、质点系、定轴刚体的角动量进行了比较。
表5.1质点、质点系和定轴刚体的角动量力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1):即:大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。
对于力矩的概念应该注意明确以下问题:•区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。
例如:某力对x、y、z轴的力矩就是该力对原点的力矩在三个坐标轴上的投影:由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。
刚体角动量和角动量守恒定律
• 刚体角动量介绍 • 角动量守恒定律 • 刚体角动量的应用 • 刚体角动量与现实世界的关系 • 刚体角动量与未来科技的关系
01
刚体角动量介绍
刚体的定义
刚体
在运动过程中,其内பைடு நூலகம்任意两点 间的距离始终保持不变的物体。
刚体的特性
在刚体的运动过程中,其形状和 大小不会发生变化,只改变其位 置和姿态。
刚体的角动量定义
角动量
一个物体绕固定点旋转时所具有的动 量,其大小等于物体质量、速度和旋 转半径的乘积。
刚体的角动量
当刚体绕固定点旋转时,其角动量等 于刚体质量、旋转轴上的速度和旋转 半径的乘积。
刚体的角动量的计算公式
角动量计算公式:L = mvr
其中,L表示角动量,m表示刚体的质量,v表示刚体上任意一点相对于旋转轴的速度,r表示该点到旋转 轴的距离。
证明方法一
证明方法二
证明方法三
03
刚体角动量的应用
在物理实验中的应用
陀螺仪
刚体角动量在陀螺仪中有着重要 的应用,通过测量旋转轴的角速 度,可以确定物体的方向和姿态。
摆锤实验
通过观察摆锤的摆动,可以验证 刚体角动量守恒定律,了解力矩 对刚体角动量的影响。
磁力矩实验
利用磁力矩对刚体角动量的作用, 可以研究刚体的旋转运动和磁场 的相互作用。
角动量守恒定律在设计和优化机械系 统,如电机、陀螺仪和风力发电机等 方面有广泛应用。
对体育运动的影响
在体育运动中,角动量守恒定律有助于理解旋转运动,如滑冰、花样滑冰和乒乓 球等项目的旋转动作和技巧。
运动员通过合理运用角动量守恒定律,可以调整旋转速度、方向和稳定性,提高 运动表现和竞技水平。
大学物理——角动量定理和角动量守恒定律
解:把飞船和排出的 废气看作一个系统, 废气质量为m。可以 认为废气质量远小于 飞船的质量,
dm/2
u
Lg
r
L0
u dm/2
上页 下页 返回 退出
所以原来系统对于飞船中心轴的角动量近似地等 于飞船自身的角动量,即
L0=J
在喷气过程中,以dm表示dt时间内喷出的气体
, 这 些 气 体 对 中 心 轴 的 角 动 量 为 dm·r(u+v) , 方 向
量为JB=20kgm2 。开始时A轮的转速为600r/min,B
轮静止。C为摩擦啮合器。求两轮啮合后的转速;在 啮合过程中,两轮的机械能有何变化?
A
B
C
A
B
C
A
上页 下页 返回 退出
解:以飞轮A、B和啮合器C作为一系统来考虑,在
啮合过程中,系统受到轴向的正压力和啮合器间的 切向摩擦力,前者对转轴的力矩为零,后者对转轴 有力矩,但为系统的内力矩。系统没有受到其他外 力矩,所以系统的角动量守恒。按角动量守恒定律 可得
由匀减速直线运动的公式得
0 v2 2as
亦即 v 2 2gs
(3)
(4)
由式(1)、(2)与(4)联合求解,即得
3gl 3 2gs
l
(5)
上页 下页 返回 退出
当’取正值,则棒向左摆,其条件为
3gl 3 2gs 0
亦即l >6s;当’取负值,则棒向右摆,其条件
上页 下页 返回 退出
数为 。相撞后物体沿地面滑行一距离s而停止。
求相撞后棒的质心C 离地面的最大高度h,并说明
棒在碰撞后将向左摆或向右摆的条件。
解:这个问题可分为三个阶段
第三章 角动量角动量守恒定律
第三章 角动量、角动量守恒定律3—1 质量为m 的质点,当它处在r =-2i +4j +6k 的位置时的速度v =5i +4j +6k ,试求其对原点的角动量。
[解] 质点对原点的角动量为 v r p r L ×=×=m)2842(645642k j kj i −=−=m3—2 一质量为m =2200kg 的汽车v =60h km 的速率沿一平直公路行驶。
求汽车对公路一侧距公路为d =50m 的一点的角动量是多大?对公路上任一点的角动量又是多大?[解] 根据角动量的定义式v r L m ×=(1) ()kgm 1083.150360*********sin 263×=×××===mvd rmv L θ(2) 对公路上任一点r ∥v ,所以 L =03—3 某人造地球卫星的质量为m =l802kg ,在离地面2100km 的高空沿圆形轨道运行。
试求卫星对地心的角动量(地球半径61040.6×=地R m)。
[解] 设卫星的速度为v ,地球的质量为M ,则()h R v m h R Mm G +=+地地22(1) 又 g R MG=地(2) 联立两式得 地地R hR gv +=卫星对地的角动量 ()()地地地⋅+=⋅+=h R g m v h R m L()6661040.61010.21040.68.91802×××+××= ()m kg 1005.1214⋅×=3—4 若将月球轨道视为圆周,其转动周期为27.3d ,求月球对地球中心的角动量及面积速度(221035.7×=月m kg ,轨道半径R =81084.3×m)。
[解] 设月球的速度为v ,月球对地球中心的角动量为L,则 T R v /2π=TRm Rv m L π2月月== 3600243.2714.32)1084.3(1035.72822×××××××=)/s m kg (1089.2234⋅×= 月球的面积速度为)/s m (1096.1/2112×==T R v π面3—5 氢原子中的电子以角速度s rad 1013.46×=ω在半径10103.5−×=r m 的圆形轨道上绕质子转动。
角动量定理及角动量守恒定律
角动量定理及角动量守恒定律一、力对点的力矩:如图所示,定义力F对O 点的力矩为: F r M ⨯=大小为: θsin Fr M =力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向.二、力对转轴的力矩:力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。
1)力与轴平行,则0=M;2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。
力的大小与力臂的乘积,称为力F对转轴的力矩,用M表示。
力矩的大小为: Fd M =或: θsin Fr M =其中θ是F 与r的夹角.3)若力F不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响.对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向.三、合力矩对于每个分力的力矩之和。
合力 ∑=i F F合外力矩 ∑∑∑=⨯=⨯=⨯i i i M F r F r F r M=即 ∑i M M=四、质点的角动量定理及角动量守恒定律在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。
同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。
角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。
在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。
至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容.本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(m M ) vAL0 (m M ) vBLsin
vB
(m
m2 M
)2
v02
k(L m
L0 )2 M
1/ 2
arcsin
mL0v0 L
m2v02
k(L
L0 )2 (M
m)
1 2
例:用轻质细绳将小球P拴于铅直细杆AB上的B点。给小球以初速 度v0,v0的方向垂直于AB平面,小球运动使细线逐渐缠绕于 AB杆上。初始时,小球与杆的距离为q0,求距离为q1时小球 的速率。
M iz | ri Fi | ri Fi sini ri Fi
Mz Miz ri Fi sini
Mz
dLz dt
Jz
d
dt
5.4.2 定轴转动刚体的角动量守恒
角动量定理 1 质点
由 M dL dt
微分式 M dt dL
2 质点系
dL 由 M外 dt
解: M z 0
Z 轴方向上角动量守恒
Lz 常量
mv0q0 mv1q1
v1
q0 q1
v0
5.2 质点系角动量
5.2.1、质点系角动量 选原点 O 质心在 c
n
L Li
(ri
i1 ri rc ri '
vi vc
以上两式先后代入前式 L
等于它对该点角动量的时间变化率
t2 t1
Mdt
L2
L1
对同一参考点O,质点所受的冲量矩等 于质点角动量的增量。
5.1.3、质点角动量守恒定律及其应用
9
质点的角动量定理 M dL dt
若 M 0 则 dL 0
dt
或 L 常矢量
若对某一固定点,质点所受合外力矩为零, 则质点对该
固定点的角动量矢量保持不变。
r
d
dt
r
a 法向分量
an
v2 r
r 2
v dS dt
at
dv dt
v v0 at
S
v0t
1 2
at 2
v2 v02 2aS
d
dt
d
dt
z
v dS
r d P
O 匀变速定轴转动
0 t
0t
1 t2
2
2 02 2
外力矩
块, 木块与一原长为
L0, 劲度系数为k的轻 弹簧相连, 弹簧另一 端固定于O点.
L0 k
m v0
MA
vB
13
B
当木块静止于A 处时, 弹簧保持原长, 设一质量为 m 的子弹 以初速 v0 水平射向 M 并嵌在木块中. 当木块运动到 B (OBOA)时, 弹簧的长度为L.
求木块在B点的速度 vB 的大小和方向.
机械能不守恒 . 机械能不守恒 . 机械能守恒 .
角动量守恒定律在技术中的应用
惯性导航仪(陀螺)
被中香炉
应用: 航海、航空、导弹和火箭等系统的定向、导航和自动驾驶 等. 它们的转子速度达万转每分;
若转子稍不对称, 就会对各个支撑轴产生巨大的作用力使 其损坏, 所以设计转子精度要高.
北
北
南
南
角动量守恒使地球自转轴的方向在 空间保持不变,因而产生了季节变化.
解: m和M相撞时,系统的动量守恒
mv0 (m M ) vA
解:
mv0 (m M ) vA
O
L
L0 k
AB, 只有弹力作功, 机械能守恒
m v0
MA
vB 14
B
1 2
(m
M
)
v2A
1 2
(m
M
)
v B2
1 2
k(L
L0 )2
AB, 弹力对O点的力矩为零, 对O点角动量守恒
微分式 M外 dt dL
这里
L Li
t2
L2
积分式 M dt dL L2 L1
t1
L1
t2
L2
积分式 M外 dt dL L2 L1
t1
L1
3 定轴转动刚体
i
M z(轴)
dLz dt
d J
dt
J
d
dt
t2
2
积分 M轴 dt Jd J2 J1
z θ
2.角速度 :
lim d
t0 t d t
刚体定轴转动
角速度 的方向按右手螺旋法则确定
3.角加速度 α:
lim d d 2
t0 t dt dt2
4. 线量与角量关系
dS r d
v r
切向分量
at
dv dt
5.4 刚体定轴转动的角动量定理 角动量守恒
5.4.1 对定轴的力矩和角动量
Mz
dLz dt
?
Li
Li roi mivi roi vi
Li mi roivi
Liz Li sin miroivi sin
质元 mi 到转轴的垂直距离
ri roi sin
r
O
[证明] 1)行星对太阳O的角动量的大小为 L r p rmvsin
其中 是径矢 r 与行星的动量 p 或速度 v 之间的夹角.
用 s 表示 t 时间内行星所走过的弧长, 则有
lim L r ms sin
t0 t
lim L
t 0
L
例:质点做匀速直线运动中,对O点 角动量是否守恒?
r
Lo r mv
O r
A
L0 r mvsin
r mv
p mv
证明关于行星运动的开普勒定律: 任一行星和太阳之间的联线, 在相等的时间内扫过的面积 相等, 即掠面速度不变.
v 10
r
B S
Aθ
B
B’
B”
任意一条直线在各个时刻的位
置都相互平行,
任意质元运动都代表整体运动
2. 转动、定轴转动 刚体所有质元都绕一固定直线做圆周运动, 该固定直
线称为刚体定轴, 这种运动称为刚体的定轴转动
刚体的运动
平动+转动
只研究刚体绕定轴转动
5.3.2 刚体定轴转动的角量描述
1. 角位移 θ : 在 t 时间内刚体转动角度
m
mv
r r R
LO r p (R r) p R p R mgt
Rg
LO Rmgt
5.1.2、质点的角动量定理
一 力矩
刚体绕 O z 轴旋转
F 作用在点 P , r P 的径矢 .
F 对转轴Z 的力矩 M rF
M Fd Fr sin
O
r1
由于万有引力是有心力, 它对力心O的力矩总是等于零, 所以角动量守恒, L=常量, 行星作平面运动, 而且
d L 常量
dt 2m
这就证明了掠面速度不变, 也就是开普勒第二定律.
(2) 角动量守恒说明天体系统的旋转盘状结构
天体系统的旋转盘状结构
例. 光滑水平桌面上
O
L
放着一质量为M的木
7
1)若力F 不在转动平面内,把力分解为平行和垂直于
转轴方 向的 两个分量
F Fz F
其中 Fz 对转轴的力
矩为零,故 F 对转轴的
力矩
Mzk
r
F
z
k
Fz
F
O r
F
M z rF sin
2)合力矩等于各分力 矩的矢量和 M M1 M2 M3
二、质点的角动量定理
L
r
p
dp F
dL ?
dt
dt
dL d (r p) dr p r dp
dt dt
dt
dt
v mv r F r F
M
r
O r
A
8
F
质点的角动量定理 M dL 或 dt
Mdt dL Mdt冲量矩
质点对某固定点所受的合外力矩
Z轴分量
Mz
dLz dt
dL dt
质元 mi : Fi 对O点的力矩
M i roi Fi
roi Fi roi Fiz
(垂直z轴)
roi Fi ri Fi riz Fi
z
Mz
vi
Oi
ri mi
ri
riz
roi
O
Fi
Fiz
i
Fi
(垂直z轴)
i
dLi dt i
Mi i
Mij
ji
i
M ij'
j'
M外
dL dt
L
Li
M ij
或
i
M ji M 外dt
0
dL
质点系的角动量定理 对应
M外
F