人教版九年级数学下册29.1 投影(解析版)
数学人教版九年级下册29.1.1 平行投影与中心投影
3 物体在光线的照射下,会在地面或其他平面上留下
它的影子,这就是________现象.形成投影应具备 的条件有:__________、__________、 __________.
知2-导
归 纳
由平行光线形成的投影叫做平行投影.
知2-讲
有时光线是一组互相平行的射线,例如探照灯中的光线(图1). 太阳离我们非常远,射到地面的太阳光也可以看成一组互相平行 的射线.由平行光线形成的投影叫做平行投影(parallel projection). 例如,物体在太阳光的照 射下形成的影子(简称日影)就是平行投 影.日影的方向可以反 映当地时据日影来观测 时间的.
A.A→B→C→D
C.C→D→A→B
B.D→B→C→A
D.A→C→B→D
知2-讲
根据不同时刻太阳光照射的方向和照射的角度去判 导引:
断,最早时太阳在东方,则影子在物体的西方,随
着时间的变化,影子的方向由西向东转动,影子的 长度先由长变短,然后由短变长.
知2-讲
总 结
物体在太阳光下的不同时刻,不但影子的大小
知1-讲
总 结
因为投影是在光线照射下形成的影子,所以在光
线移动时,物体的影子的大小、方向也随着变化;在
同等条件下(相同的投影线与投影面),不同形状物体 的投影可能不同.
知1-练
1 下列现象属于投影的是(
A、眼影 C、轨迹
)
B、人影 D、素描画
知1-练
2 把下列物体与它们的投影用线连接起来.
知1-练
同.
2.中心投影的特点:(物体与其影子顶端连线所在直线
必过点光源)
(1)等高的物体垂直地面放置时,离点光源越近,影子越 短;离点光源越远,影子越长. (2)等长的物体平行于地面放置时,离点光源越近,影子 越长;离点光源越远,影子越短,但不会比物体本身
人教版九年级数学下册课件29.1第2课时 正投影及其性质
(提1)出当问纸3题板.:P平三圆行种于情柱投形的影下面铁上时丝,的底P正的面投正影平投各影是行与什P于么的形形投状状?影、大大面小小有_,_什__么则_关__圆系_;?柱的正投影是___圆___;长方体的前
分析:(1)当正方体在如图的位置时,正方体的一个面ABCD及与其相对的另一面与投影面平行,这两个面的正投影是与正方体的一
∴r=1,例高h3= 如,图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.
2.当棱长为20 cm的正方体的某个面平行于投影面时,这个面的正投影的面积为(
)
(2)当正方体在如图的位置时,它的面ABCD和面ABGF倾斜于投影面,它们的投影分别是矩形A ' B ' C ' D '和A ' B ' G ' F ' ;
D.600 cm2
如图表示一块三角尺在光线照射下形成的投影.其中哪些是中心投影,哪些是平行投影?图(2)(3)的投影线与投影面的位置关系有什么
区别?
活动2 探究新知
(1)当线段平行于投影面时,线段与它的正投影的大小关系为________;
(2)如图,正方体的正投影为矩形F ' G ' C ' D ' ,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、
下两边中点连线A ' B '是正方体的侧棱AB及它所对的另一条侧棱EH的投影.
面的投影也分别是上述矩形;
第2课时 正投影及其性质 (1)当线段平行于投影面时,线段与它的正投影的大小关系为________;
上、下底面的投影分别是线段D ' F '和
(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图③中画出线段AB的正投影,并求出其
九年级数学下册第二十九章投影与视图29.1投影29.1.1投影课件新版新人教版
图K-23-5
第1课时 投影
解:(1)∵太阳光线是平行光线,∴只需连接 AC,过点 D 作 DF∥AC,交直线 BC 于 点 F,线段 EF 即为 DE 在太阳光下的投影(如图所示). (2)∵AC∥DF,∴∠ACB=∠DFE. 又∵∠ABC=∠DEF=90°,
AB BC ∴△ABC∽△DEF,∴DE=EF,
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
[解析] D 中心投影的光源为点光源,平行投影的光源为阳光、探照灯 光等平行光,在各选项中只有D选项中的投影为中心投影.故选D.
第1课时 投影
3.如图K-23-1是在北半球一天中四个不同时刻两座建筑物 的影子,将它们按时间先后顺序排列正确的是( C )
图K-23-1 A.(3)(1)(4)(2) B.(3)(2)(1)(4) C.(3)(4)(1)(2) D.(2)(4)(1)(3)
图K-23-2
第1课时 投影
5.如图K-23-3,三角尺与其在灯光照射下的中心投影构成 位似图形,相似比为2∶5,且三角尺的一边长为8 cm,则投影 三角形中该边的对应边长为___2_0_c_m__.
图K-23-3
第1课时 投影
三、解答题
6.如图K-23-4所示,小华、小军、小丽同时站在路灯下, 其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示); (2)画出小华此时在路灯下的影子(用线段EF表示).
人教版九年级数学下29.1 投影(第1课时)课件
探究新知
归纳:
灯 三角尺 投影
由同一点 (点光源) 发出的光线形成的投影 叫做中心投影.
例如,物体在灯泡发出的光照射下形成影子就 是中心投影.
探究新知 中心投影 ——投射线交于一点的投影.
A
投影
D
S 投射中心 投射线
C
BF
投影面
E
探究新知 【思考】 平行投影和中心投影有什么区别和联系呢?
探究新知
巩固练习 把下列物体与它们的投影用线连接起来:
探究新知
知识点 2 平行投影的概念
观察下列图片,你认为太阳光线有什么特征?
太阳离我们非常遥远,太阳光线可以看成平行光线.
探究新知
归纳: 由平行光线形成的投影叫做平行投影.
投射线 A
C 投射方向S
B
c
a
b
投影面P 投影
A
投射线
a
C
投射方向S
Bc
投影面P
D E
A (甲) D' B (乙) E'
探究新知 (2) 当乙木杆移动到什么位置时,其影子刚好不落在墙上?
D E
A (甲)
D'
B
(乙)
E'
探究新知 (3) 在(2)的情况下,如果测得甲、乙木杆的影子长分别 为1.24m和1m,那么你能求出甲木杆的高度吗?
D E
A(甲)
D'
B(乙) E'
解:∵△ADD'∽△BEE',∴ AD : BE =AD′ : BE′, 即AD : 1.5 =1.24 : 1,解得AD =1.86. 故甲木杆的高度为1.86m.
素养目标
3.能通过例子来解释说明投影的分类,会利用平 行投影和中心投影的相关知识解决实际问题. 2.理解平行投影和中心投影的概念、特征、区 别与联系. 1. 能结合具体例子说明什么是投影,什么是投 影线和投影面等概念.
人教版九年级数学下册 29.1.1平行投影教学课件(共46张PPT)
7、在同一时刻的阳光下,小明的影子比小强的影子
长,那么在同一路灯下( D )
A、小明的影子比小强的影子长 B、小明的影子比小强的影子短 C、小明的影子和小强的影子一样长 D、无法判断谁的影子长
我能行
下面是一天中四个不同时刻两个建筑物的影子:将它们 按时间先后顺序进行排列,并说明理由.
顺序为:(C) → (D) → (A)→(B)
自学发现:
通过课下自主先学,完成以下问题:
1.你能说出太阳光线与灯光发出的光线 的主要区别是什么吗? 2.物体在太阳光下形成的影子与灯光下 的影子有什么不同呢?
人无论在太阳光照射下,还是在路灯光照射下都会 形成影子,那么影子的长短随时间的变化而变化的 是__平_行_投__影_,影子的长短随人的位置的变化而变化 的是中__心_投__影_。
如何判断平行投影与中心投影?
分别自两个物体的顶端及其影子的顶端 作一条直线,若两直线平行,则为平行 投影;若两直线相交,则为中心投影, 其交点是光源的位置.
思考探究:
⒈在同一时刻,如果两棵小树的影子方向相同,能判 断它们是平行投影吗?
⒉在同一时刻,如果两棵小树的影子方向相反,能判 断它们是中心投影吗?
拍摄的先后顺序进行排列,并说明你的理由.
顺序为:3 → 2 → 1
在同一时刻,大树和小树的影子与它们的高 度之间有什么关系?并说明理由。
在同一时刻,大树的高度与其影长等于小树的高 度与其影长之比.
A 太阳光线
学生甲身高
B
C
学生甲影长
Aʹ
学生乙身高
Bʹ
Aʹʹ
学生丙身高
Cʹ Bʹʹ
Cʹʹ
学生乙影长
学生丙影长
⒊在同一时刻,如果两棵小树的影子方向相同,且树 高与影长不成比例,能判断它们是中心投影吗?
九年级数学下册 29_1_1 投影课件 (新版)新人教版
11.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,
AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则 AB与CD间的距离是____m.
12.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA
=20 cm,OA′=50 cm,这个三角尺的周长与它在墙上形成的影
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,
请你计算DE的长. 解:(1)如图
(2) ∵ AC ∥ DF , ∴ ∠ ACB = ∠ DFE , 又 ∠ABC = ∠DEF = 90°, ∴△ABC∽△DEF,∴ADBE=BECF,∴D5E=36,∴DE=10 m
知识点❷:中心投影 5.某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木
方法技能: 1.平行投影的特点: (1)在同一时刻,不同物体的影子同向,且不同物体的物高和影长成正 比例; (2)在不同时刻,同一物体的影子的方向和大小可能不同. 2.中心投影的特点: (1)等高的物体垂直于地面放置时,离点光源越近影子越短,离点光源 越远影子越长; (2)等长的物体平行于地面放置时,离点光源越近影子越长;离点光源 越远影子越短,但不会比物体本身的长度还短. 易错提示: 受思维定式的影响,将平行投影和中心投影混淆.
棒的影子表示正确的是( B )
6.下面四幅图中,灯光与影子的位置最合理的是( B )
7.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程
中,他在地上的影子( C ) A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短
8.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子 分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示); (2)画出小华此时在路灯下的影子(用线段EF表示).
人教版九年级数学下册:29.1《投影》说课稿2
人教版九年级数学下册:29.1《投影》说课稿2一. 教材分析投影是初中数学中的一个重要概念,它主要涉及到平面图形在三维空间中的映射。
在人教版九年级数学下册的第29.1节中,主要介绍了投影的定义、分类以及基本性质。
这部分内容不仅是学生对几何学习的一个过渡,也是对空间想象能力的一个培养。
通过对投影的学习,学生能够更好地理解几何图形的变换和应用。
二. 学情分析九年级的学生在经历了初中数学学习的前两个学期的基础后,对于几何图形的认知已经有了初步的了解,空间想象能力也有了一定的基础。
但是,由于投影这一概念涉及到三维空间,对于部分学生来说,理解起来可能存在一定的困难。
因此,在教学过程中,需要关注学生的接受程度,合理调整教学节奏,引导学生从实际问题中抽象出投影的概念。
三. 说教学目标1.知识与技能:使学生理解投影的定义、分类和基本性质,能够运用投影的知识解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生体会数学与实际生活的紧密联系。
四. 说教学重难点1.教学重点:投影的定义、分类和基本性质。
2.教学难点:投影在三维空间中的应用,特别是如何从实际问题中抽象出投影的概念。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、教具模型等辅助教学,提高学生的空间想象能力。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对投影的兴趣,进而引入新课。
2.讲解概念:介绍投影的定义、分类和基本性质,引导学生理解并掌握这些知识。
3.案例分析:通过一些典型的例子,让学生了解投影在实际问题中的应用,培养学生的空间想象能力。
4.动手实践:让学生亲自动手进行一些投影实验,加深对投影概念的理解。
5.总结提升:对本节课的主要内容进行总结,引导学生将投影知识应用于实际问题。
人教初中数学九年级下册《29-1 投影》(教案)
人教初中数学九年级下册《29-1 投影》(教案)一. 教材分析人教初中数学九年级下册《投影》这一章节主要介绍了投影的概念、特点以及各种类型的投影。
通过学习,学生能够理解投影的定义,掌握正投影和斜投影的性质,能够运用投影的知识解决实际问题。
本节课的内容是学生对几何学习的一个拓展,也是对立体几何学习的铺垫。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何有较深入的了解。
但投影概念的引入,需要学生对三维空间有一定的认识,这对于学生来说是一个新的挑战。
因此,在教学过程中,需要引导学生从二维平面几何过渡到三维空间几何,建立空间观念。
三. 教学目标1.了解投影的概念,掌握正投影和斜投影的性质。
2.能够识别各种类型的投影,并运用投影的知识解决实际问题。
3.培养学生的空间观念,提高学生的几何思维能力。
四. 教学重难点1.投影的概念和性质。
2.不同类型投影的识别和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索、发现和解决问题。
2.利用多媒体教学,展示各种类型的投影,帮助学生建立空间观念。
3.采用合作学习的方式,让学生在讨论中加深对投影知识的理解。
六. 教学准备1.多媒体教学设备。
2.投影相关图片和实例。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的投影实例,如影子、建筑物的投影等,引导学生关注投影现象,激发学生的学习兴趣。
提问:你们对这些投影有什么观察和思考?2.呈现(10分钟)介绍投影的定义,展示正投影和斜投影的性质。
通过多媒体动画演示,让学生直观地感受不同类型的投影。
同时,给出一些投影的性质和规律,引导学生进行思考。
3.操练(10分钟)让学生分组讨论,识别给出的各种投影实例,并解释其投影类型。
每组选出一个代表进行汇报,其他组进行评价和补充。
4.巩固(10分钟)给出一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,涵盖投影的概念、性质以及应用。
最新人教版九年级数学下册第29章投影与视图PPT
所以甲木杆的高度为1.86 m.
皮影戏是利用灯光的照射,把影子的影态反映在 银幕(投影面)上的表演艺术.
由同一点(点光源)发出的光线形成的投影叫做中心投影. 例如:物体在灯泡发出的光照射下形成影子就是中心投影.
练一练 请你分别指出下面的例子属于什么投影?
(1)平行投影
(2)中心投影
1.掌握线段、平面图形的正投影规律
学
2.以正方体为例,掌握其与投影面的两种不同位
习
目
置下形成的正投影的形状和大小
标
3.掌握几种基本几何体的正投影(重点、难点)
复习引入 1.物体的影子在正北方,则太阳在物体的( B ) A.正北 B.正南 C.正西 D.正东 2.太阳发出的光照在物体上是______,车灯发出的光 照在物体上是______ .( B ) A.中心投影,平行投影 B.平行投影,中心投影 C.平行投影,平行投影 D.中心投影,中心投影
(3)平行投影
(4)中心投影
例2:确定下图灯泡所在的位置. O
解:过一根木杆的顶端及其影子的顶端画一条直线,再过 另一根木杆的顶端及其影子的顶端画一条直线,两线相交
于点O,点O就是灯泡的位置.
平 行
小组讨论:如图,平行投影和中心投影有什么区 别和联系呢?
投
影
和
中
心
区别
联系
投 影
平行投影
投影线互相平行, 形成平行投影
都是物体在光线的
照射下,在某个平
中心投影
投影线集中于一 点,形成中心投影
面内形成的影子. (即都是投影)
当堂练习 1.下图中物体的影子,不正确的是( B )
D
A
B
(含答案)九年级数学人教版下册课时练第29章《29.1 投影》(2)
立了一个 2 m 长的标杆 ,测得其影长 = 0.4 m.
4 / 12
(1)请在图中画出此时旗杆 在阳光下的投影 浔; (2)如果 浔 = 1.6 m,求旗杆 的高. 16. 如图,投影线的方向如箭头所示,画出图中几何体的正投影.
17. 画出下列几何体的直观图. (1)棱长分别为 3,4,5 个单位的长方体. (2)棱长为 3 个单位的正方体.
= 90∘,
所以 = ,
所以 9 = 4 ,
所以 = 6,
所以 △
= 1⋅
2
⋅
(3) 如图,作
= 1 × 13 × 6 = 39.
2
⊥ 于 , ‹ ⊥ ,交
的延长线于 ‹.
因为 ∠ = 90∘, , = 2,
10 / 12
所以 = 2. 因为 ∠ = 60∘,
所以 ∠ = ∠ ‹ = 30∘, = 3 = 2 3, = 2 = 4.
(2)在(1)的结论下,若过点 浔 的光线 浔 ⊥ ,斜坡与地面夹角为 60∘, = 1 m, = 2 m,请求出乙杆 浔 的高度.(结果保留根号)
7 / 12
1. D 2. A 3. C 4. D 5. A 6. B 7. C 8. A 9. 不会 10. 15 11. 12 12. 185π cm2
A.
B.
C.
D.
3. 下列关于投影的说法不正确的是
A. 正午,上海中心大厦在地面上的投影是平行投影 B. 匡衡借光学习时,他在地面上的投影是中心投影 C. 三角形木板的正投影可以是一个点 D. 晚上,小强向路灯走去,他的影子越来越短 4. 小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间
13. 8 13 14. 1 = < 2
人教版九年级数学下册第29章视图与投影29.1投影优秀教学案例
(一)知识与技能
1.理解投影的定义和基本性质,掌握平行投影和中心投影的特点和区别。
2.学会运用投影的方法解决实际问题,提高空间想象能力和解决问题的能力。
3.熟练运用投影知识,进行几何图形的绘制和分析,提高绘制和解读图形的能力。
(二)过程与方法
1.通过观察和操作,培养学生对投影的直观感知,发展空间想象能力。
五、案例亮点
1.生活情境导入:本节课通过现实生活中的投影现象导入新课,激发学生的兴趣和好奇心,使学生能够更好地理解和贴近投影知识,体现了“从生活中来,到生活中去”的教学理念。
2.问题导向:本节课以问题为导向,引导学生主动思考和探究,激发学生的学习内驱力,培养学生的解决问题的能力。如在讲授新知环节,教师提出问题:“如何判断一个图形在不同投影下的形状变化?”引导学生进行小组讨论和探究。
(三)小组合作
1.组织学生进行小组讨论,分享各自对投影的理解和看法,促进学生之间的思维碰撞。
2.开展小组合作探究活动,如共同研究投影的规律、解决投影问题等,培养学生的团队协作能力。
3.鼓励学生进行小组交流和展示,提高学生的表达能力和沟通技巧。
(四)反思与评价
1.引导学生对所学知识进行反思,总结投影的基本性质和应用方法,提高学生的归纳总结能力。
三、教学策略
(一)情景创设
1.利用多媒体展示各种生活中的投影现象,如电影院投影、太阳能光伏板等,引发学生对投影的兴趣。
2.设计有趣的投影实践活动,如手电筒照射物体、投影仪展示等,让学生亲身体验投影的形成过程。
3.创设问题情境,如:“为什么电影院里的画面是倒立的?”“太阳能光伏板是如何将阳光转化为电能的?”引导学生思考和探讨。
(二)问题导向
1.提出问题:“什么是投影?投影有哪些基本性质?”引导学生回顾和巩固投影基础知识。
29.1 投影(第二课时)( 教学设计)九年级数学下册同步备课系列(人教版)
29.1 投影(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十九章“投影与视图”29.1 投影(第二课时),内容包括:理解正投影的概念.2.内容解析在学习本课时之前,学生已经具有一定的关于平面图形与立体图形的知识,并且在七年级上册接触过“从不同方向观察物体”和“点、线、面、体”之间的联系及基本几何体的平面展开图等反映平面图形与立体图形之间的联系问题,上一节课,学生又学习了投影的一些基础知识包括投影、中心投影、平行投影的概念,在此基础上,这节课主要学习正投影概念及探究正投影的成像规律,以正投影为平台,进一步深入研究投影的性质更深一层理解立体图形与平面图形的相互转化关系,培养学生的空间观念,这为过渡到三视图的学习起着铺垫的作用,更为高中学习立体几何打下基础.基于以上分析,确定本节课的教学重点:理解正投影的概念及根据正投影的性质画简单图形的正投影.二、目标和目标解析1.目标1. 理解正投影的概念;2. 能根据正投影的性质画出简单图形的正投影.3. 学生学会关注生活中有关投影的数学问题,增强数学的应用意识.2.目标解析达成目标1)的标志是:理解正投影的概念.达成目标2)3)的标志是:会根据正投影的性质画简单图形的正投影.三、教学问题诊断分析本节课先研究线、平面图形的正投影,进而继续探究立体图形正投影。
而学生对这个知识无从下手,从研究平面图形到研究立体图形,本节内容对学生来说有一定难度,要加强与实际的联系,因此运用多媒体,制作演示动画课件等,通过学生观察,动手实践,结合已有的生活经验,将原有认知迁移到本课中来,从而画出简单立体图形的正投影.基于以上分析,本节课的教学难点是:正确画简单图形的正投影.四、教学过程设计(一)复习巩固【提问一】简述投影的概念?【提问二】投影是如何进行分类的?试举例说明?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习正投影打好基础.(二)探究新知【问题一】观察下图,并填空1)图(1)与图(2)(3)的投影线有什么区别?2)图(2)(3)的投影线与投影面的位置关系有什么区别?师生活动:学生认真观察图片中的影子,回答问题,最后由教师给出正投影的概念:如果投射线垂直于投影面,那么这种投影称为正投影.【设计意图】通过观察图片,结合上节课所学知识,引出正投影的概念,激发学习投影的欲望,培养学生观察能力和抽象能力.【问题二】由平行投影与正投影的概念,你发现了什么?师生活动:学生认真观察图片中的影子,回答问题,教师引导与补充,得出:1)正投影是特殊的平行投影.2)平行投影分为斜投影与正投影.【设计意图】让学生理解正投影是特殊的平行投影.【探究一】如图,把一根直的细铁丝(记为线段AB) 放在三个不同位置.1) 铁丝平行于投影面;2) 铁丝倾斜于投影面;3) 铁丝垂直于投影面(铁丝不一定要与投影面有交点). 三种情形下铁丝的正投影各是什么形状?它们的大小关系呢?师生活动:教师通过多媒体展示三种情形下铁丝的正投影,学生观察结果,探讨它们大小的关系.【设计意图】通过观察图片,让学生理解三种情形下线段正投影的形状.【探究二】如图,把一块正方形卡片P(记为正方形ABCD) 放在三个不同位置.1) 卡片平行于投影面;2) 卡片倾斜于投影面;3) 卡片垂直于投影面三种情形下卡片的正投影各是什么形状?它们的大小关系呢?师生活动:教师通过多媒体展示三种情形下卡片的正投影,学生观察结果,探讨它们大小的关系.【设计意图】通过观察图片,让学生理解三种情形下平面图形正投影的形状.【问题三】简述线段正投影的投影规律?师生活动:学生尝试回答问题.【问题四】简述平面图形正投影的投影规律?师生活动:学生尝试回答问题.【设计意图】通过归纳总结,让学生理解线段正投影、平面图形正投影的投影规律.【探究三】如图,把一个正方体纸盒P(记为正方体ABCDEFGH) 放在两个不同位置.1)纸盒的一个平面ABCD平行于投影面;2)纸盒一个面ABCD倾斜于投影面P,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面;观察两种情形下正方体纸盒的正投影,你发现了什么?【设计意图】通过观察图片,让学生理解两种情形下立体图形正投影的形状.【问题五】观察线段、平面图形、立体图形的正投影,由此你发现了什么?师生活动:先由学生回答问题,再由教师引导与归纳,最后得出:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同,并且物体正投影的形状、大小与它相对于投影面的位置有关.【设计意图】让学生理解立体图形正投影的形状、大小与它相对于投影面的位置有关.(三)典例分析与针对训练例1 下列说法正确的是()A.三角形的正投影一定是三角形B.长方体的正投影一定是长方形C.球的正投影一定是圆D.圆锥的正投影一定是三角形【针对训练】1. 直立在投影面上的圆锥的正投影是()A.圆B.三角形C.矩形D.正方形2. 木棒长为2.5m,则它的正投影的长一定()A.大于2.5m B.小于2.5mC.等于2.5m D.小于或等于2.5m3.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是_____(用“=、>或<”连起来)4.(2022下·广东河源·九年级校考期末)把下列物体与它们的投影连接起来.5.(2023·湖北恩施·校考模拟预测)物体正投影的形状、大小与它相对于投影面的位置有关.一个三角板的正投影不可能是()A.一条线段B.一个与原三角板全等的三角形C.一个等腰三角形D.一个小圆点6.(2022上·山西大同·九年级统考期末)如图,A1B1是线段AB在投影面P上的正投影,AB=10cm,∠A1AB=110°,则投影A1B1的长为()A.10sin70°cm B.10sin20°cmC.10tan70°cm D.10cos70°cm7. 如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4m,A′B′=2√3,则AB与A′B′的夹角为( )A.45°B.30°C.60°D.以上都不对8. 已知一纸板的形状为正方形ABCD如图所示.其边长为10厘米,AD、BC与投影面β平行,AB、CD与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面积.(四)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 简述正投影的概念?3. 简述物体正投影的形状、大小与什么有关?(五)布置作业P92:习题29.1 第3题、第4题、第5题五、教学反思。
九年级数学下册291投影新版新人教版
长方形
D* A*
C* B*
D*(C*) A*(B*)
(2) 正方(1)当纸板P平行于投影面Q时,P的正投影与P的形状、大小 一样; (2)当纸板P倾斜于投影面Q时,P的正投影与P的形状、大小 发生变化; (3)当纸板P垂直于投影面Q时,P的正投影成为一条线时光线是一组互相平行的射线,例如太阳光或探照灯光 的一束光中的光线,由平行光线形成的投影是平行投影.
例如,物体在太阳光的照射下形成的影子(简称日影)就是平行 投影.日影的方向可以反映时间.
我国古代的计时器日晷,线照射下形成投影,其中图(1)与图 (2)、(3)的投影有什么区别?图(2)、(3)的投影与投 影面的位置有什么区别?
中心投影 (1)
斜投影 (2)
平行投影
的投影叫做正投影. 在实际制作中,人们经常应用正投影的原理. 牛牛文档分 享 牛牛文档分 享
平行长不变
倾板P(例如长方形ABCD)放在三个不
同的位置:
(1)纸板平行于投影面;
(2)纸板倾斜于投影面;
(3)纸板垂直于投影面.
三种情况的正投影各是什么形状?
D A
D
C
A
B
D
A
C
B
C B
D*
C*
A*
B线段AB)放在三个不同的位置, 三种情形下铁丝的正投影各是什么形状?
A
B
B A
A
B
P
A*
B* A*
B*
(1)铁丝平
行于投影面. 线段
(2)铁丝倾
斜于投影面. 线段(小)
A*(B*)
(3)铁丝(1)当线段AB平行于投影面P时,它的正投影是线段
A1B1,线段与它的投影的大小关系为AB_=__A1B1.
人教版九年级数学下册教案:29.1投影
1.讨论主题:学生将围绕“投影在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在新课讲授过程中,我发现理论介绍部分学生们听得比较认真,但当我开始讲解中心投影与平行投影的性质时,部分学生显得有些困惑。我意识到,这里可能是教学的难点。为了帮助学生更好地理解,我采用了举例和比较的方法,希望这样能够让他们更直观地感受到两种投影方式的差异。
实践活动环节,学生们分组讨论得非常热烈,他们能够将投影知识应用到解决实际问题中。在实验操作环节,我也注意到学生们通过实际动手操作,对投影的性质有了更深刻的理解。这里的教学效果比我预期的要好,说明实践活动对于帮助学生理解抽象概念是非常有效的。
举例:在讲解空间想象力时,教师可以借助教具(如立方体模型)进行演示,让学生直观地感受投影过程,降低空间想象力要求的难度。在讲解投影性质时,可以设计一些具有代表性的练习题,让学生通过实际操作和讨论,逐步掌握投影性质的运用,从而突破教学难点。在解决投影应用问题时,教师可以引导学生从简单的例子入手,逐步提高问题难度,帮助他们建立起投影知识与实际问题之间的联系。
学生小组讨论的环节,我尽量让自己成为一个引导者和协助者,让学生们自主探究和解决问题。我发现,这样的教学方式能够激发学生的思考,他们提出的观点和想法有时也让我感到惊喜。通过成果分享,学生们不仅巩固了所学知识,还学会了如何表达和交流自己的观点。
然而,我也注意到,在整个教学过程中,仍有一些需要改进的地方。首先,对于教学难点,我需要找到更多直观、生动的教学手段,比如使用多媒体动画或实物模型,来帮助学生克服理解上的障碍。其次,在小组讨论环节,我需要更加关注每个小组的讨论进程,适时给予指导和鼓励,确保每个学生都能参与到讨论中来。
九年级数学下册 29.1 投影课标解读素材 (新版)新人教版
投影课标解读一、课标要求人教版九年级下册“29.1投影”一节,主要研究投影及其概念,投影的分类,正投影的含义及其性质.《义务教育数学课程标准(2011年版)》上对投影与视图的要求为:1.通过丰富的实例,了解中心投影和平行投影的概念.2.会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体.3.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作实物模型.4.通过实例,了解上述视图与展开图在现实生活中的应用.二、课标解读1.重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的.投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与现实世界联系紧密.在本章之前,学生已经接触过视图的内容,对投影和视图的知识已有初步了解,只是还没有明确地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结.感性认识需要上升为理性认识,理论指导下的实践会更自觉有效.从理论上说,投影和视图的知识是以立体几何、画法几何等为基础依据的,利用这些基础可以对投影和视图的知识进行比较深入的分析.但是由于初中学生的知识储备的局限,在初中进行投影和视图内容的教学不可能完全从理论角度深入进行,而应该借助直观模型的作用,重视结合实际例子讨论问题,做好由感性认识到理性认识的过渡,比较通俗易懂地介绍一些基本概念、基本原理(规律).2.应重视从不同角度加强空间想象能力的培养空间想象能力是一种重要的数学基本能力,本章内容非常适合培养这种能力.本章所讨论的对象是投影与视图,其中只有少量计算问题,也没有形式上的推理证明,这与前面几章形成明显的区别.本章面临的主要是立体图形与平面图形的相互转化问题,而掌握立体图形与平面图形的联系是实现上述转化的关键.要掌握这种联系,不仅需要认识从立体图形到平面图形的转化过程,还需要认识从平面图形到立体图形的转化过程,即需要从两方面双向地认识这种联系.正因如此,本章特别先后安排了“由物画图”和“由图想物”两类问题,它们各有侧重,分别承担了不同的任务,前者可以使人认识到立体图形的投影是什么样的平面图形,后者可以使人把相关的平面图形在头脑中综合成为相应的立体图形.两者又是互相联系的,投影规律在两类问题中都是考虑问题的依据.。
2021春人教版九年级数学下册 第29章 29.1.2 正投影
知2-讲
解:(1)如图 (1),正方体的正投影为 正方形A′B′C′D′ , 它与正方体的一个面是全等 关系.
(2)如图(2),正方体的正投影为矩形F′G′C′D′ ,这个 矩形的长等于正方体的底面对角线长,矩形的宽 等于正方体的棱长.矩形上、 下两边中点连线A′B′ 是正方体的侧棱AB及它所对的另一条侧棱EH的 投影.
3 球的正投影是( A )
A.圆
B.椭圆
C.点
D.圆环
知1-练
知1-练
4 下列投影中,正投影有( B ) A.0个 B.1个 C.2个
D.3个
知1-练
5 如图,水杯的杯口与投影面平行,投影线的方向 如箭头所示,它的正投影是( D )
知1-练
6 底面与投影面垂直的圆锥体的正投影是( B )
A.圆
第二十九章 投影与视图
29.1 投影
第2课时 正投影
1 课堂讲解 2 课时流程
正投影的定义 正投影的性质
逐点 导讲练
课堂 小结
Байду номын сангаас
课后 作业
1.什么叫做中心投影、平行投影? 2.下面两个图都是表示一块三角板在光线照射下形成的投
影,它们的投影线与投影面的位置关系有什么不同?
知识点 1 正投影的定义
B.线段
C.矩形
D.平行四边形
1 知识小结
1.回顾正投影的含义及其性质; 2.反思作简单几何图形的正投影的过程及自己作图过
程中失误的原因,体会正投影的作图方法与技巧; 3.物体的正投影的形状、大小与它相对于投影面的位 置是否有关系?
2 易错小结
如图所示,把正方体一个顶点朝上立放,在它下面放 一张白纸,使纸面与太阳光垂直,则正方体在纸上的 正投影是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十九章投影与视图
29.1投影
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列光线所形成的投影是平行投影的是
A.太阳光线B.台灯的光线
C.手电筒的光线D.路灯的光线
【答案】A
【解析】四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选A.2.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为
A.逐渐变长B.逐渐变短
C.影子长度不变D.影子长短变化无规律
【答案】B
【解析】在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选B.3.小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为
A.上午8时B.上午9时
C.上午10时D.上午12时
【答案】A
【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选A.学科=网
4.小红和小花在路灯下的影子一样长,则她们的身高关系是
A.小红比小花高B.小红比小花矮
C.小红和小花一样高D.不确定
【答案】D
【解析】小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断她们身高关系.故选D.
5.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度
A.变长3.5m B.变长2.5m
C.变短3.5m D.变短2.5m
【答案】C
6.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子
A.越长B.越短
C.一样长D.随时间变化而变化
【答案】B
【解析】如图,由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.
二、填空题:请将答案填在题中横线上.
7.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是__________.(填写“平行投影”或“中心投影”)
【答案】中心投影
【解析】因为在同一时刻,两根长度不等的木杆置于阳光之下,当它们都垂直于地面或都倒在地上或平行插在地面时,木杆长的它的影子就长;当它们垂直竖立在地面上时,它们的影长相等,此时只能是中心投影.故答案为:中心投影.
8.如图所示,此时树的影子是在__________(填“太阳光”或“灯光”)下的影子.
【答案】太阳光
【解析】此时的影子是在太阳光下的影子,理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光.
9.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是__________(用“=、>或<”连起来)
【答案】S1=S<S2
【解析】∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.
10.如图,在平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为点D,点C坐标为(3,1),则CD在x轴上的影子长为__________.
【答案】3 4
【解析】∵DC∥AO,∴△ECD∽△EAO,∴DE
OE
=
DC
AO
,∴
3
DE
DE
=
1
5
,解得DE=
3
4
,即CD在x
轴上的影子长为:3
4
;故答案为:
3
4
.
三、解答题:解答应写出文字说明、证明过程或演算步骤.
11.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.
【解析】如图所示,点O即为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.
12.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他
马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?。