第十章 第二节 用样本估计总体

合集下载

第2节用样本估计总体

第2节用样本估计总体

法二 (数据分布法)从茎叶图看,从小到大看,甲的每个数据都比乙对应的 数据小,所以甲的平均数较小;甲的数据在(70,80)内有3个,(80,90)内有2 个,90以上的有1个; 而乙的数据在(70,80)内有1个,(80,90)内有3个,90以上的有2个. 显然乙的数据分布较为集中,所以乙的方差较小.故选D.
第2节用样本估计总体
考纲展示 1.了解分布的意义和作用,能根据 频率分布表画频率分布直方图、 频率折线图、茎叶图,体会它们各 自的特点. 2.理解样本数据标准差的意义和 作用,会计算数据标准差. 3.能从样本数据中提取基本的数 字特征(如平均数、标准差),并做 出合理的解释.
4.会用样本的频率分布估计总体分 布,会用样本的基本数字特征估计总 体的基本数字特征,理解用样本估计 总体的思想. 5.会用随机抽样的基本方法和样本 估计总体的思想解决一些简单的实 际问题.
用茎叶图表示数据的优点是(1)所有的信息都
4.样本的数字特征

字 特
定义

特点
在一组数据中出 体现了样本数据的最大集中点,
现次数最多的数 不受极端值的影响,而且可能不

唯一
将一组数据按大 小顺序依次排列, 处在最中间位置 中位数不受极端值的影响,仅利
反映了各个样本数据聚集
标准差是样本数据到 于样本平均数周围的程度
(A)该校九年级学生1分钟仰卧起坐的次数的中位数为26.25 (B)该校九年级学生1分钟仰卧起坐的次数的众数为27.5 (C)该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320 (D)该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32
解析:由频率分布直方图可知,中位数是频率分布直方图面积等分线对应 的数值,是26.25,故A对;众数是最高矩形的中间值27.5,故B对;1分钟仰卧 起坐的次数超过30的频率为0.2,所以估计1分钟仰卧起坐的次数超过30 的人数为320,故C对;1分钟仰卧起坐的次数少于20的频率为0.1,所以估 计1分钟仰卧起坐的次数少于20的人数为160,故D错.故选D.

用样本估计总体教案

用样本估计总体教案

用样本估计总体教案用样本估计总体教案一、教学目标1. 理解样本和总体的区别及样本统计量的意义。

2. 掌握点估计和区间估计的概念及计算方法。

3. 能够运用样本估计方法来进行总体参数的估计。

二、教学内容1. 样本与总体2. 点估计3. 区间估计4. 样本估计方法的应用三、教学过程1. 样本与总体总体是研究对象的全体,而样本是从总体中随机抽取的一部分个体。

研究者往往无法直接获得总体数据,因此需要通过对样本数据的研究来了解总体的性质。

样本统计量是通过对样本数据的测量和统计得到的,它可以用来估计总体参数。

常见的样本统计量包括样本均值、样本标准差、样本比例等。

2. 点估计点估计是根据样本数据来估计总体参数的一种方法。

它的基本思想是利用样本统计量来估计总体参数。

点估计的方法有很多种,其中最常用的是样本均值作为总体均值的估计值。

我们想要估计某个地区居民的平均年龄,可以随机抽取一部分居民作为样本,计算出样本的平均年龄,然后将样本平均年龄作为总体平均年龄的估计值。

点估计的优点是计算简单直观,但它忽略了估计误差的大小,因此在应用中需要注意。

如果样本容量较大,点估计的精度会更高。

3. 区间估计区间估计是根据样本数据来估计总体参数的一种方法,它相比于点估计更为准确和可靠。

区间估计的基本思想是利用样本统计量来对总体参数建立一个置信区间,从而给出总体参数的估计范围。

我们想要估计某个地区居民的平均年龄,可以随机抽取一部分居民作为样本,计算出样本平均年龄和样本标准差,根据置信水平和样本量计算出置信区间,从而得出总体平均年龄的估计范围。

区间估计的优点是考虑了估计误差的大小,能够给出总体参数的估计范围。

但它的计算比较复杂,需要考虑置信水平、样本量、样本标准差等因素。

4. 样本估计方法的应用样本估计方法广泛应用于社会科学、自然科学、医学等多个领域。

它可以用来估计总体平均值、标准差、比例、方差等参数。

在实际研究中,我们需要对样本的选取、样本量的确定、置信水平的选择等进行合理的设计,并结合对总体特征的了解来进行合理的样本估计。

高考数学10.2用样本估计总体与变量间的相关关系

高考数学10.2用样本估计总体与变量间的相关关系

2013版高考数学一轮复习精品学案:第十章统计、统计案例10.2用样本估计总体与变量间的相关关系【高考新动向】一、用样本估计总体(一) 考纲点击1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点;2.理解样本数据标准差的意义和作用,会计算数据标准差;3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释;4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想;5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(二)热点提示1.频率分布直方图、茎叶图、平均数、方差、标准差是考查的重点,同时考查对样本估计总体的思想的理解;2. 频率分布直方等内容经常与概率等知识相结合出题;3.题型以选择题和填空题为主,属于中低档题。

二、变量间的相关关系(一)考纲点击1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(二)热点提示1.以考查线性回归系数为主,同时可考查利用散点图判断两个变量间的相关关系;2.以实际生活为背景,重在考查回归方程的求法;3.在高考题中本部分的命题主要是以选择、填空题为主,属于中档题目。

【考纲全景透析】一、用样本估计总体1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布表.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图;(2)总体密度曲线:随着样本容量的增加,作图所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.标准差和方差(1)标准差是样本数据到平均数的一种平均距离;(2)x是样本数(3)方差: (n据,n是样本容量,x是样本平均数)注:现实中的总体所包含个体数往往是很多的,如何求得总体的平均数和标准差呢?(通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差,这与有样本的频率分布近似代替总体分布是类似的,只要样本的代表性好,这样做就是合理的,也是可以接受的.)4.利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值;(2)平均数:平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;(3)众数:在频率分布直方图中,众数是最高的矩形的中点的横坐标.二、变量间的相关关系1.两个变量的线性相关(1)正相关在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程 (1)最小二乘法求回归直线使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法. (2)回归方程方程ˆybx a =+是两个具有线性相关关系的变量的一组数据1122(,),(,),(,)n n x y x y x y L 的回归方程,期中,a b 是待定参数.1122211()()()nni i i ii i n ni i i i x x y y x y nx yb x x x nx a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑ 注:相关关系与函数关系的异同点(相同点:两者均是指两个变量的关系.不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系;②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系)【热点难点全析】一、用样本估计总体(一)频率分布直方图在总体估计中的应用 ※相关链接※频率分布直方图反映样本的频率分布(1)频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距. (2)频率分布直方图中各小长方形的面积之和为1,因此在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.(4)众数为最高矩形中点的横坐标.(5)中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.※例题解析※〖例〗为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学生全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.思路解析:利用面积求得每组的频率→求样本容量→求频率和→求达标率→分析中位数.解答:(1)由已知可设每组的频率为2x,4x,17x,15x,9x,3x.则2x+4x+17x+15x+9x+3x=1,解得x=0.02.则第二小组的频率为0.02×4=0.08,样本容量为12÷0.08=150.(2)次数在110次以上(含110次)的频率和为17×0.02+15×0.02+9×0.02+3×0.02=0.88,则高一学生的达标率为0.88×100%=88%.(3)在这次测试中,学生跳绳次数的中位数落在第四组.因为中位数为平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标.注:利用样本的频率分布可近似地估计总体的分布,要比较准确地反映出总体分布的情况,必须准确地作出频率分布表和频率分布直方图,充分利用所给的数据正确地作出估计.(二)用样本的分布估计总体※相关链接※茎叶图刻画数据的优点(1)所有的数据信息都可以从茎叶图中得到.(2)茎叶图便于记录和表示,且能够展示数据的分布情况.注:当数据是两位有效数字时,用茎叶图显得容易、方便.而当样本数据较大和较多时,用茎叶图表示,就显得不太方便.※例题解析※〖例〗在某电脑杂志的一篇目文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子中所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?思路解析:(1)将十位数字作为茎,个位数字作为叶,逐一统计;(2)根据茎叶图分析两组数据,得到结论.解答:(1)如图:(2)电脑杂志上每个句子的字数集中在10~30之间,中位数为22.5;而报纸上每个句子的字数集中在10~40之间,中位数为27.5.可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为读物须通俗易懂、简明.(三)用样本的数字特征估计总体的数字特征〖例〗甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.思路解析:(1)先通过图象统计出甲、乙二人的成绩;(2)利用公式求出平均数、方差,再分析两人的成绩,作出评价.解答:(1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.2222222222221013121416==1351314121214==1351=[(1013)(1313)(1213)(1413)(1613)]451[(1313)(1413)(1213)(1213)(1413)]0.85x x s s ++++++++-+-+-+-+-==-+-+-+-+-=甲乙甲乙,(2)由2s 甲>2s 乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.注:(1)运用方差解决问题时,注意到方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.(2)平均数与方差都是重要的数字特征,是对总体的一种简单的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(3)平均数、方差的公式推广①若数据123,,,,n x x x x L 的平均数为x ,那么12,,,n mx a mx a mx a +++L 的平均数是mx a +.②数据123,,,,n x x x x L 的方差为2s . a.22222111[()];n s x x x nx n=+++-L b.数据12,,,n x a x a x a +++L 的方差也为2s ; c.数据12,,,n ax ax ax L 的方差为22a s . 二、变量间的相关关系(一)利用散点图判断两个变量的相关关系 ※相关链接※ 1.散点图在散点图中,如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.注:函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况. 2.正相关、负相关从散点图可知,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.如年龄的值由小变大时,体内脂肪含量也在由小变大.反之,如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关. ※例题解析※〖例〗在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如表:根据上述数据,画出散点图并判断居民的身高和体重之间是否有相关关系。

用样本估计总体

用样本估计总体

9.2 用样本估计总体班级姓名一、学习目标:(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差及方差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.二、学习建议:(1)统计图表是统计中的主要工具,学会从图表中提取有关的数据信息、进行统计推断的方法.(2)加强运算能力的培养,统计的数字计算较繁,要有良好的运算习惯,通过统计的复习提高运算能力.三、自主预习1.从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.知识链接1:列频率分布表、画频率分布直方图的步骤(1)计算极差,即计算一组数据中的差;(2)决定与;(3)将数据分组;(4)列表;(5)画频率分布直方图.注:①频率分布直方图是用小长方形的来表示在各个区间内取值的频率.直角坐标系中的纵轴表示的比值,即小长方形面积=×=频率;②各组频率的和等于,即所有长方形面积的和等于;③频率分布表在数量表示上比较,但不够、,不利于分析数据分布的;④从频率分布直方图可以清楚地看出数据分布的,但是从直方图本身得不出.2.连接频率分布直方图中各个小长方形上端的,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条曲线,统计中称这条曲线为______密度曲线.总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.2.某公司甲、乙两名职员,自进入公司以来的阶段考核成绩如下:甲的得分:95,81,75,91,86,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人考核成绩的茎叶图,请根据茎叶图对两人的成绩进行比较.知识链接2:茎叶图的制作方法将所有的两位数的位数字作为茎(若是三位数,则将数字作为茎),位数字作为叶,若是两组数据,则共用一个茎,茎按从小到大的顺序从上向下排列,共茎的叶一般按从大到小或从小到大同行列出.在制作茎叶图时,重复的数字要记录,不能遗漏,特别是叶的部分,同一数据出现几次,就要在图中列出几次3.为了检查一批手榴弹的杀伤半径,抽取了其中20颗做试验,得到这20颗手榴弹的杀伤半径,并列表如下:(1)在这个问题中,总体、个体、样本和样本容量各是什么?(2)求出这20颗手榴弹的杀伤半径的众数、中位数和平均数,并估计这批手榴弹的平均杀伤半径.42)其中产量比较稳定的小麦品种是.知识链接3:众数、中位数与平均数(1)众数:一组数据中出现最多的数据叫做众数;(2)中位数:将一组数据从小到大(或从大到小)依次排列,把数据(或的平均数)叫做中位数,中位数把样本数据分成了相同数目的两部分;(3)平均数:x1,x2,…,x n的平均数x=___________________________注:由于众数仅能刻画某一数据出现的次数较多,对极端值不敏感,而又受极端值左右,因此这些因素制约了仅依赖这些数字特征来估计总体数字特征的准确性.标准差与方差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示.s=____________________________________________四、当堂检测区1.某校对高三年级的学生进行体检,现将高三男生的体重(kg )数据进行整理后分成五组,并绘制频率分布直方图(如图).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为 ( ) A .1000,0.50 B .800,0.50 C .800,0.60 D .1000,0.602用上表分组资料计算病人平均等待时间的估计值3.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为 ( )A .65 B .65C . 2D .24.观看下面两名选手全垒打数据的茎叶图,对他们的表现进行比较.1961年扬基队外垒手马利斯打破了鲁斯的一个赛季打出60个全垒打的记录.下面是扬基队的历年比赛中的鲁斯和马利斯每年击出的全垒打的比较图:鲁斯 马利斯0 81 3 4 6 52 23 6 8 54 3 3 9 9 7 6 6 1 1 49 4 4 50 6 15.为检测,某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,而极品8件,三级品13件,次品14件.(1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计辞呈商品为二极品或三极品的概率约是多少6.某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm)(1)列出频率分布表;(2)画出频率分布直方图;(3)估计数据落在[150,170]范围内的概率.五、课堂小结:1.众数、中位数、平均数的异同(1)众数、中位数及平均数都是描述一组数据集中趋势的量,是最重要的量.(2) 的大小与一组数据里每个数据均有关系,任何一个数据的变动都会引起的变动,而中位数和众数都不具备此性质.(3)众数考查各数据出现的,当一组数据中有不少数据多次出现时,众数往往更能反映问题.(4)中位数仅与数据的有关,中位数可能出现在所给数据中,也可能不在所给数据中,当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.2.茎叶图刻画数据的优点(1)所有数据信息都在茎叶图中看到.(2)茎叶图便于记录和表示,且能够展示数据的分布情况.3.利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的相等,由此可以估计中位数的值.(2)平均数:平均数是频率分布直方图的“重心”,等于图中.(3)众数:在频率分布直方图中,众数是的横坐标.9.2 用样本估计总体班级 姓名一、学习目标:(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差及方差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.二、学习建议:(1)统计图表是统计中的主要工具,学会从图表中提取有关的数据信息、进行统计推断的方法. (2)加强运算能力的培养,统计的数字计算较繁,要有良好的运算习惯,通过统计的复习提高运算能力. 三、自主预习1.从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分): [40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.知识链接1:列频率分布表、画频率分布直方图的步骤(1)计算极差,即计算一组数据中__最大值与最小值______的差;(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频率组距=频率;②各组频率的和等于1,即所有长方形面积的和等于1;③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势;④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.2.连接频率分布直方图中各个小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为______密度曲线.总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.2.某公司甲、乙两名职员,自进入公司以来的阶段考核成绩如下:甲的得分:95,81,75,91,86,89,71,65,76,88,94,110,107; 乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人考核成绩的茎叶图,请根据茎叶图对两人的成绩进行比较.从这个茎叶图上可看出,乙的得分情况是大致对称的,中位数是98;甲的得分情况除一个特殊得分外,也大致对称,中位数是88.因此乙成绩比较稳定,总体得分情况比甲好.知识链接2:茎叶图的制作方法将所有的两位数的十位数字作为茎(若是三位数,则将百位,十位数字作为茎),个位数字作为叶,若是两组数据,则共用一个茎,茎按从小到大的顺序从上向下排列,共茎的叶一般按从大到小或从小到大同行列出.在制作茎叶图时,重复的数字要重复记录,不能遗漏,特别是叶的部分,同一数据出现几次,就要在图中列出几次3.为了检查一批手榴弹的杀伤半径,抽取了其中20颗做试验,得到这20颗手榴弹的杀伤半径,并列表如下:(1)在这个问题中,总体、个体、样本和样本容量各是什么?(2)求出这20颗手榴弹的杀伤半径的众数、中位数和平均数,并估计这批手榴弹的平均杀伤半径. 解析: (1)总体是要检查的这批手榴弹的杀伤半径的全体;个体是每一颗手榴弹的杀伤半径;样本是所抽取的20颗手榴弹的杀伤半径;样本容量是20.(2)在20个数据中,10出现了6次,次数最多,所以众数是10(米).20个数据从小到大排列,第10个和第11个数据是最中间的两个数,分别为9(米)和10(米),所以中位数是21(9+10)=9.5(米). 样本平均数4.9)112311610495817(201=⨯+⨯+⨯+⨯+⨯+⨯=x (米)所以,估计这批手榴弹的平均杀伤半径约为9.4米.2)其中产量比较稳定的小麦品种是 甲 .解析:x ¯甲 = 1 5( 9.8 + 9.9 + 10.1 + 10 + 10.2) = 10.0,x ¯乙 = 1 5( 9.4 + 10.3 + 10.8 + 9.7 + 9.8) = 10.0; s 2甲 = 1 5( 9.82 + … + 10.22) – 102 = 0.02,s 2甲 = 1 5( 9.42 + … + 9.82) – 102= 0.244 > 0.02 .知识链接3:众数、中位数与平均数(1)众数:一组数据中出现_次数_最多的数据叫做众数;(2)中位数:将一组数据从小到大(或从大到小)依次排列,把_中间_数据(或___中间两数据__的平均数)叫做中位数,中位数把样本数据分成了相同数目的两部分;(3)平均数:x 1,x 2,…,x n 的平均数x =___________________________注:由于众数仅能刻画某一数据出现的次数较多,中位数对极端值不敏感,而平均数又受极端值左右,因此这些因素制约了仅依赖这些数字特征来估计总体数字特征的准确性.标准差与方差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =____________________________________________注:由于众数仅能刻画某一数据出现的次数较多,中位数对极端值不敏感,而平均数又受极端值左右,因此这些因素制约了仅依赖这些数字特征来估计总体数字特征的准确性.四、当堂检测区1.某校对高三年级的学生进行体检,现将高三男生的体重(kg )数据进行整理后分成五组,并绘制频率分布直方图(如图).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为 ( D ) A .1000,0.50 B .800,0.50 C .800,0.60 D .1000,0.60[思路] 先求第二小组的频率,结合其频数,就可以得出男生总数,正常体重学生所占频率为第二和第三小组频率之和.[解析] 据题意,得第二小组的频率为1-(0.25+0.20+0.10+0.05)=0.40,且其频数为400,设高三年级男生总数为n ,则有400n =0.40,∴n =1000.体重正常的学生所占的频率为第二和第三小组频率之和,即0.20+0.40=0.60.2[解答] 等待时间在[0,5)内的4个人的等待总时间的估计值为0+52×4=10;等待时间在[5,10)内的8个人的等待总时间的估计值为5+102×8=60;同理,其余三个时间段等待总时间的估计值分别为62.5,35,22.5.所以病人平均等待时间的估计值为10+60+62.5+35+22.54+8+5+2+1=9.5(分钟).3.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为 ( D )A .65 B .65C . 2D .2 [解析] 由题意知15(a +0+1+2+3)=1,解得a =-1,所以样本方差为s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,故选D.4.观看下面两名选手全垒打数据的茎叶图,对他们的表现进行比较.1961年扬基队外垒手马利斯打破了鲁斯的一个赛季打出60个全垒打的记录.下面是扬基队的历年比赛中的鲁斯和马利斯每年击出的全垒打的比较图:鲁斯 马利斯0 81 3 4 6 52 23 6 8 54 3 3 9 9 7 6 6 1 1 49 4 4 50 6 1解析:鲁斯的成绩相对集中,稳定在46左右;马利斯成绩相对发散,成绩稳定在26左右. 5.为检测,某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,而极品8件,三级品13件,次品14件.(1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计辞呈商品为二极品或三极品的概率约是多少(2)样本频率分布的条形图为:(3)此种产品为二极品或三极品的概率约为0.27+0.43=0.7. 点评:条形图中纵坐标一般是频数或频率.6.某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm ) (1)列出频率分布表;(2)画出频率分布直方图;(3)估计数据落在[150,170]范围内的概率. 解析:(1)根据题意可列出频率分布表: (2)频率分布直方图如下:(3)数据落在[150,170]范围内的概率约为0.825.五、课堂小结:1.众数、中位数、平均数的异同(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)平均数的大小与一组数据里每个数据均有关系,任何一个数据的变动都会引起平均数的变动,而中位数和众数都不具备此性质.(3)众数考查各数据出现的频率,当一组数据中有不少数据多次出现时,众数往往更能反映问题.(4)中位数仅与数据的排列位置有关,中位数可能出现在所给数据中,也可能不在所给数据中,当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.2.茎叶图刻画数据的优点(1)所有数据信息都可以在茎叶图中看到.(2)茎叶图便于记录和表示,且能够展示数据的分布情况.3.利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.(2)平均数:平均数是频率分布直方图的“重心”,等于图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)众数:在频率分布直方图中,众数是最高的矩形底边的中点的横坐标.。

用样本估计整体的基本步骤

用样本估计整体的基本步骤

用样本估计整体的基本步骤
用样本估计整体的基本步骤通常包括以下几个部分:
1.确定研究目标和总体:首先确定你想要估计的总体,即你
希望得到关于整体特征的估计值。

2.定义样本和抽样方法:确定你将要使用的样本大小和抽样
方法。

样本应该以代表性的方式从总体中选择,以确保估计的结果具有统计学上的可靠性。

3.收集数据:采用所选择的抽样方法从总体中抽取样本,并
收集样本数据。

确保采样过程是随机的,以避免样本选择上的偏差。

4.数据整理和分析:对收集到的样本数据进行整理和分析。

这包括描述性统计分析、计算样本统计量等。

5.估计总体参数:根据样本数据,计算出所需的总体参数的
估计值。

例如,估计总体均值、总体比例等。

这通常涉及到对样本统计量的计算和推断。

6.确定估计的精度和置信水平:评估估计结果的精度和可靠
性。

这可以通过计算估计值的置信区间来完成,确定估计结果所在的范围。

7.结果解释和推断:将估计结果解释给目标受众。

解释估计
结果的含义、置信水平以及可能的限制。

8.结论和报告:根据估计结果,得出结论并撰写报告。

将报
告中包含所采用的方法、数据分析流程、估计结果和相关
的解释。

在用样本估计整体时,确保使用恰当的统计方法和技术,并遵循相关的统计学原则和假设。

此外,维护数据的质量和准确性也是十分重要的,以确保估计结果的可靠性和有效性。

用样本估算总体

用样本估算总体

用样本估算总体
◎ 用样本估算总体的定义
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。

◎ 用样本估算总体的知识扩展
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。

◎ 用样本估算总体的教学目标
1、通过实例,体会用样本估计总体的思想。

2、能够根据统计结果作出合理的判断和推测,能与同学进行交流,用清晰的语言表达自己的观点。

3、根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。

◎ 用样本估算总体的考试要求
能力要求:了解
课时要求:40
考试频率:选考
分值比重:2。

人教版七年级下册数学第10章 数据的收集、整理与描述 目标二 用样本估计总体

人教版七年级下册数学第10章 数据的收集、整理与描述 目标二 用样本估计总体

C
B.被抽取的100名学生家长C.被抽取的10Fra bibliotek名学生家长的意见
D.全校学生家长的意见
2 【2021·张家界】某校有4000名学生,随机抽取了400 名学生进行体重调查,下列说法错误的是( ) B A.总体是该校4000名学生的体重
B.个体是每一名学生
C.样本是抽取的400名学生的体重
D.样本容量是400
根据以上信息,回答下列问题:
(1)本次调查的样本容量是________; 200
(2)扇形统计图中表示A程度的扇形圆心角为________°,
统计表中m=________;
90
94
(3)根据抽样调查的结果,请你估计该校2000名学生中大 约有多少名学生喜欢“每日健身操”活动(包含非常喜 欢和比较喜欢).
3 【2021·宿迁】某机构为了解宿迁市人口年龄结构情况, 对宿迁市的人口数据进行随机抽样分析,绘制了下面
尚不完整的统计图表:
根据以上信息解答下列问题: (1)本次抽样调查,共调查了________万人;
20 (2)请计算统计表中m的值以及扇形统计图中“C”对应的
圆心角度数;
解:“C”的人数为 20-4.7-11.6-2.7=1(万人),∴m=1. 扇形统计图中“C”对应的圆心角度数为210×360°=18°.
(3)宿迁市现有人口约500万人,请根据此次抽查结果,估 计宿迁市现有60岁及以上的人口数量.
解:500×1+202.7=92.5(万人). 答:估计宿迁市现有 60 岁及以上的人口数量为 92.5 万人.
4 【2021·扬州】为推进扬州市“青少年茁壮成长工程”, 某校开展“每日健身操”活动,为了解学生对“每日 健身操”活动的喜欢程度,随机抽取了部分学生进行 调查,将调查信息结果绘制成如下尚不完整的统计图 表:

用样本估计总体

用样本估计总体
频率/组距 0.0005 0.0004 0.0003 0.0002 0.0001
月收入(元)
1000 1500 2000 2500 3000 3500 4000
练习1、如图是150辆汽车通过某路段 时速度的频率分布直方图,则速度在[60, 60 辆. 70)的汽车大约有______
在频率分布直方图中,依次连接各小长 方形上端的中点,就得到一条折线,这条 折线称为频率分布折线图.
练习3、以往招生Biblioteka 计显示,某所大学录 取的新生高考总分的中位数基本稳定在550 分,若某同学今年高考得了520分,他想报 考这所大学还需收集哪些信息?
要点: (1)查往年录取的新生的平均分数.若平均数 小于中位数很多,说明最低录取线较低,可以 报考; (2)查往年录取的新生高考总分的标准差.若 标准差较大,说明新生的录取分数较分散,最 低录取线可能较低,可以考虑报考.
标准差的取值范围是什么?标准差为0 的样本数据有何特点? s≥0,标准差为0的样本数据都相等. 方差的意义: 方差(或标准差)越大离散程度越大,数 据较分散; 方差(或标准差)越小离散程度越小,数 据较集中在平均数周围.
例 2 、有两个班级,每班各自按学号随 机选出 5 名学生,测验铅球成绩,以考察 体育达标程度,测验成绩如下:单位(米) 甲 9.1 7.8 8.5 6.9 5.2 乙 8.8 7.2 7.3 7.5 6.7 两个班相比较,哪个班整体实力强一些 ?
制作频率分布直方图的方法: (1)求极差(即一组数据中最大值与最小 值的差); (2)决定组距与组数;(样本容量不超过
100时,组数常分成5~12组)
(3)将数据分组; (4)列频率分布表; (5)画频率分布直方图.
注:频率分布直方图中

第十章 统计与概率10-2用样本估计总体

第十章  统计与概率10-2用样本估计总体

注意以下结论: (1)如果x1、x2、„、xn的平均数为 - ,则ax1+b,ax2 x +b,„,axn+b的平均数为a -+b. x



(2)数据x1、x2、„、xn与数据x1+m、x2+ m、„、xn+m的方差相等. (3)若x1、x2、„、xn的方差为s2,则kx1, kx2,„,kxn的方差为k2s2. 计算方差时,要依据所给数据的特点恰当选 取公式以简化计算.



3.茎叶图 统计中还有一种被用来表示数据的图叫做茎 叶图. 茎是指中间的一列数,叶是从茎的旁边生长 出来的数. 在样本数据较少、较为集中,且位数不多时, 用茎叶图表示数据的效果较好,它当 样本数据较多时,茎叶图就不太方便.

4.平均数、中位数和众数

把样本方差的算术平方根叫做这组数据的样 本标准差.

(3)数据的离散程度可以通过极差、方差或
误区警示 1.对频率分布直方图和茎叶图识图不准是常见的错 误.在频率分布直方图中,小矩形的高= 频率 组距 =
频数 频率 .频率= ×组距=小矩形的面积. 组距×样本容量 组距

2.中位数可能不在样本数据中. 3.计算公式用错或计算错误.计算平均数、 方差、标准差等时计算量大,要注意计算结 果的准确性.

③将数据分组:通常对组内数值所在区间取 左闭右开区间,最后一组取闭区间,也可以 将样本数据多取一位小数分组;


④列频率分布表:登记频数,计算频率,列 出频率分布表. 将样本数据分成若干小组,每个小组内的样 本个数称作频数,频数与样本容量的比值叫 做这一小组的频率.频率反映数据在每组 所占比例 的大小.
方差:s12= 100)2]≈3.43. 乙车间:

高考一轮复习第10章统计统计案例第2讲用样本估计总体

高考一轮复习第10章统计统计案例第2讲用样本估计总体

第二讲 用样本估计总体知识梳理·双基自测 知识梳理知识点一 用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,从中可以看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①_求极差__;②_决定组距与组数__;③_将数据分组__;④_列频率分布表__;⑤_画频率分布直方图__.(2)频率分布折线图顺次连接频率分布直方图中_各小长方形上端的中点__,就得到频率分布折线图. (3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能提供更加精细的信息. 知识点二 茎叶图(1)茎叶图中茎是指_中间__的一列数,叶是从茎的_旁边__生长出来的数.(2)茎叶图的优点是可以_保留__原始数据,而且可以_随时__记录,这对数据的记录和表示都能带来方便.知识点三 样本的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x =_x 1+x 2+…+x nn__,反映了一组数据的平均水平.(4)标准差: s =_1n[x 1-x2+x 2-x2+…+x n -x2]__,反映了样本数据的离散程度.(5)方差:s 2=_1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]__,反映了样本数据的离散程度.重要结论(1)若一组数据x i (i =1,2,…,n)的平均数为x -,方差为s 2,则数据组ax i +b(i =1,2,…,n ,a ,b 为常数)的平均数为a x -+b ,方差为a 2·s 2.(2)频率分布直方图与众数、中位数与平均数的关系 ①最高的小长方形底边中点的横坐标即是众数.②中位数左边和右边的小长方形的面积和是相等的,均为12.③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( × ) 题组二 走进教材2.(P 81A 组T1改编)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( B )A .95,94B .92,86C .99,86D .95,91[解析]由茎叶图可知,此组数据由小到大排列依次76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B .3.(P 7T1)如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有_25__人.[解析]100×(0.5×0.5)=25(人).题组三走向高考4.(2020·新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为( C )A.0.01 B.0.1C.1 D.10[解析]∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选C.5.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( B )A.10 B.18C.20 D.36[解析]直径落在区间[5.43,5.47)的频率为(6.25+5)×0.02= 0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80 =18个,故选B.考点突破·互动探究考点一频率分布直方图——自主练透例1 (1)(2021·江西赣州十四县联考)中央电视台播出《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:组号分组频数频率第1组[160,165) 0.100笫2组[165,170) ①第3组[170,175) 20 ②第4组[175,180) 20 0.200第5组[180,185) 10 0.100合计100 1.00(ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示).(ⅱ)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3,4,5组中用分层抽样抽取5名选手进入第二轮面试,则第3,4,5组每组各抽取多少名选手进入第二轮面试?(ⅲ)在(ⅱ)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官A面试,求第4组至少有一名选手被考官A面试的概率.(2)(2021·福建漳州质检)2018年9月的台风“山竹”对我国多个省市的财产造成重大损害,据统计直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的损失数据分成五组:[0,2 000],(2 000,4 000],(4 000,6 000],(6 000,8 000],(8 000,10 000](单位:元),得到如图所示的频率分布直方图.(ⅰ)试根据频率分布直方图估计该地区每个农户的损失(同一组中的数据用该区间的中点值代表);(ⅱ)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户损失超过4 000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8 000元的农户数为X,求X的分布列和数学期望.[解析](1)(ⅰ)第1组的频数为100×0.100=10,所以①处应填的数为100-(10+20+20+10)=40, 从而第2组的频率为40100=0.400.②处应填的数为1-(0.1+0.4+0.2+0.1)=0.200. 频率分布直方图如图所示.(ⅱ)因为第3,4,5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试时,每组抽取的人数分别为:第3组:2050×5=2,第4组:2050×5=2,第5组:1050×5=1,所以第3,4,5组分别抽取2人,2人,1人进入第二轮面试. (ⅲ)记“第4组至少有一名选手被考官A 面试”为事件A , 则P(A)=C 12C 13+C 22C 25=710. ⎝ ⎛⎭⎪⎫或P A =1-P A -=1-C 23C 25=710 (2)(ⅰ)记每个农户的平均损失为x -元,则x -=1 000×0.3+3 000×0.4+5 000×0.18+7 000×0.06+9 000×0.06=33 601;(ⅱ)由频率分布直方图,可得损失超过 4 000元的农户共有(0.000 09+0.000 03+0.000 03)×2 000×50=15(户),损失超过8 000元的农户共有0.000 03×2 000×50=3(户),随机抽取2户,则X 的可能取值为0,1,2; 计算P(X =0)=C 212C 215=2235,P(X =1)=C 112C 13C 215=1235,P(X =2)=C 23C 215=135.所以X 的分布列为:X0 1 2P2235 1235 135数学期望为E(X)=0×2235+1×1235+2×135=25.名师点拨应用频率分布直方图时的注意事项用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)频率分布直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.〔变式训练1〕(1)(2021·安徽“皖南八校”摸底)某校高三年级有400名学生,在一次数学测试中,成绩都在[80,130](单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为_220__.(2)(2021·山西适应性考试)某病毒引起的肺炎的潜伏期平均为7天左右,短的约2~3天,长的约10~14天,甚至有20余天.某医疗机构对400名确诊患者的潜伏期进行统计,整理得到以下频率分布直方图.根据该直方图估计:要使90%的患者显现出明显病状,需隔离观察的天数至少是( C )A .12B .13C .14D .15[解析] (1)根据频率分布直方图知: (2a +0.04+0.03+0.02)×10=1⇒a =0.005; 计算出数学成绩不低于100分的频率为: (0.03+0.02+0.005)×10=0.55;所以这次测试数学成绩不低于100分的人数为0.55×400=220人.(2)由题可知,第一,二,三,四,五组的频率分别为0.16,0.4,0.32,0.08,0.04. 因为前三组的频率和为0.88, 故要使90%的患者显现出明显病状,则需隔离观察的天数至少是:13+0.9-0.880.02=14,故选C .考点二 茎叶图——师生共研例2 (多选题)(2021·四川省乐山市调研改编)胡萝卜中含有大量的β-胡萝卜素,摄入人体消化器官后,可以转化为维生素A ,现从a ,b 两个品种的胡萝卜所含的β-胡萝卜素(单位mg)得到茎叶图如图所示,则下列说法正确的是( ABD )A .x a <x bB .a 的方差大于b 的方差C .b 品种的众数为3.31D .a 品种的中位数为3.27 [解析] 由茎叶图得:b 品种所含β-胡萝卜素普遍高于a 品种, ∴x a <x b ,故A 正确;a 品种的数据波动比b 品种的数据波动大, ∴a 的方差大于b 的方差,故B 正确; b 品种的众数为3.31与3.41,故C 错误; a 品种的数据的中位数为:3.23+3.312=3.27,故D 正确.名师点拨茎叶图的绘制及应用(1)茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(2)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.〔变式训练2〕(2019·山东)如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 与y 的值分别为( A )A .3,5B .5,5C .3,7D .5,7[解析] 甲组数据的中位数为65,由甲、乙两组数据的中位数相等,得y =5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x)=15×(59+61+67+65+78),∴x =3.故选A . 考点三 样本数字特征——多维探究 角度1 样本数字特征与频率分布直方图例3 (1)如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( B )A .12.5,12.5B .12.5,13C .13,12.5D .13,13[解析] 由频率分布直方图可知,众数为10+152=12.5,因为0.04×5=0.2,0.1×5=0.5,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[10,15)内.设中位数为x ,则(x -10)×0.1=0.5-0.2,解得x =13.角度2 样本数字特征与茎叶图(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:⎪⎪⎪897 74 0 1 0 x 9 1则7个剩余分数的方差为_367__.[解析] 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4,∴s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.角度3 样本数字特征的计算(3)(2021·湖北武汉、襄阳、荆门、宜昌四地六校考试联盟联考)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s 2为( C )A .52B .3C .72D .4[解析] 设某7个数据分别为a 1,a 2,…,a 7, 则由题意得a 1+a 2+…+a 7=5×7=35, (a 1-5)2+(a 2-5)2+…+(a 7-5)2=4×7=28, 加入新数据5后的平均数x -=35+58=5,方差s 2=a 1-52+a 2-52+…+a 7-52+5-528=288=72.故选C .名师点拨平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数,中位数,众数描述其集中趋势,方差和标准差描述其波动大小.〔变式训练3〕(1)(角度1)某小区共有1 000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为_155__,平均数为_156.8__.(2)(角度2)(2021·陕西西安八校联考)在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( B )A .89 54.5B .89 53.5C .87 53.5D .89 54(3)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2:其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s′2,则x -′,s′2分别为( C )A .3x -+2,3s 2+2 B .3x -,3s 2C .3x -+2,9s 2D .3x -+2,9s 2+2[解析] (1)中位数为:150+(170-150)×0.10.02×20=155.该组数据的平均数为x =0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8.(2)由题可知,中位数为:87+912=89,先求平均数:x -=78+79+84+86+87+87+91+94+98+98+99+9912=90,S 2=112[(-12)2+(-11)2+(-6)2+(-4)2+(-3)2+(-3)2+12+42+82+82+92+92]=53.5,故中位数为:89,方差为53.5,故选:B .(3)显然x -′=3x -+2,而每个数据上都加上或减去相同数不影响方差,但每个数据都乘以a ,则方差变为原方差的a 2倍,故选C .考点四 折线图——师生共研例4 (多选题)(2021·河南顶级名校模拟改编)如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论不正确的是( BCD )A .连续三天日平均温度的方差最大的是7日,8日,9日三天B .这15天日平均温度的极差为15 ℃C .由折线图能预测16日温度要低于19 ℃D .由折线图能预测本月温度小于25 ℃的天数少于温度大于25 ℃的天数[解析] A 选项,日平均温度的方差的大小取决于日平均温度的波动的大小,7,8,9三日的日平均温度的波动最大,故日平均温度的方差最大,正确;B 选项,这15天日平均温度的极差为18 ℃,B 错;C 选项,由折线图无法预测16日温度是否低于19 ℃,故C 错误;D 选项,由折线图无法预测本月温度小于25 ℃的天数是否少于温度大于25 ℃的天数,故D 错误.故选B 、C 、D .名师点拨折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.〔变式训练4〕(多选题)甲乙两名同学在本学期的六次考试成绩统计如图,甲乙两组数据的平均值分别为x -甲、x -乙,则( BC )A .每次考试甲的成绩都比乙的成绩高B .甲的成绩比乙稳定C .x -甲一定大于x -乙D .甲的成绩的极差大于乙的成绩的极差[解析] 第二次考试甲的成绩比乙低,A 错;由图可知甲的成绩比乙的成绩波动小,B 正确,D 错;甲的平均成绩显然比乙的平均成绩高,C 正确;故选B 、C .名师讲坛·素养提升 高考与频率分布直方图例5 (2021·安徽省池州市期末)高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].其中a ,b ,c 成等差数列且c =2a ,物理成绩统计如表.(说明:数学满分150分,物理满分100分)分组 [50,60) [60,70) [70,80) [80,90) [90,100]频数6920105(1)根据频率分布直方图,请估计数学成绩的平均分; (2)根据物理成绩统计表,请估计物理成绩的中位数;(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人.记X 为抽到两个“优”的学生人数,求X 的分布列和期望值.[解析] (1)根据频率分布直方图得, (a +b +2c +0.024+0.020+0.004)×10 =1, 又因a +c =2b ,c =2a ,解得a =0.008,b =0.012,c =0.016, 故数学成绩的平均分x -=85×0.04+95×0.12+105×0.16+115×0.2+125×0.24 +135×0.16+145×0.08=117.8(分),(2)总人数50分,由物理成绩统计表知,中位数在成绩区间[70,80), 所以物理成绩的中位数为75分.(3)数学成绩为“优”的同学有4人,物理成绩为“优”有5人,因为至少有一个“优”的同学总数为6名同学,故两科均为“优”的人数为3人,故X 的取值为0、1、2、3.P(X =0)=C 33C 36=120,P(X =1)=C 13C 23C 36=920,P(X =2)=C 23C 13C 36=920,P(X =3)=C 33C 36=120,所以分布列为:X 0 1 2 3 P120920920120∴期望值为E(X)=0×120+1×920+2×920+3×120=32.名师点拨(1)通过统计图可以很清楚地表示出各部分数量同总数之间的关系. (2)准确理解频率分布直方图的数据特点是解题关键. 〔变式训练5〕(2019·高考全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解析](1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。

新高考新教材数学人教B版一轮课件:第十章 第二节 用样本估计总体 课件(71张)

新高考新教材数学人教B版一轮课件:第十章 第二节 用样本估计总体 课件(71张)
思维点2 根据频率分布直方图计算样本数据的百分位数 [例2] 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用 电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时 但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收 费. (1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式; (2)为了了解居民的用电情况,通过抽样获得了今年 1月份100户居民每户的用电量,统计分析后得到如图所 示的频率分布直方图.若这100户居民中,今年1月份用 电费用不超过260元的占80%,求a,b的值; (3)根据(2)中求得的数据计算用电量的75%分位数.
4.分层抽样的均值与方差
必备知识 关键能力 限时规范训练 8
我们以分两层抽样的情况为例.假设第一层有 m 个数,分别为 x1,x2,…,xm,平均
数为 x ,方差为 s2;第二层有 n 个数,分别为 y1,y2,…,yn,平均数为 y ,方差为 t2.则
x =__m1__i=m_1x_i___,s2=____m1__i=m_1_(_x_i-___x_)2____,
3.(链接人B必修第二册P64例1)一个容量为20的样本,其数据按从小到大的顺序排 列为:1,2,2,3,5,6,6,7,8,8,9,10,13,13,14,15,17,17,18,18,则该组数据的第75百分位数为 ________,第86百分位数为________.
解析:∵75%×20=15,∴第 75 百分位数为14+2 15=14.5.∵86%×20=17.2.∴第 86 百分位数为第 18 个数据 17.
必备知识 关键能力 限时规范训练 7
知识点三 极差、方差与标准差 1.极差:一组数的极差指的是这组数的最大值减去最小值所得的_差__.不难看出,极 差反应了一组数的变化范围,描述了这组数的__离__散__程度.

用样本估计总体

用样本估计总体
题型一 频率分布直方图的绘制与应用
基础知识
题型分类
思想方法
练出高分
由直方图可知众数为:100
中位数:设x为中位数,则有:
0.00610 0.02610 0.038x 95 0.5 得x 99.74
基础知识
题型分类
思想方法
练出高分
基础知识
度剖析
作茎叶图时, 将高位(十位与百位) 作为茎,低位 (个位)作为叶,逐 个统计;根据茎叶图分析两组数 据的特点,可以得出结论.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二 茎叶图的应用
解析 探究提高 思维启迪 【例 2】 某良种培育基地正在培育一种小麦 新品种 A.将其与原有的一个优良品种 B 进 行对照试验.两种小麦各种植了 25 亩,所 解 (1)如下图 得亩产数据(单位:千克)如下: 品种 A: 357,359,367,368,375,388,392,399,400,405,41 2,414,415,421,423,423,427,430,430,434,443, 445,445,451,454 品种 B: 363,371,374,383,385,386,391,392,394,394,39 (2) 由于每个品种的数据都只有 25 个,样本不大,画茎叶图很方 5,397,397,400,401,401,403,406,407,410,412, 便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比 415,416,422,430 (1)作出数据的茎叶图; 较,没有任何信息损失,而且还可以随时记录新的数据. (2)用茎叶图处理现有的数据,有什么优点? (3) 通过观察茎叶图可以看出:①品种 A 的亩产平均数(或均值) (3)通过观察茎叶图,对品种 A 与 B 的亩产 比品种 B 高; ②品种 A 的亩产标准差(或方差)比品种 B 大, 故品 量及其稳定性进行比较,写出统计结论.

用样本估计总体知识点

用样本估计总体知识点

用样本估计总体知识点在我们的日常生活和各种研究领域中,经常会遇到需要从部分数据来推断整体情况的情况。

这时候,“用样本估计总体”就成为了一种非常重要的方法和手段。

接下来,让我们一起深入了解一下这个有趣且实用的知识点。

首先,我们要明白什么是样本和总体。

总体,简单来说,就是我们所关心的研究对象的全体。

比如,要研究某个城市所有居民的收入情况,那么这个城市的所有居民就构成了总体。

而样本呢,则是从总体中抽取的一部分个体。

还是以城市居民收入为例,我们随机抽取了1000 位居民进行调查,这 1000 位居民的收入数据就是样本。

那么,为什么要用样本去估计总体呢?这主要是因为在很多情况下,要获取总体的全部数据几乎是不可能的,或者成本极高、耗费时间过长。

比如,要调查全国所有汽车的尾气排放情况,这几乎是无法做到的。

但是,通过抽取一定数量的汽车作为样本进行检测,就可以对整体情况做出一个相对合理的估计。

用样本估计总体,有几个关键的概念需要掌握。

第一个是样本容量。

样本容量就是样本中个体的数量。

一般来说,样本容量越大,对总体的估计就越准确。

但样本容量越大,调查的成本和难度也会相应增加。

所以,在实际应用中,需要根据研究的目的和实际情况,合理确定样本容量。

第二个是抽样方法。

常见的抽样方法有简单随机抽样、分层抽样和系统抽样等。

简单随机抽样就是从总体中随机地抽取个体,每个个体被抽到的概率相等。

比如,从一个装有 100 个球的箱子里,随机抽取 10 个球,每个球被抽到的机会都是一样的。

分层抽样则是先将总体按照某些特征分成若干层,然后从每一层中分别进行抽样。

例如,要调查一个学校学生的视力情况,可以先按照年级分层,然后从每个年级中抽取一定数量的学生。

系统抽样是先将总体中的个体按照一定的顺序编号,然后按照固定的间隔抽取样本。

比如,从 1000 个学生中抽取 50 个样本,可以先将学生编号 1 到 1000,然后每隔 20 个抽取一个。

选择合适的抽样方法对于获得具有代表性的样本至关重要。

用样本估计总体

用样本估计总体

思考1:上述100个数据中的最大值和最 小值分别是什么?由此说明样本数据的 变化范围是什么?
0.2~4.3
思考2:样本数据中的最大值和最小值 的差称为极差.如果将上述100个数据 按组距为0.5进行分组,那么这些数据 共分为多少组?
(4.3-0.2)÷0.5=8.2
思考3:以组距为0.5进行分组,上述100 个数据共分为9组,各组数据的取值范围 可以如何设定?
(2)大部分居民的月均用水量集中在一个中间值 附近,只有少数居民的月均用水量很多或很少;
(3)居民月均用水量的分布有一定的对称性等.
思考4:样本数据的频率分布直方图是 根据频率分布表画出来的,一般地,频 率分布直方图的作图步骤如何?
第一步,画平面直角坐标系.
第二步,在横轴上均匀标出各组分点, 在纵轴上标出 [153.5,156.5) [156.5,159.5) [159.5,162.5) [162.5,165.5) [165.5,168.5) [168.5,171.5) [171.5,174.5) [174.5,177.5) [177.5,180.5]
合计
频数 1 1 4 5 8 11 6 2 1 1 40
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
上图称为频率分布直方图,其中横轴 表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的和高 度在数量上有何特点?
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2

第10章 第2节 用样本估计总体-2023届高三一轮复习数学精品备课(新高考人教A版2019)

第10章 第2节 用样本估计总体-2023届高三一轮复习数学精品备课(新高考人教A版2019)
第二节 用样本估计总体
基础知识·自主回顾
知识梳理
1.作频率分布直方图的步骤
(1)求极差(即一组数据中_最_大__值__与_最_小__值__的差); (2)决定_组_距__与组__数__; (3)将数据_分_组__; (4)列_频__率__分_布__表__; (5)画_频__率_分__布__直__方__图__.
记 C 为事件:“乙离子残留在体内的百分比不低于 5.5”,
根据直方图得到 P(C)的估计值为 0.70. (1)求乙离子残留百分比直方图中 a,b 的值; (2)分别估计甲、乙离子残留百分比的平均值(同一组中 的数据用该组区间的中点值为代表).
[自主解答] (1)由已知得 0.70=a+0.20+0.15, 故 a=0.35.b=1-0.05-0.15-0.70=0.10. (2)甲离子残留百分比的平均值的估计值为 2 × 0.15 + 3×0.20 + 4×0.30 + 5×0.20 + 6×0.10 + 7×0.05=4.05. 乙离子残留百分比的平均值的估计值为 3 × 0.05 + 4×0.10 + 5×0.15 + 6×0.35 + 7×0.20 + 8×0.15=6.00.
A.3,5 C.3,7
B.5,5 D.5,7
[自主解答] (1)根据两组数据的中位数相等可得 65=60+y,解得 y=5,又它们的平均值相等, 所以56+62+65+574+(70+x) =59+61+67+5(60+y)+78, 解得 x=3.故选 A.
(2)某调查机构对全国互联网行业进行调查统计 ,得到 整个互联网行业从业者年龄分布饼状图,90 后从事互联网 行业者岗位分布条形图,则下列结论中不一定正确的是 ()
D.极差
解析 设 9 位评委评分按从小到大排列为 x1<x2<x3<x4…<x8<x9.则原始中位数为 x5,去掉最低分 x1,最 高分 x9,后剩余 x2<x3<x4…<x8,中位数仍为 x5,故选 A.

用样本估计总体

用样本估计总体
返回
解析:甲比赛得分旳中位数为28,乙比赛得分旳中位 数为36,所以甲、乙两人比赛得分旳中位数之和为28 +36=64. 答案: 64
返回
4.(2023·台州联考)甲、乙两个体能康复训练小组各有 10名组员,经过一段时间训练后,某项体能测试成 果旳茎叶图如图所示,则这两个小组中体能测试平 均成绩较高旳是________组.
返回
[自主解答] (1)当X=8时,由茎叶图可知,乙组同学的植树棵数 是:8,8,9,10, 所以平均数为: x =8+8+49+10=345; 方差为:s2=14×[(8-345)2+(8-345)2+(9-345)2+(10-345)2]=1116.
返回
(2)记甲组四名同学为A1,A2,A3,A4,他们植树旳棵 数依次为9,9,11,11; 乙组四名同学为B1,B2,B3,B4,他们植树旳棵数依 次为9,8,9,10.分别从甲、乙两组中随机选用一名同学, 全部可能旳成果有16个: (A1,B1),(A1,B2),(A1,B3),(A1,B4), (A2,B1),(A2,B2),(A2,B3),(A2,B4), (A3,B1),(A3,B2),(A3,B3),(A3,B4), (A4,B1),(A4,B2),(A4,B3),(A4,B4),
返回
2.对原则差与方差旳了解: 原则差、方差描述了一组数据围绕平均数波动旳大 小.原则差、方差越大,数据旳离散程度越大,原则 差、方差越小,数据旳离散程度越小,因为方差与原 始数据旳单位不同,且平方后可能夸张了偏差旳程度, 所以虽然方差与原则差在刻画样本数据旳分散程度上 是一样旳,但在处理实际问题时,一般多采用原则差.
学生旳体重情况,将所得旳数据整顿后,画出了频率 分布直方图(如图),已知图中从左到右旳前3个小组旳 频率之比为1∶2∶3,第2小组旳频数为12,则报考飞 行员旳学生人数是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.本例条件不变,现欲从参加铅球测试的学生中抽取10 人,调查他们铅球状况,则成绩在[8.85,9.75]的学生 应抽取几人? 解:由于参加铅球测试的学生的成绩存在较大差异, 故可用分层抽样进行,成绩在[8.85,9.75]的学生应抽 取0.30×50× =3人.
由于茎叶图较好地保留了原始数据,所以可以帮助我 们分析样本数据的大致概率分布.在利用茎叶图分析数据 特点时,要注意区别茎与叶.
根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较, 写出两个统计结论: ①________________________________________________ __________________________________________________; ②________________________________________________ __________________________________________________.
数字
方差 其中s为标准差.
在频率分布直方图中,中位数、众数与平均数如何
确定? 提示:在频率分布直方图中,中位数左边和右边的 直方图的面积相等,由此可以估计中位数的值,而 平均数的估计值等于频率分布直方图中每个小矩形 的面积乘以小矩形底边中点的横坐标之和.众数是
答案:乙
频率分布直方图反映样本的频率分布:
(1)频率分布直方图中横坐标表示组距,纵坐标表示
频率=组距×

(2)频率分布直方图中各小长方形的面积之和为1,因此在 频率分布直方图中组距是一个固定值,所以各小长方形高 的比也就是频率比.
(3)频率分布表和频率分布直方图是一组数据频率分布的两 种形式,前者准确,后者直观. (4)众数为最高矩形中点的横坐标. (5)中位数为平分频率分布直方图面积且垂直于横轴的直线 与横轴交点的横坐标.
280
303 328 295 318
285
307 331 304 318
285
308 334 306 320
287
310 337 307 322
292
314 352 312 322
294
319
295
323
313 324
315 327
329
331
333
336
337
343
356
由以上数据设计了如下茎叶图:
一、作频率分布直方图的步骤
1.求极差(即一组数据中 最大值 与最小值 的差).
2.决定组距 与 组数 .
3.将数据 分组 . 4.列 频率分布表 .
5.画 频率分布直方图 .
二、频率分布折线图和总体密度曲线
1.频率分布折线图:连接频率分布直方图中各小长方形上 端的 中点 ,就得频率分布折线图. 2.总体密度曲线:随着 样本容量的增加,作图时 所分组数 增加, 组距 减小,相应的频率折线图会越来越接近于一
差描述波动大小.
2.平均数、方差的公式推广 (1)若数据x1,x2,…,xn的平均数为 (2)数据x1,x2,…,xn的方差为s2. ,那么mx1+a, +a. mx2+a,mx3+a,…,mxn+a的平均数是m
①s2=
②数据x1+a,x2+a,…,xn+a的方差也为s2; ③数据ax1,ax2,…,axn的方差为a2s2.
为了了解某校初中毕业男生的体能状况,从该校 初中毕业班学生中抽取若干名男生进行铅球测试,把所得
数据(精确到0.1米)进行整理后,分成6组画出频率分布直方
图的一部分(如下图),已知从左到右前5个小组的频率分别 为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)请将频率分布直方图补充完整;
解:可从以下几个结论中任意写出两个. ①乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均 长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的 纤维长度).
②甲品种棉花的纤维长度较乙品种棉花的纤维长度更分
散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长 度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙 品种棉花的纤维长度的分散程度更大).
品种B:
363,371,374,383,385,386,391,392,394,394,395,397,397,400,40 1,401,403,406,407,410,412,415,416,422,430
(1)完成数据的茎叶图; (2)用茎叶图处理现有的数据,有什么优点? (3)通过观察茎叶图,对品种A与B的亩产量及其稳定性 进行比较,写出统计结论.
条光滑曲线,即总体密度曲线.
三、样本的数字特征
数字 特征 定义
众数
在一组数据中,出现次数 最多 的数据叫做这组数据的众数.
将一组数据按大小依次排列,把处在 最中间 位置的一个数 据(或最中间两个数据的平均数)叫做这组数据的 中位数 .
中位数
在频率分布直方图中,中位数左边和右边的直方图的面积
应该 相等 .
(2)该校参加这次铅球测试的男生有多少人?
(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球 测试的成绩的合格率; (4)在这次测试中,你能确定该校参加测试的男生铅球成 绩的众数和中位数各落在哪个小组内吗?
根据频率分布直方图的含义可求.
【解】
(1)由频率分布直方图的意义知,各小组频率之和
为1,故第6小组的频率为 1-(0.04+0.10+0.14+0.28+0.30)=0.14.
易知第6小组与第3小组的频率相等,故两个小长方形等高,
图略. (2)由(1)知,第6小组的频率是0.14,又因为第6小组的频数 是7,现设参加这次测试的男生有x人,根据频率定义,得 =0.14,即x=50(人). (3)由图可知,第4、5、6小组成绩在8.0米以上,其频率之 和为0.28+0.30+0.14=0.72.故合格率为72%. (4)能确定中位数落在第4小组,而众数落在第5小组.
答案:1.5
5.甲、乙两人比赛射击,两人所得的平均环数相同,其
中甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5,
那么这两人中成绩较稳定的是________. 解析:
1 × 5 (4+1+4+9+4)=4.4.
[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=
∴乙稳定.
下列说法正确的个数为 ①甲队的技术比乙队好; 乙队几乎每场都进球; A.1 ( ②乙队发挥比甲队稳定; ④甲队的表现时好时坏. B.2 ) ③
C.3
D.4
解析:四种说法都正确,甲队的平均进球数多于乙队,故
第一句正确;乙队标准差较小,说明技术水平稳定;甲队
平均进球数是3.2,但其标准差却是3,离散程度较大,由
甲乙二人参加某体育项目训练,近期的五次测试 成绩得分情况如图.
(1)分别求出两人得分的平均数与方差;
(2)根据图和上面算得的结果,对两人的训练成绩作出评价.
(1)先通过图象统计出甲、乙二人的成绩; (2)利用公式求出平均数、方差,再分析两人的 成绩,作出评价.
【解】
(1)由图象可得甲、乙两人五次测试的成绩分别为
大,故品种A的亩产稳定性较差.
2.如图是某电视台综艺节目举办的挑战主持人大赛上, 七位评委为某选手打出的分数的茎叶统计图,去掉一 个最高分和一个最低分后,所剩数据的平均数和方差 分别为 A.84,4.84 C.85,4 B.84,1.6 D.85,1.6 ( )
解析:由茎叶图可知评委打出的最低分为79,最高分为93,
,可知乙的成绩较稳定.
从折线图看,甲的成绩基本呈上升状态,而乙的成绩上
下波动,可知甲的成绩在不断提高,而乙的成绩则无明 显提高.
4.从某学校高三年级共800名男生中随机抽取50名测量 身高,测量发现被测学生身高全部介于155 cm和195 cm 之间,将测量结果按如下方式分成八组:第一组
[155,160);第二组[160,165)、…、第八组[190,195],下
设第六组人数为m,则第七组人数为0.18×50-2-m=7-m,
又m+2=2(7-m),所以m=4, 即第六组人数为4人,第七组人数为3人,频率分别为0.08, 0.06.
由数据可得茎叶图,结合茎叶图的特点得出结论.
【解】
(1)
(2)由于每个品种的数据都只有25个,样本不大,画茎叶 图很方便;此时茎叶图不仅清晰明了地展示了数据的分 布情况 ,便于比较,没有任何信息损失,而且还可以随 时记录新的数据.
(3)通过观察茎叶图可以看出:①品种A的亩产平均数(或
均值)比品种B高;②品种A的亩产标准差(或方差)比品种B
其余得分为84,84,86,84,87,故平均分为 =
85,方差为
=1.6. 答案:D
[3×(84-85)2+(86-85)2+(87-85)2]
3.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度 (单位:mm),结果如下:
甲品种:271
301 325 乙品种:284 315
273
303 325 292 316
③甲品种棉花的纤维长度的中位数为307 mm,乙品种棉 花的纤维长度的中位数为318 mm. ④乙品种棉花的纤维长度基本上是对称的,而且大多集中 在中间(均值附近).甲品种棉花的纤维长度除一个特殊值 352外,也大致对称,其分布较均匀.
1.平均数与方差都是重要的数字特征,是对总体的一种简 明的描述,它们所反映的情况有着重要的实际意义, 平均数、中位数、众数描述其集中趋势,方差和标准
此可判断甲队表现不稳定;平均进球数是1.8,标准差只有
0.3,每场的进球数相差不多,可见乙队的确很少不进球. 答案:D
4.如图是某兴趣小组学生在一次数学测验中 的得分茎叶图,则该组男生的平均得分与
女生的平均得分之差是________.
相关文档
最新文档