(华师大版)九年级数学下:27.2.3切线(含答案)
新华师版初中数学九年级下册精品课件27.2.3 切 线
1.证明直线与圆相切有如下三种途径: (1)定义法:和圆有且只有一个公共点的直线是圆的
切线. (2)数量法(d=r):圆心到直线的距离等于半径的
直线是圆的切线. (3)判定定理:经过半径的外端并且垂直于这条半径
的直线是圆的切线.
2.作辅助线的两种方法: (1)若直线与圆的公共点未指明,则过圆心作直线的垂线段,
1 2
,∴∠A=30°.
总结
知2-讲
当圆中有切线和切点时,通常连结过切点的半径,则 这条半径必与切线垂直.本例中作辅助线的方法,适 用于同类条件下与圆有关的求值或证明题.
(来自《 》)
知2-练
1 (2015·吉林)如图,在⊙O中,AB为直径,BC为 弦,CD为切线,连结OC.若∠BCD=50°,则 ∠AOC的度数为( ) A.40° B.50° C.80° D.100°
第27章 圆
27.2 与圆有关的位置关系
第3课时 切 线
1 课堂讲解 切线的判定
切线的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
根据图形,回答以下问题:
(1) 在图中,直线l分别与⊙O的是什么关系? (2)在上边三个图中,哪个图中的直线l 是圆的切线?
你是怎样判断的?
知识点 1 切线的判定
知2-讲
1. 性质定理:圆的切线垂直于经过切点的半径. 要点精析: (1)性质定理的题设有两个条件:
①圆的切线;②半径过切点,应用时缺一不可. (2)切线的判定定理与性质定理的区别:切线的判定定理
是在未知相切而要证明相切的情况下使用,切线的性 质定理是在已知相切而要推得其他的结论时使用;它 们是一个互逆的过程,不要混淆.
201X春九年级数学下册 第27章《圆》27.2.3 切线(一)习题课件(新版)华东师大版
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 Байду номын сангаас反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
27.2.3 第1课时 切线的判定与性质定理课件2023-2024学年华东师大版九年级数学下册
预习导学
(1)用一根细线系一个小球,当你快速转动细线时,小球运
动形成一个圆,突然这个小球脱落,沿着圆的边缘飞出去,你
知道小球顺着什么方向飞出去吗?(2)下雨天,快速转动雨伞,
雨伞上的水珠是顺着什么方向飞出去的?
预习导学
切线的判定定理
阅读课本本课时前5段的内容,完成下面问题.
如图,OA是☉O的半径,记为r,过点A作直线l⊥OA.
共点,应该“作垂线”.
合作探究
变式演练 在上题中,如果已知OA、OB是☉D的切线,切
点分别是E,F,试说明OD是∠AOB的平分线.
证明:连接DE,DF,图略.
∵OA,OB是☉D的切线,
∴DE⊥OA,DF⊥OB.
在Rt△EOD与Rt△FOD中,
∵DE=DF,OD=OD,
∴Rt△EOD≌Rt△FOD,
第27章 圆
27.2 与圆有关的位置关系
27.2.3 切线
第1课时 切线的判定与性质定理
素养目标
1.通过探究,得出切线的判定定理,能够运用切线的判定定
理解决问题.
2.知道切线的性质定理,并能运用切线的性质定理解决问题.
◎重点:运用圆的切线的判定定理和性质定理进行证明与计
算.
◎难点:灵活运用所学知识解决有关切线问题.
∴∠EOD=∠FOD,
∴OD是∠AOB的平分线.
合作探究
如图,在Rt△ABC中,∠C=90°,∠BAC的平分
线AD交BC边交于点D.以AB边上一点O为圆心,过A,D两点作
☉O(不写作法,保留作图痕迹),再判断直线BC与☉O的位置关
系,并说明理由.
合作探究
解:如图,BC是☉O的切线.
理由如下:连接OD,
(华师大版)九年级数学下:27.2.3切线(含答案)
27.2.3切线一.选择题(共8小题)1.下列说法正确的是()A.相切两圆的连心线经过切点B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦D.相等的圆心角所对的弦相等2.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°3.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3 B.2 C.1 D.04.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.45.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°6.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切A.2.5 B.1.6 C.1.5 D.17.如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.48.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A.3 B.4 C.4D.2二.填空题(共6小题)9.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为_________cm.10.如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=_________.11.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_________°.12.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=_________度.13.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是_________.(结果保留π)三.解答题(共8小题)14.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.15.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.16.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.17.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC 于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.18.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=_________°,理由是_________;(2)⊙O的半径为3,AC=4,求CD的长.19.如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.20.如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.21.如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.27.2.3切线参考答案与试题解析一.选择题(共8小题)1.下列说法正确的是()A.相切两圆的连心线经过切点B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦D.相等的圆心角所对的弦相等考点:切线的性质;圆的认识;垂径定理;圆心角、弧、弦的关系.分析:要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.解答:解:A、根据圆的轴对称性可知此命题正确.B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误;B、此弦不能是直径,命题错误;C、相等的圆心角指的是在同圆或等圆中,此命题错误;故选A.点评:本题考查知识较多,解题的关键是运用相关基础知识逐一分析才能找出正确选项.2.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B25°C.40°D.50°考点:切线的性质;圆心角、弧、弦的关系.专题:几何图形问题.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.3.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A. 3 B.2 C.1 D.0考点:切线的性质.专题:几何图形问题.分析:连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论①②③成立.解答:解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故答案选:A.点评:本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.4.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.40°考点:切线的性质.分析:连接OC,根据切线的性质求出∠OCD=90°,再由圆周角定理求出∠COD的度数,根据三角形内角和定理即可得出结论.解答:解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°﹣90°﹣50°=40°.故选:D.点评:本题考查的是切线的性质,熟知圆的切线垂直于经过切点的半径是解答此题的关键.5.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45° C.60° D. 40°考点:切线的性质.专题:计算题.分析:根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.解答:解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.6.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A. 2.5 B. 1.6 C. 1.5 D. 1考点:切线的性质;相似三角形的判定与性质.专题:几何图形问题.分析:连接OD、OE,先设AD=x,再证明四边形ODCE是矩形,可得出OD=CE,OE=CD,从而得出CD=CE=4﹣x,BE=6﹣(4﹣x),可证明△AOD∽OBE,再由比例式得出AD的长即可.解答:解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,又∵OD=OE,∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴=,∴=,解得x=1.6,故选:B.点评:本题考查了切线的性质.相似三角形的性质与判定,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形,证明三角形相似解决有关问题.7.如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D. 4考点:切线的性质;角平分线的性质;解直角三角形.分析:连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.解答:解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:C.点评:此题主要考查切线及角平分线的性质,勾股定理等知识点,属中等难度题.8.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A. 3 B.4 C.4D.2考点:切线的性质;圆周角定理;相似三角形的判定与性质;射影定理.专题:压轴题.分析:延长EC交圆于点F,连接DF.则根据90°的圆周角所对的弦是直径,得DF是直径.根据射影定理先求直径,再得半径.解答:解:延长EC交圆于点F,连接DF.则根据90°的圆周角所对的弦是直径,得DF是直径.∴△ADE∽△ABC.∴.则DE=4.在直角△ADF中,根据射影定理,得EF==4.根据勾股定理,得DF==4,则圆的半径是2.故选D.点评:此题要能够通过作辅助线,把直径构造到直角三角形中.熟练运用相似三角形的性质、圆周角定理的推论以及射影定理和勾股定理.二.填空题(共6小题)9.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.考点:切线的性质;垂径定理;圆周角定理;弦切角定理.专题:几何图形问题.分析:连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边的倍.已知边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得FC=OC•cos30°=,OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3.故答案为:3.点评:本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目.10.如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.考点:切线的性质;勾股定理.专题:计算题.分析:先根据切线的性质得到OA⊥PA,然后利用勾股定理计算PA的长.解答:解:∵PA切⊙O于A点,∴OA⊥PA,在Rt△OPA中,OP=5,OA=3,∴PA==4.故答案为:4.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.11.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质;圆周角定理.专题:几何图形问题.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40度.考点:切线的性质;圆周角定理.专题:计算题.分析:连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到∠A=∠ODA,求出∠ODA的度数,再由∠COD为△AOD外角,求出∠COD度数,即可确定出∠C的度数.解答:解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40点评:此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键.13.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是16π.(结果保留π)考点:切线的性质;勾股定理;垂径定理.专题:计算题.分析:设AB与小圆切于点C,连结OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),以及勾股定理即可求解.解答:解:设AB与小圆切于点C,连结OC,OB.∵AB与小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16π.故答案为:16π.点评:此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.三.解答题(共8小题)14.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.考点:切线的性质;相似三角形的判定与性质.专题:几何综合题.分析:(1)连结OC,OA,先根据等腰三角形的性质得出∠ACO=∠CAO,再由PC是⊙O的切线,C为切点得出∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中根据三角形内角和定理可知∠ACO+∠CAO+∠AOC=180°,由圆周角定理可知∠AOC=2∠PBC,故可得出∠ACO+∠PBC=90°,再根据∠PCA+∠ACO=90°即可得出结论;(2)先根据相似三角形的判定定理得出△PAC∽△PCB,由相似三角形的对应边成比例即可得出结论.解答:(1)证明:连结OC,OA,∵OC=OA,∴∠ACO=∠CAO,∵PC是⊙O的切线,C为切点,∴PC⊥OC,∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°,∴∠ACO+∠PBC=90°,∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC;(2)解:∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB,∴=,∴PC2=PA•PB,∵PA=3,PB=5,∴PC==.点评:本题考查的是切线的性质,根据题意作出辅助线,构造出圆心角是解答此题的关键.15.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.考点:切线的性质.分析:(1)根据弦切角定理得∠CDE=∠COD,再由同弧所对的圆心角是圆周角的2倍,可得∠CDE=∠COD=2∠B;(2)连接AD,根据三角函数求得∠B=30°,则∠EOD=60°,推得∠C=30°,根据∠C的正切值,求出圆的半径,再在Rt△CDE中,利用∠C的正弦值,求得DE,从而得出DF的长.解答:(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.点评:本题考查的是切割线定理,切线的性质定理,勾股定理,熟练掌握和正确运用定理是解题的关键.16.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.考点:切线的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据AB,CD是直径,可得出∠ADB=∠CBD=90°,再根据HL定理得出Rt△ABD≌Rt△CDB;(2)由BE是切线,得AB⊥BE,根据∠DBE=37°,得∠BAD,由OA=OD,得出∠ADC的度数.解答:(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD和Rt△CDB(HL);(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°﹣53°=37°,∴∠ADC的度数为37°.点评:本题考查了切线的性质以及全等三角形的判定和性质,是基础题,难度不大.17.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC 于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.考点:切线的性质.专题:几何综合题.分析:(1)连接OD,可以证得DE⊥OD,然后证明OD∥AC即可证明DE⊥AC;(2)利用△DAE∽△CDE,求出DE与CE的比值即可.解答:(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE中,∴△CDE∽△DAE,∴,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,∴,整理得:x2﹣3x+1=0,解得:x=,∴tan∠ACB=或.点评:本题主要考查了切线的性质的综合应用,解答本题的关键在于如何利用三角形相似求出线段DE与CE的比值.18.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=90°,理由是圆的切线垂直于经过切点的半径;(2)⊙O的半径为3,AC=4,求CD的长.考点:切线的性质;相似三角形的判定与性质.专题:几何综合题.分析:(1)根据切线的性质定理,即可解答;(2)首先证明△ABC∽△CDB,利用相似三角形的对应边的比相等即可求解.解答:解:(1)∵CD与⊙O相切,∴OC⊥CD,(圆的切线垂直于经过切点的半径)∴∠OCD=90°;故答案是:90,圆的切线垂直于经过切点的半径;(2)连接BC.∵BD∥AC,∴∠CBD=∠OCD=90°,∴在直角△ABC中,BC===2,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠ACB,∴△ABC∽△CDB,∴=,∴=,解得:CD=3.点评:本题考查了切线的性质定理以及相似三角形的判定与性质,证明两个三角形相似是本题的关键.19.如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.考点:切线的性质;相似三角形的判定与性质.专题:数形结合.分析:(1)首先连接OD,由BD是⊙O的切线,AC⊥BD,易证得OD∥AC,继而可证得AD平分∠BAC;(2)由OD∥AC,易证得△BOD∽△BAC,然后由相似三角形的对应边成比例,求得AC的长.解答:(1)证明:连接OD,∵BD是⊙O的切线,∴OD⊥BD,∵AC⊥BD,∴OD∥AC,∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2,即AD平分∠BAC;(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,∴,解得:AC=.点评:此题考查了切线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.考点:切线的性质.专题:几何综合题.分析:(1)连接DC,根据AB是⊙C的切线,所以CD⊥AB,根据CD=,得出∠A=30°,因为AC=BC,从而求得∠ACB的度数.(2)通过△ACD≌△BCF求得∠AFB=90°,已知AC=8,根据已知求得AF=12,由于∠A=30°得出BF=AB,然后依据勾股定理求得BF的长,即可求得三角形的面积.解答:解:(1)连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵CF=AC,CF=CE,∴AE=CE,∴ED=AC=EC,∴ED=EC=CD,∴∠ECD=60°,∴∠A=30°,∵AC=BC,∴∠ACB=120°.(2)∵∠A=30°,AC=BC,∴∠ABC=30°,∴∠BCF=60°,在△ACD与△BCF中∴△ACD≌△BCF(SAS)∴∠ADC=∠BFC,∵CD⊥AB,∴CF⊥BF,∵AC=8,CF=AC.∴CF=4,∴AF=12,∵∠AFB=90°,∠A=30°,∴BF=AB,设BF=x,则AB=2x,∵AF2+BF2=AB2,∴(2x)2﹣x2=122解得:x=4即BF=4∴△ABF的面积===24,点评:本题考查了切线的性质,全等三角形的判定及性质,勾股定理的应用等,构建全等三角形是本题的关键.21.如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.考点:切线的性质;勾股定理;相似三角形的性质.专题:几何图形问题.分析:(1)设⊙O的半径为R,根据切线定理得OB⊥AB,则在Rt△ABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CD⊥OB得DE=CE,再证明△OEC∽△OBA,利用相似比可计算出CE=,所以CD=2CE=.解答:解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、垂径定理和相似三角形的判定与性质.。
27.2.3 切线 放——切线长定理与三角形的内切圆课件华东师大版数学九下
2.△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且
AB=5cm,BC=9cm,CA=6cm.求AD、BE和CF的长.
解:设AD=x cm,BE=y cm,CF=z cm.
∵⊙O与AB,BC,CA分别相切于点D,E,F,
∴AD=AF=x cm,BE=BD=y cm,CE=CF=z cm,
∴PA=PB,∠APO=∠BPO.
切线长定理
过圆外一点所画的圆的两条切线,它们的
切线长相等.这一点和圆心的连线平分这两条切 线的夹角.
几何语言:
PA、PB分别切 ⊙O于A、B
PA = PB ∠APO=∠BPO
切线长定理为证明线段相等、 角相等提供新的方法.
P
A
B
O
若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?
切线的判定定理:
O
经过圆的半径的外端且垂直于这条半径的
直线是圆的切线.
l A
切线的性质定理: 圆的切线垂直于经过切点的半径.
O
P
A
l
探究新知 问题:过圆外一点可以作圆的几条切线?
A
O
P
B
我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.
A O
线段PA、PB的长就是 点P到⊙O的切线长.
解:⊙O为△ABC的内切圆,且点D、E、F为切点. ∴∠ODB=∠OEB=∠ODA=∠OFA=∠OFC= ∠OEC=90°, ∴∠A=360°-∠DOF-∠ADO-∠AFO
=360-(360°-120°-150°)-90°-90°= 90°, ∠B=360°-∠DOE-∠BDO-∠BEO=60°, ∠C=360°-∠EOF-∠CFO-∠CEO=30°. 即△ABC的三个内角的度数分别为 90°,60°,30°.
华东师大版九年级数学下册27.2.3:第1课时 切线的判定与性质 同步测试试题(含答案)
华东师大版九年级数学下册第27章27.2.3第1课时切线的判定与性质同步测试题一、选择题(每小题3分,共24分)1.下列说法中,正确的是(D)A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是(D)A.AB=4,AT=3,BT=5B.∠B=45°,AB=ATC.∠B=55°,∠TAC=55°D.∠ATC=∠B3.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点.若∠C=40°,则∠B的度数为(B)A.60°B.50°C.40°D.30°4.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是(D)A.64°B.58°C.32°D.26°5.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是(C)A.PA=PBB.∠APO=20°C.∠OBP=70°D.∠AOP=70°6.如图, AB为⊙O的切线,切点为A,连结AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连结AD.若∠ABO=36°,则∠ADC的度数为(D)A.54°B.36°C.32°D.27°7.如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=(B).A.50°B.60°C.40°D.70°8.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为( D )A.3或2 3.B.4 3.C.3D.3或4 3.二、填空题(每小题3分,共21分)9.如图,两个同心圆的大圆半径长为 5 cm,小圆半径长为 3 cm,大圆的弦AB 与小圆相切,切点为C,则弦AB的长为8__cm.10.如图,已知PA切⊙O于点A,PO交⊙O于点B.若PA=6,BP=4,则⊙O的半径为2.5.11.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为∠ABC=90°.12.如图,点A,B,D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,则直线BC与⊙O的位置关系为相切.13.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C =45度.14.如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于点P.若∠P=40°,则∠D的度数为115°.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为12 5.三、解答题(共55分)16.如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为D,连结BC,BC平分∠ABD.求证:CD为⊙O的切线.证明:∵BC平分∠ABD,∴∠OBC=∠DBC.∵OB=OC,∴∠OBC=∠OCB.∴∠DBC=∠OCB.∴OC∥BD.∵BD⊥CD,∴OC⊥CD.又∵点C为⊙O上一点,∴CD为⊙O的切线.17.如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C.求证:AC=BC.证明:∵AB切⊙O于点C,∴OC⊥AB.∵OA=OB,∴AC=BC.18.如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.解:(1)证明:连结OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA.∵OM∥AP,∴四边形ANMO是矩形.∴OM=AN.(2)连结OB,则OB⊥BP.∴∠OBM=∠MNP=90°.∵OA=MN,OA=OB,OM∥AP,∴OB=MN,∠OMB=∠MPN.∴△OBM≌△MNP(AAS).∴OM=MP.设OM=AN=MP=x,则NP=9-x,在Rt△MNP中,有x2=32+(9-x)2,∴x=5,即OM=5.19.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于点D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.解:(1)连结AD,∵AB是⊙O的直径,∴∠ADB=90°.又∵∠ABC=30°,AB=4,∴BD=2 3.∵D是BC的中点,∴BC=2BD=4 3.(2)证明:连结OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线.∴OD∥AC.∴∠EDO=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠EDO=∠CED=90°.又∵OD是⊙O的半径,∴DE是⊙O的切线.20.如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径作圆,与BC 相切于点C,过点A作AD⊥BO交BO的延长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=43,求AD的长.解:(1)证明:过点O 作OE ⊥AB 于点E.∵AD ⊥BO ,∴∠D =90°.∴∠BAD +∠ABD =90°,∠AOD +∠OAD =90°. ∵∠AOD =∠BAD ,∴∠ABD =∠OAD.∵BC 为⊙O 的切线,∴AC ⊥BC.∴∠BCO =∠D =90°.又∵∠BOC =∠AOD ,∴∠OBC =∠OAD =∠ABD.在△BOC 和△BOE 中,⎩⎨⎧∠OBC =∠OBE ,∠OCB =∠OEB =90°,BO =BO ,∴△BOC ≌△BOE(AAS).∴OE =OC.∴OE 为⊙O 的半径.∴AB 是⊙O 的切线.(2)∵∠ABC +∠BAC =90°,∠EOA +∠BAC =90°, ∴∠EOA =∠ABC.∵tan ∠ABC =43,BC =6,∴AC =BC ·tan ∠ABC =8.∴AB =10. 由(1)知BE =BC =6,∴AE =4.∵tan ∠EOA =tan ∠ABC =43, ∴OE AE =34.∴OE =3,OB =BE 2+OE 2=3 5. ∵∠ABD =∠OBE ,∠D =∠BEO =90°, ∴△ABD ∽△OBE.∴OE AD =OB AB ,即3AD =3510. ∴AD =2 5.。
最新华师大版九年级下册数学精品课件27.2.3 切线(1)
∴∠AOB=∠OBA=45°,
∴∠OAB=90°. 即OA⊥AB. 又∵点A在圆上,
∴ 直线AB是☉O的切线.(切线的判定定理) 最新华师大版九年级下册数学精品 资料设计
做一做
B
如图,AB是☉O的直径,∠ABT=45°,
AT=BA.
O
求证:AT是☉O的切线.
T
A
解析:AT经过直径的一端,因此只要证AT垂直于AB即可.
没有垂直.
的外端点A.
注意 在此定理中,“经过半径的外端”和“垂直于这
条半径”,两个条件缺一不可,否则就不是圆的切线.
最新华师大版九年级下册数学精品 资料设计
要点归纳
判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共
点时,我们说这条直线是圆的切线;
l
2.数量关系法:圆心到这条直线的 距离等于半径(即d=r)时,直线与 圆相切;
证明:∵AT=AB,∴∠ABT=∠ATB,又∵∠ABT=45°, ∴∠ATB=45°.
∴∠TAB=180°-∠ABT-∠ATB=90°. 即AT⊥AB. ∴AT是☉O的切线.
最新华师大版九年级下册数学精品 资料设计
切线的性质
思考:如图,如果直线l是☉O 的切线,点A为切点,那么 OA与l垂直吗?
切线的性质定理 圆的切线垂直于经过切点的半径.
应用格式 ∵直线l是☉O的切线,A是切点, ∴直线l ⊥OA.
O
A
l
最新华师大版九年级下册数学精品 资料设计
性质定理的证明
证法1:反证法. 小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.
(1)假设AB与CD不垂直,过点O作一条直
径垂直于CD,垂足为M,
华东师大版数学九年级数学下册第27章圆27.2.3.1切线的判定和性质同步练习题含答案.doc
华东师大版数学九年级数学下册第27章圆 27. 2.3.1切线的判定和性质同步练习题1.下列盲线中能判定为圆的切线的是() A.与圆有公共点的直线 B.过圆的半径外端的直线 C.垂直于圆的半径且与圆有公共点的直线 D. 过半径的外端且与半径垂直的直线2. 如图,在平面直角坐标系中,过格点A, B, C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧 相切的是()A. DE=DOB. AB=ACC. CD=DB D ・ AC//OD4.如图,'ABC 的边4C 与(DO 相交于C, D 两点,且经过圆心0,边AB 与<30相切,切点为8已知ZA = 30° ,则 ZC 的大小是()A. 30°B. 45° C ・ 60° D ・ 40°5. 如图,AB 是(DO 的切线,B 为切点,AO 与OO 交于点C,若ZBAO=40° ,则ZOCB 的度数为( )A. 40° B ・ 50° C ・ 65° D. 75°6.如图,AB 是。
O 直径,点C 在的延长线上,CD 切00于点D,连接AD 若ZA=25° ,则ZC 的大小为 ° .则补还需补充一个条件,充的条件不正确的是()7.如图,点A在OO±,下列条件不能说明明是OO的切线的是()pAA. OA^PA^OP2 B・PALOA C. ZP=30°, ZO=60° D・ OP=2OA刖是OO的切线,PO=26 cm,必=24 cm,则OO的周长为()16兀cm C • 20兀cm D. 24兀cm9.如图,AB是(DO的直径,C, Q是(DO上的点,ZCDB=20°,过点C作<30的切线交AB的延长线于点E,则ZB. 50°C. 60°D. 70°10. ____________________ 如图,点A, B, D在OO上,ZA = 25° , OD的延长线交直线BC于点C,且ZOCB=40°,直线BC与OO的位置关系为_.11・如图,A, B是OO上的两点,AC是过A点的一条育•线,如果ZAOB=120°,那么当ZCAB的度数等于度吋,AC才能成为OO的切线.12.如图,一个边长为4 cm的等边三角形4BC的高与(DO的直径相等.与BC相切于点C,与AC 相交于点E,则CE的长为 _____________________________ cm.13.如图,在厶ABC屮,AB=AC,点O在边A3上,OO过点3且分别与边AB, BC相交于点D E, EFLAC,垂足为F,求证:直线EF是的切线.14.)如图,OO的半径为4, B是OO外一点,连接OB,且OB=6,过点B作OO的切线BD,切点为D,延长BO交OO于点A,过点4作切线BD的垂线,垂足为C.(1)求证:AD平分ABAC,(2)求AC的长.答案:1. D2. C3. A4. A5. C6.407. D& C9. B10.相切11.6012. 313.解:连接OE, DE, VBD 是OO 的直径,AZ DEB = 90° , VAB = AC, AZABC=ZC, XVOB = OE, AZ ABC=ZOEB, VZFEC+ZC=90° , A ZFEC+ZOEB = 90° ,「.OE丄EF, VOE 是OO 半径,二直线EF 是G»O 的切线14.解(1)爪囹,直接OD, /BD是的切後,D卷切点,/.OD丄BC. . AC丄BD, . .OD//AC, /. Z3= Z2.5L VOD = OA, /. Z 1=Z3 , Z 1 = Z2.AAD 年今上BAC. (2)TOD〃AC , :. △人…小・OD BO. 4 ±■小20BOD^ABAC...AC=BA..AC=10,. AC=3.。
华东师大版九年级下册数学 27.2.3切线 同步测试(含解析)
27.2.3切线同步测试一.选择题1.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P=40°,那么∠B的度数为()A.40°B.25°C.35°D.45°2.如图,P A,PB分别与⊙O相切于A、B两点,若∠C=50°,则∠P的度数()A.50°B.70°C.80°D.130°3.如图,直线BC与⊙A相切于点C,过B作CB的垂线交⊙O于D,E两点,已知AC=,CB=a,则以BE,BD的长为两根的一元二次方程是()A.x2+bx+a2=0B.x2﹣bx+a2=0C.x2+bx﹣a2=0D.x2﹣bx﹣a2=0 4.如图,∠APB=30°,点O在射线P A上,⊙O的半径为2,当⊙O与PB相切时,OP的长度为()A.3B.4C.D.5.如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=α,∠CPD=β,则α与β满足的关系式为()A.α=βB.α+β=180°C.α+β=180°D.以上都不对6.如图,AB是⊙O的弦,AO延长线交过点B的⊙O的切线于点C,如果∠C=20°,则∠CAB=()A.10°B.20°C.35°D.55°7.已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切线,A,B为切点,若MA=4cm,MB=3cm,则M到AB的距离是()A.cm B.cm C.cm D.cm8.如图,AB是⊙O的直径,BC是⊙O的切线.点D、E在⊙O上,若∠CBD=110°,则∠E的度数是()A.90°B.80°C.70°D.60°9.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC 于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°10.如图,⊙I是三角形ABC的内切圆,D、E分别为AB、AC上的点,且DE为⊙I的切线,若三角形ABC的周长为21,BC边的长为6,则三角形ADE的周长为()A.15B.9C.8D.7.5二.填空题11.已知等边三角形ABC的边长为3,则它的内切圆半径为.12.如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(2,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动,当直线AB与⊙O相切时,A点的坐标为.13.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为.14.如图,OA、OC都是⊙O的半径,点B在OC的延长线上,BA与⊙O相切于点A,连接AC,若AC=4,tan∠BAC=,则⊙O的直径长为.15.如图,边长为2的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E为切点,F点在AD上,BE是⊙O的弦,则△CDF的面积为.三.解答题16.如图,AB是⊙O的直径,P A,PC分别与⊙O相切于点A,点C,若∠P=60°,P A=,求AB的长.17.如图,AB是⊙O的直径,C是⊙O上一点,AD和过点C的一切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若DC=4,DE=2,求AB的长.18.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点C为BM上一点,连接AC与⊙O交于点D,E为⊙O上一点,且满足∠EAC=∠ACB,连接BD,BE.(1)求证:∠ABE=2∠CBD;(2)过点D作AB的垂线,垂足为F,若AE=6,BF=,求⊙O的半径长.参考答案一.选择题1.解:∵PC与圆O相切,切点为C,∴OC⊥PC,∴∠OCP=90°,∵∠P=40°,∴∠POC=90°﹣∠P=90°﹣40°=50°,∵OB=OC,∴∠B=∠OCB,∵∠POC=∠B+∠C,∴∠B=POC=25°.故选:B.2.解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=100°,则∠P=360°﹣(90°+90°+100°)=80°.故选:C.3.解:∵直线BC与⊙A相切于点C,∴AC⊥BC,作AM⊥BD于M,连接AE,∴DM=EM,∵BD⊥BC,∴四边形ACBM是矩形,∴BM=AC,AM=BC,∵AE=AC=,AM=CB=a,∴DM=EM==,∴BE=BM﹣EM=﹣,BD=BM+DM=+,∴BE+BD=b,BE•BD=﹣(﹣a2)=a2,∴以BE,BD的长为两根的一元二次方程是x2﹣bx+a2=0,故选:B.4.解:设⊙O与PB相切于点C,连接OC,如图所示:∵⊙O与PB相切于点C,∴PB⊥OC,OC=2,∵∠APB=30°,∴OP=2OC=2×2=4;故选:B.5.解:连结OC,OD,∵PC、PD均与圆相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴.故选:B.6.解:∵AO的延长线交过点B的⊙O的切线于点C,∴∠OBC=90°,∵∠C=20°,∴∠BOC=70°,∵AO=BO,∴∠CAB=∠OBA=∠BOC,∴∠CAB=35°.故选:C.7.解:如图,∵AB是⊙O1和⊙O2的外公切线,∴∠O1AB=∠O2BA=90°,∵O1A=O1M,O2B=O2M,∴∠O1AM=∠O1MA,∠O2BM=∠O2MB,∴∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,∴∠AMB=∠BMO2+∠AMO1=90°,∴AM⊥BM,∵MA=4cm,MB=3cm,∴由勾股定理得,AB=5cm,由三角形的面积公式,M到AB的距离是=cm,故选:B.8.解:∵BC是⊙O的切线,∠CBD=110°,∴∠ABC=90°,∴∠DBA=110°﹣90°=20°,∵AB是⊙O的直径,∴∠DAB+∠DBA=90°,∴∠DAB=90°﹣20°=70°,∴∠E=∠DAB=70°,故选:C.9.解:∵△ABC为等腰直角三角形,∴BC=AB=4,∠B=45°,∵点O为BC的中点,∴OB=2,∵AB为切线,∴OD⊥AB,∴∠ODB=90°,∴△ODB为等腰直角三角形,∴OD=OB=×2=2,∠BOD=45°,∴∠MND=BOD=22.5°.故选:A.10.解:∵△ABC的周长为21,BC=6,∴AC+AB=21﹣6=15,设⊙I与△ABC的三边AB、BC、AC的切点为F、G、H,切DE为R,∵DF=DR,BG=BF,CG=CH,EH=ER,∴BF+CH=BG+CG=BC=6,∴△ADE的周长=AD+DE+AE=AD+AE+DR+PE =AD+DF+AE+EH=AB﹣BF+AC﹣CH=AC+AB﹣(BF+CH)=15﹣6=9,故选:B.二.填空题11.解:过O点作OD⊥AB,∵O是等边△ABC的内心,∴∠OAD=30°,∵等边三角形ABC的边长为3,∴OA=OB,∴AD=AB=,∴OD=AD•tan30°==,即这个三角形的内切圆的半径为.故答案为.12.解:①当点A位于第一象限时(如右图2):连接OA,并过点A作AE⊥OB于点E,∵直线AB与⊙O相切,∴∠OAB=90°又∵∠CAB=90°,∴∠CAB+∠OAB=180°,∴点O、A、C在同一条直线上,∵OB=2OA,∴∠ABO=30°,∠AOB=60°,∴OE=OA=,AE=OE=,点A的坐标为(,);②当点A位于第四象限时,根据对称性可知点A的坐标为(,﹣).综上所述,点A的坐标为(,)或(,﹣);13.解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故答案为:125°.14.解:延长AO交⊙O于点D,连接CD,∵BA与⊙O相切,∴DA⊥AB,∴∠DAC+∠BAC=90°,∵AD为⊙O的直径,∴∠ACD=90°,∴∠DAC+∠D=90°,∴∠D=∠BAC,∵tan∠BAC=,∴tan D=,即=,∵AC=4,∴CD=12,由勾股定理得,AD===4.故答案为:4.15.解:设AF=x,∵四边形ABCD是正方形,∴∠DAB=90°,∠CBA=90°,∴DA⊥AB,CB⊥AB,∴AD,BC是圆的切线,∵CF是⊙O的切线,E为切点,∴EF=AF=x,CE=BC=2,∴FD=2﹣x,∴CF=CE+EF=CB+EF=2+x,在Rt△CDF中由勾股定理得到:CF2=CD2+DF2,即(2+x)2=22+(2﹣x)2,解得x=,∴DF=2﹣x=,∴S△CDF=DC•DF=×2×=.三.解答题16.解:∵P A、PB是⊙D的切线,∴P A=PC,∠BAP=90°,∵∠P=60°,∴△P AC是等边三角形,∴AC=P A=,∠P AC=60°,∵AB是⊙O直径,∴∠ACB=90°,∴∠BAC=30°,∴AB===2.17.(1)证明:∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,∴AC平分∠DAB.(2)如图2,作OH⊥AD于点H,∴AH=EH,设AH=EH=x,∴DH=2+x,∵AD⊥CD,OH⊥AD,∴OH∥CD;由(1)可得AD∥OC,∴四边形OHDC是矩形,∴OH=CD=4,AO=OC=DH=2+x,∴42+x2=(2+x)2,解得x=3,∴OA=5,∴AB=2OA=10.18.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠DAB+∠DBA=90°,∵BM是⊙O的切线,∴AB⊥BC,∴∠ABC=90°,即∠CBD+∠DBA=90°,∴∠DAB=∠CBD,∵∠ABC=90°,∴∠ACB=90°﹣∠BAC,∵∠EAC=∠ACB,∴∠EAC=90°﹣∠BAC=90°﹣(∠EAC﹣∠BAE),∴∠BAE=2∠EAC﹣90°,∵AB是直径,∴∠AEB=90°,∴∠ABE=90°﹣∠BAE=90°﹣(2∠EAC﹣90°)=2(90°﹣∠EAC)=2(90°﹣∠ACB)=2∠CAB=2∠CBD.∴∠ABE=2∠CBD;(2)如图,连接DO并延长交AE于点G,∵∠DOB=2∠BAD,∠ABE=2∠CAB,∴∠DOB=∠ABE,∴DG∥BE,∴∠AGO=∠AEB=90°,∴AG=EG=AE=3,∠AOG=∠DOF,OA=OD,∴△AOG≌△DOF(AAS)∴DF=AG=3,又OF=OB﹣BF=OD﹣,数学在Rt△DOF中,根据勾股定理,得OD2=DF2+OF2,即OD2=32+(OD﹣)2,解得OD=.答:⊙O的半径长为.。
华师大版九年级(下) 中考题同步试卷:28.2.3 切线(10)
华师大版九年级(下)中考题同步试卷:28.2.3 切线(10)一、选择题(共1小题)1.如图,P为圆O外一点,OP交圆O于A点,且OA=2AP.甲、乙两人想作一条通过P 点且与圆O相切的直线,其作法如下:(甲)以P为圆心,OP长为半径画弧,交圆O于B点,则直线PB即为所求;(乙)作OP的中垂线,交圆O于B点,则直线PB即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确二、解答题(共29小题)2.如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE ∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).3.如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别与BC,AD相交于点E,F.(1)求证:四边形BEDF为矩形;(2)BD2=BE•BC,试判断直线CD与⊙O的位置关系,并说明理由.4.如图,CD是⊙O的直径,OB⊥CD交⊙O于点B,连接CB,AB是⊙O的弦,AB交CD 于点E,F是CD的延长线上一点且AF=EF.(1)判断AF和⊙O的位置关系并说明理由(2)若∠ABC=60°,BC=1cm,求阴影部分的面积.(结果保留根号)5.如图,点D是⊙O的直径CA延长线上的一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且∠ABE=105°,S△BEF=8(﹣1),求△ACF的面积和CF的长.6.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接BD、DE.(1)求证:DE是⊙O的切线;(2)若AD=3,BD=4,求BC的长.7.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD =30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.8.如图,AB为⊙O的直径,点C为⊙O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°,求CE 的长.9.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.10.如图,⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若点C到弦AB的距离为2,求弦AB的长.11.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.12.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=.(1)求证:BC是⊙O的切线;(2)求⊙O的半径.13.如图,在△ABC中,以BC为直径的⊙O与边AB交于点D,E为的中点,连接CE 交AB于点F,AF=AC.(1)求证:直线AC是⊙O的切线;(2)若AB=10,BC=8,求CE的长.14.如图,在⊙O中,直径AB平分弦CD,AB与CD相交于点E,连接AC、BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线.(2)若AC=4,tan∠ACD=,求⊙O的半径.15.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.16.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E 是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)17.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.18.如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.19.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=5,cos A=,求BE的长.20.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)21.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.22.如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.(1)判断直线DE与⊙O的位置关系,并说明理由.(2)若⊙O的半径R=5,tan A=,求线段CD的长.23.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC ⊥OB,垂足为M,并交⊙O于点C,连接BC.(1)求证:BC是⊙O的切线;(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.24.如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠F.25.如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.26.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=1,ED=2.(1)求证:∠ABC=∠D;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接F A,试判断直线F A与⊙O的位置关系,并说明理由.27.如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.(1)求证:DC是⊙O的切线;(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.28.如图,⊙O是△ABC外接圆,AB是⊙O的直径,弦DE⊥AB于点H,DE与AC相交于点G,DE、BC的延长线交于点F,P是GF的中点,连接PC.(1)求证:PC是⊙O的切线;(2)若⊙O的半径是1,=,∠ABC=45°,求OH的长.29.如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=4,求图中阴影部分的面积.30.如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.(1)求证:DE是⊙O的切线;(2)若cos A=,AB=8,AG=2,求BE的长;(3)若cos A=,AB=8,直接写出线段BE的取值范围.华师大版九年级(下)中考题同步试卷:28.2.3 切线(10)参考答案一、选择题(共1小题)1.B;二、解答题(共29小题)2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;第11页(共11页)。
华师大版九年级(下) 中考题同步试卷:28.2.3 切线(05)
29.如图,AB,BC,CD 分别与⊙O 相切于 E,F,G.且 AB∥CD.BO=6cm,CO=8cm. (1)求证:BO⊥CO; (2)求 BE 和 CG 的长.
30. 如图,AB 是⊙O 的直径,点 C 在⊙O 上,CD 与⊙O 相切,BD∥AC.
(1)图中∠OCD=
°,理由是
且 MN 与⊙O 相切于点 P,P 是 的中点,则木棒 MN 的长度为
m.
三、解答题(共 10 小题) 21.如图,AB 是⊙O 的直径,点 C 在⊙O 上,AD 和过 C 点的切线互相垂直,垂足为 D.
(1)求证:AC 平分∠DAB;
(2)若点 M 是 的中点,CM 交 AB 于点 N,⊙O 的半径为 R,求 MN•MC 的值.
华师大版九年级(下)中考题同步试卷:28.2.3 切线(05)
一、选择题(共 10 小题) 1.如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点 C,若∠BAO=40°,则∠OCB
的度数为( )
A.40°
B.50°
C.65°
D.75°
2.如图,P 是⊙O 外一点,PA 是⊙O 的切线,PO=26cm,PA=24cm,则⊙O 的周长为( )
第1页(共10页)
A.4
B.
C.6
D.
5.如图所示,O 是线段 AB 上的一点,∠CDB=20°,过点 C 作⊙O 的切线交 AB 的延长线
于点 E,则∠E 等于( )
A.50°
B.40°
C.60°
D.70°
6.如图,AB 是⊙O 的直径,C、D 是⊙O 上的点,∠CDB=30°,过点 C 作⊙O 的切线交
过点 P 作 PB⊥l,垂足为 B,连接 PA.设 PA=x,PB=y,则(x﹣y)的最大值是
九年级数学下册27_2_3切线同步练习含解析新版华东师大版
∴∠BAC= ∠BOC=20°(同弧所对的圆周角是所对的圆心角的一半),
应选D.
分析:连接BC,OB.四边形内角和定理和切线的性质求得圆心角∠AOB=140°,进而求得∠BOC的度数;然后依照“同弧所对的圆周角是所对的圆心角的一半”能够求得∠BAC= ∠BOC.
二、填空题
16.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是
2.如图,点P在⊙O外,PA、PB别离与⊙O相切于A、B两点,∠P=50°,那么∠AOB等于( )
A.150°B.130°C.155°D.135°
答案:B
解析:解答: ∵PA、PB是⊙O的切线,
∴PA⊥OA,PB⊥OB,
∴∠PAO=∠PBO=90°,
∵∠P=50°,
∴∠AOB=130°.
应选B.
分析:由PA与PB为圆的两条切线,利用切线性质取得PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出∠AOB的度数.
的中点,弦CF交AB于点E.假设⊙O的半径为2,那么CF=.
答案:2
解析:解答:连接OC,
∵DC切⊙O于点C,
∴∠OCD=90°,
∵BD=OB,
∴OB= OD,
∵OC=OB,
∴OC= OB,
∴∠D=30°,
∴∠COD=60°,
∵AB为⊙O的直径,点B是 的中点,
∴CF⊥OB,CE=EF,
∴CE=OC•sin60°=2× = ,
9.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.假设∠AOC=80°,那么∠ADB的度数为( )
A.40°B.50°C.60°D.20°
华师大版初中数学九年级下册《27.2.3 切线》同步练习卷(含答案解析
华师大新版九年级下学期《27.2.3 切线》同步练习卷一.选择题(共21小题)1.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.42.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是()A.MN=B.若MN与⊙O相切,则AM=C.l1和l2的距离为2D.若∠MON=90°,则MN与⊙O相切3.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD 分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.34.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF5.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3B.2C.5D.6.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于()时,PA与⊙O相切.A.20°B.25°C.30°D.40°7.如图,在平面直角坐标系中,半径为2的⊙P的圆心P的坐标为(3,0),将⊙P沿x轴左平移,使⊙P与y轴相切,则平移的距离为()A.1B.3C.5D.1 或58.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.29.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°10.如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)11.如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174B.176C.178D.18012.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1B.2C.2﹣2D.4﹣213.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的()A.外心B.内心C.三条中线的交点D.三条高的交点14.已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.215.如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A.∠AIB=∠AOB B.∠AIB≠∠AOBC.4∠AIB﹣∠AOB=360°D.2∠AOB﹣∠AIB=180°16.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.17.如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A.9B.10C.3D.218.如图,⊙O与正方形ABCD是两边AB、AD相切,DE与⊙O相切于点E,若正方形ABCD的边长为5,DE=3,则tan∠ODE为()A.B.C.D.19.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B 落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O 与AD相切于点P.若AB=6,BC=3,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=CE;④S阴影=.其中正确的个数为()A.1B.2C.3D.420.如图,在直角坐标系中,以点O为圆心,半径为4的圆与y轴交于点B,点A(8,4)是圆外一点,直线AC与⊙O切于点C,与x轴交于点D,则点C 的坐标为()A.(2,﹣2)B.(,﹣)C.(,﹣)D.(2,﹣2)21.如图,在平面直角坐标系中,A(0,2),动点B、C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A 为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为()A.B.C.4+6D.4﹣6二.填空题(共12小题)22.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=度.23.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.24.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD 绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.25.如图,半圆O的直径DE=10cm,△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm,半圆O以1cm/s的速度从右到左运动,在运动过程中,D、E点始终在直线BC 上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的右侧,OC=6cm,那么,当t为s时,△ABC的一边所在直线与半圆O所在的圆相切.26.如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1S2+S3.(填“<”或“=”或“>”)27.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.28.点I为△ABC的内心,连AI交△ABC的外接圆于点D,若AI=2CD,点E为弦AC的中点,连接EI,IC,若IC=6,ID=5,则IE的长为.29.如图1~4,在直角边分别为5和12的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图9中有9个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S9,则S1+S2+S3+…+S9=.30.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,AD 与BC相交于点F,连结BE,DC,已知EF=2,CD=5,则AD=.31.如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD 的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan∠A'FE 的值为.32.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆O n均与直线l 相切,设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°时,且r1=1时,r2017=.33.如图,△ABC中AB=AC=13,BC=10,点D在边AB上,以D为圆心作⊙D,当⊙D恰好同时与边AC、BC相切时,此时⊙D的半径长为.三.解答题(共17小题)34.已知:AB是⊙O的直径,弦CD⊥AB于点G,M为劣弧上一点,连接AM 交CD于点N,P为CD延长线上一点,且PM=PN.求证:(1)PM是⊙O切线;(2)连接DM,cos∠DMA=,AG=3,求⊙O半径.35.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线.36.如图1,△ABC中,AB=AC=4,∠BAC=120°,点P为BC上一点,PA=PB,⊙O是△PAB的外接圆.(1)求⊙O的直径;(2)如图2,将△ABC绕点B逆时针旋转至△A′BC′,使边BA′与⊙O相切,BC′交⊙O于点M,求此时的旋转角度及弧AQM的长度.37.如图,AB为⊙O的直径,C为⊙O上一点,延长CB到E,使BE=BA,连接EA交⊙O于F,D为CE的中点,连接FD,CA.(1)若AC=12,tanE=,求⊙O的半径长;(2)求证:DF为⊙O的切线.38.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF ∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.39.如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.40.如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.41.如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.42.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O,与斜边AB交于点D、E为BC边的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空:①若∠B=30°,AC=2,则DE=;②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.43.如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.44.如图1,AB是⊙O的直径,AC是⊙O的切线.(1)连接BC,BC交⊙O于点E,连接AE.①若D为AC的中点,连接DE,证明:DE是⊙O的切线.②若BE=3EC,求tan∠ABC.(2)如图2,CF是圆O的另一条切线,F为切点,OC与圆O交于点G,求证:点G是三角形ACF的内心.45.如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EG是⊙O的切线;(2)若tanC=,AC=8,求⊙O的半径.46.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=8,求图中阴影部分的面积.(结果保留根号和π)47.如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.48.如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.49.如图,AO是⊙O′的直径,AO=4,点B是y轴正半轴的一点,其坐标为(0,4),连接BO′交⊙O′于点C,点D是x轴负半轴上的一点.(1)请求出点C的坐标;(2)若点D的坐标为(﹣,0),连接BD,求证:直线BD是⊙O′的切线.50.如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.华师大新版九年级下学期《27.2.3 切线》同步练习卷参考答案与试题解析一.选择题(共21小题)1.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.4【分析】作AB关于直线CB的对称线段A′B,交半圆于D′,连接AC、CA′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.2.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是()A.MN=B.若MN与⊙O相切,则AM=C.l1和l2的距离为2D.若∠MON=90°,则MN与⊙O相切【分析】连结OA、OB,根据切线的性质和l1∥l2得到AB为⊙O的直径,则l1和l2的距离为2;当MN与⊙O相切,连结OM,ON,当MN在AB左侧时,根据切线长定理得∠AMO=∠AMN=30°,在Rt△AMO中,利用正切的定义可计算出AM=,在Rt△OBN中,由于∠ONB=∠BNM=60°,可计算出BN=,当MN在AB右侧时,AM=,所以AM的长为或;当∠MON=90°时,作OE⊥MN于E,延长NO交l1于F,易证得Rt△OAF≌Rt△OBN,则OF=ON,于是可判断MO垂直平分NF,所以OM平分∠NMF,根据角平分线的性质得OE=OA,然后根据切线的判定定理得到MN为⊙O的切线.【解答】解:连结OA、OB,如图1,∵⊙O与l1和l2分别相切于点A和点B,∴OA⊥l1,OB⊥l2,∵l1∥l2,∴点A、O、B共线,∴AB为⊙O的直径,∴l1和l2的距离为2;故C正确,作NH⊥AM于H,如图1,则MH=AB=2,∵∠AMN=60°,∴sin60°=,∴MN==;故A正确,当MN与⊙O相切,如图2,连结OM,ON,当MN在AB左侧时,∠AMO=∠AMN=×60°=30°,在Rt△AMO中,tan∠AMO=,即AM==,在Rt△OBN中,∠ONB=∠BNM=60°,tan∠ONB=,即BN==,当MN在AB右侧时,AM=,∴AM的长为或;故B错误,当∠MON=90°时,作OE⊥MN于E,延长NO交l1于F,如图2,∵OA=OB,∴Rt△OAF≌Rt△OBN,∴OF=ON,∴MO垂直平分NF,∴OM平分∠NMF,∴OE=OA,∴MN为⊙O的切线.故D正确.故选:B.【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于经过切点的半径.3.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD 分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.3【分析】连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O 相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.【点评】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了矩形的性质.4.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF【分析】根据切线的判定定理可求得需要满足和条件,即可求得答案.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.【点评】本题主要考查切线的判定,熟练掌握切线的判定定理是解题的关键.5.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3B.2C.5D.【分析】以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【解答】解:如图所示:MK=,故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.6.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于()时,PA与⊙O相切.A.20°B.25°C.30°D.40°【分析】先利用切线的性质求出∠AOP=50°,再利用等腰三角形的性质即可得出结论.【解答】解:∵PA是⊙O的切线,∴∠PAO=90°,∴∠AOP=90°﹣∠P=50°,∵OB=OC,∴∠AOP=2∠B,∴∠B=∠AOP=25°,故选:B.【点评】此题主要考查了切线的性质,直角三角形的性质,等腰三角形的性质,三角形的外角的性质,求出∠AOP是解本题的关键.7.如图,在平面直角坐标系中,半径为2的⊙P的圆心P的坐标为(3,0),将⊙P沿x轴左平移,使⊙P与y轴相切,则平移的距离为()A.1B.3C.5D.1 或5【分析】分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为5;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为1.故选:D.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.8.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB 的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.【点评】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.10.如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【解答】解:过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3﹣1=2,OE=4﹣1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(﹣2,3).故选:A.【点评】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.11.如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174B.176C.178D.180【分析】连接CI,利用三角形内角和定理可求出∠BAC的度数,由I点为△ABC 的内心,可得出∠CAI、∠ACI、∠DCI的度数,利用三角形内角和定理可得出∠AIC、∠CID的度数,再由∠AID=∠AIC+∠CID即可求出∠AID的度数.【解答】解:连接CI,如图所示.在△ABC中,∠B=44°,∠ACB=56°,∴∠BAC=180°﹣∠B﹣∠ACB=80°.∵I点为△ABC的内心,∴∠CAI=∠BAC=40°,∠ACI=∠DCI=∠ACB=28°,∴∠AIC=180°﹣∠CAI﹣∠ACI=112°,又ID⊥BC,∴∠CID=90°﹣∠DCI=62°,∴∠AID=∠AIC+∠CID=112°+62°=174°.故选:A.【点评】本题考查了三角形的内心、三角形内角和定理以及角平分线的性质,根据三角形内心的性质结合三角形内角和定理求出∠AIC、∠CID的度数是解题的关键.12.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1B.2C.2﹣2D.4﹣2【分析】先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【解答】解:如图,连接PF,QF,PC,QC,∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30°,60°,90°的三角形,∴AC=2,AF=2,CF=2AF=4,∴S=AF×AC=×2×2=2,△ACF过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,=S△PAF+S△PAC+S△PCF∴S△ACF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==﹣1∴PQ=2PG=2(﹣1)=2﹣2.故选:C.【点评】此题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.13.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的()A.外心B.内心C.三条中线的交点D.三条高的交点【分析】利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,然后可作出判断.【解答】解:如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.∵MN∥AB,∴OD=OE=OF(夹在平行线间的距离处处相等).如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF'∴图2中的点O是三角形三个内角的平分线的交点,∴点O是△ABC的内心,故选:B.【点评】此题是三角形的五心,主要考查了平行线间的距离处处相等,角平分线定理,三角形的内心,解本题的关键是判断出OD=OE=OF.14.已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.2【分析】作AD⊥BC于D,设BD=x,则CD=6﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,求出x,根据勾股定理求出AD,根据•BC•AD=(AB+BC+AC)•r计算即可.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD ⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为,故选:C.【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,利用面积法求内切圆的半径是解题的关键.15.如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A.∠AIB=∠AOB B.∠AIB≠∠AOBC.4∠AIB﹣∠AOB=360°D.2∠AOB﹣∠AIB=180°【分析】根据圆周角定义,以及内心的定义,可以利用∠C表示出∠AIB和∠AOB,即可得到两个角的关系.【解答】解:∵点O是△ABC的外心,∴∠AOB=2∠C,∴∠C=∠AOB,∵点I是△ABC的内心,∴∠IAB=∠CAB,∠IBA=∠CBA,∴∠AIB=180°﹣(∠IAB+∠IBA)=180°﹣(∠CAB+∠CBA),=180°﹣(180°﹣∠C)=90°+∠C,∴2∠AIB=180°+∠C,∵∠AOB=2∠C,∴∠AIB=90°+∠AOB,即4∠AIB﹣∠AOB=360°.故选:C.【点评】本题考查了圆周角定理以及三角形的内心的性质,正确利用∠C表示∠AIB的度数是关键.16.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.【分析】利用切线长定理得出CA=CF,DF=DB,PA=PB,进而得出PA=r,求出即可.【解答】解:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.故选:D.【点评】此题主要考查了切线长定理,得出PA的长是解题关键.17.如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A.9B.10C.3D.2【分析】作DH⊥BC于H,如图,利用平行线的性质得AB⊥AD,AB⊥BC,则根据切线的判定得到AD和BC为⊙O切线,根据切线长定理得DE=DA=2,CE=CB,NE=NF,MB=MF,利用四边形ABHD为矩形得BH=AD=2,DH=AB=6,设BC=x,则CH=x﹣2,CD=x+2,在Rt△DCH中根据勾股定理得(x﹣2)2+62=(x+2)2,解得x=,即CB=CE=,然后由等线段代换得到△MCN的周长=CE+CB=9.【解答】解:作DH⊥BC于H,如图,∵四边形ABCD中,AD平行BC,∠ABC=90°,∴AB⊥AD,AB⊥BC,∵AB为直径,∴AD和BC为⊙O 切线,∵CD和MN为⊙O 切线,∴DE=DA=2,CE=CB,NE=NF,MB=MF,∵四边形ABHD为矩形,∴BH=AD=2,DH=AB=6,设BC=x,则CH=x﹣2,CD=x+2,在Rt△DCH中,∵CH2+DH2=DC2,∴(x﹣2)2+62=(x+2)2,解得x=,∴CB=CE=,∴△MCN的周长=CN+CM+MN=CN+CM+NF+MF=CN+CM+NF+MB=CE+CB=9.故选:A.【点评】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.也考查了勾股定理.18.如图,⊙O与正方形ABCD是两边AB、AD相切,DE与⊙O相切于点E,若正方形ABCD的边长为5,DE=3,则tan∠ODE为()A.B.C.D.【分析】设⊙O与AB、AD相切于点M、N.连接OM、ON,则四边形AMON是正方形.根据切线长定理,可得DE=DN=3,∠ODE=∠ODN,根据tan∠ODE=tan ∠ODN计算即可;【解答】解:设⊙O与AB、AD相切于点M、N.连接OM、ON,则四边形AMON 是正方形.∵DE、DA是⊙O的切线,∴DE=DN=3,∠ODE=∠ODN,∵AD=5,∴AN=ON=2,在Rt△OND中,tan∠ODE=tan∠ODN==.故选:B.【点评】本题考查切线的性质、切线长定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B 落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O 与AD相切于点P.若AB=6,BC=3,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=CE;④S阴影=.其中正确的个数为()A.1B.2C.3D.4【分析】①根据勾股定理易求得DF长度,即可判定;②连接OP,易证OP∥CD,根据平行线分线段成比例定理即可判定;③易证AE=2EF,EF=2EC即可判定;④连接OG,作OH⊥FG,易证△OFG为等边△,即可求得S即可解题;阴影【解答】解:①∵AF是AB翻折而来,∴AF=AB=6,∵四边形ABCD是矩形,AD=BC=3,∴DF===3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴,设OP=OF=x,则,解得:x=2,∴②正确;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③错误;④连接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形;同理△OPG为等边三角形;∴∠POG=∠FOG=60°,OH=,S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG=2×﹣××=.∴④正确;其中正确的结论有:①②④,3个;故选:C.【点评】本题考查了矩形面积的计算,正三角形的性质,平行线分线段成比例定理,勾股定理的运用,本题中熟练运用上述考点是解题的关键.20.如图,在直角坐标系中,以点O为圆心,半径为4的圆与y轴交于点B,点A(8,4)是圆外一点,直线AC与⊙O切于点C,与x轴交于点D,则点C 的坐标为()A.(2,﹣2)B.(,﹣)C.(,﹣)D.(2,﹣2)【分析】作AE⊥x轴于E,CH⊥x轴于H,连接OC,如图,根据切线长定理可切线的性质得OC⊥AC,AC=AB=8,再证明△OCD≌△AED得OD=AD,设OD=x,则AD=x,DE=8﹣x,根据勾股定理得(8﹣x)2+42=x2,解得x=5,所以OD=5,DE=CD=3,然后利用面积法求出CH,利用勾股定理计算出OH,从而得到C 点坐标.【解答】解:作AE⊥x轴于E,CH⊥x轴于H,连接OC,如图,∵B(0,4),A(8,4),∴AB=8,AE=OB=4,AB⊥y轴,∴AB为⊙O的切线,∵直线AC与⊙O切于点C,∴OC⊥AC,AC=AB=8,在△OCD和△AED中,∴△OCD≌△AED,∴OD=AD,设OD=x,则AD=x,DE=8﹣x,在Rt△ADE中,(8﹣x)2+42=x2,解得x=5,∴OD=5,DE=CD=3,∵CH•OD=OC•CD,∴CH==,在Rt△OCH中,OH==,∴C点坐标为(,﹣).故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了坐标与图形性质.21.如图,在平面直角坐标系中,A(0,2),动点B、C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A 为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为()A.B.C.4+6D.4﹣6【分析】作AH⊥BD于H,延长DB交y轴于E,如图,利用切线的性质得AH=OB=t,再利用等边三角形的性质得∠DBC=60°,则∠OBE=60°,所以OE=OB=t,AE=2AH=2t,从而得到2+t=2t,然后解关于t的方程即可.【解答】解:作AH⊥BD于H,延长DB交y轴于E,如图,∵⊙A与△BCD的边BD所在直线相切,∴AH=OB=t,∵△BCD为等边三角形,∴∠DBC=60°,∴∠OBE=60°,∴∠OEB=30°,在Rt△OBE中,OE=OB=t,在Rt△AHE中,AE=2AH=2t,∵A(0,2),∴OA=2,∴2+t=2t,∴t=4+6.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了等边三角形的性质.二.填空题(共12小题)22.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=30度.【分析】在Rt△AOB中,已知了直径AB和OA的长,即可求得∠OAB、∠OBA 的度数;而由弦切角定理知∠OAB=∠BOC,进而可由三角形的外角性质求出∠ACO的度数.【解答】解:∵AB=2,OA=,∴cos∠BAO==,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA﹣∠BOC=30°.故答案为:30.【点评】此题主要考查了直角三角形的性质、弦切角定理以及三角形的外角性质,难度不大.23.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=4.【分析】根据“从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等”得到:PA•PB=PC•PD,即PA•PB=PD2.【解答】解:如图,∵AP=4,AB=2,PC=CD,∴PB=AP+AB=6,PC=PD.又∵PA•PB=PC•PD,∴4×6=PD2,则PD=4.故答案是:4.【点评】本题考查了切割线定理.(1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.24.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD 绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为4.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.【点评】本题主要考查圆的切线的判定与性质,解题的关键是掌握矩形的判定与性质、旋转的性质、切线的性质、垂径定理等知识点.25.如图,半圆O的直径DE=10cm,△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm,半圆O以1cm/s的速度从右到左运动,在运动过程中,D、E点始终在直线BC 上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的右侧,OC=6cm,那么,当t为1或6或11或26s时,△ABC的一边所在直线与半圆O所在的圆相切.【分析】分四种情形分别求解即可解决问题.【解答】解:如图,∵OC=6,DE=10,∴OD=OE=5,CD=1,EC=11,∴t=1或11s时,⊙O与直线AC相切;当⊙O′与AB相切时,设切点为M,连接O′M,在Rt△BMO′中,BO′=2MO′=10,∴OO′=6,。
2020-2021年九年级下册华东师大版数学习题课件 27.2.3 切线第1课时 切线的判定和性质
15.如图,直线 y=x-4 与 x 轴、y 轴分别交于 M,N 两点,⊙O 的 半径为 2,将⊙O 以每秒 1 个单位的速度向右作平移运动,当移动时间
4_-__2__2__或___4_+__2__2__秒时,直线 MN 恰好与圆相切.
16.(12分)(河南模拟)如图,点A是⊙O直径BD延长线上的一点,AC是 ⊙O的切线,C为切点,AD=CD.
4.(6 分)如图,AB 是⊙O 的直径,AC 与⊙O 交于点 F,D 为 BF 的 中点,DE⊥AC,垂足为 E,试判断直线 DE 与⊙O 的位置关系,并说明理 由.
解:直线 DE 与⊙O 相切,理由:连结 OD,∵D 为 BF 的中点,∴ ∠OAD=∠CAD.又∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD, ∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE 是⊙O 的切线
5.(3分)(郑州模拟)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,
BC经过圆心,∠B=20°,则∠C的度数为( D )
A.70° B.60° C.40° D.50°
6.(4分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D, 且CO=CD,则∠PCA=( D)
A.30° B.45° C.60° D.67.5°
AB·CE=12
×3×
3 2
=3
3 4
【素养提升】 17.(12 分)(黄石中考改)如图,AB 是⊙O 的直径,点 D 在 AB 的延长线 上,C,E 是⊙O 上的两点,CE=CB,∠BCD=∠CAE,延长 AE 交 BC 的 延长线于点 F. (1)求证:CD 是⊙O 的切线; (2)若 BD=1,CD= 2 ,求弦 AC 的长.
(2)∵AB=10,AB=AC,∴AC=10.∵CD=4,∴AD=10-4=6,在 Rt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.3切线一.选择题(共8小题)1.下列说法正确的是()A.相切两圆的连心线经过切点B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦D.相等的圆心角所对的弦相等2.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°3.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3 B.2 C.1 D.04.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.45.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°6.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5 B.1.6 C.1.5 D.17.如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.48.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A.3 B.4 C.4D.2二.填空题(共6小题)9.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为_________cm.10.如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=_________.11.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_________°.12.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=_________度.13.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是_________.(结果保留π)三.解答题(共8小题)14.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.15.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.16.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.17.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.18.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=_________°,理由是_________;(2)⊙O的半径为3,AC=4,求CD的长.19.如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO 交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.20.如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.21.如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.27.2.3切线参考答案与试题解析一.选择题(共8小题)1.解答:解:A、根据圆的轴对称性可知此命题正确.B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误;B、此弦不能是直径,命题错误;C、相等的圆心角指的是在同圆或等圆中,此命题错误;故选A.2.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.3.解答:解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故答案选:A.4.解答:解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°﹣90°﹣50°=40°.故选:D.5.解答:解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.6.解答:解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,又∵OD=OE,∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴=,∴=,解得x=1.6,故选:B.7.解答:解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:C.8.解答:解:延长EC交圆于点F,连接DF.则根据90°的圆周角所对的弦是直径,得DF是直径.∵DE∥BC,∴△ADE∽△ABC.∴.则DE=4.在直角△ADF中,根据射影定理,得E F==4.根据勾股定理,得DF==4,则圆的半径是2.故选D.二.填空题(共6小题)9.解答:解:连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得FC=OC•cos30°=,OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3.故答案为:3.10.解答:解:∵PA切⊙O于A点,∴OA⊥PA,在Rt△OPA中,OP=5,OA=3,∴PA==4.故答案为:4.11.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.12.解答:解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,故答案为:4013.解答:解:设AB与小圆切于点C,连结OC,OB.∵AB与小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16π.故答案为:16π.三.解答题(共8小题)14.解答:(1)证明:连结OC,OA,∵OC=OA,∴∠ACO=∠CAO,∵PC是⊙O的切线,C为切点,∴PC⊥OC,∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°,∴∠ACO+∠PBC=90°,∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC;(2)解:∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB,∴=,∴PC2=PA•PB,∵PA=3,PB=5,∴PC==.15.解答:(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.16.解答:(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD和Rt△CDB(HL);(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°﹣53°=37°,∴∠ADC的度数为37°.17.解答:(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE中,∴△CDE∽△DAE,∴,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,∴,整理得:x2﹣3x+1=0,解得:x=,∴tan∠ACB=或.18.解答:解:(1)∵CD与⊙O相切,∴OC⊥CD,(圆的切线垂直于经过切点的半径)∴∠OCD=90°;故答案是:90,圆的切线垂直于经过切点的半径;(2)连接BC.∵BD∥AC,∴∠CBD=∠OCD=90°,∴在直角△ABC中,BC===2,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠ACB,∴△ABC∽△CDB,∴=,∴=,解得:CD=3.19.解答:(1)证明:连接OD,∵BD是⊙O的切线,∴OD⊥BD,∵AC⊥BD,∴OD∥AC,∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2,即AD平分∠BAC;(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,∴,解得:AC=.20.解答:解:(1)连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵CF=AC,CF=CE,∴AE=CE,∴ED=AC=EC,∴ED=EC=CD,∴∠ECD=60°,∴∠A=30°,∵AC=BC,∴∠ACB=120°.(2)∵∠A=30°,AC=BC,∴∠ABC=30°,∴∠BCF=60°,在△ACD与△BCF中∴△ACD≌△BCF(SAS)∴∠ADC=∠BFC,∵CD⊥AB,∴CF⊥BF,∵AC=8,CF=AC.∴CF=4,∴AF=12,∵∠AFB=90°,∠A=30°,∴BF=AB,设BF=x,则AB=2x,∵AF2+BF2=AB2,∴(2x)2﹣x2=122解得:x=4即BF=4∴△ABF的面积===24,21.解答:解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.。