(贵州专版)中考数学总复习第一轮考点系统复习第3章函
中考数学 考点系统复习 第三章 函数 第九节 二次函数与几何综合题 类型三:二次函数与特殊三角形问题
求点的坐标: 1.分别表示出点 A,B,P 的坐标,再表示出线段 AB,BP,AP 的长度, 由①AB=AP,②AB=BP,③AP=BP 分别列方程求解即可. 2.作等腰三角形底边上的高,用勾股定理或相似建立等量关系. 3.以 AB 为底边时,可用解析法,先求中垂线的解析式,再联立方程组 求交点.
此时点 C 的坐标为21,1+32
5
或2 1,13-2
5
.
综上可知,当△ABC 是直角三角形时,点 C 的坐标共有 4 个为((1 1,,33)),
((1,1,- -2)
2),21,1+23
5
或21,1-23
5
.
问题:已知线段 AB 和直线 l,在 l 上求点 P,使△PAB 为直角三角形.
【分层分析】 点 P 在线段 BC 的中垂线与抛物线的交点处.求中垂线的解析式,联立方 程组求解.
解:存在.由题意得 B(3,0),C(0,-3),由点 B,C 的坐标求得直线
BC 的解析式为 y=x-3,线段 BC 的中点为32,-32,设线段 BC 的中垂线 的解析式为 y=-x+b,代入23,-32,得 b=0. ∴线段 BC 的中垂线的解析式为 y=-x,
【分层分析】 利用两圆一中垂的方法在直线 l上找出点 P,共有 5 个,并注意检验点 P 是否满足条件,当点 P,A,C 共线时,不符合题意.
解:存在.设 P(1,p),AC2=10, PA2=(1+1)2+(p-0)2=p2+4, PC2=(1-0)2+(p+3)2=p2+6p+10. 分三种情况讨论: ①当 PA=PC 时,p2+4=p2+6p+10, 解得 p=-1,∴P1(1,-1); ②当 AC=PC 时,p2+6p+10=10,解得 p1=0,p2=-6, 当 p=-6 时,显然 A,C,P 三点在一条直线上不能构成三角形,舍去, ∴P2(1,0);
中考数学 考点系统复习 第三章 函数 第一节 平面直角坐标系
1.在平面直角坐标系中,点 P(-3,2 021)在第________象限 ( B ) A.一 B.二 C.三 D.四
2.如果点 P(a,b)在第一象限,那么点 Q(-a,-b)所在的象限是( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.(2021·兰州模拟)已知点 P(a+5,a-1)在第四象限,且到 x 轴的距
是
( D)
A.(3,-2) B.(-3,2) C.(3,-4) D.(-3,4)
6.(2020·天水模拟)如图是小丁画的一张脸的示意图,如果用(0,2)表
示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示
成
(A)
A.(1,0)
B.(-1,0)
C.(-1,1)
D.(1,-1)
7.(2020·扬州)在平面直角坐标系中,点 P(x2+2,-3)所在的象限是 ( D)
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.(2020·滨州)在平面直角坐标系的第四象限内有一点 M,到 x 轴的距
离为 4,到 y 轴的距离为 5,则点 M 的坐标为
( D)
A.(-4,5) B.(-5,4) C.(4,-5) D.(5,-4)
9.(2021·贺州)在平面直角坐标系中,点 A(3,2)关于原点对称的点的
离为 2,则点 P 的坐标为
( A)
A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)
4.在平面直角坐标系中点 B(-2,0)在
A.x 轴的正半轴上
B.x 轴的负半轴上
C.y 轴的正半轴上
D.y 轴的负半轴上
( B)
中考数学 考点系统复习 第三章 函数 第二节 一次函数 课时1 一次函数的图象与性质
(6)若该一次函数的图象与直线 y=2x 平行,将该一次函数图象先向下平 移 3 个单位长度,再向右平移 2 个单位长度后图象的函数解析式为__y== 2xx++1_1_; (7)若该一次函数的图象与 x 轴交于点 A(4,0),与 y 轴交于点 B,则△AOB 的面积为__4488__;
2.如图,已知直线 y=kx+b 经过点 A(5,0),B(1,4)
重难点 2:一次函数的图象与方程(组)、不等式 的关系
如图,直线 y=-12x+b 与 x 轴、y 轴分别交 于点 A、点 B,与函数 y=kx 的图象交于点 M(1, 2).直接写出 k,b 的值和不等式 0≤-12x+b≤kx 的解集.
【思路点拨】把 M 点的坐标分别代入 y=kx 和 y=-12x+b 可求出 k,b 的值,再确定 A 点的坐标,然后利用函数图象写出不等式 0≤-12x+b≤kx 的解集.
的直线 l2交于点 C(1,m),与 x 轴交于点 B. (1)求直线 l2 的解析式; (2)点 M 在直线 l1上,MN∥y 轴,交直线 l2 于点 N,若 MN =AB,求点 M 的坐标.
【思路点拨】(1)把点 C 的坐标代入 y=x+3,求出 m 的值,然后利用待 定系数法求出直线 l2的解析式;(2)由已知条件得出 M,N 两点的横坐标, 利用两点间距离公式求出点 M 的坐标.
(B )
A.kb>0 B.kb<0
C.k+b>0 D.k+b<0
2.(2018·贵阳第 9 题 3 分)一次函数 y=kx-1 的图象经过点 P,且 y 的
值随 x 值的增大而增大,则点 P 的坐标可以为
( C)
A.(-5,3) B.(1,-3)
C.(2,2) D.(5,-1)
中考数学 考点系统复习 第三章 函数 第九节 二次函数性质综合题
∴a+b+c=9a+3b+c,整理得 b=-4a, b -4a
∴抛物线的对称轴为直线 x=-2a=- 2a =2, ∴t=2, ∵c=2, ∴抛物线与 y 轴交点的坐标为(0,2).
(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t 的取值范围及x0的取值范围. ∵m<n<c,∴a+b+c<9a+3b+c<c,
②当 m≤-3 时,此时 y 有最大值为 6, ∵y 的最大值与最小值之和为 2,∴y 最小值为-4, ∵当 x=0 时,y=-3≠-4, ∴-(m+3)2+6=-4, ∴m=-3- 10或 m=-3+ 10(舍去). 综上所述,m 的值为-2 或-3- 10.
类型二:解析式中含参数 的二次函数求最值
3.已知二次函数 y=-x2+4x-3.
(1)若-3≤x≤3,则 y 的取值范围为 -
(直接写出结果);
(2)若-8≤y≤-3,则 x 的取值范围为24-≤1y≤≤x1≤0或 (直接
写出结果);
4≤x≤5
3 (3)若 A(m,y1),B(m+1,y2)两点都在该函数的图象上,且满足 m<2,
试比较 y1与 y2 的大小,并说明理由. 解:(3)由题意,得 y1=-m2+4m-3, y2=-(m+1)2+4(m+1)-3, 则 y1-y2=2m-3,
第九节 二次函数性质综 合题
类型一:解析式确定的二 次函数求最值
1.★(2022·长春)已知二次函数
y=-x2-2x+3,当
1 a≤x≤2时,函数
值 y 的最小值为 1,则 a 的值为 -1- 3 .
2.把抛物线 y=ax2+c 的图象向下平移 3 个单位长度后得到抛物线
y=-2x2-1.
(1)求平移前的抛物线的解析式; 解:(1)∵把抛物线y=ax2+c的图象向下平移3个单 位长度后得到抛 物∴线a=y=--2,2xc2--31=,-1,∴c=2, ∴平移前的抛物线的解析式为y=-2x2+2.
中考数学 精讲篇 考点系统复习 第三章 函数 第四节 大中小二次函数的图像与性质
详见“本书 P52 第三章第四节考点梳理特训”
1.★(2020·齐齐哈尔)如图,抛物线 y=ax2+bx+c(a≠0) 与 x 轴交于点(4,0),其对称轴为直线 x=1,结合图象给出 下列结论:①ac<0;②4a-2b+c>0;③当 x>2 时,y 随 x 的 增大而增大;④关于 x 的一元二次方程 ax2+bx+c=0 有两 个不相等的实数根.其中正确的结论有 A.1 个 B.2 个 C.3 个 D.4 个
42
【考情分析】湖南近 3 年主要考查:1.二次函数的图象与性质:二次函 数图象的增减性、顶点坐标、与坐标轴的交点坐标、对称轴、自变量的 取值范围;2.二次函数图象与系数 a,b,c 的关系;3.二次函数解析式 的确定,一般在压轴题第一问考查.
命题点 1:二次函数的图象与性质(2021 年考查 3 次,2020 年考查 7 次, 2019 年考查 9 次) 1.(2018·岳阳第 4 题 3 分)抛物线 y=3(x-2)2+5 的顶点坐标是( C ) A.(-2,5) B.(-2,-5) C.(2,5) D.(2,-5)
( C)
重难点 2:二次函数图象的平移
将抛物线 y=-5x2+1 向左平移 1 个单位长度,再向下平移 2 个单位
长度,所得抛物线为
( A)
A.y=-5(x+1)2-1
B.y=-5(x-1)2-1
C.y=-5(x+1)2+3
D.y=-5(x-1)2+3
【思路点拨】方法一:平移前抛物线的顶点坐标为(0,1)→平移后抛物 线的顶点坐标为(-1,-1) 利用顶点式,a=-5 平移后抛物线的 解析式为 y=-5(x+1)2-1.方法二:直接利用“上加下减常数项,左加 右减自变量”的平移规律求出平移后抛物线的解析式,即 y=-5x2+1 左移,自变量加1;下移,常数项减2y=-5(x+1)2+1-2.
中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件
1.将抛物线解析式写成 y=a(x-h)2+k 的形式,则顶点坐标为(h,k), 对称轴为直线 x=h,也可应用对称轴公式 x2.解题时尽可能画出草图.
【解析】如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错 误;根据图象有a>0, b<0, c<0,∴abc>0,故②正确;当x=-1时 ,a-b+c>0,故③错误;二次函数y=ax2+bx+c的顶点坐标纵坐 标为-2,∵关于x的一元二次方程ax2+bx+c-m=0有两个不相等的 实数根,∴m>-2,故④正确.故选B.
二次函数是中考的重点内容: 1.直接考查二次函数的概念、图象和性质等. 2实际情境中构建二次函数模型,利用二次函数的性质来解释、解决实 际问题. 3在动态的几何图形中构建二次函数模型,常与方程、不等式、几何知 识等结合在一起综合考查. 4.体现数形结合思想、转化的思想、方程的思想.
1.(2016·衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x, y)对应值列表如下:
(2)∵将 x=0 代入 y=12x+32得 y=32,将 x=1 代入得 y=2,∴直线 y=12x +32经过点(0,32),(1,2).直线 y=12x+32的图象如图所示,由函数图象可 知:当 x<-1.5 或 x>1 时,一次函数的值小于二次函数的值 (3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为 P(-1, 1).平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2.点 P 在 y=12x+32的 函数图象上.理由:∵把 x=-1 代入得 y=1,∴点 P 的坐标符合直线的 解析式,∴点 P 在直线 y=12x+32的函数图象上
中考数学 精讲篇 考点系统复习 第三章 函数 第四节 二次函数的图像与性质
重难点 1:二次函数的图象与性质
在探究二次函数 y=ax2+bx+c(a≠0)的图象与性质的过程中,x 与
y 的几组对应值列表如下:
x
…
-1
1 -2
0
1 2
1
3 2
2…
y…2
3 4
0 -14 0
3 4
2…
根据表格所提供的数据,完成问题: (1)在平面直角坐标系中,画出该二次函数的图象;
(2)该二次函数图象开口向上上 ; (3)该二次函数图象的对称轴为直线
第四节 二次函数的图象 与性质
1.二次函数 y=ax2与一次函数 y=ax+a 在同一坐标系中的大致图象可
能是
(D)
2.将抛物线 y=x2-6x+5 向上平移两个单位长度,再向右移一个单位长
度后,得到的抛物线解析式是
( D)
A.y=(x-4)2-6 B.y=(x-1)2-3
∴平移后的抛物线的解析式为 y=-14x2+2x.
类型四:平移确定解析式 将抛物线 y=-14x2+x+8 向右平移 2 个单位,向下平移 5 个单位,
求平移后的抛物线的解析式.
解:∵y=-14x2+x+8=-14(x-2)2+9, 且抛物线向右平移 2 个单位,向下平移 5 个单位, y=-14(x-2-2)2+9-5=-14(x-4)2+4=-14x2+2x,
故抛物线的解析式为 y=12x2-12x-3.
类型二:a,b,c 有两个量未知 已知抛物线 y=ax2+bx-2(a>0)与 x 轴交于 A(-2,0),B(1,0)两
点,求抛物线的解析式.
解:∵y=ax2+bx-2 过点 A(-2,0),B(1,0), 4a-2b-2=0, a=1
中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题
第三章函数及其图象第一节函数及其图象怀化七年中考命题规律)标2021选择6函数自变量的取值范围求含有二次根式且位于分母的自变量的取值范围3填空13求函数值自变量的值,求函数的值36命题规律纵观怀化七年中考,有五年考察了此考点内容,并且以选择题、填空题的形式呈现,其中求函数自变量的取值范围考察了4次,平面直角坐标系考察了2次.命题预测预计2021年怀化中考,本课时的考察重点为求函数自变量的取值范围与函数图象的判断,可能会及其他知识结合,特别是及几何图形结合的图象,题型以选择题为主.,怀化七年中考真题及模拟)平面直角坐标系(2次)1.(2021怀化中考)在平面直角坐标系中,点(-3,3)所在象限是( B)A.第一象限B.第二象限C.第三象限D.第四象限2.(2021怀化中考)如图,假设在象棋盘上建立直角坐标系,假设“帅〞位于点(-1,-2),“馬〞位于点(2,-2),那么“兵〞位于点( C)A.(-1,1) B.(-2,-1)C .(-3,1)D .(1,-2)求自变量的取值范围与函数值(5次)3.(2021怀化中考)函数y =x -1x -2中,自变量x 的取值范围是( C )A .x ≥1B .x>1C .x ≥1且x≠2D .x ≠24.(2021怀化中考)在函数y =2x -3中,自变量x 的取值范围是( D )A .x>32B .x ≤32C .x ≠32D .x ≥325.(2021怀化中考)函数y =1x -2中,自变量x 的取值范围是( A )A .x>2B .x ≥2C .x ≠2D .x ≤26.(2021怀化中考)函数y =x -3中,自变量x 的取值范围是__x≥3__.7.(2021怀化中考)函数y =-6x ,当x =-2时,y 的值是__3__.及实际相结合的函数图象(1次)8.(2021怀化一模)小敏家距学校1 200 m ,某天小敏从家里出发骑自行车上学,开场她以v 1 m /min 的速度匀速行驶了600 m ,遇到交通堵塞,耽误了3 min ,然后以v 2 m /min 的速度匀速前进一直到学校(v 1<v 2),你认为小敏离家的距离y 及时间x 之间的函数图象大致是( A ),A ) ,B ) ,C ) ,D )9.(2021沅陵模拟)一艘轮船在同一航线上往返于甲、乙两地.轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h ),航行的路程为s(km ),那么s 及t 的函数图象大致是( C ),A ),B ),C ),D )10.(2021怀化考试说明)如图,在矩形中截取两个一样的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 与x ,那么y 及x 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )11.(2021中考预测)如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE =EF =FB =5,DE =12,动点P 从点A 出发,沿折线AD —DC —CB 以每秒1个单位长的速度运动到点B 停顿.设运动时间为t s ,y =S △EPF ,那么y 及t 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )12.(2021怀化学业考试指导)在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中(铁块完全淹没于水中),然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.如图能反映弹簧秤的读数y(单位:N )及铁块被提起的高度x(单位:cm )之间的函数关系的大致图象是( C ),A ) ,B ) ,C ) ,D )13.(2021 麻阳模拟)小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30 s .他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:s ),他及教练的距离为y(单位:m ),表示y 及t 的函数关系的图象大致如图2所示,那么这个固定位置可能是图1中的( D )A .点MB .点NC .点PD .点Q14.(2021 中方模拟)点M(1-2m ,m -1)关于x 轴对称的点在第一象限,那么m 的取值范围在数轴上表示正确的选项是( A ),A ),B ),C ) ,D )15.(2021怀化二模)根据如下图的程序计算函数值,假设输入的x 的值为-1,那么输出的函数值为( A )A .1B .-2C .13 D .3,中考考点清单)平面直角坐标系及点的坐标1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.【方法技巧】一般地,点P(a ,b)到x 轴的距离为|b|;到y 轴的距离为|a|;到原点的距离为a 2+b 2.2.平面直角坐标系中点的坐标特征各象限点的坐标的符号特征 第一象限(+,+);第二象限①__(-,+)__;第三象限(-,-);第四象限②__(+,-)__ 坐标轴上点的坐标特征x 轴上的点的纵坐标为③__0__,y 轴上的点的横坐标为0,原点的坐标为(0,0)各象限角平分线上点的坐标特征 第一、三象限角平分线上点的横、纵坐标相等;第二、四象限角平分线上点的横、纵坐标④__互为相反数__对称点的坐标特征点P(a ,b)关于x 轴对称的点的坐标为(a ,-b);点P(a ,b)关于y 轴对称的点的坐标为⑤__(-a ,b)__;点P(a ,b)关于原点对称的点的坐标为P′(-a ,-b) 平移点的坐标特征将点P(x ,y)向右或向左平移a 个单位,得到对应点的坐标P′是(x +a ,y)或(x -a ,y);将点P(x ,y)向上或向下平移b 个单位,得到对应点的坐标P′是(x ,y +b)或(x ,y -b);将点P(x ,y)向右或向左平移a 个单位,再向上或向下平移b 个单位,得到对应点P′的坐标是⑥__(x +a ,y +b)或(x -a ,y -b)__,简记为:左减右加,上加下减函数的相关概念3.变量:在一个变化过程中,可以取不同数值的量叫做变量. 4.常量:在一个变化过程中,数值保持不变的量叫做常量.5.函数:一般地,在某个变化过程中,有两个变量,就能相应地确定y 的一个值,那么,我们就说y 是x 的函数.其中,x 叫做自变量.函数自变量的取值范围表达式 取值范围 整式型 取全体实数 分式型,如y =ax分母不为0,即x≠0 根式型,如y =x 被开方数大于等于0,即x≥0分式+根式型,如y =ax同时满足两个条件:①被开方数大于等于0即x≥0;②分母不为0,即x≠0函数的表示方法及其图象函数图象的判断近7年共考察3次,题型都为选择题,出题背景有:(1)及实际问题结合;(2)及几何图形结合;(3)及几何图形中的动点问题结合,设问方式均为“判断函数图象大致是〞.6.表示方法:数值表、图象、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观与便于抽象应用的特点.7.图象的画法:知道函数的表达式,一般用描点法按以下步骤画出函数的图象.(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表.(2)画点.根据自变量与函数的数值表,在直角坐标系中描点.(3)连线.用平滑的曲线将这些点连接起来,即得函数的图象.8.函数表达式,判断点P(x,y)是否在函数图象上的方法:假设点P(x,y)的坐标适合函数表达式,那么点P(x,y)在其图象上;假设点P(x,y)的坐标不适合函数表达式,那么点P(x,y)不在其图象上.【方法技巧】判断符合题意的函数图象的方法(1)及实际问题结合:判断符合实际问题的函数图象时,需遵循以下几点:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找相对应点;②找特殊点:即指交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性;④看是否及坐标轴相交:即此时另外一个量为0.(2)及几何图形(含动点)结合:以几何图形为背景判断函数图象的题目,一般的解题思路为设时间为t,找因变量及t之间存在的函数关系,用含t的式子表示,再找相对应的函数图象,要注意的是是否需要分类讨论自变量的取值范围.(3)分析函数图象判断结论正误:分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图象的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.,中考重难点突破)平面直角坐标系中点的坐标特征【例1】假设将点A(-4,3)先向右平移3个单位,再向下平移1个单位,得到点A1,点A1的坐标为( )A.(-1,3) B.(-1,2)C.(-7,2) D.(-7,4)【解析】∵点A(-4,3)先向右平移3个单位,再向下平移1个单位,∴点A1的坐标为(-1,2).【学生解答】B1.在平面直角坐标系中,假设点P的坐标为(-3,2),那么点P所在的象限是( B)A.第一象限B.第二象限C .第三象限D .第四象限函数自变量的取值范围【例2】(2021原创)函数y =xx -3-(x -2)0中,自变量x 的取值范围是________.【解析】根据题意得,x ≥0且x -3≠0且x -2≠0,解得x≥0且x≠3且x≠2.【学生解答】x ≥0且x≠3且x≠2【方法指导】对于分式、根式、零指数幂相结合型求自变量取值范围的,先求出各自变量的取值范围,然后取公共解集即可.2.(2021娄底中考)函数y =xx -2中自变量x 的取值范围是( A )A .x ≥0且x≠2B .x ≥0C .x ≠2D .x>2函数图象的判断【例3】(2021 营口中考)如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,那么△APE 的面积y 及点P 经过的路径长x 之间的函数关系用图象表示大致是( ),A ) ,B ) ,C ) ,D )【解析】∵在矩形ABCD 中,AB =2,AD =3,∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2.①点P 在AD 上时,△APE 的面积y =12x ·2=x(0≤x≤3);②点P 在CD 上时,S △APE =S四边形AECD-S△ADP -S △CEP =12×(2+3)×2-12×3×(x -3)-12×2×(3+2-x)=5-32x +92-5+x =-12x +92,∴y =-12x +92(3<x≤5);③点P 在CE 上时,S △APE =12×(3+2+2-x)×2=-x +7,∴y =-x +7(5<x≤7),纵观各选项,只有A 选项图形符合. 【学生解答】A【方法指导】根据动点P 的运动路径A→D→C→E 可得,在计算△APE 的面积时应该分为3种情况,①当P 在AD 上时,②当P 在DC 上时,③当P 在CE 上时,分别计算出即可.要注意转折点有x =3时与x =5时.3.(2021广东中考)如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,那么△APC 的面积y 及点P 运动的路程x 之间形成的函数关系的图象大致是( C),A) ,B),C) ,D)。
中考数学 考点系统复习 第三章 函数 第八节 二次函数的实际应用
(1)c的值为666 ; 【分层分析】 (1)根据起跳台的高度OA为66 m,即可得c=6666;
(2)①若运动员落地点恰好到达K点,且此时a=-
1 50
层分析】
(2)①由a=-
1 50
,b=
9 10
,知y=-
1 50
x2+
9 10
x+66,根据基准点K到起跳
第八节 二次函数的实际 应用
命题点:二次函数的实际应用(近 6 年考查 14 次) 1. (2022·黔西南州第 17 题 3 分)如图是一名男生推铅球时,铅球行进 过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度 y(单位:m)与水平距离 x(单位:m)之间的关系是 y=-112x2+23x+53,则 铅球推出的水平距离 OA 的长是 1100 m.
(3)物价部门规定该品牌贵州特产的销售单价不得高于 85 元/kg,公司想
获得不低于 2 000 元的周利润,销售单价的取值范围是多少? 【分层分析】(3)令获得的周利润等于 2 000 元,列方程为--22((xx--8855))22
++2 244505=0=2 000,结合 w 的函数图象可知 x 的取值范围为 700≤≤x≤x≤1001,00 再2结00合0物价部门规定该品牌贵州特产的销售单价不得高于 85 元/kg 即可
工人不会碰到头,理由: ∵小船距 O 点 0.4 m,小船宽 1.2 m,工人直立在小船中间,由题意得工 人距 O 点距离为
1 0.4+2×1.2=1(m), ∴将 x=1 代入 y=-14x2+2x,解得 y=1.75 m, ∵1.75 m>1.68 m, ∴此时工人不会碰到头.
重难点:二次函数的实际应用
2.(2022·铜仁第 23 题 12 分)为实施“乡村振兴”计划,某村产业合作 社种植了“千亩桃园”.2022 年该村桃子丰收,销售前对本地市场进行调 查发现:当批发价为 4 千元/t 时,每天可售出 12 t,每吨涨 1 千元,每 天销量将减少 2 t,据测算,每吨平均投入成本 2 千元,为了抢占市场, 薄利多销,该村产业合作社决定,批发价每吨不低于 4 千元,不高于 5.5 千元.
2023年中考数学复习第一部分考点梳理第三章函数第5节第1课时增长率问题与最大利润问题 (1)
特别提醒①求函数的最值时, 要注意实际问题中自变量的取值范围对最值的影响,
若对称轴不在自变量的取值范围内, 则最值在自变量取值的端点处;
②建立适当的平面直角坐标系易于解决问题特别提醒
教材知识网络
教材知识网络
十年真题精选
一题一课
-3-
第1课时 增长率问题与最大利润问题
()分析问题: 明确题目中常量、变量之间的关系, 确定自变量及因变量
⇓
()建立模型: 根据题意确定合适的表达式或建立适当的坐标系
解题关键步骤
⇓
()求函数表达式: 变量间的数量关系表示
⇓
()解决问题: 熟练运用顶点坐标公式或配方法, 注意二次项系数的正负及自变量的取值范围
利润=收入-成本);
教材知识网络
十年真题精选
十年真题精选
一题一课
-9-
第1课时 增长率问题与最大利润问题
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出
每千克售价为多少元时获得最大利润,最大利润是多少?
教材知识网络
十年真题精选
十年真题精选
一题一课
-10-
第1课时 增长率问题与最大利润问题
x天销售的相关信息如下表所示.
销售量p/件
销售单价q/元
p=50-x
当1≤x≤20时,q=30+ x;
当21≤x≤40时,q=20+
教材知识网络
十年真题精选
十年真题精选
一题一课
-13-
第1课时 增长率问题与最大利润问题
(1)请计算第几天该商品的销售单价为35元?
中考数学 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用
(RJ 八下 P99 习题 T11 改编)某市为了鼓励居民节约用水,采用分段 计费的方法按月计算每户家庭的水费,月用水量不超过 20 立方米时,按 2 元/立方米计费;月用水量超过 20 立方米时,超过部分按 2.6 元/立方 米计费.设某户家庭用水量为 x 立方米时,所交水费为 y 元.
解:(1)设去年 A 型车每辆售价 x 元,则今年售价每辆为(x-200)元,由 题意得 80 x000=80 00x0-(12-0010%), 解得 x=2 000. 经检验,x=2 000 是原方程的解. 答:去年 A 型车每辆售价为 2 000 元.
(2)设今年新进 A 型车 a 辆,则 B 型车(60-a)辆,获利 y 元,由题意得 y=(1 800-1 500)a+(2 400-1 800)(60-a). ∴y=-300a+36 000. ∵B 型车的进货数量不超过 A 型车数量的两倍, ∴60-a≤2a,∴a≥20. ∵y=-300a+36 000.∴k=-300<0, ∴y 随 a 的增大而减小.∴a=20 时,y 有最大值, ∴B 型车的数量为 60-20=40(辆). 答:当新进 A 型车 20 辆,B 型车 40 辆时,这批车获利最大.
(1)写出 y 与 x 之间的函数表达式;
解:由题意可得,当 0≤x≤20 时,y=2x, 当 x>20 时,y=20×2+(x-20)×2.6=2.6x-12,
2x(0≤x≤20), 综上可得,y=2.6x-第二季度交纳水费的情况如下: 月份 四月份 五月份
交费金额 30 元 34 元 小明家这个季度共用水多少立方米?
解:(1)设乙食材每千克进价为 a 元,则甲食材每千克进价为 2a 元,由 题意得820a-2a0=1,解得 a=20.经检验,a=20 是原方程的解,且符合题 意. ∴2a=40 元.答:甲、乙两种食材每千克进价分别为 40 元、20 元.
中考数学 考点系统复习 第三章 函数 第四节 二次函数的图象与性质
1.(2018·省卷第 20 题 8 分)已知二次函数 y=-136x2+bx+c 的图象经
9
过 A(0,3),B-4,-2两点.
(1)求 b,c 的值;
(2)二次函数 y=-136x2+bx+c 的图象与 x 轴是否有公共点?若有,求公
共点的坐标;若没有,请说明理由.
解:(1)把 A(0,3),B-4,-92分别代入 y=-136x2+bx+c,得 c-=1363×,16-4b+c=-92,解得bc==983,.
(2)有公共点.由(1)可得,该抛物线的解析式为 y=-136x2+98x+3.令 y=0,得-136x2+98x+3=0, ∴Δ=982-4×-136×3=26245>0, ∴二次函数 y=-136x2+bx+c 的图象与 x 轴有公共点. ∵-136x2+98x+3=0 的解为 x1=-2,x2=8. ∴公共点的坐标是(-2,0),(8,0).
度后,得到的抛物线解析式是
( D)
A.y=(x-4)2-6
B.y=(x-1)2-3
C.y=(x-2)2-2
D.y=(x-4)2-2
3.已知抛物线 y=-x2+bx+4 经过(-2,n)和(4,n)两点,则 n 的值为
( B)
A.-2
B.-4
C.2
D.4
4.根据下列已知条件,求二次函数的解析式. (1)已知二次函数的顶点在原点,且过另一点(3,-9),则二次函数的解 析式为 y=y=--xx22; (2)已知二次函数的顶点在 y 轴上,且纵坐标为 2,过另一点(1,9),则 二次函数的解析式为 y=y=7 7xx22++2;
作
A′H⊥x
轴于
H,如图,利用等腰直角三角形的性质得到
A′H=BH=
2023年中考数学复习第一部分考点梳理第三章函数第5节第2课时几何图形面积问题
域Ⅱ的面积不超过矩形ABCD面积的 ,设OP=x
m.
(1)当x= 时,求区域Ⅱ的面积.
基础过关
基础过关
能力提升
-6-
第2课时 几何图形面积问题
(2)计划在区域Ⅰ,Ⅱ分别铺设甲、乙两款不同的深色瓷砖,区
域Ⅲ铺设丙款白色瓷砖,在相同光照条件下,当场地内白色区
域的面积越大,室内光线亮度越好.当x为多少时,室内光线亮
饲养室面积最大为 75 m2.
基础过关
基础过关
能力提升
-5-
第2课时 几ห้องสมุดไป่ตู้图形面积问题
4.如图,某校准备给长12 m、宽8 m的矩形ABCD室内场地进
行地面装饰,现将其划分为区域I(菱形PQFG),区域Ⅱ(4个全等
的直角三角形),剩余空白部分记为区域Ⅲ,点O为矩形和菱形
的对称中心,OP∥AB,OQ=2OP,AE= PM.为了美观,要求区
第2课时
几何图形面积问题
第2课时 几何图形面积问题
1.如图,在长为20 m、宽为14 m的矩形花圃里建有等宽的十
字形小径.若小径的宽不超过1 m,则花圃中的阴影部分的面积
有( A )
A.最小值247 m2
B.最小值266 m2
C.最大值247 m2
D.最大值266 m2
基础过关
基础过关
能力提升
-2-
∵AF=x,∴CH=x-4,
设AQ=z,则PH=BQ=6-z.
−
−
∵PH∥EG,∴ = , 即
=
,∴
−
∴y=
·
=-
中考数学复习 第一部分 知识梳理 第三章 函数 第11讲 反比例函数数学课件
设A1D=a,则OD=2+a,P2D=3a. ∴P2(2+a,3a).
答图1-11-2
∵P2(2+a,3a)在反比例函数的图象(tú xiànɡ)上,
∴代入y= ,得(2+a)·3a=3.
化简,得a2+2a-1=0.解得a=-1±2.
∵a>0,∴a=-1+2.∴A1A2=-2+22.
∴OA122/9=/2O021A1+A1A2=22,所以点A2的坐标为(22,0).
13. (2017枣庄)如图1-11-11,反比例函数y=2x的图象经过矩 形OABC的边AB的中点(zhōnɡ diǎn)D,则矩形OABC的面积为 ___4_____.
14. (2018宜宾)如图1-11-12,已知反比例函数= (m≠0)
的图象经过点(1,4),一次函数y=-x+b的图象经过反比例 函数图象上的点Q(-4,n). (1)求反比例函数与一次函数的表达式; (2)一次函数的图象分别(fēnbié)与x轴,y轴交于A,B两点, 与反比例函数图象的另一个交点为点P,连接OP,OQ, 求△OPQ的面积.
第十八页,共二十四页。
基础训练
9. (2018衡阳)对于反比例函数y=- ,下列说法(shuōfǎ)不正确 的是( ) D
A.图象分布在第二、四象限
B.当x>0时,y随x的增大而增大 C.图象经过点(1,-2) D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则 y1<y2
10. (2018无锡)已知点P(a,m),Q(b,n)都在反比
12/9/2021
第二十二页,共二十四页。
解:(1)∵反比例函数(hánshù)y= (m≠0)的图象经过点Q(1, 4),
2023年中考数学复习第一部分考点梳理第三章函数第5节第1课时增长率问题与最大利润问题
时间第x天
销售量y/kg
…
…
2
33
5
30
9
26
…
…
基础过关
基础过关
能力提升
-6-
第1课时 增长率问题与最大利润问题
(1)求y关于x的函数表达式.
(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利
润为多少元?
基础过关
基础过关
能力提升
-7-
第1课时 增长率问题与最大利润问题
+ =,
=,
则ቊ
解得 ቊ
+ =,
= − ,
基础过关
基础过关
能力提升
-12-
第1课时 增长率问题与最大利润问题
即当20<x≤30时,y与x之间的函数关系式为y=4x-40.
综上所述,y与x之间的函数关系式为
y=ቐ
− + (< ≤ ),
− (< ≤ ).
基础过关
基础过关题与最大利润问题
4.(2022·辽宁鞍山)某超市购进一批水果,成本为8元/kg,根据市
场调研发现,这种水果在未来10天的售价m(元/kg)与时间第x
天之间满足函数关系式m= x+18(1≤x≤10,x为整数),又通过
分析销售情况,发现每天销售量y(kg)与时间第x天之间满足一
基础过关
基础过关
能力提升
-13-
第1课时 增长率问题与最大利润问题
(2)设当月第x天的销售额为w元.
当0<x≤20时,w=
+ · (- +
)=- (x-15)2+500,
中考数学 精讲篇 考点系统复习 第三章 函数 第一节 平面直角坐标系与函数
命题点 2:函数自变量的取值范围(近 6 年考查 4 次) 7.(2017·河池第 3 题 3 分)若函数 y=x-1 1有意义,则 A.x>1 B.x<1 C.x=1 D.x≠1Fra bibliotek( D)
8.(2020·贺州第 16 题 3 分)函数 y= x1-2自变量 x 的取值范围是 xx>>22.
命题点 3:函数图象的分析与判断(近 6 年考查 3 次)
11.(RJ 八下 P76 例 2 变式)爷爷在离家 900 米的公园锻炼后回家,离开
公园 20 分钟后,爷爷停下来与朋友聊天 10 分钟,接着又走了 15 分钟回
到家中.下列图形中表示爷爷离家的距离 y(米)与爷爷离开公园的时间
x(分)之间的函数关系是
(B )
【考情分析】广西近 6 年主要以选填题形式考查:1.平面直角坐标系中 点的坐标特征:①各象限内点的坐标特征;②象限中对称点的坐标特征; ③点的平移.2.函数及其图象判断,考查形式主要是与几何图形中的动点 问题结合判断函数图象或通过函数图象判断动点运动情况.难度较大, 分值一般 3 分.
命题点 1:平面直角坐标系中点的坐标特征(近 6 年考查 17 次)
1.(2021·北部湾经济区第 7 题 3 分)平面直角坐标系内与点 P(3,4)关
于原点对称的点的坐标是
( B)
A.(-3,4) B.(-3,-4)
C.(3,-4) D.(4,3)
2.(2015·钦州第 8 题 3 分)在平面直角坐标系中,将点 A(x,y)向左平
移 5 个单位长度,再向上平移 3 个单位长度后与点 B(-3,2)重合,则点
A 的坐标是
( D)
A.(2,5) B.(-8,5)