专题复习——直线与圆的方程

合集下载

第二章 直线和圆的方程(单元复习课件)高二数学(人教A版2019选择性必修第一册)

第二章 直线和圆的方程(单元复习课件)高二数学(人教A版2019选择性必修第一册)

二、本章知识回顾
●2.2.2 直线的两点式方程 ●1.根据确定直线位置的几何要素,探索并掌握直线
的两点式方程(重点). ●2.了解直线的截距式方程的形式特征及适用范围.
二、本章知识回顾
●2.2.3 直线的一般式方程 ●1.根据确定直线位置的几何要素,探索并掌握直线的一
般式方程(重点). ●2.会进行直线方程的五种形式间的转化.
三、本章考点分析
三、本章考点分析
考点 30 圆的弦长问题
规律总结
直线与圆相交时的弦长求法
几何法 代数法
利用圆的半径 r,圆心到直线的距离 d,弦长 l之间的关

r2
d2
l 2
2
解题
若直线与圆的交点坐标易求出,则求出交点坐标后,直
接用两点间的距离公式计算弦长
弦长
设直线 l:y=kx+b 与圆的两交点为(x1,y1),(x2,y2), 将直线方程代入圆的方程,消元后利用根与系数的关系
公式法
得弦长 l= 1+k2·|x1-x2|= 1+k2 [ x1+x2 2-4x1x2]
三、本章考点分析
考点31直线与圆的方程的实际应用答题模板 应用直线与圆的方程解决实际问题 的步骤(1)审题:从题目中抽象出几何模型,明确已知和未知;(2)建系:建立适当的 直角坐标系,用坐标和方程表示几何模型中的基本元素;(3)求解:利用直线与圆的有 关知识求出结果;(4)还原:将运算结果还原到实际问题中去.
二、本章知识回顾
●2.1.2 两条直线平行和垂直的判定 ●1.能根据斜率判定两条直线平行或垂直(重点). ●2.能应用两条直线平行或垂直解决有关问题(难点).
二、本章知识回顾
●2.2 直线的方程 ●2.2.1 直线的点斜式方程 ●1.根据确定直线位置的几何要素,探索并掌握直线的点斜

本章知识及方法总结:直线和圆的方程

本章知识及方法总结:直线和圆的方程

直线和圆的方程本章知识及方法总结
2.知识纲要
(1)直线的倾斜角和斜率的概念,过两点的直线的斜率公式,由一点和斜率导出直线方程的方法;直线方程的点斜式、两点式、参数式和直线方程的一般式,根据条件求直线的方程.
(2)两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式;根据直线的方程判断两条直线的位置关系.
(3)二元一次不等式表示平面区域.简单的线性规划问题,线性规划的意义及应用.
(4)坐标法研究几何问题、圆的标准方程、圆的一般方程、圆的参数方程.
●方法总结
1.建立直角坐标系,通过研究曲线的方程研究曲线是解析几何的基本思想,它揭示了数
学中“数”与“形”的内在联系.
2.曲线(含直线)的交点问题转化为两曲线的方程组成的方程组的解的问题,体现了方程的思想.
3.简单的线性规划问题转化为平行直线系在某个区域上截距的最值问题.
4.两个条件决定一条直线,三个条件决定一个圆.在确定直线和圆的方程时,常用到待定系数法.。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

直线和圆的方程知识点总结

直线和圆的方程知识点总结
2)参数法;3)定义法, 4)待定系数法.
%
(2)常见题型——求过定点的切线方程
①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无
②求切线方程的方法及注意点
i)点在圆外
-
如定点 ,圆: ,[ ]
第一步:设切线 方程
第二步:通过 ,从而得到切线方程
特别注意:以上解题步骤仅对 存在有效,当 不存在时,应补上——千万不要漏了!
直线与圆的直线方程
一、直线方程.
1. 直线的倾斜角
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
3. ⑴两条直线平行:
推论:如果两条直线 的倾斜角为 则 ∥ .
}
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线 和 的斜率分别为 和 ,则有
4. 直线的交角:
5.过两直线 的交点的直线系方程 为参数, 不包括在内)
6.点到直线的距离:
⑴点到直线的距离公式:设点 ,直线 到 的距离为 ,则有 .
注:
1.~
2.两点P1(x1,y1)、P2(x2,y2)的距离公式: .
3.
4.定比分点坐标分式。若点P(x,y)分有向线段 ,其中P1(x1,y1),P2(x2,y2).则
特例,中点坐标公式;重要结论,三角形重心坐标公式。
4.点和圆的位置关系:给定点 及圆 .
① 在圆 内
② 在圆 上
③ 在圆 外
5. 直线和圆的位置关系:

设圆圆 : ; 直线 : ;
圆心 到直线 的距离 .
① 时, 与 相切;
② 时, 与 相交;,有两个交点,则其公共弦方程为 .
③ 时, 与 相离.
7.圆的切线方程:
①一般方程若点(x0,y0)在圆上,则(x– a)(x0– a)+(y– b)(y0– b)=R2. 特别地,过圆 上一点 的切线方程为 .

备战2023年新高考数学二轮专题复习直线和圆

备战2023年新高考数学二轮专题复习直线和圆

专题六解析几何第一讲直线和圆——小题备考微专题1直线的方程及应用常考常用结论1.两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.直线方程常用的三种形式(1)点斜式:过一点(x0,y0),斜率k,直线方程为y-y0=k(x-x0).(2)斜截式:纵截距b,斜率k,直线方程为y=kx+b.(3)一般式:Ax+By+C=0(A2+B2≠0)3.两个距离公式(1)两平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=12√A2+B2.(2)点(x0,y0)到直线l:Ax+By+C=0的距离公式d=00√A2+B2.保分题1.[2022·山东潍坊二模]已知直线l1:x-3y=0,l2:x+ay-2=0,若l1⊥l2,则a=()A.13B.-13C.3 D.-32.[2022·湖南常德一模]已知直线l1:ax-4y-3=0,l2:x-ay+1=0,则“a=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.[2022·山东济南二模]过x+y=2与x-y=0的交点,且平行于向量v=(3,2)的直线方程为()A.3x-2y-1=0 B.3x+2y-5=0C.2x-3y+1=0 D.2x-3y-1=0提分题例1 [2022·江苏海安二模](多选)已知直线l过点(3,4),点A(-2,2),B(4,-2)到l的距离相等,则l的方程可能是()A.x-2y+2=0 B.2x-y-2=0C.2x+3y-18=0 D.2x-3y+6=0听课笔记:技法领悟1.设直线的方程时要注意其使用条件,如设点斜式时,要注意斜率不存在的情况;设截距式时要注意截距为零的情况.2.已知直线的平行、垂直关系求参数值时,可以直接利用其系数的等价关系式求值,也要注意验证与x,y轴垂直的特殊情况.巩固训练1[2022·山东临沂三模]数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),C(-4,0),则其欧拉线方程为________________________.微专题2圆的方程、直线与圆、圆与圆常考常用结论1.圆的方程(1)圆的标准方程当圆心为(a,b),半径为r时,其标准方程为(x-a)2+(y-b)2=r2,特别地,当圆心在原点时,方程为x2+y2=r2.(r>0)(2)圆的一般方程x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0,表示以(−D2,−E2)为圆心,√D2+E2−4F2为半径的圆.2.直线与圆的位置关系22222切线长的计算:过点P向圆引切线P A,则|P A|=√|PC|2−r2(其中C为圆心).弦长的计算:直线l与圆C相交于A,B两点,则|AB|=2√r2−d2(其中d为弦心距).3.圆与圆的位置关系设圆C1:(x-a1)2+(y-b1)2=r12(r1>0),圆C2:(x-a2)2+(y-b2)2=r22(r2>0),(1)(2)两圆公共弦的垂直平分线过两圆的圆心;(3)求公共弦长时,几何法比代数法简单易求.保分题1.[2022·河北石家庄一模]与直线x+2y+1=0垂直,且与圆x2+y2=1相切的直线方程是()A.2x+y+√5=0或2x+y-√5=0B.2x+y+5=0或2x+y-5=0C.2x-y+√5=0或2x-y-√5=0D.2x-y+5=0或2x-y-5=02.[2022·北京卷]若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=()A.12B.-12C.1 D.-13.[2022·湖北十堰三模]当圆C:x2+y2-4x+2ky+2k=0的面积最小时,圆C与圆D:x2+y2=1的位置关系是________.提分题例2 (1)[2022·新高考Ⅱ卷]设点A(-2,3),B(0,a),若直线AB关于y=a对称的直线与圆(x+3)2+(y+2)2=1有公共点,则a的取值范围是________.(2)[2022·山东临沂二模]若圆C1:x2+y2=1与圆C2:(x-a)2+(y-b)2=1的公共弦AB的长为1,则直线a2x+2b2y+3=0恒过定点M的坐标为________.听课笔记:【技法领悟】1.圆的切线方程:(1)过圆上一点的切线方程:对于这种情况可以通过圆心与切点的连线垂直切线求出切线的斜率,进而求出直线方程.(2)过圆外一点的切线方程:这种情况可以先设直线的方程,然后联立方程求出他们只有一个解(交点)时斜率的值,进而求出直线方程.2.与弦长有关的问题常用几何法,即利用圆的半径r,圆心到直线的距离d,及半弦长l2,构成直角三角形的三边,利用其关系来处理.3.两圆方程相减,所得的直线方程即两圆公共弦所在的直线方程,这一结论的前提是两圆相交,如果不确定两圆是否相交,两圆方程相减得到的方程不一定是两圆的公共弦所在的直线方程.巩固训练21.[2022·福建德化模拟]已知点A(-2,0),直线AP与圆C:x2+y2-6x=0相切于点P,则AC⃗⃗⃗⃗⃗ ·CP⃗⃗⃗⃗ 的值为()A.-15 B.-9C.9 D.152.[2022·广东梅州二模]已知直线l:y=kx与圆C:x2+y2-6x+5=0交于A、B两点,若△ABC为等边三角形,则k的值为()A.√33B.√22C.±√33D.±√22微专题3有关圆的最值问题常考常用结论1.与圆有关的长度或距离的最值问题的解法一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解,注意圆的弦长或切线段的长通常利用勾股定理转化为圆心到直线距离或点到圆心距离.2.与圆上点(x,y)有关代数式的最值的常见类型及解法形如μ=y−bx−a型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;形如t=ax+by型的最值问题,可转化为动直线的截距的最值问题;形如(x-a)2+(y-b)2型的最值问题,可转化为动点(x,y)到定点(a,b)的距离平方的最值问题.3.与距离最值有关的常见的结论(1)圆外一点A到圆上距离最近为|AO|-r,最远为|AO|+r;(2)过圆内一点的弦最长为圆的直径,最短为该点为中点的弦;(3)直线与圆相离,则圆上点到直线的最大距离为圆心到直线的距离d+r,最小为d-r;(4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆的面积.(5)直线外一点与直线上的点的距离中,最短的是点到直线的距离;(6)两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.4.与圆有关的面积的最值问题或圆中与数量积有关的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.保分题1.圆x2+y2+2x-8=0截直线y=kx+1(k∈R)所得的最短弦长为()A.2√7B.2√2C.4√3D.22.[2022·辽宁抚顺一模]经过直线y=2x+1上的点作圆x2+y2-4x+3=0的切线,则切线长的最小值为()A.2 B.√3C.1 D.√53.[2022·辽宁辽阳二模]若点P ,Q 分别为圆C :x 2+y 2=1与圆D :(x -7)2+y 2=4上一点,则|PQ |的最小值为________.提分题例3 (1)[2022·广东汕头一模]点G 在圆(x +2)2+y 2=2上运动,直线x -y -3=0分别与x 轴、y 轴交于M 、N 两点,则△MNG 面积的最大值是( )A .10B .232C .92D .212(2)[2022·山东泰安三模](多选)已知实数x ,y 满足方程x 2+y 2-4x -2y +4=0,则下列说法正确的是( )A .yx的最大值为43B .yx 的最小值为0C .x 2+y 2的最大值为√5+1D .x +y 的最大值为3+√2 听课笔记:技法领悟1.要善于借助图形进行分析,防止解题方法错误.2.要善于运用圆的几何性质进行转化,防止运算量过大,以致运算失误.巩固训练31.[2022·北京昌平二模]已知直线l :ax -y +1=0与圆C :(x -1)2+y 2=4相交于两点A ,B ,当a 变化时,△ABC 的面积的最大值为( )A .1B .√2C .2D .2√22.[2022·辽宁鞍山二模](多选)已知M 为圆C :(x +1)2+y 2=2上的动点,P 为直线l :x -y +4=0上的动点,则下列结论正确的是( )A .直线l 与圆C 相切B .直线l 与圆C 相离C .|PM |的最大值为3√22 D .|PM |的最小值为√22专题六 解析几何第一讲 直线和圆微专题1 直线的方程及应用保分题1.解析:∵l 1⊥l 2,∴13·(-1a)=-1⇒a =13.答案:A2.解析:若l 1∥l 2,则有-a 2+4=0,解得a =±2,当a =2时,l 1:2x -4y -3=0,l 2:x -2y +1=0,l 1∥l 2, 当a =-2时,l 1:2x +4y +3=0,l 2:x +2y +1=0,l 1∥l 2, 所以若l 1∥l 2,a =±2,则“a =2”是“l 1∥l 2”的充分不必要条件. 答案:A3.解析:由{x −y =0x +y =2,得x =1,y =1,所以交点坐标为(1,1),又因为直线平行于向量v =(3,2),所以所求直线方程为y -1=23(x -1),即2x -3y +1=0. 答案:C提分题[例1] 解析:当直线l 的斜率不存在时,直线l 的方程为x =3,此时点A 到直线l 的距离为5,点B 到直线l 的距离为1,此时不成立;当直线l 的斜率存在时,设直线l 的方程为y -4=k (x -3),即kx -y +4-3k =0, ∵点A (-2,2),B (4,-2)到直线的距离相等,∴√k 2+1=√k 2+1,解得k =-23,或k =2,当k =-23时,直线l 的方程为y -4=-23(x -3),整理得2x +3y -18=0, 当k =2时,直线l 的方程为y -4=2(x -3),整理得2x -y -2=0. 综上,直线l 的方程可能为2x +3y -18=0或2x -y -2=0. 答案:BC [巩固训练1]解析:设△ABC 的重心为G ,垂心为H , 由重心坐标公式得x =0+2+(−4)3=-23,y =0+4+03=43,所以G (-23,43).由题,△ABC 的边AC 上的高线所在直线方程为x =0,直线BC :y =x +4,A (2,0),所以△ABC 的边BC 上的高线所在直线方程为y =-x +2, 所以{x =0y =−x +2⇒H (0,2),所以欧拉线GH 的方程为y -2=2−430−(−23)x ,即x -y +2=0.答案:x -y +2=0微专题2 圆的方程、直线与圆、圆与圆保分题1.解析:由题得直线x +2y +1=0的斜率为-12,所以所求的直线的斜率为2,设所求的直线方程为y =2x +b ,∴2x -y +b =0. 因为所求直线与圆相切,所以1=√4+1,∴b =±√5.所以所求的直线方程为2x -y +√5=0或2x -y -√5=0. 答案:C2.解析:因为直线2x +y -1=0是圆(x -a )2+y 2=1的一条对称轴,所以直线2x +y -1=0经过圆心.由圆的标准方程,知圆心坐标为(a ,0),所以2a +0-1=0,解得a =12.故选A.答案:A3.解析:由x 2+y 2-4x +2ky +2k =0,得(x -2)2+(y +k )2=k 2-2k +4=(k -1)2+3, 当k =1时,(k -1)2+3取得最小值,此时,圆心坐标为(2,-1),半径为√3.因为|CD |=√22+(−1)2=√5,√3-1<√5<√3+1,所以两圆相交. 答案:相交提分题 [例2] 解析:(1)因为k AB =a−32,所以直线AB 关于直线y =a 对称的直线方程为(3-a )x-2y +2a =0.由题意可知圆心为(-3,-2),且圆心到对称直线的距离小于或等于1,所以√4+(3−a )2≤1,整理,得6a 2-11a +3≤0,解得13≤a ≤32.(2) 解析:由C 1:x 2+y 2=1和C 2:(x -a )2+(y -b )2=1可得公共弦所在直线方程为x 2+y 2-[(x −a )2+(y −b )2]=0,即2ax +2by -a 2-b 2=0,由公共弦AB 的长为1可得直线2ax +2by -a 2-b 2=0与圆C 1:x 2+y 2=1相交弦长即为1,又圆心到直线的距离22√4a 2+4b 2=√a 2+b 22,故2√1−(√a 2+b22)2=1,即a 2+b 2=3,故直线a 2x+2b 2y +3=0,可化为a 2x +(6-2a 2)y +3=0,整理得a 2(x -2y )+6y +3=0,由{x −2y =06y +3=0,解得{x =−1y =−12,故定点M 的坐标为(−1,−12). 答案:(1)[13,32] (2)(−1,−12) [巩固训练2]1.解析:圆C 的标准方程为(x -3)2+y 2=9,圆心为C (3,0),半径为3,即|CP⃗⃗⃗⃗ |=3, 由圆的几何性质可知AP ⊥CP ,所以,AC⃗⃗⃗⃗⃗ ·CP ⃗⃗⃗⃗ =(AP ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )·CP ⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ ·CP ⃗⃗⃗⃗ −CP ⃗⃗⃗⃗ 2=−|CP ⃗⃗⃗⃗ |2=-9. 答案:B2.解析:圆C 的标准方程为(x -3)2+y 2=4,圆心为C (3,0),半径为2, 由题意可知,圆心C 到直线l 的距离为d =2sin π3=√3, 由点到直线的距离公式可得d =√k 2+1=√3,解得k =±√22.答案:D微专题3 有关圆的最值问题保分题1.解析:直线y =kx +1过定点(0,1),圆x 2+y 2+2x -8=0可化为(x +1)2+y 2=32, 故圆心为(-1,0),半径为r =3.(0+1)2+12=2<32,所以点(0,1)在圆x 2+y 2+2x -8=0内,(0,1)和(-1,0)的距离为√(−1)2+(−1)2=√2,根据圆的几何性质可知,圆x 2+y 2+2x -8=0截直线y =kx +1(k ∈R )所得的最短弦长为2√32−(√2)2=2√7.答案:A2.解析:直线y =2x +1上任取一点P (x 0,y 0)作圆x 2+y 2-4x +3=0的切线,设切点为A ,圆x 2+y 2-4x +3=0,即(x -2)2+y 2=1,圆心C (2,0),r =1, 切线长为√|PC|2−r 2=√|PC|2−1, |PC |min =√22+(−1)2=√5,所以切线长的最小值为√(√5)2−1=2.答案:A3.解析:因为|CD |=7>1+2,所以两圆相离,所以|PQ |的最小值为7-1-2=4. 答案:4提分题 [例3] 解析:(1)易知点M (3,0)、N (0,-3),则|MN |=√32+32=3√2, 圆(x +2)2+y 2=2的圆心坐标为(-2,0),半径为√2, 圆心到直线x -y -3=0的距离为√2=5√22, 所以,点G 到直线x -y -3=0的距离的最大值为5√22+√2=7√22, 所以,△MNG 面积的最大值是12×3√2×7√22=212. (2)由实数x ,y 满足方程x 2+y 2-4x -2y +4=0可得点(x ,y )在圆(x -2)2+(y -1)2=1上,作其图象如下,因为yx 表示点(x ,y )与坐标原点连线的斜率,设过坐标原点的圆的切线OB 方程为y =kx ,则圆心(2,1)到直线OB 的距离d =√k 2+1=1,解得:k =0或k =43,∴yx ∈[0,43],∴(yx )max =43,(yx )min =0,A ,B 正确;x 2+y 2表示圆上的点(x ,y )到坐标原点的距离的平方,圆上的点(x ,y )到坐标原点的距离的最大值为|OC |+1,所以x 2+y 2的最大值为(|OC |+1)2,又|OC |=√22+12, 所以x 2+y 2的最大值为6+2√5,C 错,因为x 2+y 2-4x -2y +4=0可化为(x -2)2+(y -1)2=1,故可设x =2+cos θ,y =1+sin θ,所以x +y =2+cos θ+1+sin θ=3+√2sin (θ+π4),所以当θ=π4时,即x =2+√22,y =1+√22时x +y 取最大值,最大值为3+√2,D 对.答案:(1)D (2)ABD [巩固训练3]1.解析:因为直线l :ax -y +1=0恒过点(0,1)在圆内,所以直线与圆相交,圆C :(x -1)2+y 2=4的圆心C (1,0),r =2,所以△ABC 的面积的最大值为: S =12|CA ||CB |sin ∠ACB =12r 2sin ∠ACB ≤12r 2=12×4=2.2.解析:圆C :(x +1)2+y 2=2的圆心C (-1,0),半径r =√2, ∵圆心C (-1,0)到直线l :x -y +4=0的距离d =√12+(−1)2=3√22>r , ∴直线l 与圆C 相离, A 不正确,B 正确; |PM |≥|PC |-r ≥d -r =√22, C 不正确,D 正确. 答案:BD。

高三总复习直线与圆的方程知识点总结及典型例题

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。

2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在`⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。

当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。

几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b!④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。

②任何一个关于x 、y 的二元一次方程都表示一条直线。

5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) '特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。

二、两直线的位置关系(说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan kk k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B A d③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --':(2)点关于线的对称:设p(a 、b)一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则Kpp 0﹡K L =-1P , P 0中点满足L 方程:解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。

【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)

【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)

直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。

三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。

既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

直线和圆的方程复习课资料-2023年学习资料

直线和圆的方程复习课资料-2023年学习资料

1.曲线与方程-1曲线上的点的坐标都是这个方程的解;-2以这个方程的解为坐标的点都是曲线上的点,-2.求曲 方程-1建立适当的坐标系,用x,y表示曲线上任意一-点M的坐标;-2用坐标x,y表示关系式,即列出方程fx y=0;-3化简方程fx,y=0;-4验证x、y的取值范围。
方程注意点-1、特殊形式的方程都有一定的限制条件。-2、解题时应根据实际情况选用合适的形-式以利解题。-3 当我们决定选用某一特殊形式的方程-时,而又不知道其是否满足限制条件,-应加以讨论,或用特殊形式的变式。-返
点与直线-1、点与直线的位置关系-2、点关于直线对称的点坐标-3、直线关于点对称的直线方程-4、点到直线的 离-练习
高考题选-1、设k心1,fx=kx-1x∈R.在平面直角坐标系-xOy中,函数y=fx的图象与x轴交于A点 它的-反函数y=f-x的图象与y轴交于B点,并且这两-个函数的图象交于P点.已知四边形OAPB的面积-是3 则k等于-0-A3-D-2、已知点P到两定点M-1,0,N1,0距离的比为√2-点N到直线PM的距离为1, 直线PN的方程。-略解:直线PN的方程为:y=-x+1-分析:画图利用解三角形知识,先求∠PMN,再由正弦 理,-求出∠PNM,于是可得直线PN的斜率
两直线相交相关练习-1、光线自右上方沿直线y=2x-1射到x轴上一点M,-被x轴反射,则反射光线所在直线的 程是-y=-2x+1-2、已知△ABC的三边方程是AB:5x一y一12=0,-BC:x+3y+4=0,CA x一5y+12=0,则∠A-π-atctan-3、△ABC的三个顶点是A0,3,B3,3,C2,-0,直线 x=a将△ABC分割成面积相等的两部分,-则a的值是-返回
点与直线练习-1、已知直线☑十和☑-相交于点P2,3,则过点三的直线-方程为-2x+3y=1.-2、点P2 5关于直线x+y=1的对称点的坐标是A-A-4,-1B-5,-2C-6,-3D-4,-2)-3、已知△AB 的一个顶点为A3,-1,∠B被y轴平分,∠C-被直线y=x平分,则直线BC的方程是-A.2x-y+5=0B 2x-y+3=0C.3x-y+5=0D.x+2y-5=0-4、已知点a,2a>0到直线l:x一y+3=0的 离为1,则-a等于v2-1-返回

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。

高中数学知识点:直线和圆的方程

高中数学知识点:直线和圆的方程

高中数学知识点:直线和圆的方程一、证一、概述在知识点圆的方程中介绍了圆的概念 ,以及直线与圆的位置关系。

在初一数学中就有学习过直线方程的知识点 ,应该清楚 ,一元一次方程与直线方程的关系。

二、直线方程1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角 ,其中直线与x轴平行或重合时 ,其倾斜角为0 ,故直线倾斜角的范围是[0,180〕注:①当倾斜角等于90时 ,直线l垂直于x轴 ,它的斜率不存在.②每一条直线都存在惟一的倾斜角 ,除与x轴垂直的直线不存在斜率外 ,其余每一条直线都有惟一的斜率 ,并且当直线的斜率一定时 ,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.三、圆的方程1.⑴曲线与方程:在直角坐标系中 ,如果某曲线C上的与一个二元方程f(x,y)=0的实数建立了如下关系:①曲线上的点的坐标都是这个方程的解.②以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线方程;这条曲线叫做方程的曲线〔图形〕.⑵曲线和方程的关系 ,实质上是曲线上任一点M(x,y)其坐标与方程f(x,y)=0的一种关系 ,曲线上任一点(x,y)是方程f(x,y)=0的解;反过来 ,满足方程f(x,y)=0的解所对应的点是曲线上的点.注:如果曲线C的方程是f(x,y)=0 ,那么点P0(x0,y)线C上的充要条件是f(x0,y0)=01.提出反证法:一般地 ,假设原命题不成立 ,经过正确的推理 ,最后得出矛盾 ,因此说明假设错误 ,从而证明了原命题成立.2.证明根本步骤:假设原命题的结论不成立从假设出发 ,经推理论证得到矛盾矛盾的原因是假设不成立 ,从而原命题的结论成立3.应用关键:在正确的推理下得出矛盾〔与条件矛盾 ,或与假设矛盾 ,或与定义、公理、定理、事实矛盾等〕.4.方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的 ,即由一个命题与其逆否命题同真假 ,通过证明一个命题的逆否命题的正确 ,从而肯定原命题真实.。

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。

圆的方程与专题复习(直线与圆圆与圆的位置关系轨迹问题)知识梳理

圆的方程与专题复习(直线与圆圆与圆的位置关系轨迹问题)知识梳理

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)知识梳理浙江省诸暨市学勉中学(311811)郭天平圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。

一、有关圆的基础知识要点归纳1. 圆的定义:平面内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径.2. 圆的标准方程① 圆的标准方程:由圆的定义及求轨迹的方法,得()()()0222>=-+-r r b y a x ,其中圆心坐标为()b a ,,半径为r ;当0,0==b a 时,即圆心在原点时圆的标准方程为222r y x =+;② 圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。

3. 圆的一般方程①圆的一般方程:展开圆的标准方程,整理得,022=++++F Ey Dx y x ()0422>-+F E D ;② 圆的一般方程的特点:(1)22,y x 项系数相等且不为0;(2)没有xy 这样的二次项③ 二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件是0≠=C A 且0=B ;二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是0≠=C A 且0=B 且0422>-+AF E D4. 圆的参数方程圆的参数方程是由中间变量θ将变量y x ,联系起来的一个方程. ① 圆心在原点,半径为r 的圆的参数方程是:θθθ(sin cos ⎩⎨⎧==r y r x 为参数);② 圆心在()b a ,,半径为r 的圆的参数方程是:θθθ(sin cos ⎩⎨⎧+=+=r b y r a x 为参数); 5. 圆方程之间的互化022=++++F Ey Dx y x ()0422>-+F E D配方⇔44222222F E D E x D x -+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+即圆心⎪⎭⎫ ⎝⎛--22E ,D ,半径F E D r 42122-+=⇔利用()()222sin cos r r r =+θθ得θθθ(sin cos ⎩⎨⎧+=+=r b y r a x 为参数) 6. 确定圆方程的条件圆的标准方程、圆的一般方程及参数方程都有三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。

直线与圆的方程复习PPT课件课件

直线与圆的方程复习PPT课件课件

的斜率
k

y2
y1
x2 x1
(3)直线的横截距是直线与x轴交点的横坐标,直线的纵截
距是直线与 y 轴交点的纵坐标.
2.直线方程的五种形式.
(1)点斜式:设直线l过定点P(x0,y0),斜率为k,则直线 l 的方程为y-y0=k(x-x0) (2)斜截式:设直线 l 斜率为k,在y 轴截距为b,则直 线l 的方程为y=kx+b (3)两点式:设直线 l 过两点P1(x1,y1),P2(x2,y2) x1≠ x2,y1≠y2则直线 l 的方程为(y-y1)/(y2-y1)=(xx1)/(x2-x1) (4)截距式:设直线 l 在x、y轴截距分别为a、b(ab≠0) 则直线l的方程为x/a+y/b=1. (5)一般式:直线l的一般式方程为Ax+By+C=0(A2+B2≠0)
(
)
(A
(C)2x+y-7=0
(D)2y-x-4=0
6 曲线y=2x-x3在点(-1,-1)处的切线方程是( A )
A x+y+2=0 B x+y+3=0 C x+y+4=0 D x+y+5=0
能力·思维·方法
1.过点P(2,1)作直线l交x、y轴的正半轴于A、B两点, 当|PA|·|PB|取到最小值时,求 直线l的方程.
3.经过点(2,1),且方向向量为v=(-2,2)的直线l的方程 是__x_+_y_-_3_=_0_____.
4.过点(-1,1)在x轴与y轴上截距的绝对值相等的直线 有___2_条____.
5.A、B是x轴上两点,点P的横坐标为2,且|PA|=|PB|,
若 直 线 PA 的 方 程 为 x-y+1=0 , 则 直 线 PB 的B方 程 为

直线和圆(复习)-圆的方程复习PPT课件

直线和圆(复习)-圆的方程复习PPT课件

)
4.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0当直线l被C截得的弦长为 则a=( ) C (A) (B) (C) (D)
时,
返回
5.直线3x+4y+m=0与圆x2+y2-5y=0交于两点A、B,且OA⊥OB (O为原点),求m的值.
返回
6.过点P(-2,-3)作圆C:(x-4)2+(y-2)2=9的两条切线,切点分别为A、B.求: (1)经过圆心C,切点A、B这三点的圆的方程; (2)直线AB的方程; (3)线段AB的长.
故所求直线的方程是 即:3x+4y-3=0或4x+3y+3=0
解法2:由已知圆的标准方程是(x-2)2+(y-2)2=1
所以圆C关于x轴的对称圆C’:(x-2)2+(y+2)2=1 令l的方程:y-3=k(x+3),即kx-y+3+3k=0 所以直线l与圆C’相切 所求直线的方程是3x+4y-3=0或4x+3y+3=0 y
A
C
o C’
x
解法3:点A(-3,3)关于x轴的对称点A’(-3,-3)在反射光线的反向延长线上,所以 设反射光线所在直线的方程为y+3=k(x+3) 即kx-y+3k-3=0
所以L的斜率
所求直线的方程是3x+4y-3=0或4x+3y+3=0 y
A
C
o A’
x
例3. 求以圆C1∶x2+y2-12x-2y-13=0和圆C2: x2+y2+12x+16y-25=0的公共弦为直径的圆的方程. 解法一: 相减得公共弦所在直线方程为4x+3y-2=0.

高考数学—直线与圆的方程

高考数学—直线与圆的方程

直线与圆的方程直线
一、直线的五种方程
二、两直线平行和垂直
三、直线三大距离公式
1、两点间距离公式
22122121)()(y y x x P P -+-=
2、点到直线间的距离公式
3、平行线间的距离公式
四、对称问题
1、点关于点对称
AB 中点),(00y x :)2
,2(2121y y x x ++ 2、点关于线对称
已知点关于已知直线的对称:设这个点为P (x 0,y 0),对称后的点坐标为P ’(x ,y ),则pp ’的斜率与已知直线的斜率垂直,且pp ’的中点坐标在已知直线上。

3、线关于线对称
先求出两直线的交点,则第三条直线必经过这点,再转化为点关于直线问题,求
另一点。

联立两点求出直线方程。

五、四种常用直线系方程

一、圆的四种方程
二、点与圆的位置关系
三、直线与圆的位置关系
四、两圆位置关系
五、圆系方程
六、圆的切线方程。

专题复习三必修二直线圆的方程

专题复习三必修二直线圆的方程

《直线、圆的方程》知识要点班级 姓名1.直线的倾斜角、斜率(1)倾斜角:当直线l 与x 轴平行或重合时,规定倾斜角为 .当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角叫做l 的倾斜角.倾斜角的取值范围为 .当直线的倾斜角θ≠90°时,直线的斜率存在,且斜率k =tan θ;θ∈⎣⎢⎡⎭⎪⎫0,π2≥0 ⇔k ; θ∈⎝ ⎛⎭⎪⎫π2,π⇔ k .02πα→:;⇔ 2παπ→:; ⇔ 直线越陡,倾斜角越接近90°, 斜率 ; 直线越缓,倾斜角越接近0°或180°,斜率 。

(2)经过两点P 1(x 1,y 1)、P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k = .2.两条直线平行或垂直的判定(1)l 1∥l 2或重合⇔倾斜角 .⇔斜率存在时, .或斜率都 .; (2)l 1∥l 2且斜率存在时,k 1=k 2且在y 轴上的 .不同,或斜率都不存在且在x 轴上的 .不同;(截距相同时,直线重合)(3)l 1⊥l 2⇔|α1-α2|= .⇔斜率存在时, ,或一条直线的斜率为0,另一条直线的斜率 ;(4)若直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0,且A 1、A 2、B 1、B 2都不为零.①l 1∥l 2 ⇔ ; ②l 1⊥l 2 ⇔ ;③l 1与l 2相交 ⇔ ;④l 1与l 2重合 ⇔ .3.直线方程的形式4.两点P 1(x 1,y 2)、P 2(x 2,y 2)间的距离公式:|P 1P 2|=5.点P (x 0,y 0)到直线Ax +By +C =0的距离公式:d = .6.平行直线Ax +By +C 1=0、Ax +By +C 2=0间的距离公式: . 1.圆的标准方程是 ;圆心坐标是(a ,b ),半径是r . 2.圆的一般方程 (D 2+E 2-4F >0),圆心的坐标是 ,半径r = .3.直线l :Ax +By +C =0与圆(x -a )2+(y -b )2=r 2(r >0)的位置关系的判定: (1)几何法:圆心O (a ,b )到直线l :Ax +By +C =0的距离d =|Aa +Bb +C |A 2+B 2.若 ⇔直线与圆相交; 若 ⇔直线与圆相切; 若 ⇔直线与圆相离.(2)代数法:直线方程、圆方程联立⎩⎨⎧Ax +By +C =0(x -a )2+(y -b )2=r 2(r >0),消元后得到的关于x 或y 的一元二次方程的判别式为Δ,则:若 ⇔ 直线与圆相交; 若 ⇔直线与圆相切; 若 ⇔ 直线与圆相离.4.直线被圆所截得的弦长公式如图,|AB|=(垂径定理).5.设两圆(x-a1)2+(y-b1)2=r21(r1>0)与(x-a2)2+(y-b2)2=r22(r2>0)的圆心距|O1O2|=d,则:d⇔相离;d⇔外切;⇔相交;⇔内切;⇔内含.6,空间直角坐标系,两点之间的距离公式(1)xOy平面上的点的坐标特征A():竖坐标z=0;xOz平面上的点的坐标特征B():纵坐标y=0;yOz平面上的点的坐标特征C():横坐标x=0;x轴上的点的坐标特征D():纵、竖坐标y=z=0;y轴上的点的坐标特征E():横、竖坐标x=z=0;z轴上的点的坐标特征F():横、纵坐标x=y=0.(2)空间中两点P1(x1,y1,z1),P2(x2,y2,z2)间的距离公式为|P1P2|=.《直线、圆的方程》知识要点班级 姓名1.直线的倾斜角和直线的斜率(1)倾斜角:当直线l 与x 轴平行或重合时,规定倾斜角为0°.当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角叫做l 的倾斜角.倾斜角的取值范围为[0°,180°).当直线的倾斜角θ≠90°时,直线的斜率存在,且斜率k =tan θ;θ∈⎣⎢⎡⎭⎪⎫0,π2≥0 ⇔ k ≥0; θ∈⎝ ⎛⎭⎪⎫π2,π⇔ k <0.02πα→:;⇔0→+∞k :; 2παπ→:; ⇔0∞→k :-; 直线越陡,倾斜角越接近90°, 斜率的绝对值越大; 直线越缓,倾斜角越接近0°或180°,斜率的绝对值越小。

直线方程与圆知识点总结

直线方程与圆知识点总结

直线与圆的方程基础知识训练1.已知))(,(),,(212211x x y x B y x A ≠求直线AB 的斜率公式:21211212x x y y x x y y k --=--=2.规定直线上方与x 轴正方向的夹角θ称为直线的倾斜角,且1800<≤θ,则θtan =k3.直线方程的五种形式:(1)点斜式:()11x x k y y -=-; (2)斜截式:b kx y +=; (2)两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--; (4)截距式:)0(1≠=+ab b ya x ;(5)一般式:0(,Ax By C A B ++=不同时为0),其中斜率BA k -= 3.两条直线的位置关系:(1)两直线0:1111=++C y B x A l ,0:2222=++C y B x A l 平行(不重合))(12211221C A C A B A B A ≠=⇔两直线111:b x k y l +=,222:b x k y l +=平行(不重合)21k k =⇔且21b b ≠ (2)两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 垂直02121=+⇔B B A A 两直线111:b x k y l +=,222:b x k y l +=垂直121-=⋅⇔k k ; (3)两点),(11y x A ,),(22y x B 间距离公式:221221)()(y y x x AB -+-=(4)点),(00y x P 到直线0:=++C By Ax l 的距离公式:2200BA CBy Ax d +++=(5)两平行线0:11=++C By Ax l ,0:22=++C By Ax l 间的距离公式:2221BA C C d +-=(6)两点),(),,(2211y x B y x A 的中点为)2,2(2121y y x x ++4.圆的方程(1)圆的标准方程:222)()(r b y a x =-+-,其中),(b a 为圆心,r 为半径。

专题25直线与圆的方程(解析版)

专题25直线与圆的方程(解析版)

2021年高考数学二轮复习专项微专题核心考点突破专题25直线与圆的方程考点命题分析直线与圆的方程是解析几何的基础知识,它不仅涉及几何知识,也涉及广泛的代数知识,综合性较强、能力要求较高.纵观近几年高考,我们发现直线与圆的方程这部分内容在全国卷中的考查有以下几个特点:一是每年必考,但未必在全国卷I、全国卷Ⅱ、全国卷Ⅲ中都考.如2017年全国卷I、卷Ⅱ的文科、理科都未涉及“直线与圆的方程”的内容,但全国卷Ⅲ考查了这部分内容,而且是解答题,属于压轴题之一,足见它的分量.二是在每一份试卷中至多有一道有关直线与圆的方程的题目(2016年全国卷理科是个例外,有一小一大两道题).三是选择题、填空题和解答题三种题型都有可能出现,客观题突出了“小而巧”的特点,主要考查直线与圆的位置关系、点到直线的距离、弦长等问题;主观题考查较为全面,除考查直线与圆的位置关系、点到直线的距离、弦长等问题外,还考查运算求解、等价转化、数形结合、分类讨论等重要的思想方法.四是就文科、理科而言,直线与圆的方程这节内容在文科试卷中出现的频率大于理科,但难度略小于理科.综合以上分析,我们在复习备考中要给予高度重视.高考题大多是比较经典的,因此,在复习备考过程中,它无疑是我们选题的一个风向标,认真研究高考题、品味高考题,可以让我们窥视其中的一些奥妙,使我们的复习备考更具针对性和有效性.1方程问题求直线方程与圆的方程是解析几何中的基础知识与基本技能.求直线的方程,一般采用待定系数法,将直线方程设成点斜式或斜截式.而求圆的方程,一般来说有两种方法:(1)几何法.通过研究圆的几何性质求出圆的基本量:圆心坐标和半径.(2)代数法.先设出圆的方程,然后用待定系数法求解.例1已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(I)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,-2),求直线l与圆M的方程.思路探求:(I)要证明坐标原点O在圆M上,我们容易想到先求出圆M的方程,再看原点坐标是否符合该方程.由于直线l是动直线,要想求出圆M的方程并不容易,于是,我们再联想到“圆的直径所对的圆周角为直角”这一性质.因此,只要证明就可以了,但要注意对直线l的斜率进行讨论,具体过程如下:(i)当直线l与x轴垂直时,直线l的方程为x=2,代入抛物线方程求得y=±2,故此时圆的半径为2,易知坐标原点在圆M上.(ii)当直线l与x轴不垂直时,设直线l的方程为y=k(x-2),联立抛物线方程消去x得到ky2-2y-4k=0.设,则y1+y2=.又,所以.所以OA⊥OB,又AB为直径,所以坐标原点O在圆M上.(1)当直线l的斜率不存在时,直线l的方程为x=2,容易得圆M的方程为(x-2)2+y2=4,但P的坐标(4,-2)不满足方程,因此,不合题意.(2)当直线l的斜率存在时,设直线l的方程为y=k(x-2),由(1)知,.于是由,得,展开并将上面的式子代入,整理得到k2+k-2=0,解得k=-2或k=1.当k=-2时,直线l:2x+y-4=0,由圆心在直线l上,可得2D+E+8=0,又(0,0),(4,-2)两点在圆上,所以有F=0,2D-E+10=0.于是解得,E=1,F=0.故圆M的方程为x2+y2-x+y=0;当k=1时,直线l:x-y-2=0,由圆心在直线l上,可得-D+E-4=0.又(0,0),(4,-2)两点在圆上,所以有F=0,2D-E+10=0,于是解得D=-6,E=-2,F=0.所以圆M的方程为x2+y2-6x-2y=0.方法点睛:用待定系数法求圆的方程,可概括为三步曲一一设、二列、三求解.第一步,要合理地设出圆的方程,一般地,若条件与圆心有关,则宜将方程设为标准方程,否则就设为一般方程;第二步,要正确地列出关于系数D,E,F的一个三元一次方程组(或关于a,b,r的方程组);第三步,要熟练地解方程组.本例中,从条件“线段AB是圆M的直径”出发,先求出直线l的方程,再由圆心在直线l上,从而求出关于D,E,F的第三个方程,这是本题的难点,也是这道高考题的妙处所在.特别地,不少学生选择圆的一般方程求解这道题时,大多中途受阻,一个重要的原因就是未能充分挖掘“圆心在直线l上”这一隐含条件,这也是本文选择用待定系数法解决这道题的目的所在.2弦长问题但凡涉及直线与圆的位置关系时,都会遇到弦长问题,但高考中单纯的以求弦长为目标的问题较少.小题中大多是已知弦长求参数的值(范围)这一类的逆向思维问题,大题中往往是将弦长作为条件的综合问题,因此,弦长问题举足轻重.解决直线被圆截得的弦长问题的核心:在由弦心距(即圆心到直线的距离)、弦长的一半及半径所构成的直角三角形中运用勾股定理进行计算.例2已知直线l:mx+y+3m-=0与圆交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若,则|CD|= .思路探求:作出草图,分析题意,因为弦长与半径已知,因此,可求出弦心距.而弦心距又可用点到直线的距离公式表达出来,于是可以建立一个等量关系求出直线方程中的参数m,进而发现要求的线段CD是直角梯形ABDC的一个腰.于是,在Rt△CDE中运用三角函数知识求出线段CD的长,具体过程如下.由于弦长,半径所以由勾股定理可知,圆心(0,0)到直线AB的距离为d=.又由点到直线的距离公式知,所以,解得.因此直线l 的斜率,所以直线l的倾斜角为30°.如图,过C作CE⊥BD,垂足为E,所以,在Rt△CDE中,∠ECD=30°,所以.方法点睛:本题求的不是弦长而是线段CD的长,需先通过弦长求出参数m的值(关键之处),进而发现直线的倾斜角,最后在直角梯形中,通过作辅助线,并利用三角函数知识求出另一腰的长(即线段CD的长),看似简单,却暗藏玄机.3最值与范围问题最值问题是范围问题的特例,因此,研究的方法、手段基本相同.在处理直线与圆的方程的最值与范围问题时,主要有以下两种途径:一是利用圆的几何性质直接判断,如过圆内一个定点的弦长的最值与范围问题,就可以结合图形利用弦长与弦心距之间的关系进行判断;二是构建目标函数的解析式,然后利用函数或基本不等式研究最值与范围.另外,在特定的情境中,利用“三角形两边之差小于第三边”来研究最值与范围问题可以取到意想不到的效果.例3已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.思路探求:(I)利用两圆相切时的圆心距与两圆半径之间的关系,易知|PM|+|PN|=4>2,于是联想到椭圆的定义,即可判断圆心P的轨迹是以M,N为焦点的椭圆,进而容易求出曲线C的方程为:. (Ⅱ)要求当圆P的半径最长时|AB|的值,关键是要知道圆P处于何种位置时半径最大,于是我们可以画出草图,观察图形,发现当圆P的圆心在x轴上时半径最大,进而求得圆P的方程,最后求出弦长具体过程如下.第一步:确定圆P的方程.设圆P的半径为R,由于,而,所以2R -2≤2,R≤2,当且仅当M,N,P三点共线时,等号成立.即当且仅当圆P的圆心为(2,0)时,圆P的半径最大,其值为2,此时圆P的方程为.第二步:确定直线l的方程.设圆M的半径为r1,l与x轴的交点为Q当l的斜率存在时(即直线l为两圆的外公切线),由r1≠R知l不平行于x轴,则,可求得Q(-4,0),所以设l:y=k(x+4)由l与圆M相切得,解得.第三步:求弦长|AB|.(1)当l的斜率不存在时(即直线l为两圆的内公切线),则l与y轴重合,可得.(2)当的斜率存在时,即时,将代入中,并整理得7x2+8x-8=0.所以.当时,由图形的对称性可知.综上,或.方法点睛:这道高考题表面上看是考查直线与椭圆的位置关系,但本质上考查的是直线方程、圆的方程、直线与圆的位置关系、圆与圆的位置关系以及最值问题.本题中发现,并探索出当且仅当P,M,N三点共线时,即圆心P在x轴上时等号成立,此时半径最大,是成功突破难点的关键所在.利用几何性质求出Q点坐标,进而求出直线l的方程是这道题的另一个难点.另外,设直线方程时,必须考虑直线斜率是否存,以免漏解或增解,该题体现在“当l的倾斜角为90°时,与y轴重合,可得”.例4设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.思路探求:(I)“为定值”是思维的突破口,隐含地告知点E的轨迹为椭圆,利用平面几何的知识易得等于圆A的半径4,最后根据椭圆的定义写出点E的轨迹方程.(Ⅱ)欲求四边形MPNQ面积的取值范围,先要求出四边形MPNQ面积的表达式,而求其面积表达式的关键在于求出MN,PQ两条弦长,最后将问题转化为求函数的值域.从而形成以下步骤.第一步:求弦长.当与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),将此方程代入中,得到.故弦长.过点B(1,0)且与垂直的直线m:y=-(x-1),因为点A到直线m的距离为,所以.第二步:求面积表达式.因为待求四边形MPNQ的对角线满足MN⊥PQ,所以S四边形=MPNQ第三步:求范围.当l与x轴不垂直时,由上述四边形MPNQ面积的表达式容易求得其取值范围为.当l与x轴垂直时,其方程为x=1,,此时四边形MPNQ的面积为12综上所述,四边形MPNQ面积的取值范围为.方法点睛:这道题有以下3个难点,即(1)条件较多,图形复杂,学生一时难以厘清头绪.(2)求弦长难度较大.由于椭圆藏在暗处,于是直线与椭圆相交的弦长|MN|学生难于表达,而直线与圆相交的弦长PQ|,由于受到图中较多线段的干扰,一时难以求解.(3)运算量较大.从求出两条弦长到将四边形MPNQ面积化简为,要经历一个漫长而又艰辛的过程.需要指出的是,将直线方程利用点斜式设成y=k(x-1)是常用的通法,但一定要注意对直线斜率进行讨论.若想避开对直线斜率的讨论,则可将直线方程技巧化地设为x=ky+1的形式,但此时的k已不再表示斜率了. 4定值与定点问题直线与圆的定值与定点问题虽不是高考的热点,但一旦出现则必然是试卷的压轴题,如2017年高考数学全国卷Ⅲ文科第20题,就考查了直线与圆的定值问题,试题综合性较强,难度较大例5在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(Ⅱ)证明过A,B,C三点的圆在y轴上截得的弦长为定值.思路探求:(I)此题含有参数m,于是A,B两点是动点,要探求能否出现AC⊥BC的情况,就需要研究AC的斜率与BC的斜率之积是否等于-1.于是,按下列步骤操作即可.第一步:设,则满足x2+mx-2=0,得到;第二步:;第三步:不能出现AC⊥BC的情况.第一步:求两条边的中垂线方程.BC的中垂线方程为,由(I)可得,所以AB 的中垂线方程为.第二步:求圆心坐标与半径.联立两条中垂线方程,可得到经过A,B,C三点的圆的圆心坐标为,半径.第三步:求弦长.利用勾股定理,求得圆在y轴上截得的弦长为.第四步:将条件代入弦长表达式,化简即知弦长为定值3.思路探求:本题中二次函数含有参变量b要探求圆C是否经过定点,则应先求出圆C的方程,然后再根据等式的恒成立寻找不受参数影响的量.于是,得到下面的步骤. 第一步:设圆C 的方程为.第二步:求圆C 的方程.在圆C 的方程中令y =0得x 2+Dx +F =0,在已知函数中令f (x )=0得x 2+2x +b =0.依题意,上述两个关于x 的一元二次方程是同一个方程,故D =2,F =b .又已知函数的图像与y 轴交于点(0,b ),由于此点也在圆C 上,于是得到E =-b -1.所以圆C 的方程为.第三步:探索并证明圆过定点.假设圆C 过定点不依赖于b ),将该点的坐标代入圆C 的方程,变形整理为.为使此式对所有满足b <1(b ≠0)的b 都成立,必须有且,解得或.经检验,点(0,1),(-2,1)均在圆C 上.因此,圆C 过定点.方法点睛:直线与圆的定值与定点问题必然含有变化中所表现出来的不变的量,那么就用变化的量来表示问题中的直线方程、圆的方程,这些直线方的方程不受变化的量所影响的一个点、一个值就是要求的定点、定值.解决这一问题的一般思路是(1)引进变化的参数表示直线方程、圆的方程.(2)根据等式的恒成立寻找不受参数影响的量.如例6中“圆C 过定点”,就意味着点的坐标与b 无关,而“点的坐标与b 无关”的含义就是关于b 的等式恒成立,于是得到b 的各项系数为0.(3)求解定点、定值问题,如果事先不知道定点、定值,可对参数取特殊值,通过特殊情况探路求出这个定点、定值,然后再对一般情况进行证明. 5复习建议本章的复习首先要注重基础,对基础知识、基本题型要掌握好.求直线的方程基本用待定系数法,复习时应注意直线的方程各种形式的适用条件;研究两条直线的位置关系,应特别注意直线斜率的存在与不存在两种情况;圆的方程、直线与圆的位置关系、圆的切线问题、弦长问题都是高考考查的热点,求圆的方程、圆心坐标和圆的半径的常用方法是待定系数法及配方法,要熟练掌握,还应特别注意充分运用直线与圆的几何性质以简化运算.特别需要指出的是,绝大多数和直线与圆的方程有关的高考题,都会涉及弦长问题,因此,在高考复习备考中,强化弦长问题的训练显得尤为重要.最新模拟题强化1.圆224690x y x y +--+=的圆心到直线10ax y ++=的距离为2,则a =( )A .43-B .34-CD .2【答案】B 【解析】圆的标准方程是22(2)(3)4-+-=x y ,圆心为(2,3),2=,解得34a =-.故选:B.2.已知直线1:(3)10l mx m y +-+=,直线2:(1)10l m x my ++-=,若12l l ⊥则m =( )A .0m =或1m =B .1m =C .32m =-D .0m =或32m =-【答案】A 【解析】因为直线1:(3)10l mx m y +-+=与直线2:(1)10l m x my ++-=垂直, 所以(1)(3)0m m m m ++-=,即(1)0m m -=,解得0m =或1m =. 故选A3.圆22240x y x y +-+=与直线()2220tx y t t R ---=∈的位置关系为( ) A .相离 B .相切C .相交D .以上都有可能【答案】C 【解析】由()2220tx y t t R ---=∈得:()()2220x t y --+=∴直线()2220tx y t t R ---=∈恒过点()1,2-142850+--=-< ()1,2∴-在圆22240x y x y +-+=内部 ∴直线()2220tx y t t R ---=∈与圆22240x y x y +-+=相交故选:C4.已知圆2240x y x a +-+=截直线0x -=所得弦的长度为则实数a 的值为( ) A .2- B .0C .2D .6【答案】B 【解析】解:将圆化为标准式为()2224x y a -+=-,得圆心为()20,,半径r =圆心到直线的距离1d ==,又弦长l =由垂径定理得2222l r d ⎛⎫=+ ⎪⎝⎭,即413a -=+ 所以0a = 故选B.5.过点(3,4)P 作圆224x y +=的两条切线,切点分别为A ,B ,则AB =( )A .5B .5C .5D .5【答案】D 【解析】设()()1122,,,A x y B x y ,则直线P A 的方程为114+=x x y y , 直线PB 的方程为224+=x x y y ,点()3,4均在两直线上,故1122344,344x y x y +=+=, 直线AB 的方程为3x +4y =4. 点()0,0到直线AB 的距离45d =,则AB ==. 本题选择D 选项.6.已知圆O 与直线l 相切与点A ,点,P Q 同时从点A 出发,P 沿直线l 匀速向右、Q 沿圆周按逆时针方向以相同的速率运动,当点Q 运动到如图所示的位置时,点P 也停止运动,连接,OQ OP ,则阴影部分的面积12,S S 的大小关系是( )A .12S S ≥B .12S S ≤C .12S S =D .先12S S <,再12S S =,最后12S S >【答案】C 【解析】圆O 与直线l 相切,OA AP ∴⊥,AOP AOQ S S ∆∴=扇,即AOP AOQ AOB AOB S S S S ∆-=-扇扇扇,则12S S =. 故选C7.若圆22:4C x y +=上恰有3个点到直线:0(0)l x y b b -+=>的距离为1,1:420l x y -+=,则l 与1l 间的距离为( )A .1B .2C 2D .3【答案】D 【解析】A 101B .221C .22D 10【答案】A 【解析】解:设点A 关于直线3x y +=的对称点(,)A a b ',AA '的中点为2(,)22a b +,AA bk a 2'=-故•(1)122322ba ab ⎧-=-⎪⎪-⎨+⎪+=⎪⎩解得31a b =⎧⎨=⎩,要使从点A 到军营总路程最短, 即为点A '到军营最短的距离,11-=-,故选A.9.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++= D .()()22114x y +++=【答案】C 【解析】圆22220x y x y ++-=的圆心坐标为()1,1-,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求圆的圆心在此直线上,又圆心()1,1-到直线40x y --==,设所求圆的圆心为(),a b ,且圆心在直线40x y --=的左上方,则=0a b +=,解得1,1a b ==-(3,3a b ==-不符合题意,舍去 ),故所求圆的方程为()()22112x y -++=. 故选C .10.若直线y=x+b与曲线3y =b 的取值范围是( ) A.[1+ B.[1- C.[1-D.[1,1-+【答案】C 【解析】如图所示:曲线234y x x =-22(2)(3)4(13,04)x y y x -+-=≤≤≤≤, 表示以(2,3)A 为圆心,以2为半径的一个下半圆, 由圆心到直线y x b =+的距离等于半径2,2322b--=,解得122b =+122b =-结合图象可知1223b -≤,故选C.11.设1x 、2x 是关于x 的方程220x mx m m ++-=的两个不相等的实数根,那么过两点211(,)A x x 、222(,)B x x 的直线与圆()()22111x y -++=的位置关系是( )A .相离B .相切C .相交D .随m 的变化而变化【答案】C 【解析】∵1x 、2x 是关于x 的方程220x mx m m ++-=的两个不相等的实数根, ∴()2240m m m ∆=-->,即403m <<,且12x x m +=-,212x x m m =-, 可得()222212121222x x x x x x m m +=+-=-+, 因此直线AB 的斜率12kx x m =+=-,AB 的中点为()()2212121122M x x x x ⎛⎫++ ⎪⎝⎭,,即21122M m m m ⎛⎫--+ ⎪⎝⎭,,∴直线AB 的方程为21122y m m m x m ⎛⎫⎛⎫--+=-+ ⎪ ⎪⎝⎭⎝⎭,化简得20mx y m m ++-=,又∵圆()()22111x y -++=的圆心坐标为()11C-,,半径1r =, ∴圆心C 到直线AB 的距离为2211m d m -=+,∵403m <<,可得22111m d m -=<+,∴圆心C 到直线AB 的距离小于圆C 的半径,可得直线与圆的位置关系是相交. 故选:C .12.圆222430x y x y +++-=上到直线:10l x y ++=之距离为的点有( )个 A .1 B .2 C .3D .4【答案】C 【解析】圆的方程222430x y x y +++-=配方得22(1)(2)8x y +++=,圆心(1,2)C --,半径为22r =;所以圆心(1,2)C --到直线10x y ++=的距离为1211222r --+==,作出草图由图可知,圆上到直线10x y ++=2的点有3个,故选C.13.已知点(2,0)A -,(5,7)B ,圆22:40C x y x m +-+=,若在圆C 上存在唯一的点Q 使得90AQB ︒∠=,则m =( )A .2B .68-C .2或68-D .2-或68-【答案】C 【解析】因为圆C 上存在唯一的点Q 使得90AQB ︒∠=所以以(2,0)A -,(5,7)B 为直径的圆与圆22:40C x y x m +-+=相切 由中点坐标公式可得(2,0)A -,(5,7)B 两点的中点坐标37,22M ⎛⎫ ⎪⎝⎭由两点间距离公式可知B A ==所以以AB 为直径的圆M 的半径为12r =将圆22:40C x y x m +-+=化简可得()2224x y m -+=-,因而圆C 的圆心为()2,0,半径为2r =当圆M 与圆C 外切时, 12MC r r =+,2=0=,方程无解,所以不存在m 的值使圆M 与圆C 外切当圆M 与圆C 内切时, 12MC r r =-,=化简可得2===解得2m =若22==解得68m =- 所以当2m =或68m =-时满足圆M 与圆C 内切,即此时圆C 上存在唯一的点Q 使得90AQB ︒∠= 故选:C14.已知点()()1,1,5,5A B ,直线1:0l x =和2:3220l x y +-=,若点1P 、2P 分别是1l 、2l 上与A 、B 两点距离的平方和最小的点,则12PP 等于( )A .1B .2CD【答案】B 【解析】设()10,P a ,()2,P m n 则3322012m n n m +-=∴=-()()22222211115521252PA PB a a a a +=+-++-=-+,当3a =时有最小值, 故()10,3P()()()()222222222131155422P A P B m n m n m +=-+-+-+-=+ 当0m =时有最小值,故()20,1P ,故122PP = 故选:B15.若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关,则实数a 的取值范围是( ) A .4a ≤ B .46a -≤≤C .4a ≤或6a ≥D .6a ≥【答案】D 【解析】依题意343493434955x y ax y x y a x y -+---++--=+表示(),P x y 到两条平行直线340x y a -+=和3490x y --=的距离之和与,x y 无关,故两条平行直线340x y a -+=和3490x y --=在圆22(1)(1)1x y -+-=的两侧,画出图像如下图所示,故圆心()1,1到直线340x y a -+=的距离3415a d -+=≥,解得6a ≥或4a ≤-(舍去)故选:D.16.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,当AOB ∆的面积达到最大时,k =________. 【答案】±1 【解析】解:由圆22:1O x y +=,得到圆心坐标为()0,0O ,半径1r =, 把直线的方程为:1l y kx =+,整理为一般式方程得::10l kx y -+=, .圆心()0,0O 到直线AB 的距离211dk弦AB 的长度2222221k AB r d k =-=+2222111212111AOBk k Sk k k kk, 又因为1122k kkk,12AOBS当且仅当1kk时取等号,AOB S 取得最大值,最大值为12. 解得1k =± 故答案为:±117.已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是______.【答案】5⎡+⎣【解析】根据题意,直线()2420mx m n y n -++=,即()()2420m x y n y ---=,则有2402x y y -=⎧⎨=⎩,解可得42x y =⎧⎨=⎩,则直线l 恒过点()4,2.设()4,2Q ,又由MP 与直线垂直,且M 为垂足,则点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,所以55OM ≤≤;即OM 的取值范围是5⎡⎣;故答案为:5⎡-+⎣.18.在平面直角坐标系xOy 中,以()1,1C 为圆心的圆与x 轴和y 轴分别相切于A ,B 两点,点M ,N 分别在线段OA ,OB 上,若MN 与圆C 相切,则MN 的最小值为______.【答案】2 【解析】在平面直角坐标系xOy 中,以(1,1)C 为圆心的圆与x 轴和y 轴分别相切于A ,B 两点, 点M ,N 分别在线段OA ,OB 上,MN 与圆C 相切,∴根据圆的对称性,当OC MN ⊥时,||MN 取最小值,如图,22||112OC =+=,4COA π∠=,||MN 的最小值为2(21)222-=-.故答案为:222-.19.在平面直角坐标系xOy 中,已知圆22:48120M x y x y +--+=,圆N 与圆M 外切于点()0,m ,且过点()0,2-,则圆N 的标准方程为_________. 【答案】()2228x y ++= 【解析】记点()0,A m 、()0,2B -,圆M 的标准方程为()()22248x y -+-=,圆心()2,4M ,将点A 的坐标代入圆M 的方程得28120m m -+=,得2m =或6. ①若6m =,则点()0,6A,线段AB 的中垂线方程为2y =,直线AM 的方程为6x y +=,由题意可知,圆心N 在直线AM 上,且在线段AB 的中垂线上, 联立260y x y =⎧⎨+-=⎩,解得42x y =⎧⎨=⎩,则圆心N 的坐标为()4,2,圆N 的半径为()2242242BN =++=22MN =M 的半径为22此时,22BN MN -=,则两圆内切,不合乎题意; ②若2m =,则点()0,2A,线段AB 的中垂线方程为0y =,直线AM 的方程为20x y -+=,由题意可知,圆心N 在直线AM 上,且在线段AB 的中垂线上,联立020y x y =⎧⎨-+=⎩,解得20x y =-⎧⎨=⎩,则圆心N 的坐标为()2,0-,圆N 的半径为BN ==,MN =M 的半径为,此时,BN MN +=,则两圆外切,合乎题意. 综上所述,圆N 的标准方程为()2228x y ++=. 故答案为:()2228x y ++=.20.已知抛物线C :24(0)y mx m =>与直线0x y m 交于A 、B 两点(A 、B 两点分别在x 轴的上、下方),且弦长8AB =,则过A ,B 两点、圆心在第一象限且与直线50x y +-+=相切的圆的方程为____________.【答案】22(1)(4)24x y -+-=. 【解析】联立直线和抛物线的方程得2260,x mx m -+=由题得1,所以m=1.所以2610,x x -+=解之得A(3(3B ++--, 所以AB 的垂直平分线方程为y=-x+5, 因为圆心在AB 的垂直平分线上, 所以设圆心(t,-t+5),因为AB 的垂直平分线和直线50x y +-+=平行,因为两平行线间的距离为d ==所以圆的半径为因为点A (3++在圆上,所以223+22-)(322)24,(05)t t t +--=<<(, 所以t=1.所以圆心为(1,4),所以圆的方程为22(1)(4)24x y -+-=. 故答案为:22(1)(4)24x y -+-=21.若C 为半圆直径AB 延长线上的一点,且2AB BC ==,过动点P 作半圆的切线,切点为Q ,若3PC PQ =,则PAC ∆面积的最大值为____.【答案】33. 【解析】由题意,以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴,建立平面直角坐标系, 因为2AB BC ==,所以(3,0)C ,设(,)P x y ,因为过点P 作半圆的切线PQ , 因为3PC PQ =,所以2222(3)31x y x y -+=⋅+-,整理,得22360x y x ++-=, 以点P 的轨迹方程是以3(,0)2-为圆心,以13392422r =+=为半径的圆, 所以当点P 在直线32x =-上时,PAC ∆的面积最大, 最大值为13343322PAC S ∆=⨯⨯=. 故答案为:33.22.过点(4,0)-作直线l ,与圆2224200x y x y ++--=交于,A B 两点, 若8AB =,则直线l 的方程为______________. 【答案】【解析】 圆2224200xy x y ++--=化为()()221225x y ++-=,圆心()1,2C -,半径=5r ,()()()22410225,4,0-++-<∴-点在圆内,当斜率存在时,设l 斜率为k ,方程()4y k x =+,即40kx y k -+=,8,AB =∴22543-=,22453,121k k k k --+=∴=-+,l ∴的方程()5412y x =-+ 当斜率不存在时,直线4x =-也满足,l ∴的方程512200x y ++=或40x +=,故答案为512200x y ++=或40x +=.23.设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点. 若这样的直线l 恰有4条,则r 的取值范围是__________. 【答案】(2,4) 【解析】设直线l 的方程为x ty m =+,()11Ax y ,,()22B x y ,把直线l 的方程代入抛物线方程24y x =,整理可得:2440y ty m --= 则216160t m =+>,124y y t +=,124y y m =-则()()2121242x x ty m ty m t m +=+++=+∴线段AB 的中点()222M t m t +,由题意可得直线AB 与直线MC 垂直,且()50C ,当0t≠时,有1MC AB K K =-即2201125t t m t-⨯=-+-,整理得232m t =- 把232m t =-代入到216160t m =+>可得230t ->,即203t <<由于圆心C 到直线AB 的距离等于半径即2d r ====24r ∴<<,此时满足题意且不垂直于x 轴的直线有两条当0t=时,这样的直线l 恰有2条,即5x r =±,05r ∴<<综上所述,若这样的直线l 恰有4条,则r 的取值范围是()24,24.在平面直角坐标系xOy 中,圆C :22222210x ax y ay a -+-+-=上存在点P 到点0,1的距离为2,则实数a 的取值范围是______.【答案】111,22⎡⎤⎡+⋃⎢⎥⎢⎣⎦⎣⎦【解析】∵圆C :22222210x ax y ay a -+-+-=∴()()221x a y a -+-=,其圆心(),C a a ,半径1r =.∵点P 到点()0,1的距离为2 ∴P 点的轨迹为:22(1)4x y +-= ∵P 又在22()()1x a y a -+-=上∴圆C 与圆()2214x y +-=有交点,即2121-≤≤+.∴102a -≤≤或112a ≤≤∴实数a的取值范围是⎤⎡⋃⎥⎢⎣⎦⎣⎦故答案为:⎤⎡⋃⎥⎢⎣⎦⎣⎦.25.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是________________. 【答案】6x -8y +1=0 【解析】由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则直线l 1:y =k (x -3)+5+b ,平移后的直线方程为y =k (x -3-1)+b +5-2即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34, ∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b取直线l 上的一点3,4P m m b ⎛⎫+ ⎪⎝⎭ ,则点P 关于点(2,3)的对称点为34,64m b m ⎛⎫--- ⎪⎝⎭ , ()331164444b m m b --=-++ ,解得b =18.∴直线l 的方程是3148y x =+ ,即6x -8y +1=0.故答案为:6x -8y +1=026.设R λ∈,动直线1:0l x y λλ-+=过定点A ,动直线2:320l x y λλ+--=过定点B ,若P 为1l 与2l 的交点,则PA PB ⋅的最大值为_____.【答案】10 【解析】直线1l 的方程变形为()10x y λ+-=,由100x y +=⎧⎨=⎩,得10x y =-⎧⎨=⎩,所以,动直线1l 过定点()1,0A -,同理可知,动直线2l 过定点()3,2B ,由题意可知12l l ⊥,且P 为1l 与2l 的交点,PA PB ∴⊥,由勾股定理可得()()22222130220PA PB AB +==--+-=,由重要不等式可得22102PA PBPA PB +⋅≤=,当且仅当PA PB == 因此,PA PB ⋅的最大值为10.故答案为:10.27.当直线:(21)(1)740()l m x m y m m R +++--=∈被圆22:(1)(2)25C x y -+-=截得的弦最短时,m 的值为____________. 【答案】34- 【解析】直线l 的方程可化为()2740x y m x y +-++-=所以直线l 会经过定点27040x y x y +-=⎧⎨+-=⎩,解得定点坐标为()3,1M ,圆C 圆心坐标为()1,2当直线l 与CM 垂直时,直线被圆截得的弦长最短211132CM k -==-- ,211l m k m +=-+ 所以121121CM l m k k m +⎛⎫⎛⎫⨯=-⨯-=- ⎪ ⎪+⎝⎭⎝⎭,解方程得34m =-28.过点(1,2)P 的直线与圆224x y +=相切,且与直线10ax y -+=垂直,则实数a 的值为___________. 【答案】34【解析】当过P 直线斜率不存在时,方程为1x =,与圆224x y +=不相切,不合题意 设过P 切线方程为:()21y k x -=-,即20kx y k --+=∴圆心到直线距离2d ==,解得:0k =或43k =-即切线方程为:2y =或43100x y +-=当切线为2y =时,与直线10ax y -+=不垂直,不合题意当切线为43100x y +-=时,与直线10ax y -+=垂直,则430a -=,解得:34a = 综上所述:34a = 故答案为:3429.直线260ax y ++=与直线2(1)10x a y a +-+-=平行,则两直线间的距离为______.【解析】解:直线260ax y ++=与直线2(1)10x a y a +-+-=平行, 则(1)20a a --=,即220a a --=, 解得2a =或1-. 当2a =时,两直线重合,故1a =-,两直线方程可化为:260x y --=与20x y -=所以两平行线间的距离d ==故答案为:530.在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出四个命题,正确的是________.①对任意三点A 、B 、C ,都有()()(),,,d C A d C B d A B +≥; ② 到原点的“切比雪夫距离”等于1的点的轨迹是正方形; ③ 已知点()3,1P 和直线:210l x y --=,则()4,3d P l =; ④ 定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a -=>>,则点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点. 【答案】①②③④。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学专题复习——直线与圆的方程
班级:______________ 姓名:________________ 学号:__________ 成绩:___________
一、选择题(每小题5分,共50分) 1.若直线过点(1,2),(4,2+
3
),则此直线的倾斜角是( )
A.30° B.45° C.60° D.90°
2.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )
A.3x-y-8=0 B .3x+y+4=0 C .3x-y+6=0 D . 3x+y+2=0
3.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )
A .x+5y-15=0
B .x=3
C .x-y+1=0
D .y-3=0 4.如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= ( ) A . -3 B .-6 C .2
3-
D .3
2
5.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( )
A .22(2)5x y -+=
B .22(2)5x y +-=
C .22(2)(2)5x y +++=
D .22(2)5x y ++=
6.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )
A .2
B .2
1+
C .2
21+
D .221+
7.圆054422=-+-+y x y x 截直线3x -4y -4=0所得的弦长于……………………… ( )
A . 6
B .
6 C . 1 D . 3
8.两圆2
2
9x y +=和2
2
8690x y x y +-++=的位置关系是( )
A .相离
B .相交
C .内切
D .外切
9.在空间直角坐标系中,点B 是(123)A ,,在yOz 坐标平面内的射影,O 为坐标原点,则O B 等于
( )
C.
10.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与
圆22240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11
二、填空题(每小题5分,共20分)
11.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 12.直线
0323=-+y x 截圆42
2
=+y
x
所得的劣弧所对的圆心角为 .
13.已知圆()4322=+-y x 和过原点的直线kx y =的交点为,P Q
则OQ OP ⋅的值为________________。

14.已知P 是直线0843=++y x 上的动点,,PA PB 是圆012222=+--+y x y x 的切线,
,A B 是切点,C 是圆心,那么四边形P A C B 面积的最小值是________________。

三、解答题(本大题共6题,共80分)
15.(12分①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;
②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是
105
3的直线的方程.
16.(12分)求过点()1,2A 和()1,10B 且与直线012=--y x 相切的圆的方程。

17.(14分)已知点A(1,4),B(6,2),试问在直线x-3y+3=0上是否存在点C,使得三角形ABC 的面积等于14?若存在,求出C点坐标;若不存在,说明理由.
18.(14分)
氟利昂是一种重要的化工产品,它在空调制造业有着巨大的市场价值.已知它的市场需求量y1(吨)、市场供应量y2(吨)与市场价格x(万元/吨)分别近似地满足下列关系:
y1=-x+70,y2=2x-20
当y1=y2时的市场价格称为市场平衡价格.此时的需求量称为平衡需求量.
(1)求平衡价格和平衡需求量;
科学研究表明,氟利昂是地球大气层产生臭氧空洞的罪魁祸首,《京都议定书》要求缔约国逐年减少其使用量.某政府从宏观调控出发,决定对每吨征税3万元,求新的市场平衡价格和平衡需求量. 19.(14分)直线l经过点)5,5(P,且和圆C:25
2
2=
+y
x相交,截得弦长为5
4,求l的方程.
20.(14分).
已知直角三角形ABC中,90
C
∠=°,86
A C
B C
==
,,P是ABC
△内切圆上的动点,求分别以P A P B P C
,,为直径的三个圆面积之和的最大值和最小值.。

相关文档
最新文档