第四章 马尔可夫链
4.马尔可夫链1
qr p
i 1
p,
pij
r, q,
0,
i i 1
j i 1 j i j i 1 其它
其一步转移概率矩阵为
i 2 i 1 i i 1... ... ...
... ... ... ... ... ... ... ... ... ... q r p 0 0 ... 0 ... i 1 ... 0 q r p 0 ... 0 ... i ... 0 0 q r p ... 0 ... i 1 ... ... ... ... ... ... ... ... ...
(时间离散、状态连续的马尔可夫过程,通常用泛函中 二元函数的范数进行研究)
例1 独立过程 X t,t T 是马尔可夫过程
证 设Xt,t T是独立过程,对于t1 t2 ... tn T,
X t1, X t2 ,..., X tn 相互独立,因此
P X tn xn X t1 x1, X t2 x2,..., X tn1 xn1 =P X tn xn =P X tn xn X tn1 xn1
率r原地不动。若以 X n 表示时刻 n 时质点的位置,
则X n,n 0,1, 2,...是一个随机过程。而且当
X n i 时,X n+1,X n+2,...,X n+k,...等 n时刻后质点所处的状态,只与X n i 有关,而与
质点在n以前是如何到达i的完全无关。所以它是一
个齐次马尔可夫链,其状态空间为I= ,-2,-1,0,1,2,
则称 Xn,nT 为马尔可夫链.
定义4.1 设有随机过程Xn ,n T,若
对于任意的整数n T和任意的 i0,i1,...,in1 I 条件概率满足
随机过程习题集-第四章马尔可夫过程
1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。
称(){}:,==∈E x X t x t T 为状态空间。
参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。
若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。
第四章 马尔可夫链
股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities
马尔可夫链
例7 设马氏链{Xn}的状态空间为 I={1, 2, 3, 4, 5}, 转移概率矩阵为
1 2
1
2
0 0
0
1 2
1 2
0
0
0
P 0 0 1 0 0
3 / 16 . 1/ 4
于是: (1) P{X0 0, X2 1}
P{ X0 0}P{ X2 1 | X0 0} 1 5 5 ;
3 16 48
2020年5月21日星期四
(2)P{X2 1}
P{X0 0}P{X2 1 | X0 0} P{X0 1}P{X2 1 | X0 1}
显然有
p(n) 11
p(n) 21
P(n)
p(n j1
)
L
p(n) 12
p(n) 22
p(n) 1j
L
p(n) 2j
L
p(n) j2
p(n) jj
L
LL
L
(1)
0
p(n) ij
1
(2)
p(n) ij
1,
i
1,
2,L
j
2020年5月21日星期四
切普曼-柯尔莫哥洛夫方程(C-K方程): 对任意的m,n≥0,有
的矩阵
p11 p21
P
L
pj1 L
p12 L p22 L LL pj2 L LL
p1 j L
p2 j L
L
L
p jj L
L L
称为一步转移概率矩阵. 显然有
(1) 0 pij 1
(2)
pij 1, i 1, 2,L
j
2020年5月21日星期四
3、马尔可夫链举例
第四章马尔可夫链
i1
Pi , j 0
j . i 1 ,i-1 , i 1
1 0 0 0 0 . .
q
0
p
0
0
.
.
0 q 0 p 0 . .
P
0
0
q
0
p
.
.
0 0 0 q 0 . . . . . . . . .
.
例题:带2个吸收壁的随机游动
质点在数轴上移动,规律同上例。随机游动的状态 空间I={0,1,2…a}, 其中0和a为吸收态 。求一步转移p12 p1n Pp21 p22 p2n
称为系统状态的一步转移概率矩阵,它具有 如下性质:
1. pij 0, i, jI
2. pij 1, i, jI jI
满足上述两个性质的矩阵成为随机矩阵
.
定义4.4
称条件概率 p i(n ) j P { X m n j|X m i}i,j I,m 0 ,n 1 为马尔可夫链{Xn,n∈T}的n步转移概率,并称
0 1 1
.
马尔可夫链的状态分类
周期、非周期 常返、非常返
其中,常返分为正常返、零常返 非周期的正常返称为遍历状态
到达和互通
.
设马尔可夫链的状态空间I={1,2,3,4,5,6,7,8,9}, 状态转移图如下图
8
9
2
7
1
3
6
5
4
观察状态1
.
定义4.6 如集合{n: n≥1,pii(n)>0}非空,则称该集合的 最大公约数d=d(i)=G.C.D{n:pii(n)>0}为状态i 的周期。如d>1就称i为周期的,如d=1就称i 为非周期的。
.
随机过程课件-马尔可夫链
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
第四章 马尔可夫链
第四章 马尔可夫链随机过程在不同时刻下的状态之间一般具有某种关系,马尔可夫(Markov )过程就是描述一类状态之间具有某种特殊统计联系的随机过程.Markov 过程在近代物理学、生物学、管理科学、信息处理与数字计算方法等领域都有重要的应用.按其状态和时间参数是连续的或离散的,它可分为三类:(1)时间、状态都是离散的Markov 过程,称为Markov 链;(2)时间连续、状态离散的Markov 过程,称为连续时间的Markov 链;(3)时间、状态都连续的Markov 过程.本章主要讨论Markov 链,有关连续时间的Markov 链的相关理论将在下章讨论.4.1 马尔可夫链的概念和例子独立随机试验模型最直接的推广就是Markov 链模型,早在1906年俄国数学家Markov 对它进行研究而得名,以后Kolmogorov 、Feller 、Doob 等数学家发展了这一理论.4.1 .1 Markov 链的定义假设Markov 过程{,}n X n T ∈的参数集T 是离散时间集合,即{0,1,2,}T =,相应n X 可能取值的全体组成的状态空间是离散状态集012{,,,}I i i i =.定义 4.1 设有一随机过程{,}n X n T ∈,若对于任意整数n T ∈和任意011,,,n i i i I +∈,条件概率满足11001111{|,,,}{|}n n n n n n n n P X i X i X i X i P X i X i ++++=======则称{,}n X n T ∈为离散时间的Markov 链,简称Markov 链(Markov chains )或马氏链.从定义可以看出:Markov 链具有Markov 性(即无后效性),如果把时刻n 看作现在,那么,1n +是将来的时刻,而0,1,2,,1n -是过去的时刻.Markov 性表示在确切知道系统现在状态的条件下,系统将来的状况与过去的状况无关,而且Markov 链的统计特征完全由条件概率11{|}n n n n P X i X i ++==所决定. 因此,如何确定这个条件概率,是研究Markov 链理论和应用中十分重要的问题之一. 4.1.2 转移概率定义 4.2 称条件概率1(){|}ij n n p n P X j X i +=== (4.1)为Markov 链{,}n X n T ∈在时刻n 的一步转移概率,其中,i j I ∈,简称转移概率(transition probability ).一般地,转移概率()ij p n 不仅仅与状态,i j 有关,而且与时刻n 有关,如果()ij p n 不依赖时刻n 时,则称Markov 链具有平稳转移概率.定义 4.3 若对任意,i j I ∈,Markov 链{,}n X n T ∈的转移概率()ij p n 与n 无关,则称Markov 链是齐次的(或称时齐的)(time homogeneous -),并记()ij p n 为ij p . 下面只讨论齐次Markov 链,并且通常将“齐次”两字省去.定义 4.4 设P 表示一步转移概率ij p 所组成的矩阵,且状态空间{1,2,}I =,则1112121222...........................n n p p p P p p p ⎛⎫ ⎪= ⎪ ⎪⎝⎭称为系统状态的一步转移概率矩阵(transition probability matrix ),它具有性质: (1)0,,ij p i j I ≥∈; (2)1,ijj Ipi I ∈=∈∑.(2)式说明一步转移概率矩阵中任一行元素之和为1,通常称满足性质(1)(2)的矩阵为随机矩阵.定义 4.5 称条件概率(){|},n ij m n m p P X j X i +=== ,,0,1i j I m n ∈≥≥ (4.2)为Markov 链{,}n X n T ∈的n 步转移概率,并称()()()n n ij P p =为Markov 链{,}n X n T ∈的n 步转移矩阵.其中()()0,1n n ij ij j Ip p ∈≥=∑,即()n P 也是一个随机矩阵.特别地,当1n =时,(1)ij ij p p =,此时,一步转移矩阵(1)P P =.我们还规定(0)0,1,iji jpi j ≠⎧=⎨=⎩Markov 链n 步转移概率满足重要的Chapman Kolmogorov -方程(简称C K -方程)。
第四章-马尔可夫链-随机过程
计算 n 步转移概率的方法。
切普曼一柯尔莫哥格夫方程:对一切n,m 0,一切 i,j,有(4.2.1)
P nm ij
Pikn Pkmj
k0
证明:
P nm ij
P{ X nm
j|
X0
i}
P{Xn k | X0 i}P{Xnm j | Xn k, X0 i}
顾客数构成一个泊松过程。所以,
Pi, j
e t (t )i1 j dG(t ), j 1,
0
(i 1 j)!
i 1
这是因为若一个来客发现有 i 个人在系统中,那么下一个来客将
发现人数为 i+1 减去已服务完毕的人数,易知有 i+1-j 个人被服
务完毕的概率(对相继来到之间的时间取条件)等于上式的右端。
0
0
0 P43
例 4.1(b) G/M/1 排队系统。假设顾客 依照一个任意的更新过
程来到一个单服务台的服务中心,来到间隔分布为 G。进一步
假设服务分布是指数分布,参数为。若以 Xn 记第 n 个顾客来
到时见到系统中的顾客数,以 Yn 记第 n 个顾客与第(n+1)个顾客
不可被 d 整除的 n 有 Piin 0,且 d 是具有此性质的最大整数(d 是
{n : Piin 0}的最大公约数)。(若对一切 n>0, Piin 0,则定义 i 的周 期是无穷大。)具有周期 1 的状态称为非周期的(aperiodic)。以 d(i)记 i 的周期。
例设马尔可夫链的状态空间I={1,2,,9}, 转移概率如下图
P nm ij
第四章 马尔可夫链(讲稿2)
1.周期性 定义 对于状态i,若正整数集合 {n : n 1, pii (n) 0} 非空, 则称该集合的最大公约数L为状态i的周期,记作 d (i) 。 若 L 1,则称状态i是周期的,若 L 1 ,则称状态i是非周 期的。如果上述集合为空集,则约定 d (i) 2.常返性 定义 设 {X (n), 为 {X (n),
f ij () P{X m j, 对一切m | X 0 i}
计算公式
f ij (n) P{X n j ; X m j, m 1,2, , n 1 | X 0 i}
i1 j in 1 j
p
ii1
pi1i2 pin1 j
有限状态分解定理
定理(分解定理)状态空间E必可分解为
E N C1 C2 Ck C 其中N是全体非常返态组成的集合, 1 C2 Ck 是互不相交的常返
态闭集组成。而且
(1)对每一确定的k, Ck 内任意两状态相通; (2) Ck 与 Cg ( k g )中的状态之间不相通;
下面求n步转移概率 pij (n) 如在n次转移的结果是从i到j,n次转移中恰好向前游走m次,向后游 走k次,则有
mk n
m 1 k (1) j i
联立上两式求解可得
m n j i 2
k
n ji 2
根据概率法则,不难求得n步转移概率为
pij (n) n n2j i n2j i n j i p q 2 0 n j i为偶数 n j i为奇数
这样 f ij (1)
f ij (2), f ij (n) ,至少有一个为正(不为0),所以
第4章 马尔可夫链
(2)状态的常返性
首中概率——状态 i 经 n 步首次到达状态 j 的概率:
f ij( n ) P{ X m n j , X m v j , 1 v n 1 X m i}, n 1
f ij( 0 ) 0
系统从状态 i 出发,经有限步迟早会(首次)到达 状态 j 的概率:
i I
p i p ii1 p i n 1i n
马尔可夫链的有限维分布完全由它的初始概率和 一步转移概率所决定。
马尔可夫链的几个简单例子
[例1] 二进制对称信道模型——是常用 于表征通信系统的错误产生机制的离 散无记忆信道模型。假设某级信道输 入0, 1数字信号后,其输出正确的概 1 率为p,产生错误的概率为q,则该级 信道输入状态和输出状态构成一个两 状态的齐次马尔可夫链。 一步转移概率矩阵: p q P q p 0
目录
4.2 马尔可夫链的状态分类
设 { Xn , n >0 } 是齐次马尔可夫链,其状态空间 I = { 0, 1, 2, … },转移概率是 pij , i , j I ,初始分布 为{ Pj , j I } 。
8 1 9 2 1 1 6 1 5 2/3 1/3 1 4 1
1 7
( 2 ) P{ X n 2 c X n b}
17 30 1 3 1 2 1 ( 2) 2 8 (1) P P 15 4 5 3 5 50 17 30 1 (2) ( 2 ) P{ X n 2 c X n b} Pbc 6 9 40 3 10 3 20 5 24 1 6 17 90
连续马尔可夫过程(或扩散过程)
4.1 马尔可夫链的概念及转移概率
随机过程第四章习题解答
第四章习题解答4.1Y1,Y2,···是来自总体Y的随机变量,与X0独立,h(x,y)是实函数.对于n 1,取X n=h(X n−1,Y n).设{X n}的状态空间为I,验证{X n}是马氏链,给出转移概率p ij.解:由题知,Y k与X1,···,X k−1独立,k 1,∀n,i,j,i1,...,i n−1∈I有,P(X n+1=j|X n=i,X n−1=i n−1, (X0)i0)=P(h(i,Y n+1)=j|X n=i,X n−1=i n−1,···,X0=i0)=P(h(i,Y n+1)=j|X n=i)=P(h(i,Y)=j)=P(h(i,Y1)=j|X0=i)=P(X1=j|X0=i).∴X n是马氏链,P ij=P(h(i,Y)=j).4.2设{X i,i 0}是取非负整数值的独立同分布的随机变量序列,V ar(X0)>0.验证以下随机序列是马氏链:(a){X n,n 0};(b){S n,n 0},其中S n=∑ni=0X i;(c){ξn,n 0},其中ξn=∑ni=0(1+X i).解:∀n,i,j,i0,···,i n−1∈N+,(a).P(X n+1=j|X n=i,X n−1=i n−1,···,X0=i0)=P(X n+1=j)= P(X n+1=j|X n=i)=P(X1=j)=P(X1=j|X0=i).1第四章离散时间马尔可夫链第四章离散时间马尔可夫链(b).P(S n+1=j|S n=i,S n−1=i n−1,···,X0=i0)=P(X n+1=j−i|X n=i−i n−1,···,X0=i0)=P(X n+1=j−i)=P(X n+1=j−i,S n=i|S n=i)=P(S n+1=j|S n=i)=P(X1=j−i)=P(X1=j−i|X0=i)=P(S1=j|S0=i).(c).P(ξn+1=j|ξn=i,ξn−1=i n−1,···,ξ0=i0)=P(X n+1=ji −1)=P(X n+1=ji−1|ξn=i)=P(ξn+1=j|ξn=i)=P(X1=ji −1)=P(X1=ji−1|X0=i)=P(ξ1=j|ξ0=i).4.3马氏链的状态空间是I=(1,2,3,4,5),转移概率矩阵P=0.20.80000.50.5000000.50.500.20.3000.500001界定马氏链的状态。
a第12讲第四章马尔可夫链4
j =1
9
N
江西理工大学理学院
说明
1. 求证遍历性即找一正整 数 m , 使 m 步转移概率
矩阵 P 无零元 .
m
2. 极限分布转化为了求解方程组. 3. 在定理的条件下马氏链的极限分布是平稳分布.
15
江西理工大学理学院
⎡× ⎢× ⎢ 4 P (4) = P = ⎢× ⎢0 ⎢ ⎢ ⎣0 ⎡× ⎢× ⎢ = ⎢× ⎢× ⎢ ⎢ ⎣×
× × 0 0⎤ × × × 0⎥ ⎥ × × × ×⎥ × × × ×⎥ ⎥ 0 × × ×⎥ ⎦
⎡× ⎢× ⎢ ⎢× ⎢0 ⎢ ⎢0 ⎣
× × 0 0⎤ × × × 0⎥ ⎥ × × × ×⎥ × × × ×⎥ ⎥ 0 × × ×⎥ ⎦
⎧0, 如j非常返或零常返 , ⎪ = ⎨ f ij ⎪ µ , 如正常返 ⎩ j
推论 如{Xn}不可约、常返,则对任意 i, j有
1 n (k ) 1 lim ∑ pij = n→∞ n µj k =1
6
江西理工大学理学院
二、平稳分布
定义 4.11 称概率分布{π i , i ∈ I }为马尔可夫链{ X n , n ≥ 0} 的平稳分布,若它满足
π =π ⋅P
1 0 0 0 ⎤ ⎡ 0 ⎢1 / 3 1 / 3 1 / 3 0 0 ⎥ ⎢ ⎥ P = ⎢ 0 1/ 3 1/ 3 1/ 3 0 ⎥ ⎢ ⎥ 0 0 1 / 3 1 / 3 1 / 3⎥ ⎢ ⎢ 0 0 0 1 0 ⎥ ⎣ ⎦
由前四个方程解得 : 3π 1 = π 2 = π 3 = π 4 = 3π 5 .
第四章马氏链(1)
若以Xn表示时刻n时Q的位置,不同的位置就是Xn的不同 状态,那么{Xn,n=0,1,2,…}是一随机过程,状态空间 就是I,而且当Xn=i,iI为已知时,Xn+1所处的状态的概率 分布只与Xn=i有关,而与Q在时刻n以前如何到达i是完全无 关的,所以{Xn,n=0,1,2,… }是一马氏链,且是齐次
例4.1.2(一维随机游动) 设一醉汉Q(或看作一随机游 动的质点),在如图所示直线的点集I={1,2,3,4, 5}上作游动,仅仅在1秒、2秒…等时刻发生游动。游动 的概率规则是:如果Q现在位于点i (1<i <5),则下一时刻 各以1/3的概率向左或向右移动一格,或以1/3的概率留 在原处;如果Q现在位于1(或5)这点上,则下一时刻就 以概率1移动到2(或4)点上。1和5这两点称为反射壁。 上面这种游动称为带有两个反射壁的随机游动。
{ } pij pij 1 = P Xm+1 = j | Xm = i
称为齐次马氏链的一步转移概率;
P P(1) = pij (1)
a1 a1 p11 P(1) = a2 p21
ai pi1
a2 p12 p22
pi2
aj p1 j p2 j
pij
称为齐次马氏链的一步转移概率矩阵。
14
例:(订货问题)设某商店使用(s,S)订货策略,每 天早上检查某商品的剩余量,设为x,则订购额为:
设订货和进货不需要时间,每天的需求量 独
立同分布且 P{Yn = j} = aj ( j = 0,1, 2,...)。
4. n步转移概率及C-K方程
称条件概率Pij (m, m + n) {P Xn+m = j | Xm = i} 为马尔
马尔可夫链及其性质
马尔可夫链及其性质马尔可夫链是一个具有马尔可夫性质的随机过程。
马尔可夫性质指的是在给定当前状态的情况下,未来的状态仅依赖于当前状态,而与过去的状态无关。
这个概念最早由俄国数学家马尔可夫在20世纪初提出,并且在各领域展示了广泛的应用。
一、马尔科夫链的定义马尔可夫链可以由以下元素定义:1. 状态空间:表示系统可能处于的所有状态的集合。
用S表示状态空间。
2. 转移概率:表示从一个状态到另一个状态的概率。
这些概率可以用转移矩阵P来表示,其中P[i, j]表示从状态i转移到状态j的概率。
3. 初始概率分布:表示系统在初始状态时各个状态的概率分布。
用初始概率向量π表示,其中π[i]表示系统初始时处于状态i的概率。
二、马尔可夫链的性质1. 马尔科夫性质:马尔可夫链的核心特性是满足马尔可夫性质,即未来状态只依赖于当前状态,与过去状态无关。
2. 细致平稳条件:若马尔可夫链的转移概率满足细致平稳条件,则存在唯一的平稳分布。
细致平稳条件是指对于任意两个状态i和j,从i 到j的概率乘以停留在状态i的时间和从j到i的概率乘以停留在状态j 的时间应相等。
3. 遍历性:若马尔可夫链的任意两个状态之间存在一条路径,并且这条路径上的概率都不为零,那么这个马尔可夫链是遍历的。
遍历性保证了无论初始状态如何,最终都可以到达所有的状态。
4. 不可约性:若马尔可夫链的任意两个状态之间都是互达的,那么这个马尔可夫链是不可约的。
不可约性保证了从任意一个状态出发,都可以到达所有的状态。
5. 周期性:若马尔可夫链中存在状态i,使得从状态i出发,无论经过多少次转移,都不能回到状态i,那么这个状态具有周期性。
马尔可夫链的周期定义为状态的所有周期的最大公约数,具有相同周期的状态构成一个封闭的循环。
三、马尔可夫链的应用1. 自然语言处理:马尔可夫链可以用于文本生成和语音识别等自然语言处理领域。
通过观察文本中的状态转移概率,可以生成类似语义的新文本。
2. 金融市场分析:马尔可夫链可以应用于股票价格预测和市场波动分析等金融领域。
马尔可夫链的基本原理和使用方法(四)
马尔可夫链的基本原理和使用方法马尔可夫链是一种随机过程,它的基本原理是当前状态的转移概率只依赖于前一个状态,和之前的状态无关。
这种特性使得马尔可夫链在许多领域都有着广泛的应用,比如金融、生态学、自然语言处理等。
在本文中,我们将探讨马尔可夫链的基本原理和使用方法。
1. 马尔可夫链的基本原理马尔可夫链的基本原理可以用数学公式来表达。
设有一个有限的状态空间S={1,2,...,n},则一个离散时间的马尔可夫链是一个序列X={X0, X1, X2, ...},其中Xi表示在第i个时刻系统所处的状态,且满足以下马尔可夫性质:P(Xi+1 = j | Xi = i0, Xi-1 = i1, ..., X0 = i0) = P(Xi+1 = j | Xi = i0)其中P(Xi+1 = j | Xi = i0)表示在当前状态为i0的情况下,下一个状态为j的概率。
这个条件概率只依赖于当前状态,和之前的状态无关,这就是马尔可夫性质。
2. 马尔可夫链的使用方法马尔可夫链在实际应用中有着广泛的用途,其中最常见的就是用来建模随机过程。
在金融领域,马尔可夫链被用来建立股票价格的模型,帮助投资者预测未来的股价走势。
在生态学中,马尔可夫链被用来研究物种的迁移和数量变化,从而帮助保护生物多样性。
在自然语言处理领域,马尔可夫链被用来建立文本生成模型,从而帮助计算机理解和生成自然语言。
除了建模随机过程外,马尔可夫链还被广泛用于解决一些特定的问题,比如:a. 随机游走随机游走是一种通过随机转移来描述某个随机过程的方法。
在数学上,随机游走可以用马尔可夫链来建模。
通过分析随机游走的性质,可以帮助我们理解和预测一些具有不确定性的现象,比如股票价格的波动、气候变化等。
b. 马尔可夫决策过程马尔可夫决策过程是一种用来描述决策问题的数学模型。
在马尔可夫决策过程中,决策者需要根据当前状态和可选的行动来选择最优的策略。
通过分析马尔可夫决策过程,可以帮助我们理解和优化一些具有随机性和不确定性的决策问题,比如供应链管理、资源分配等。
马尔可夫链高中数学
马尔可夫链高中数学
马尔可夫链是一种随机过程,它的特点是下一个状态只与当前状态有关,与之前的状态无关。
在高中数学中,我们通常将马尔可夫链作为概率论和统计学的重要内容来学习。
具体来说,马尔可夫链由三个部分组成:状态空间、初始概率向量和状态转移矩阵。
其中,状态空间指所有可能的状态集合,初始概率向量是描述系统在初始状态下各个状态出现的概率,状态转移矩阵则是描述系统从一个状态转移到另一个状态的概率。
在高中数学中,通常会通过实例来具体说明马尔可夫链的应用。
例如,在一个赌场里,每个人进入时有50%的概率选择玩红色的轮盘,50%的概率选择玩黑色的轮盘,每次抽奖后,如果赢了就继续玩这个轮盘,如果输了就换到另外一个轮盘继续玩。
这个游戏可以被建模为一个马尔可夫链,并且可以通过状态转移矩阵来计算出最终状态的概率分布。
总之,马尔可夫链在高中数学中属于比较高级的内容,需要对概率论和线性代数有一定的基础。
第4章 马尔可夫链
d0
两式相比
r j rc
uj 1 rc
故
ua
ra rc 1 rc
(
q )a p
(
q )c p
1
(
q p
)c
当 r 1
u0 uc 1 cd0
而
u j (c j)d0
c j
因此 故
u j c c a b
ua
c
c
由以上计算结果可知
当 r 1 即 p q 时,甲先输光的概率为
当r
pi
p(n) ij
iI
(2) pj (n) pi (n 1) pij iI
(3)PT (n) PT (0)P(n)
(4)PT (n) PT (n 1)P
由(1)知,绝对概率由初始分布和n步转移概率完全确定
(1)
pn ( j)
pi
p(n) ij
iI
证 P{X n j} P{X n j, X 0 i} P{X n j, X 0 i} i
需讨论 r
当 r 1
c 1
1 u0 uc
(u j u j1)
c 1
j0
j0 c1
d j
c1 j 0
r jd0
1 rc 1 r
d0
而 u j u j uc (ui ui1)
i j
c 1
c 1
di
rid0
i j
i j
r j (1 r r c j1)d0
r j rc 1 r
称概率向量
PT (n) ( p1(n), p2(n),L ),(n 0)
为 n 时刻的绝对概率向量,而称
PT (0) ( p1 , p2 ,L )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一步转移概率
定义4.2 称条件概率pij(n)= P{Xn+1=j|Xn=i} 为马尔 可夫链{Xn,nT }在时刻n的一步转移概率, 简称转移概率,其中i,jI。 定义4.3 若对任意的i,jI,马尔可夫链{Xn,nT } 的转移概率pij(n)与n无关,则称马尔可夫链是 齐次的,并记pij(n)为pij。
如果d>1,就称i为周期的, 如果d=1,就称i为非周期的。
引理4.1 如果i的周期为d,则存在正整数M,对一切 ( nd ) n≥M ,有 p ii 0。
例4.6
设马尔可夫链的状态空间I={1,2,,9},转移概率如 下图所示。
1 1
8
9
1
1 3
2
1
7
1
1 6
1
3
1
5
2 3
4
1
从状态1出发再返回状态1的可能步数为T={4,6,8,10, },T的最大公约数为2,从而状态1的周期为2。
P{ X n j | X n1 i}P{ X n1 i} pi (n 1) pij
iI iI iI
(3)(4)为(1)(2)的矩阵表示。
定理4.3 设{Xn,nT }为马尔可夫链,则对任意 整数i1, i2,,inI和n1 ,有性质
P{ X1 i1 ,, X n in } pi pii1 pi1i2 pin1in
证明: (1) p j (n) P{ X n j} P{ X 0 i , X n j}
P{ X n j | X 0 i}P{ X 0 i}
iI ( p i p ijn ) iI iI
(2) p j (n) P{ X n j} P{ X n1 i , X n j}
2步转移概率矩阵为
P
( 2)
0.49 0.35 2 P 0.20 0.10
0.21 0.18 0.20 0.15 0.30 0.12 0.20 0.48 0.16 0.10 0.64 0.12
一 二 三 四 R R R R 0 0 R R N R 0 1
转移概率pij(n) 与n无关 齐次马尔可夫链具有平稳转移概率。
* 一步转移概率矩阵
p11 p21 P pm1 p12 p22 p1n p2 n pmn
pm 2
的性质:
()pij 0, i , j I; 1
第四章 马尔可夫链
常见马尔可夫过程
(1) 马尔可夫链:时间、状态都是离散的; (2) 连续时间马尔可夫链:时间连续、状态离散; (3) 马尔可夫过程:时间、状态都是连续的 (时间离散、状态连续的马尔可夫过程,通常用泛 函中二元函数的范数进行研究)
4.1 马尔可夫链与转移概率
定义4.1 若随机过程{Xn,nT },对任意nT和 i0,i1,, in+1 I,其条件概率 P{Xn+1=in+1|X0=i0,X1=i1,,Xn=in}= P{Xn+1=in+1|Xn=in}, 则称{Xn,nT }为马尔可夫链,简称马氏链。
1 由 u c 1 c 0 c i 则 u i 1 i 1 c a b a 所 以ua 1 , 同 理 可 得u b 。 c ab ab
(2) r 1时 由 u i 1 u i r (u i u i 1 )
c 1 c 1
( ( ( (1) pijn) pikl ) pkjnl ) kI
( (2) pijn)
k1I
p
k n 1I
ik1
pk1k2 pkn 1 j
C-K方程(切普曼柯尔莫哥洛夫)
(3) P(n)=PP(n-1) (4) P(n)=Pn
定义4.5 设{Xn,nT }为马尔可夫链,称 初始概率
rn ri r 1 i 0
n 1
rk rc 得 u c u k r (u i u i 1 ) r i (u1 u 0 ) (u1 1) 1 r ik i k
1 rc 1 r 令k 0,则 0 1 (u1 1) u1 1 1 r 1 rc rk rc rk rc u k (u1 1) 1 r 1 rc ra rc ra rc u a (u1 1) 1 r 1 rc rb rc rb rc u b (u1 1) 1 r 1 rc
() pij 1, i I。 2
jI
☆ 满足上述(1)、(2)性质的矩阵P称为随机矩阵。
n步转移概率
(n pij ) = P{Xm+n=j|Xm=i} 为马尔 定义4.4 称条件概率 可夫链{Xn,nT }的n步转移概率(i,jI, m0, n1) 。 ( n) ( n) n步转移矩阵 P pij
定义4.7
若fii=1,称状态i为常返的; 若fii<1,称状态i为非常返的。
i I
P{ X 2 i2 | X 1 i1} P{ X n in | X n 1 in 1}
例4.1 无限制随机游动
设质点在数轴上移动,每次移动一格,向右移动的 概率为p,向左移动的概率为q=1-p。以Xn表示质点 在时刻n所处的位置,则{Xn ,nT}是一个齐次马 尔科夫链,试写出它的一步和k步转移概率。
u i 1 u i u i u i 1 u1 u 0 ˆ (u i 1 u i ) (u i u i 1 ) (u1 u 0 ) (i 1) 即 u i 1 u 0 (i 1) u i 1 u 0 (i 1) 1 (i 1)
则
p00=P{R今R明| R昨R今}=P{R明| R昨R今}=0.7 p01=P{N今R明| R昨R今}=0 p02=P{R今N明| R昨R今}= P{N明| R昨R今}=0.3 p03=P{N今N明| R昨R今}=0 类似可得到其他转移概率。转移概率矩阵为
p00 p10 P p20 p 30 p01 p11 p21 p31 p02 p12 p22 p32 p03 0.7 0 0.3 0 p13 0.5 0 0.5 0 0 0.4 0 0.6 p23 p33 0 0.2 0 0.8
例4.3 天气预报问题
设昨日、今日都下雨,明日有雨的概率为0.7;昨日 无雨、今日有雨,明日有雨的概率为0.5;昨日有雨、 今日无雨,明日有雨的概率为0.4;昨日、今日均无 雨,明日有雨的概率为0.2。若星期一、星期二均下 雨,求星期四又下雨的概率。 解:设 RR表示连续两天有雨,记为状态0 NR表示第1天无雨第2天有雨,记为状态1 RN表示第1天有雨第2天无雨,记为状态2 NN表示连续两天无雨,记为状态3
定理4.2 设{Xn,nT }为马尔可夫链,则对任意 整数jI和n1 ,绝对概率pj(n)具有性质 (1) p j (n)
( pi pijn) iI
(2)p j (n)
p (n 1) p
iI i
ij
(3) PT(n)=PT(0)P(n) (4) PT(n)= PT(n-1)P
( ( p11nd ) p112) 0;当n>1时,p (ii nd ) 0。 当n=1时,
例4.7
状态空间I={1,2,3,4},转移概率如下图所示,
1
1
1 2
2
1 2
1
3
1
4
状态2和状态3有相同的周期d=2,但状态2和状态3 有显著的区别。当状态2转移到状态3后,再不能返 回到状态2,状态3总能返回到状态3。这就要引入 常返性概念。
状态空间 参数T={0, 1, 2, },
马尔可夫链的性质
P{X0=i0, X1=i1, , Xn=in} =P{Xn=in|X0=i0, X1=i1, , Xn-1=in-1} P{X0=i0, X1=i1, , Xn-1=in-1} = P{Xn=in|Xn-1=in-1} P{X0=i0, X1=i1, , Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1 |Xn-2=in-2} P{X1=i1|X0=i0}P{X0=i0} ☆ 马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in}确定。
iI
证明: P{ X i , , X i } 1 1 n n
i I
P{ X 0 i , X 1 i1 , , X n in } P{ X 0 i}P{ X 1 i1 | X 0 i}
i I
pi pii1 pi1i2 pin1in
其中 p
( n) ij
0, p
jI
( n) ij
1, i , j I,P(n) 为随机矩阵。
( 当n 1时, pij1) pij , P (1) P
当n 0时,规定p
(0) ij
0 , i j 1 , i j
n步转移概率的性质
定理4.1 设{Xn,nT }为马尔可夫链,则对任意整 (n ) pij 具有性质: 数n0,0l<n和i,jI,n步转移概率
解:状态空间I={0,1,2,,c},c=a+b。 设ui表示甲从状态i出发转移到状态0的概率,则 u 0 1 u c 0。 p q 1 , q u i pui 1 qui 1 u i 1 u i r (u i u i 1 ),r 。 p
(1) r 1 ,即 p q 0.5时
p j P{ X 0 j} p j (n) P{ X n j}