ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION
FA常用英文(供参考)
Proposal Design 方案设计[prəˈpəʊzl] Layout Design 布局设计Module Design 模块设计[ˈmɒdju:l] Parallel Design 并行设计[ˈpærəlel] Optimizing Design 优化设计['ɒptɪmaɪzɪŋ] Mechanical Design 机械设计Software Design 软件设计Top-Down Design 自顶向下设计Error-Proofing Design 防错设计['pru:fɪŋ] Feasibility 可行性[ˌfi:zə'bɪlətɪ]Plan 计划FMEA 失效模式分析Ergonomic 人机工程学[ˌɜ:gəˈnɒmɪk] Human Machine Interface 人机交互界面Schedule 进度表ˈʃedju:l]Safeguard 安全防护Cycle Time 生产节拍Technique Process 工艺流程英[tekˈni:k] [ˈprəʊses]Sequence 顺序[ˈsi:kwəns] Mechanism 机构[ˈmekənɪzəm] Structure 结构System 系统Orbit 轨迹[ˈɔ:bɪt]PDM 产品数据管理PLM 产品生命周期管理3D Drawing 三维图2D Drawing 二维图Part Drawing 零件图Assembly Drawing 装配图[əˈsembli] Bill of Material 材料清单(BOM)Cost Down 降低成本Qualified Part 合格品ˈkwɒlɪfaɪd] Rejected Part 不合格品[rɪˈdʒekt] Confirm 确认kənˈfɜ:m]Check 审核Approve 批准Flow Line 流水线Conveyor 传输装置[kənˈveɪə(r)] Orientation 定向[ɔ:riənˈteɪʃn] Location 定位Picking 抓取Sorting 排序Pallet 随行夹具[ˈpælət]Fixture 固定夹具Gripper 抓取夹具['grɪpə]Feeding 进给Loading 上料Offloading 卸料Machining 加工Manufacture 制造[ˌmænjuˈfæktʃə(r)]Assemble 装配[əˈsembl]Run 运行Dry Run 设备空运行Patent 专利[ˈpætnt]Automated inspection 自动化检验automatic assembly system 自动化装配系统applied biomechanics 应用生物力学CAD/CAM 计算机辅助设计与制造computer integrated manufacturing system 计算机整合制造系统data structure 数据结构data base management system 数据库管理系统decision analysis 决策分析engineering economy 工程经济engineering statistics 工程统计facilities planning 设施规划factory diagnoisis and improvement method 工厂诊断与改善方法financial and cost analysis 财务与成本分析fuzzy theory and application 模糊理论与应用human-computer interaction (HCI)人因工程与计算机系统human factors engineering 人因工程human information processing 人类讯息处理human-machine system design 人机系统设计human resource management 人力资源管理human system diagnosis and improvement 人体系统诊断与改善industrial environment evaluation 工业环境评估industrial organizations and management 工业组织与管理industrial safety 工业安全information technology 信息技术intellectual property laws 智慧财产权法knowledge engineering 知识工程linear algebra 线性代数manufacturing automation 制造自动化manufacturing engineering 制造工程manufacturing management 制造管理manufacturing process 制造程序manufacturing systems and management 制造系统与管理market and marketing 市场与行销material flows automation 物流自动化mathematical programming 数学规划multicriteria decision making 多目标规划multi-criteria decision methods 多准则决策分析network analysis 网络分析numerical analysis 数值分析organization and management 组织与管理product and technology development management 产品与技术开发管理production management 生产管理production planning and control 生产计划与管制quality control 质量管理quality engineering 品质工程quality management techniques and practice 品质管理queueing theory 等候线理论reliability engineering 可靠度工程research,development and innovation management 研究发展管理semiconductor production management 半导体生产管理sequencing and scheduling 排序与排程simulation 模拟分析statistical method 统计方法stochastic processes 随机系统strategic management of technology 技术策略system analysis and design in large scale 大型系统分析与设计system performance evaluation 系统绩效评估技术system quality assurance engineering 系统品质保证工程systems engineering 系统工程systems simulation 系统仿真vision and colors 视觉与色彩work physiology 工作生理学work study 工作研究集散控制系统——Distributed Control System(DCS)现场总线控制系统——Fieldbus Control System(FCS)监控及数据采集系统——Supervisory Control And DataAcqusition(SCADA)可编程序控制器——Programmable Logic Controller(PLC)可编程计算机控制器——Programmable Computer Controller(PCC)工厂自动化——Factory Automation(FA)过程自动化——Process Automation(PA)办公自动化——Office Automation(OA)管理信息系统——Management Information System(MIS)楼宇自动化系统——Building Automation System人机界面——Human Machine Interface (HMI)工控机——Industrial Personal Computer (IPC)单片机——Single Chip Microprocessor计算机数控(CNC)远程测控终端——Remote Terminal Unit (RTU)上位机——Supervisory Computer图形用户界面(GUI)人工智能——Artificial Intelligent(AI)智能终端——Intelligent Terminal模糊控制——Fuzzy Control组态——Configuration仿真——Simulation冗余——Redundant客户/服务器——Client/Server网络——Network设备网——DeviceNET基金会现场总线——foundation fieldbus(FF)现场总线——Fieldbus以太网——Ethernet变频器——Inverter脉宽调制——Pulse Width Modulation (PWM)伺服驱动器——Servo Driver软起动器——Soft Starter步进——Step-by-Step控制阀——Control Valver流量计——Flowmeter仪表——Instrument记录仪—— Recorder传感器——Sensor智能传感器——Smart Sensor智能变送器——Smart Transducer虚拟仪器——Virtual Instrument主站/从站——MasterStation/Slave station 操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station电力专业英语单词电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-up transformer母线bus变压器transformer空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current无功损耗:reactive loss有功损耗:active loss输电系统power transmission system高压侧high side输电线transmission line高压: high voltage低压:low voltage中压:middle voltage功角稳定angle stability 稳定stability电压稳定voltage stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC直流DC电网power system落点drop point开关站switch station调节regulation高抗high voltage shunt reactor 并列的:apposable裕度margin故障fault三相故障three phase fault分接头:tap切机generator triping高顶值high limited value静态static (state)动态dynamic (state)机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power电容器:Capacitor电抗器:Reactor断路器:Breaker电动机:motor功率因数:power-factor定子:stator阻抗电压:阻抗:impedance功角:power-angle电压等级:voltage grade有功负载: active load/PLoad无功负载:reactive load档位:tap position电阻:resistor电抗:reactance电导:conductance电纳:susceptance上限:upper limit下限:lower limit正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance无功(功率)reactive power功率因数power factor无功电流reactive current斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap仿真分析simulation analysis下降率droop rate传递函数transfer function框图block diagram受端receive-side同步synchronization保护断路器circuit breaker摇摆swing阻尼damping无刷直流电机:Brusless DC motor刀闸(隔离开关):Isolator机端generator terminal变电站transformer substation永磁同步电机:Permanent-magnet Synchronism Motor异步电机:Asynchronous Motor三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans固定串联电容补偿fixed series capacitor compensation双回同杆并架double-circuit lines on the same tower单机无穷大系统one machine - infinity bus system励磁电流:magnetizing current 补偿度degree of compensation电磁场Electromagnetic fields失去同步loss of synchronization装机容量installed capacity 无功补偿reactive power compensation故障切除时间fault clearing time极限切除时间critical clearing time强行励磁reinforced excitation并联电容器:shunt capacitor线路补偿器LDC(line drop compensation) 电机学Electrical Machinery自动控制理论Automatic Control Theory电磁场Electromagnetic Field微机原理Principle of Microcomputer电工学Electrotechnics Principle of circuits 电力系统稳态分析Steady-State Analysis of Power System电力系统暂态分析Transient-State Analysis of PowerSystem电力系统继电保护原理Principle of Electrical System's RelayProtection电力系统元件保护原理Protection Principle of Power System 'sElement电力系统内部过电压Past Voltage within Power system模拟电子技术基础Basis of AnalogueElectronic Technique数字电子技术Digital Electrical Technique 电路原理实验Lab. of principle of circuits电气工程讲座Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering电子专题实践Topics on experimental project ofelectronics电气工程概论Introduction to electrical engineering电子电机集成系统electronic machine system电力传动与控制Electrical Drive and Control 电力系统继电保护Power System Relaying ProtectionBOX 组件Plastic 塑胶cabinet 壳cover 上盖support 下盖top 上部bottom 底部cap (帽,杯)housing 壳insert(型,芯)Box 组件holder 支座roller 转子belt 皮带impeller风扇case 箱filter 滤网flex hose 软管metal 金属shaft 轴gear 齿轮washer 垫片die cast 铸件nut 螺母bush 轴套chuck 锁头screw 螺丝ring 垫圈spring 弹弓bit 铁嘴plate 片bar 杆spindle轴芯pin 小轴bearing 轴承thread 螺纹powder metal 粉末冶金key 锁匙pinion 小齿轮electric 电气件nameplate 铭牌cord 电线cable 电缆motor 电机switch 开关plug插头fuse 保险丝battery电池button 按钮cell电池adaptor 火牛socket插座P.C.B 电路板charger 充电座/器HI-POT高压测试timer定时器Power pack 电池组resistor电阻IC集成电路terms 术语toque 扭矩force 力speed 速度rating 额定值sampling 抽样fitting 装配futtonal 功能part line分型线aperance 外观testure 纹理vibration 振动finished 表面处理cavity 模腔model 型号part 零件assembly 部件accessory附件remark 注释mark 标记approve 认可defect 缺陷nonconformity 不合格comformity 合格sinkage 缩水burr 毛刺flash 披锋sharp edge 尖缘scratch刮花flow mark 流痕weld line 夹水纹rusty 铸跡hardness 硬度treatment 热处理cycle 循环freouency频数description名称inspection 检验check 检查dispose 处理injection注射revise 更改material 材料purchasing 采购gate 水口current 电流voltage电压power功率I.N.T接触不良rework 加工sort 拣货A.O.D 有偏差接收reject 退货Sketch 简图urgent 紧急Tolerance 公差fit配合Run-out跳动dimention 尺寸AQL 允收水准solenoid valve 电磁阀abort 中断,停止abnormal 异常abrader 研磨,磨石,研磨工具absence 失去Absence of brush 无(碳)刷Absolute ABS 绝对的Absolute atmosphere ATA 绝对大气压AC Lub oil pump 交流润滑油泵absorptance 吸收比,吸收率acceleration 加速accelerator 加速器accept 接受access 存取accomplish 完成,达到accumulator 蓄电池,累加器Accumulator battery 蓄电池组accuracy 准确,精确acid 酸性,酸的Acid washing 酸洗acknowledge 确认,响应acquisition 发现,取得action 动作Active power 有功功率actuator 执行机构address 地址adequate 适当的,充分的adjust 调整,校正Admission mode 进汽方式Aerial line 天线after 以后air 风,空气Air compressor 空压机Air duct pressure 风管压力Air ejector 抽气器Air exhaust fan 排气扇Air heater 空气加热器Air preheater 空气预热器Air receiver 空气罐Alarm 报警algorithm 算法Attempt 企图Attemperater 减温器,调温器Attention 注意Attenuation 衰減,减少,降低Auto reclose 自动重合闸Auto transfer 自动转移Autoformer 自耦变压器Automatic AUTO 自动Automatic voltage regulator 自动调压器Auxiliary AUX 辅助的Auxiliary power 厂用电Available 有效的,可用的Avoid 避免,回避Avometer 万用表,安伏欧表计Axial 轴向的Axis 轴,轴线Axis disp protection 轴向位移,保护Axle 轴,车轴,心捧BBack 背后,反向的Back pressure 背压Coil 线圈Coil pipe 蛇形管Cold 冷Cold air 冷风Cold reheater CRH 再热器冷段Cold reserve 冷备用(锅炉)Cold start 冷态启动Cold test 冷态试验Collect 收集Collecting pipe 集水管Collector 收集器Colour 颜色Colour library 颜色库Combin 合并、联合Combustion 燃烧Command 命令、指挥Commission 使投入、使投产Common 共同的、普通的Communication 联系、通讯Commutator 换向器Compensation 补偿Electrical machine 电机Electrical service 供电Electric power industry 电力工业Electrode 电极Electric power company 电力公司Electric power system 电力系统Electronic 电子的、电子学的Electrotechnics 电工学、电工技术Electrostaic precipitator 静电除尘器Electrostatic 静电的Extra-high voltage超高压Extend扩展、延伸Exteral外部的、表面的Extr press抽汽压力Extr temp抽汽温度Extraction EXTR抽汽Flexible 灵活的、柔性的Flexible joint 弹性联接器Furnace 炉膛Fuse 保险丝、熔断器Fuse holder 保险盒Fusible cutout 熔断开关Fw bypass 给水旁路GGAIN 增益Gang 班、组Gas 气体、烟气Gate 闸门Gate damper 闸门式挡板Gateway 入口、途径Gauge 仪表、标准Gauge float 水位、指示、浮标Gear 齿轮Gear pump 齿轮泵Gear shift housing 变速箱Gen main breaker 发电机出口总开关General control panel 总控制屏General vlv 总阀Generate 引起、产生Generator 发电机、发生器Gland 密封套Gland heater GLAND HTR 轴封加热器Gland seal 轴封Glass-paper 砂纸Goal 目的、目标Go on 继续Govern vlv GV 调速器、调节器Graphics 调节阀Grease 图形Green 绿色Grid 高压输电网、铅板Grid system 电网系统Performance 完成、执行、性能Performance calculation 性能计算Performance curve 性能曲线Periodic 周期的、循环的Periodic inspection 定期检查Peripheral 周围的Peripheral equipment 外围设备Permanent 永久的、持久的Permanent magneticgenerator永磁发电机Permit 允许Permit to work 允许开工Petrol 汽油Plunger 柱塞、滑阀Plunger pump 柱塞泵Plus 加Plyers 钳子、老虎钳Pneumatic 气动的Point 点Point database 测点数据库Point directory 测点目录Point name 测点名Point record 测点记录Point field 泡克区Phase voltage 相电压Pole 机、柱Policher 除盐装置Pollution 污染Pop valve 安全阀、突开阀Portion 一部分Position POS 位置Positive 确定的、正的、阳性的Potable water 饮用水Potential transformer PT 电压互感器Tank 箱Tap 抽头、分布Tape armour 钢带铠装Taper 锥体、楔销Taper key 斜键、楔键Taper pin 锥形销、斜销Target 目标T-beam 丁字梁Temperature 温度Temperature compensation 温度补偿Temperature liming relay 热继电器Tempered 热处理的Template 模板、样板Tensile 拉力的、张力的Total control unit TCU 总控单元T-junction 三通三、模具注塑模具injection mold 冲压模具Stamping tool 模架mold base定模座板Fixed clamp plate A板A plate B板B plate支承板 support plate 方铁 spacer plate 回位销 Return pin 导柱 Guide pin动模座板Moving clamp plate 顶针ejector pin单腔模具single cavity mold 多腔模具multi-cavity mold 浇口gate合模力clamping force锁模力locking force 开裂crack循环时间cycle time 老化aging 螺杆screw 镶件 Insert 主流道 sprue 分流道runner 浇口gate直浇口 direct gate 点浇口pin-point gate 测浇口edge gate潜伏浇口submarine gate 浇口套sprue bush 流道板runner plate 排气槽vent 分型线(面)parting line 定模Fixed mold 动模movable mold 型腔cavity凹模cavity plate,凸模core plate 斜销angle pin 滑块slide拉料杆sprue puller 定位环locating ring 脱模斜度draft 滑动型芯slide core 螺纹型芯threaded core热流道模具hot-runner mold 熔合纹weld line三板式模具three plate mold 脱模ejection 脱模剂release agent 注射能力shot capacity 注射速率injection rate 注射压力injection pressure 保压时间holding time 闭模时间closing time电加工设备Electron Discharge Machining 数控加工中心CNC machine center 万能铁床Universal milling machine 平面磨床Surface grinding machine万能摇臂钻床Universal radial movable driller立式钻床Vertical driller 倒角chamfer 键Key键槽keyway 间距pitch快速成型模Rapid prototype tool (RPT)四、品管SPC statistic process control品质保证Quality Assurance(QA) 品质控制Quality control(QC) 来料检验IQC Incoming quality control 巡检IPQC In-process quality control 校对calibration环境试验Environmental test 光泽gloss拉伸强度tensile strength 盐雾实验salt spray test 翘曲warp比重specific gravity 疲劳fatigue撕裂强度tear strength 缩痕sink mark 耐久性durability 抽样sampling样品数量sample sizeAQL Acceptable Quality level 批量lot size 抽样计划sampling plan 抗张强度 Tensile Strength 抗折强度 Flexural Strength 硬度 Rigidity色差 Color Difference涂镀层厚度 Coating Thickness 导电性能 Electric Conductivity 粘度 viscosity 附着力 adhesion耐磨 Abrasion resistance 尺寸 Dimension (喷涂)外观问题 Cosmetic issue 不合格品 Non-conforming product 限度样板 Limit sample五、生产注塑机injection machine冲床Punch machine 嵌件注塑 Insert molding双色注塑 Double injection molding 薄壁注塑 Thin wall molding膜内注塑 IMD molding ( In-mold decoration)移印 Tampo printing 丝印 Silk screen printing 热熔 Heat staking超声熔接 Ultrasonic welding (USW)尼龙nylon 黄铜 brass 青铜 bronze 紫(纯)铜 copper 料斗hopper 麻点pit配料compounding 涂层coating 飞边flash 缺料 Short mold 烧焦 Burn mark 缩水 Sink mark 气泡 Bubbles 破裂 Crack熔合线 Welding line 流痕 Flow mark 银条 Silver streak 黑条 Black streak表面光泽不良 Lusterless 表面剥离 Pelling 翘曲变形 Deformation 脏圬 Stain mark 油污 Oil mark蓝黑点 Blue-black mark 顶白 Pin mark 拉伤 Scratch限度样品 Limit sample 最佳样品 Golden sample 预热preheating再生料recycle material 机械手 Robot机器人 Servo robot试生产 Trial run; Pilot run (PR) 量产 mass production 切料头 Degate保质期shelf lifeABC分类法ABC Classification 装配Assembly平均库存Average Inventory 批号Batch Number批量生产Mass Production 提货单Bill of Lading 物料清单Bill of Material 采购员Buyer检查点Check Point 有效日期Date Available 修改日期Date Changed 结束日期Date Closed 截止日期Date Due 生产日期Date in Produced库存调整日期Date Inventory Adjust 作废日期D ate Obsolete 收到日期Date Received 交付日期Date Released 需求日期Date Required需求管理Demand Management 需求Demand工程变更生效日期Engineering Change Effect Date 呆滞材料分析Excess Material Analysis 完全跟踪Full Pegging在制品库存In Process Inventory 投入/产出控制Input/ Output Control 检验标识Inspection ID库存周转率Inventory Carry Rate 准时制生产Just-in-time (JIT) 看板Kanban人工工时Labor Hour最后运输日期Last Shipment Date 提前期Lead Time 负荷Loading仓位代码Location Code 仓位状况Location Status 批量标识Lot ID批量编号Lot Number 批量Lot Size 机器能力Machine Capacity 机器加载Machine Loading制造周期时间Manufacturing Cycle Time 制造资源计划Manufacturing Resource Planning (MRP II) 物料成本Material Cost物料发送和接收Material Issues and Receipts物料需求计划Material Requirements Planning (MRP) 现有库存量On-hand Balance 订单输入Order Entry 零件批次Part Lot零件编号Part Number (P/N) 零件Part领料单Picking List 领料/提货Picking 产品控制Product Control 产品线Production Line采购订单跟踪Purchase Order Tracking 需求量Quantity Demand 毛需求量Quantity Gross 安全库存量Safety Stock 在制品Work in Process 零库存Zero Inventories。
桁架结构布局优化的并行子空间方法
桁架结构布局优化的并行子空间方法王毅;姚卫星【摘要】由于结构布局优化存在设计变量类型众多和变量耦合等问题,采取合适的优化方法获得满足结构设计要求的最小质量的结构具有重要的工程意义.基于多学科设计优化方法中的并行子空间优化法,提出一种桁架结构布局优化的并行子空间优化方法.将结构布局设计问题按设计变量类型分为布局、形状和尺寸三个并行的子空间,设计变量在各自的子空间内单独优化,各子空间优化结束后,在系统级中协调3类设计变量,保持最小质量的子空间的优化设计变量不变,采用近似一维搜索的方法协调其他子空间的设计变量,然后进行下一次迭代直至收敛.2个算例表明该方法能够取得较好的优化结果,具有实际工程应用价值.%Structural layout design exists some problems ,such as complexity of variable types and existence of variables coupling .It is of important engineering significance to design the lightest structure ,w hich meets the specific constraints .Based on the concurrent subspace optimization method in multidisciplinary design optimization ,a structural concurrent subspace optimization method was developed for the layout design of trusses .In terms of the type of variables ,the de‐sign problem of structures was decomposed into three concurrent subspaces as layout ,shape andsize .And the optimization in each subspace was carried out separately to avoid the coupling of de‐sign variables .By remaining the design variables in the lightest subspace unchanged and altering two other types of variables with approximate one‐dimensional search algorithm ,the coordination was achieved in system level to ensure the convergence ofthe analysis problem .Then next iterate was executed untiltermination .Two examples were solved successfully to demonstrate practical engineering value of the proposed method .【期刊名称】《工程设计学报》【年(卷),期】2015(000)003【总页数】7页(P256-261,268)【关键词】桁架;并行子空间优化方法;布局优化;形状优化;尺寸优化【作者】王毅;姚卫星【作者单位】南京航空航天大学飞行器先进设计技术国防重点学科实验室,江苏南京210016;南京航空航天大学飞行器先进设计技术国防重点学科实验室,江苏南京210016【正文语种】中文【中图分类】O224结构优化设计的目的在于寻求既轻又能满足设计要求的结构.一个复杂的结构设计问题通常包括尺寸、形状和布局三类变量,它们属于不同层次,在结构设计中相互耦合,传统的优化方法常常难以求解.通过有效的结构优化方法解耦3类设计变量,提高设计效率,得到既满足设计需求又质量较小的结构,具有重要的工程意义.按设计变量的层次,结构优化可分为尺寸优化、形状优化和布局优化,设计难度随着设计变量层次增加而增加.目前,对于结构布局优化问题,多采用分层分级的优化方法,将不同类型的设计变量分为2级或多级进行逐层分步求解[1-6].虽然分级优化方法解除了各类变量之间的耦合关系,但并不一定能找到最优解.因此有研究者将不同层次的设计变量耦合成一类变量统一进行优化,并得到了较好的优化结果[7-9].并行子空间优化方法(concurrent subspace optimization,CSSO)是由Sobieski于1988年提出的一种多学科优化设计方法,早期的并行子空间优化方法是基于灵敏度分析的[10],后来Sellar等人[11]发展了基于响应面的并行子空间优化方法(CSSO-RS),该方法收敛性高,实用性更强.目前,将多学科优化设计方法应用到结构优化设计中的研究较少.张振伟等[12]提出一种桁架结构的尺寸和形状协同优化的方法,冯玉龙等[13]给出复合材料加筋板的布局优化子空间协同方法.本文针对结构布局优化问题,提出一种桁架结构布局的并行优化子空间方法,通过2个算例验证得到了较好的设计结果.1 结构布局优化子空间方法1.1 优化问题的数学模型对于桁架结构布局优化问题,设计变量通常包括尺寸、形状和布局三类变量.设计目标为结构质量最小,约束条件包括静强度、刚度和稳定性等约束.优化模型如下:式中:W为结构质量;X1,X2,X3分别为尺寸、形状和布局三类变量;[σ]和[ε]分别为结构的许用应力和许用应变;δmax为结构变形允许值;XiL和XiU为设计变量Xi的上下限.1.2 并行子空间优化将优化问题分为尺寸优化、形状优化和布局优化三个并行的子空间,相应的设计变量为尺寸、形状和布局变量.在每个子空间内,只优化自身设计变量,其他类型变量作为状态变量保持不变,这样解除了不同类型变量之间的耦合,降低了问题的复杂程度.3个子空间优化过程同时进行,在得到各自最优的新的设计变量和最小目标值后,计算3个子空间的最优质量的方差,如果小于收敛精度e,整个优化结束,此时取尺寸优化子空间得到的各个设计变量的值作为整个优化问题的最优解,否则进行系统级设计变量协调.在系统级内,选取3个子空间中最小质量的子空间作为该次设计的最优值,该空间的设计变量在下一次优化时保持不变,而对其他空间的设计变量进行协调处理.在变量协调时,采用类似一维搜索中的进退法对优化变量进行调整,其基本思想是从初始点开始以初始步长向前或向后探索目标函数的变化趋势,若减小,向前搜索,若增大,向后搜索,从而找到包含目标函数最小值的闭区间.在本文中,搜索步长为α(k),搜索方向为X(k)others,opti-X(k)others.变量协调结束后,进行下一次迭代,直至整个优化过程收敛.整个优化流程如图1所示.需要说明的是,该设计流程并非只适用布局优化,若针对形状优化问题,优化流程与图1相同,而并行的子空间只有形状和尺寸优化.图1中μ1和μ2为布局和形状优化时引入的约束松弛变量,μ1和μ2均大于1.μ1和μ2的表达式为其中k为迭代次数,μ0为一个给定的正数(本文中布局优化时取1,形状优化时取0.5).随着迭代次数k增加,松弛变量μ逐渐变小.s2为各子空间优化质量的方差.e为收敛精度(本文取结构质量的3%).表示3个子空间优化结果最小的A空间的质量.ΔW为与A空间的质量差.步长α(k)对形状和尺寸变量取,对布局优化取-1,即在形状和布局子空间内部优化时,引入约束松弛变量的目的是扩大可行域范围,防止由于尺寸优化后下一次迭代的形状和布局优化的可行域缩小,难以找到最优解.而在尺寸优化中不设置松弛变量是为了协调形状和布局最优解落在可行域外的情况.针对布局优化变量离散的问题,调整α(k)表达式的值,以保证布局变量满足实际要求.由于每轮优化过程选取质量最小的子空间的设计变量作为下一轮优化的状态值,因而下一轮优化的最优解必定小于上一轮优化的最优解,优化收敛性能够得到保证.图1 布局优化流程图Fig.1 The flow chart of layout optimization1.3 优化流程实施整个计算流程借助ISIGHT多学科优化平台搭建而成,该软件不仅集成了多种优化算法,能够求解各类优化问题,而且还能实现不同程序的调用执行以及相关文件的修改.在尺寸优化子空间内,设计变量为杆件的截面积,变量连续,本文采用Nastran 软件集成的序列二次规划算法(SQP)求解.Nastran软件是一款广泛应用于机械设计、航空航天等领域的有限元分析软件,其对结构的尺寸优化分析结果已经得到广泛认可.该优化求解器内部集成了诸如序列二次规划法(SQP)、修正可行方向法(MMFD)和序列无约束极小化法(SUMT)等优化算法,结构设计者可直接借助该软件优化得到满意的结果.在形状优化子空间内,设计变量为节点坐标,由于变量是连续的,本文采用ISIGHT软件中集成的可行方向法(MFD),借助该软件不断地修改节点坐标并调用Nastran计算分析找到满足设计要求的最优解.在布局优化子空间内,设计变量取0和1,分别代表杆件的删除与增加,并将初始结构设定为整个优化的基结构.设计变量不连续,且只有0和1两种情况,因此本文在优化时借助ISIGHT软件中集成的遗传算法进行求解,通过基因交叉、变异等手段不断地调整编码序列,以实现不同结构布局形式.在优化过程中,对于几何可变结构采取自动删除的方式,其计算结果不放入优化取值中.2 算例2.1 15杆平面桁架结构布局优化如图2所示为一15杆桁架[2].杆件E=6.897×106 N/cm2,ρ=0.002 768 kg/cm3,=17 243.5 N/cm2=-17 243.5N/cm2.工况有2个,工况1:P3y=P5y=P7y=-4.45×105 N;工况2:P4y=P6y=P8y=-4.45×105 N.位移约束是节点5在Y向的位移不超过2.032cm,坐标设计变量为X3,X4,Y4,Y6.杆截面积下限为6.452cm2.桁架结构对称,外载荷对称,因此将尺寸设计变量(即15个杆件面积)按对称性分为8组,见表1.同样按照对称性,将形状设计变量(即6个节点的坐标)进行了变量链接,见表2.图2 15杆平面桁架结构图Fig.2 Initial 15-bar truss structure表1 杆件截面变量Table 1 Size variables of bars设计变量杆件编号设计变量杆件编号A1 1-4,2-8 A5 4-5,5-8 A2 4-6,6-8 A6 1-3,2-7 A3 3-4,7-8 A7 3-5,5-7 A4 3-6,6-7 A8 5-6表2 坐标链接情况Table 2 Link of coordinates3 X3 Y3(≡0)4 X4 Y4 6 X6(≡0) Y6 7-X3 Y3(≡0)8-X4 Y 4经过6次迭代优化,4-5和5-8杆件被删除,得到桁架结构质量为283.52kg,该结果比文献[2]减轻65.87kg,见表3.结构质量优化历程和优化后的结构图如图3和图4所示.表3 15杆桁架优化结果Table 3 Optimization results of 15-bar trussA1/cm2129.032 70.968 78.448 A2/cm2 129.032 45.161 75.321 A3/cm2 129.032 32.258 23.45 A4/cm2 129.032 0.000 6.619 A5/cm2 129.0326.452 0.000 A6/cm2 129.032 6.452 6.452 A7/cm2 129.032 6.452 6.452 A8/cm2 129.032 32.258 36.74 X3/cm -254.0 -189.99 -314.76 X4/cm -254.0 -228.22 -340.44 Y4/cm 381.0 310.64 96.05 Y6/cm 508.0 401.87 170.32质量/kg 2 028.13 349.39 283.52图3 15杆桁架结构质量变化历程Fig.3 History of 15-bar truss structure weight图4 本文布局优化结果图Fig.4 The best truss diagram by our method图5为文献[2]的布局优化结果,与图4相比较可以看到,经过本文方法优化后的桁架高度变小了,高度变小的原因可能是载荷工况不够大造成的.如果将桁架结构看作一个两支点的工程梁,在外载不变的情况下,梁的高度降低了,必然导致上下缘条的载荷变大,相应桁架结构杆的截面积也会变大,质量会有所增加.然而高度变小的另一个好处是杆的长度变小了,相反会带来结构质量的减小,权衡两者给结构质量带来的影响,从优化结果看,高度变小带来的质量减小效果更明显.如果外载荷足够大,可能会有不一样的优化结果.图5 文献[2]优化结果图Fig.5 The best truss diagram of reference[2]2.2 25杆桁架结构布局优化结构模型如图6所示,共包含10个节点和25根杆[2],其中底部4个节点固定.各杆弹性模量E=6.8974×106 N/cm2,密度ρ=0.002 768kg/cm3.不考虑结构稳定性.桁架结构受到2个载荷工况作用,具体载荷值见表4所示.杆截面积不得小于0.064 5 cm2,节点1和节点2的最大位移不超过0.889cm,整个桁架高度不得低于355.6cm.图6 25杆桁架结构图Fig.6 25-bar space truss structure with initial dimensions表4 25杆桁架载荷工况Table 4 Load cases of 25-bar truss1 1 4.45 44.5 -22.25 2 0 44.5 -22.25 3 2.225 0 0 6 2.225 0 0 2 1 0 89 -22.5 2 0 -89 -22.5根据结构对称性将25根杆分为8组,每组截面积相同,使用同一设计变量.分组情况和各组许用应力见表5所示.6个节点共18个坐标采用6个坐标变量X2,Y2,Z2,X4,Y4和Z4描述,节点坐标链接如表6所示.表5 25杆桁架尺寸变量与应力约束Table 5 Size variables and stress constraints of 25-bar truss设计变量杆件编号限制应力/(N/cm2)下限值上限值A11-2 -24 204.4 27 589.6 A2 1-4,2-3,1-5,2-6 -7 994.1 27 589.6 A3 2-5,2-4,1-3,1-6 -11 936.0 27 589.6 A4 3-6,4-5 -24 204.4 27 589.6 A5 3-4,5-6 -24 204.4 27 589.6 A6 3-10,6-7,4-9,5-8 -4 661.9 27 589.6 A7 3-8,4-7,6-9,5-10 -4 661.9 27 589.6 A8 3-7,4-8,5-9,6-10 -7 643.7 27 589.6表6 节点坐标链接Table 6 Link of coordinates节点号X Y Z 1-X2 Y2 Z 2 2 X2 Y2 Z2 3-X4 Y4 Z4 4 X4 Y4 Z4 5 X4 -Y4 Z4 6-X4 -Y4 Z 4最终优化结果列在表7,同时表7还列出了文献[5]和文献[2]的优化结果,其中文献[5]只优化了形状和尺寸变量,并未作布局变量优化,文献[2]截面尺寸为离散变量.经过10次迭代优化,1,4,5三根杆件被删除,桁架变为22杆结构.最终优化质量为41.7kg,比文献[5]和文献[2]分别减轻19.8kg和21.1kg.结构质量优化历程和优化后的结构图如图7和图8所示.表7 25杆优化结果Table 7 Optimization results of 25-bar trussA1/cm20.064 5 0 0 A2/cm2 5.458 6.542 5.893 A3/cm2 3.961 4.065 3.364 A4/cm2 0.064 5 0 0 A5/cm2 0.064 5 0 0 A6/cm2 0.658 1.355 0.130 A7/cm2 3.187 0.774 2.74 A8/cm2 6.781 7.742 1.84 X2/cm 25.4 6.45 18.76 Y2/cm 0 -0.39 0 Z2/cm 355.6 355.6 355.6 X4/cm 52.07 124.48 52.7 Y4/cm 88.65 161.63 141.85 Z4/cm 247.4 174.94 180.96质量/kg 61.5 62.8 41.73 结论图7 25杆桁架结构质量优化历程图Fig.7 History of 25-bar truss structureweight图8 25杆桁架布局优化结果图Fig.8 The best 25-bar truss diagram by our method将一个复杂的结构设计问题分解为布局、形状和尺寸优化3个子空间,在独立的子空间内并行优化,然后在系统级协调3个子空间的设计结果,降低了分析和计算的难度.通过15杆和25杆桁架算例表明,该方法是可行的,能够得到较好的优化结果.同时该方法迭代次数较少,框架简单,易于在ISIGHT平台上实现.该方法不仅适用于桁架结构的优化问题,也适用于其他结构的优化设计,后续也将会将该方法推广到更多的优化设计实例中.参考文献:[1]张广圣,王其祚.机械结构多级优化的问题与对策[J].合肥工业大学学报:自然科学版,1990,13(1):52-58.ZHANG Guang-sheng,WANG Qi-zuo.Multilevel mechanical structure optimization difficulties and strategies [J].Journal of Hefei University of Technology:Natural Science,1990,13(1):52-58.[2]王跃方,孙焕纯.离散变量桁架结构的布局优化设计[J].大连理工大学学报,1995,35(5):458-462.WANG Yue-fang,SUN Huan-chun.On layout optimization of truss structures with discrete sizing variables[J].Journalof Dalian University of Technology,1995,35(5):458-462.[3]刘福江.复合材料翼面结构多级优化设计方法[J].中国民航学院学报:综合版,1997,15(1):15-21.LIU Fu-jiang.A multi-level optimization procedure of the composite wing structure[J].Journal of Civil Aviation Institute of China,1997,15(1):15-21.[4]常楠,刘江,赵美英.复合材料蒙皮/长桁壁板结构优化设计[J].飞机设计,2007,27(6):28-32.CHANG Nan,LIU Jiang,ZHAO Mei-ying.Design optimization for composite skin/stringer panel[J].Aircraft Design,2007,27(6):28-32.[5]隋允康,由衷.具有两类变量的空间桁架分层优化方法[J].计算机结构力学及应用,1990,7(4):82-91.SUI Yun-kang,YOU Zhong.A mulit-level optimization method for space trusses with combining sectional area and coordinate variables[J].Computational Structural Mechanics and Applications,1990,7(4):82-91.[6]刘涛,邓子辰.桁架结构尺寸和形状、拓扑的渐进优化方法[J].西北工业大学学报,2004,22(6):739-743.LIU Tao,DENG Zi-bined sizing,shaping and topology optimization of truss structure using evolutionary structure optimization[J].Journal of Northwestern Polytechnical University,2004,22(6):739-743.[7]AZID I A,KWAN A S K,SEETHARAMU K N.An evolutionary approach for layout optimization of a threedimensional truss[J].Struct Multidisc Optim,2002,24(4):333-337.[8]王勇.基于微粒群算法的桁架结构优化设计[D].上海:同济大学土木工程学院,2008:32-46.WANG Yong.Particle swarm optimization for truss structure optimal design[D].Shanghai:Tongji University,College of Civil Engineering,2008:32-46.[9]刘军伟,姜节胜.桁架动力学形状优化的统一设计变量方法[J].振动工程学报,2000,13(1):84-88.LIU Jun-wei,JIANG Jie-sheng.Shape optimization for truss dynamics with unified design variables[J].Journalof Vibration Engineering,2000,13(1):84-88.[10]SOBIESZCZANSKI-SOBIESKI J.A step from hierarchic to non-hierarchic systems[R].NASA CP-3031,Hampton:Langley Research Center,1988.[11]SELLAR R S,BATILL S M,RENAUD J E.Response surface based,concurrent subspace optimization for multidisciplinary system design [C].AIAA 34th Aerospace Sciences Meeting and Exhibit.Reno,NV,Jan 15-18,1996.[12]张振伟,姚卫星,周琳,等.桁架结构尺寸和形状协同优化方法研究[J].航空工程进展,2012,3(2):138-143.ZHANG Zhen-wei,YAO Wei-xing,ZHOU Lin,et al.Study on size and shape collaborative optimization method of truss structure[J].Advances in Aeronautical Science and Engineering,2012,3(2):138-143.[13]冯玉龙,程家林,姚卫星.复合材料加筋板结构的并行空间协同优化设计方法[J].南京航空航天大学学报,2013,45(3):360-366.FENG Yu-long,CHENG Jia-lin,YAO Wei-xing.Concurrent subspace optimum design method for composite stiffened panel[J].Journal of Nanjing University of Aeronautics &Astronautics,2013,45(3):360-366.。
城市规划方案与建筑工程设计术语中英文对照
城市规划方案与建筑工程设计术语中英文对照嘿,各位看官,今天咱们聊聊城市规划方案和建筑工程设计那些事儿,还得来个中英文对照,毕竟国际化是大趋势嘛!那就让咱们开始这场意识流的盛宴吧!说到城市发展,就不得提一句城市更新,UrbanRenewal,这可是个大热门。
比如,老旧小区改造,RenovationofOldResidentialAreas,不仅仅是刷个墙那么简单,还得考虑到居民的生活需求,提升居住环境。
再来说说建筑工程设计,ArchitecturalEngineeringDesign,这可是技术活儿。
得有个设计理念,DesignPhilosophy,它可是整个设计的灵魂。
比如说,绿色建筑,GreenBuilding,这可是现在的大热门,节能减排,环保低碳。
在设计过程中,咱们得用到各种术语。
比如说,建筑设计规范,ArchitecturalDesignSpecifications,这是设计的基石,不能马虎。
还有,建筑结构设计,ArchitecturalStructureDesign,这可是建筑的核心,关系到安全稳固。
说到建筑,那就得提提建筑设计风格,ArchitecturalDesignStyle。
比如现代主义,Modernism,简约大方;再比如后现代主义,Postmodernism,多元化、个性化。
不同的风格,给人不同的感受。
当然,城市规划还得考虑环境保护,EnvironmentalProtection。
比如,城市绿化,UrbanGreening,这可是提升城市品质的重要手段。
还有,污水处理,SewageTreatment,这可是解决环境污染问题的关键。
在建筑工程设计中,咱们还会遇到各种细节问题。
比如说,建筑节能,BuildingEnergyEfficiency,这可是节能减排的重要环节。
还有,建筑声学设计,ArchitecturalAcousticsDesign,这可是提升居住舒适度的重要手段。
设计建筑英语作文
设计建筑英语作文Designing ArchitectureArchitecture is a multifaceted field that encompasses the art and science of designing and constructing buildings, structures, and spaces to serve the needs and desires of human beings. At its core, architecture is a creative endeavor that seeks to harmonize form, function, and aesthetics, all while considering the practical, environmental, and societal implications of the built environment.One of the fundamental aspects of architectural design is the careful consideration of the site and context in which a building or structure will reside. Architects must meticulously analyze the geography, climate, and local culture to ensure that their designs not only meet the practical requirements of the project but also integrate seamlessly with the surrounding landscape and community. This attention to context is crucial in creating buildings that are not just visually appealing, but also environmentally sustainable and socially responsible.Another crucial element of architectural design is the integration of functionality and aesthetics. Architects must strike a delicate balancebetween creating spaces that are both visually stunning and highly functional, catering to the diverse needs and preferences of the building's occupants. This often involves the careful selection of materials, the strategic placement of architectural elements, and the thoughtful incorporation of technology and innovative design solutions.The process of designing a building or structure is a complex and collaborative one, requiring the expertise of a multidisciplinary team of professionals, including architects, engineers, urban planners, landscape designers, and construction specialists. Throughout this process, architects must possess a deep understanding of construction techniques, building codes, and regulations, as well as a keen eye for detail and a commitment to finding creative solutions to complex problems.One of the most significant challenges facing architects today is the need to design buildings that are not only functional and aesthetically pleasing but also environmentally sustainable. As the global community becomes increasingly aware of the impact of the built environment on the planet, architects are tasked with developing innovative strategies to reduce energy consumption, minimize waste, and promote the use of renewable resources. This may involve the incorporation of green technologies, the use of sustainable materials, and the design of buildings that are optimizedfor energy efficiency and water conservation.Furthermore, architects must consider the social and cultural implications of their designs, ensuring that the built environment reflects and enhances the needs and values of the communities it serves. This may involve the incorporation of public spaces, the integration of diverse cultural elements, and the creation of buildings that foster a sense of community and belonging.In conclusion, the field of architectural design is a complex and multifaceted discipline that requires a deep understanding of a wide range of disciplines, from engineering and construction to art and sociology. By balancing form, function, and aesthetics, while also considering the environmental, social, and cultural implications of their designs, architects have the power to shape the built environment in ways that enhance the quality of life for all who interact with it.。
Chapter14.Design Optimization
第14章設計最佳化Design Optimization設計最佳化(design optimization)的應用很廣,ANSYS也提供了設計最佳化的功能。
這章的第1節我們先對「設計最佳化」做一觀念性的介紹,為了較有效率的介紹,我們從設計最佳化的數學模式著手,然後經由相關的名詞來介紹其背後的構想。
第2節介紹如何利用ANSYS命令來進行設計最佳化的工作。
一般而言,進行設計最佳化時,用ANSYS命令編撰成執行檔的方式是較佳的選擇。
你必須將ANSYS命令組織成兩個檔案:optimization file及analysis file,程序的執行是從optimization file開始的;optimization file可以視為是「主程式」,而analysis file 可以視為被主程式呼叫的「副程式」。
細節將在第2節介紹,並在第3節及第4節透過兩個實例來說明。
ANSYS也提供了其它輔助用的最佳化工具,這些我們也在第5節簡略補充說明。
本章主要參考資料是Ref. 10, Chapter 1. Design Optimization。
第14.1節 何謂設計最佳化? 363第14.1節 何謂設計最佳化?What is Design Optimization?14.1.1 Mathematical Model一個工程設計的問題通常包括某些設計參數等待你去決定,譬如尺寸、材料的選擇等。
Design optimization 簡單地來說就是由電腦自動地去決定這些設計參數,並且同時符合兩個要求:第一是限制條件(constraints ),譬如結構物的應力不得超過容許值;第二是某個特定的目標值(譬如結構物的總重量)必須最小化或最大化。
我們可以用下列數學模式來表示design optimization 的目的, ..., n , j X x X , ..., m , i S s S to Subject f Mininize U J i L j U i i L i 21,21,)( )(=≤≤=≤≤x x(14.1)上式中,x = {x 1, x 2, …, x n } 代表n 個設計參數所組成的向量,L j X 及Uj X 代表設計參數j x 的下限及上限;)(x i s , i = 1, 2, …, m , 稱為state variables ,通常是結構承受負載後的反應,譬如變位、應變、應力等,L j S 及U j S , i = 1, 2, …, m , 代表state variables 的下限及上限;)(x f 稱為目標函數(objective function ),是我們要去最小化的目標。
设计优化典型案例分析
设计优化 Design Optimization
1.2 平面布局优化
1.2.1 房间使用功能优化-卫生间尺寸优化
原卫生间尺寸
原设计卫生间尺寸未考虑瓷砖模数,在瓷砖镶贴时, 瓷砖损耗率较大,不利于现场施工且成本较高。
优化后卫生间尺寸
优化后将卫生间尺寸按照瓷砖模数300*n+ (150~300)+2a(300:为块材长度;n:整砖数 量;a:墙做法厚度)进行设计,既增加建筑使用
烟改为自然排烟,节省暖通设备造价。
设计优化 Design Optimization
1.2 平面布局优化
1.2.1 房间使用功能优化-厨房布局优化
原方案布局
原方案设计厨房在主楼范围内,其油烟井将直通 24层主楼屋顶,设计不合理,增加井道部分造价。
优化后方案布局
烟道位置
优化后将厨房位置调整至塔楼中间裙房位置。平化 Design Optimization
1.2 平面布局优化
1.2.1 房间使用功能优化-空调机板位置优化
空间,又提高瓷砖利用率,节省成本*万元。
设计优化 Design Optimization
1.2 平面布局优化
1.2.1 房间使用功能优化-阳台优化
原方案结构外阳台
原设计阳台为结构外挑阳台,结构不合理,阳 台面积按其结构底板水平投影面积计算1/2面积。
优化后结构内阳台
优化后将原结构外阳台修改为结构内阳台,阳台 按照全部面积计算。增加总建筑面积约3532.5平
设计优化典型案例分析
设计优化 Design Optimization
前言
preface
本案例集集合了公司不同类型项目中优秀 设计优化案例和施工过程中常见问题优化 案例,供大家参考借鉴。 本案例集适用范围需结合项目自身特点对 比选择,具体情况项目在设计策划时可邀 请相关专家参与指导。
优化设计方案 英文
优化设计方案英文Optimizing Design SolutionDesign optimization is a crucial process in product development, as it ensures that the final outcome meets the desired performance and efficiency standards. By optimizing the design, it is possible to improve the overall quality of the product, minimize production costs, and enhance customer satisfaction. In this article, we will discuss several key steps in optimizing the design solution.The first step in optimizing the design is to clearly define the project goals and requirements. This involves understanding the purpose of the product, identifying the target audience, and determining the desired performance metrics. By having a clear understanding of the project goals, designers can focus their efforts on the most critical aspects of the design.Once the project goals are defined, it is essential to conduct thorough research. This involves gathering information about current market trends, competitor products, and customer preferences. Research provides valuable insights that can guide the design process and help identify potential areas for improvement. For example, understanding competitor products can highlight any gaps in the market that the design solution could fill.After conducting research, it is time to brainstorm and generate multiple design concepts. This step encourages creativity and allows for a wide range of ideas to be considered. Each design concept should be evaluated based on its feasibility, performance, and compatibility with the project goals. It is important to involvethe entire design team in this process to ensure diverse perspectives and ideas.Once a set of design concepts has been generated, it is time to proceed with the detailed design phase. At this stage, designers need to address all technical considerations, create detailed 2D and 3D models, and perform virtual or physical prototyping. The detailed design phase allows the design team to identify any potential issues and make necessary modifications before moving forward.After completing the detailed design phase, it is important to conduct rigorous testing and analysis. This involves simulating real-world conditions, performing reliability tests, and evaluating the performance of the design against the project goals. Testing helps identify any design flaws or weaknesses and allows for further optimization. It is essential to iterate through the testing and analysis phase multiple times to refine the design and ensure optimal performance.Finally, the last step in optimizing the design solution is to consider manufacturability and cost. Designers need to ensure that the chosen design can be easily manufactured, assembled, and maintained. This involves considering manufacturing processes, selecting appropriate materials, and minimizing the number of components. Additionally, cost optimization involves finding the right balance between production costs and the perceived value of the product.In conclusion, optimizing the design solution is vital for achievingproduct success. By clearly defining project goals, conducting thorough research, generating multiple design concepts, performing detailed design and testing, and considering manufacturability and cost, designers can create a high-quality and efficient product that meets customer expectations. The design optimization process requires collaboration and iterative improvements, ensuring continuous enhancement of the product's design.。
规划建筑方案设计英文
规划建筑方案设计英文Architectural Planning and Design SchemeIntroduction:Architectural planning is an essential process in the creation and development of a building. A well-thought-out and efficient design scheme can greatly enhance the functionality, aesthetics, and sustainability of a structure. In this essay, we will outline the key principles and considerations for a successful architectural planning and design scheme.1. Site Analysis:Before commencing any design work, a thorough analysis of the site is crucial. Factors such as topography, climate, environmental impact, and infrastructure accessibility should all be taken into account. This analysis will help inform decisions on placement, orientation, and overall design concept.2. Functional Considerations:Functionality is a primary objective of any architectural design. It is important to consider the purpose of the building and how spaces will be utilized. Efficient circulation, adequate access points, and zoning considerations should all be carefully planned to promote comfort and usability.3. Aesthetic Appeal:Aesthetics play a significant role in architectural design, as they greatly influence the experience and perception of the users. The selection of materials, color schemes, textures, and architectural elements contribute to the overall visual appeal of the building. Aharmonious and visually pleasing design scheme can create a positive impact on both the users and the surrounding environment.4. Sustainability:With increasing concerns about environmental conservation, it is essential to integrate sustainable design principles into architectural planning. This includes utilizing renewable energy sources, implementing effective waste management systems, and employing energy-efficient technologies. Incorporating green spaces and optimizing natural lighting and ventilation can contribute to the overall sustainability of the building.5. Safety and Accessibility:Ensuring the safety and accessibility of the building should be a priority. Compliance with local building codes and regulations is necessary to minimize risks and hazards. Adequate emergency exits, fire suppression systems, and handicapped accessibility measures must be integrated into the design to prioritize the safety and inclusivity of all users.6. Cost-Effectiveness:An efficient design scheme should take into account the project budget and seek cost-effective solutions. Prioritizing sustainable materials and exploring innovative construction methods can help minimize construction costs in the long run. Balancing cost-effectiveness with the desired aesthetics and functionalities is crucial to achieving a successful design within budgetary constraints.Conclusion:Architectural planning and design are complex processes that require careful consideration of various factors. Site analysis, functionality, aesthetics, sustainability, safety, accessibility, and cost-effectiveness are all essential aspects to be considered when developing an architectural scheme. By integrating these principles, architects can create buildings that not only meet the needs of the users but also contribute positively to the community and environment.。
浅谈房屋建筑结构设计中的优化技术
建筑设计 Architectural Design1 房屋建筑结构设计中优化技术的主要内容房屋建筑结构设计优化的工作原理是在考虑建筑安全适用的前提下,尽可能多地利用技术与理论实践,打造出充分完美的房屋建筑结构设计,并达到优化性能、节约成本的目的。
其实房屋建筑结构设计中的技术优化形式就是打破常规方案的束缚,力求创新,尽可能地从科学合理的角度出发,优化房屋的整体建筑结构设计,以达到美观自然、舒适得体的效果。
因此,为了使得建筑结构设计能够有效地得到优化改善,必须借助技术的革新与优化,进而确保优化工作的进度与质量。
与此同时,为了使得建筑的整体结构与细节方面都得到较为成熟的处理与优化,必须对实际工程的建筑结构设计有个基本的掌握,进而在保障质量、不耽误进度和节约成本的同时,力求房屋建筑结构规则化、对称化,保证通过国家或行业的审查。
2 优化房屋建筑结构设计的必要性2.1 与建筑用地面积的矛盾众所周知,我国作为世界前三的人口大国,人口基数庞大,近几年放开二胎政策后人口数量更是呈火箭式的上升。
而伴随着人口问题的就是不可避免的土地问题,住房紧张、人地矛盾突出。
对于建筑用地的使用一直是房产开发商所头疼的事情。
优化房屋建筑结构设计在一定程度上可以提高建造多高层建筑的技术能力。
因此为了解决我国日益尖锐的人地矛盾,优化房屋建筑结构设计势不可挡。
2.2 与楼房层数的关系建筑面积与使用面积存在差距,消费者购买的建筑面积却得不到相应的使用面积,一直都是消费者为之苦恼却无可奈何的现象。
因此,为了降低建筑成本,可以通过房屋建筑结构设计的优化技术增加合理的楼层,从而让消费者少分摊些公摊面积。
除此之外,房屋建筑结构设计中的优化技术还能运用到整体结构优化与墙体优化的设计与施工过程中去,进而充分解决开发商在进行房产开发时的复杂问题。
3 优化房屋建筑结构设计的重要作用3.1 有利于增强房屋的安全性能为了进一步确保房屋建筑的整体结构设计的质量,必须对基础方案进行有创新、有计划地改造与修订,进一步优化原方案的不足之处,进而保障房屋建筑整体结构的安全性与适用性。
建筑结构设计优化方法在房屋结构设计中的实践
建筑设计Architectural Design– 78 –前言建筑结构设计优化可以提升建筑物质量,进一步保障建筑物安全。
当前一些房屋结构设计中需要对相关建筑结构进行优化,提升房屋质量满足大众需求。
但,在进行建筑结构设计优化方面方法众多,不懂得方法也就很难进行利用。
1 建筑结构设计优化在房屋结构设计中意义分析1.1 降低成本增强可观赏性。
通过对建筑结构设计优化,可以优化建筑物结构,提升建筑物实用性与可观赏性。
再者,通过结构优化可以提升资源利用率,降低建筑物建设成本,提高施工企业利益。
相关人员通过对建筑结构优化设计,提升房屋稳定性与安全性,可以让居民住的更舒适,提升房屋建筑实用性。
1.2 提高房屋建筑质量。
通过建筑结构优化设计可以提升房屋建筑质量,提升房屋综合效益,促进经济发展。
通过房屋结构优化设计,可以进一步利用材料、设备、人力等,将这些资源更为有效整合到建筑设计之中,为房屋建筑质量提升提供保障。
通过结构设计优化充分发挥各自优势,提高房屋综合效益。
通过对建筑结构设计优化,相关设计人员、施工人员、验收人员相关能力不断提升,进一步促进房屋质量提升。
2 在房屋结构设计中建筑结构设计优化方法的实践分析2.1 阶段化结构。
相关设计人员在进行建筑结构设计优化方面可以根据房屋年限不同制定不同优化策略,进而保障房屋建筑质量。
首先,建筑人员需要对建筑年限进行了解,如果建筑年限已经超过30年,那么在结构优化中就不得不注重对原有建筑进行修复,保持整体风格避免出现风险,对人与财产造成不利影响。
其次,注重建筑物功能。
在建筑结构设计优化方面需要注重相关建筑物情况,如果建筑物主要经营项目是温泉,在建筑物设计优化方面就必须要注重防水处理,避免房屋室内过于潮湿对房屋使用年限造成不利影响。
2.2 桩基。
桩基质量直接关系房屋质量,所以在桩基选择上要根据具体施工情况选择,优化建筑物结构,保障房屋建筑质量提升。
一般桩基主要分为灌注桩与预制桩两种,前者质量难控制,操作难度也比较大但优势明显对抗沉降能力强。
建筑设计深化理解和优化建议
建筑设计深化理解和优化建议As a designer, it is crucial to have a thorough understanding of the architectural design process in order to produce high-quality and aesthetically pleasing structures. Effective design development involves a combination of creativity, technical expertise, and attention to detail. Through a comprehensive understanding of the project requirements, site conditions, and client expectations, designers can create innovative and sustainable designs that meet the needs of both the client and the users.作为设计师,深入理解建筑设计过程至关重要,才能创造出高质量且美观的建筑结构。
有效的设计发展需要将创造力、技术专业知识和对细节的关注相结合。
通过全面了解项目需求、场地条件以及客户期望,设计师可以创造出创新且可持续的设计,满足客户和用户的需求。
In order to optimize the design development process, designers should consider incorporating sustainable design principles into their projects. Sustainable design aims to minimize the environmental impact of buildings by using energy-efficient materials, reducing waste, and incorporating green technologies. By integratingsustainable design practices, designers can create buildings that are not only aesthetically pleasing but also environmentally friendly and cost-effective in the long run.为了优化设计开发过程,设计师应考虑将可持续设计原则融入到他们的项目中。
精巧设计理念英文怎么说
精巧设计理念英文怎么说Title: The Art of Exquisite Design。
In today's fast-paced and constantly evolving world, the importance of exquisite design cannot be overstated. Whether it's in the realm of fashion, architecture, technology, or any other industry, the power of well-thought-out and meticulously crafted design can have a profound impact on our lives.Exquisite design is not simply about aesthetics; it is about functionality, innovation, and the ability to evoke emotion. It is about creating something that is not only visually appealing but also serves a purpose and enriches the human experience.One of the key elements of exquisite design is attention to detail. It's about the small, often overlooked, nuances that can make a design truly exceptional. From the curve of a line to the choice of materials, every aspect of a design should be carefully considered and executed with precision.Another important aspect of exquisite design is its ability to push the boundaries of creativity and innovation. It's about thinking outside the box and challenging the status quo to create something truly unique and groundbreaking. Whether it's a new fashion collection, a cutting-edge building design, or a revolutionary piece of technology, exquisite design is about pushing the limits of what is possible.Furthermore, exquisite design has the power to evoke emotion and create a lasting impression. A well-designed product or space has the ability to make us feel a certain way, whether it's a sense of tranquility, excitement, or nostalgia. It has the power to connect with us on a deeper level and leave a lasting impact on our lives.In conclusion, the art of exquisite design is a powerful force that shapes the world around us. It is about attention to detail, pushing the boundaries of creativity, and evoking emotion. Whether it's in the form of a beautiful piece of clothing, a stunning architectural masterpiece, or a groundbreaking piece of technology, exquisite design has the ability to enrich our lives and inspire us in ways we never thought possible. It is a testament to thepower of human creativity and innovation, and it will continue to shape the world for generations to come.。
工厂精益布局之Layout局部优化的4种操作方法
工厂精益布局之Layout局部优化的4种操作方法方法一1、P-Q分析,确定生产的品种与规格;2、产品族分析;3、工艺分析,确定生产顺序;4、规划生产线的作业品种和确定节拍;5、预计各工序的工时;6、重新设定作业区域和位置(更多的以场地面积来考虑);7、设定节拍管理;8、设定“安咚" ;9、做产线员工作业熟练度测试,再次评测工时;10、线平衡,作业组合;11、设定标准库存;12、做TWI的JI了。
做局部的物料供给: 基本为一个小型的拉动系统。
1、对WIP做调查,了解现场的配套情况;2、现场物料的尺寸、包装、器具做调查;3、对物料进行ABC分析;4、对投料频度及时间的明确化和维持管理(这时候往往要重新设定物料的标准,包罗路径,时间,容器,有条件的话可以用看板卡等) ;5、工位器具的改进;6、设定空器具、空托盘的返还流程。
(如果有看板卡的话,别忘记了看板卡) 。
方法二1、了解产品、产品工艺流程图、车间平面布置图;2、绘制生产系统图;3、工艺改善、设备改善,条件成熟构建生产线(单元流或一个流方式);4、构建以车间为单位的店铺、容器、物流车、物流通道;5、据改善绘制改善后的车间布局图、车间搬运方式及路径图;第五步:绘制改善后的生产系统图。
方法三在施耐德电气使用一种叫LADM(Line Architecture Design Methodology)的方法,非常系统,大致的思路为:1、明确客户的需求和内部企业的目标,确定生产线的产能规划,计算Takt Time。
2、明确约束条件(质量的、空间的、设备的等),通过系统的方法研究工艺流程和操作,并以Tmu为时间单位进行动作分析。
3、以Takt Time作为生产和物流的契约,研究物流和信息流。
设计零部件包装、工位库存或线边库存以及物料配送路线。
4、设计每个工作台,遵循安全、人机工程、快速换型、防错、柔性、目视化等原则。
值得一提的是每一条线或单元都有目视化管理所需要的区域,每一个工具都有最佳的存放场所。
英语优化设计第六单元作文
英语优化设计第六单元作文标题,Optimizing Design: A Case Study of Unit Six。
Design plays a pivotal role in shaping our environment, influencing our behavior, and enhancing our experiences. In the modern era, the importance of optimizing design has become increasingly evident. In this essay, we delve into the principles of optimizing design, drawing inspiration from various sources, and exploring how these principles can be applied to Unit Six.Introduction。
Unit Six stands as a testament to the fusion of functionality and aesthetics. Nestled amidst bustling streets, it serves as a residential complex catering to diverse demographics. However, like any architectural endeavor, its design is subject to scrutiny and potential improvement.Understanding the Essence of Optimizing Design。
At the heart of optimizing design lies the quest for efficiency, sustainability, and user satisfaction. It encompasses a holistic approach that considers not only the visual appeal but also the practicality and environmental impact of the design. To delve deeper into this concept,let us examine some key elements:1. Functionality: An optimized design seamlessly integrates form and function. It ensures that every space serves a purpose, promoting efficiency and usability. For Unit Six, this translates to maximizing space utilization, incorporating versatile amenities, and prioritizing comfort for residents.2. Sustainability: In an age marked by environmental awareness, sustainable design is paramount. It involves minimizing carbon footprint, conserving resources, and harmonizing with the surroundings. Unit Six can embrace sustainability through energy-efficient architecture, green spaces, and eco-friendly materials.3. User-Centric Approach: Ultimately, design exists to serve its users. An optimized design anticipates the needs and preferences of its inhabitants, fostering a sense of belonging and satisfaction. Unit Six can achieve this by conducting surveys, gathering feedback, and tailoring amenities to suit the diverse lifestyles of its residents.Case Studies in Optimizing Design。
Architectural Design Patterns
Architectural Design Patterns 当我们想到建筑设计,往往会想到设计师所面临的那些特殊挑战。
从空间规划到建筑材料的选择,每个决定都需要深思熟虑。
虽然软件开发和建筑设计看似毫无关联,但事实上,软件开发中也存在着一些建筑设计中也会存在的问题。
这些问题包括专业术语的统一,交互设计规范的选择以及代码组织的方法等等。
为了应对这些问题,软件开发行业也出现了一些“建筑”设计模式。
在软件开发中,像是建筑设计中的建筑风格,也存在着一些固定的设计模式。
这些模式并不是强制性的,但是它们通常适用于特定的场景,并且已经被广泛应用于各种软件开发过程中。
这些设计模式也被称为建筑设计模式。
建筑设计模式是指在软件开发中,经过验证的、经常使用的最佳实践。
这些模式不仅包括单一的代码编写模式,还包括了代码组织模式、测试模式、交互模式等等。
下面,我们会介绍一些常见的软件开发中的“建筑”设计模式。
1、MVCMVC即模型-视图-控制器模式,是一种经典的设计模式。
模型指代业务逻辑和数据处理,视图代表展示层,控制器则实现数据和视图之间的通信。
MVC模式可以有效地分离应用程序的不同部分,从而使代码更易于维护和升级。
此外,MVC还有助于实现不同的用户界面,便于在现代App开发中进行快速迭代。
2、观察者模式观察者模式是指一种事件驱动的设计模式。
在这种模式下,存在一个主题或被观察者,它会通知所有的观察者进行更新。
当一个对象发生了改变时,它通常会告诉与之相关的所有其他对象。
这种模式也叫发布-订阅模式。
观察者模式的好处是允许代码进行松散耦合。
也就是说,不同的对象之间可以更容易地相互通讯并且更容易地扩展或更改。
3、单例模式单例是一种能够确保某个类只能有一个实例并提供对该实例的全局访问的设计模式。
单例通常被用于管理像是数据库连接池、缓存等全局资源。
单例模式的优势是能够节省资源,并减轻系统资源的消耗。
如果不使用单例模式,可能会造成多个实例同时运行,从而浪费系统资源、产生竞争等问题。
民用高层钢筋混凝土建筑结构设计优化
民用高层钢筋混凝土建筑结构设计优化Optimization of Structural Design of Civil High-Rise Reinforced Concrete Buildings王磊(广东博意建筑设计院有限公司,广东佛山528312)WANG Lei(Guangdong Boyi Architectural Design Institute Co. Ltd., Foshan 528312, China)【J 商要】近年来,民用高层钢筋混凝土建筑大量出现,其稳固性和安全性越来越受到重视论文将建筑结构优化设计的原则细化为构件约束条件、组件约束条件和整体约束条件,并以此作为指导优化和评判优化效果的标准;结合工程项目管理经验,总结出目 前常用的建筑结构优化设计的具体措施,希望能为类似工程的实施提供借鉴:【Abstract 】 In recent years, civil high-rise reinforced concrete buildings appear in large numbers, more and m ore attention has been paid to itsstability and safety. In this paper, the principles o f a rchitectural structure optimization design are divided into component constraint conditions, component constraint conditions and overall constraint conditions. Combined with the experience o f project management, this paper summarizes the concrete measures for the optimization design of building structure in common use at present, hoping to provide reference for the implementation o f s im ilar projects.【关键词】钢筋混凝土建筑;结构设计;优化【Keywords 】reinforced concrete building; structural design; optimization 【中图分类号】TU 318【文献标志码】B【文章编号】1007-9467 (2020) 05-0012-02[D 01]10.13616/j .cnki .gcjsysj .2020.05.205工程建设与设计____Cttnslriu luin& Design Forl'mject1引言据统计,在我国的民用高层建筑工程中,钢筋混凝土主体 框架结构的施工成本占到了总项目成本的70%~80%,并且结 构强度占到了 85%以上,因此,如何对高层建筑钢筋混凝土建 筑结构进行设计优化,具有重要的理论和现实际意义。
建筑方案提升英语作文
建筑方案提升英语作文Improving Architectural DesignsArchitecture plays a vital role in shaping the world around us. From towering skyscrapers to impressive bridges, it is the art and science of designing and constructing structures that are not only aesthetically pleasing but also functional and sustainable. In recent years, there has been a growing demand for architects to innovate and improve their designs in order to meet the changing needs and aspirations of society.One of the key areas where architectural designs can be enhanced is in terms of sustainability. With the increasing concerns over climate change and the depletion of natural resources, there is a need for buildings that are energy-efficient and environmentally friendly. This can be achieved through the use of green building materials, such as recycled or renewable resources, as well as the incorporation of passive design strategies that maximize natural lighting and ventilation. Additionally, architects should consider the impact of their designs on the surrounding ecosystem, striving for minimal disruption and even enhancing biodiversity. Another aspect of architectural designs that can be improved is the integration of technology. With the rapid advancements in digital technology, architects have more tools at their disposal to enhance their designs. For instance, the use of Building Information Modeling (BIM) allows for the creation of virtual 3D models that enable architects to visualize spaces and identify potential flaws before construction even begins. Furthermore, the incorporation of smart technologies, such as automated lighting and climate controlsystems, can optimize energy usage and improve the overall performance of buildings.Furthermore, architectural designs can also be enhanced by prioritizing the needs and well-being of its users. In addition to functionality, buildings should provide a conducive environment for people to live, work, and play. This can be achieved through the incorporation of elements that promote physical and mental well-being, such as ample natural lighting, green spaces, and ergonomic design features. Architects should also consider the inclusivity of their designs, ensuring that buildings are accessible to people of all abilities and age groups.Moreover, architectural designs should reflect and celebrate the local culture and heritage. Each region has its own unique architectural style and traditions that should be preserved and integrated into modern designs. By incorporating elements of cultural heritage, architects can create buildings that blend seamlessly with their surroundings, creating a sense of identity and pride amongst the local community.In conclusion, there are various ways in which architectural designs can be improved to meet the evolving needs of society. By prioritizing sustainability, integrating technology, considering the well-being of users, and celebrating local culture, architects can create buildings that not only serve their purpose but also enhance the built environment in a meaningful and responsible manner. It is through these efforts that the field of architecture can continue to evolve and positively impact our world.。
英语建筑方案设计
英语建筑方案设计In recent years, the field of architectural design has witnessed significant developments and innovations. Architects have been challenged to create sustainable, functional, and aesthetically pleasing buildings that meet the needs of an ever-changing society. This essay will explore the process and principles involved in architectural design and present a hypothetical building design as an example.The first step in designing any architectural project is thorough research and analysis. Architects must understand the site conditions, context, and the needs and desires of the client. This involves studying the environment, climate, and cultural and historical context of the area. In addition, architects must also consider the functional requirements of the building, such as its purpose, capacity, and spatial organization. This initial stage sets the foundation for the entire design process.Once the research phase is complete, architects move on to the conceptual design stage. This is where creativity and innovation come into play. Architects explore various design ideas, sketching and brainstorming until they settle on a concept that addresses the requirements and constraints previously identified. This concept serves as the basis for further development.Next, architects move on to the schematic design phase, where the chosen concept is refined and developed further. Floor plans, elevations, sections, and 3D models are created to convey the spatial qualities of the design. Materiality, colors, and lighting are also considered at this stage. Collaboration between architects,engineers, and other consultants is crucial to ensure the integration of all building systems and to address any technical challenges.Following the schematic design phase is the design development stage. Here, the design is refined in more detail, taking into account the structural, mechanical, and electrical systems. Iterations are made, and the design is checked for compliance with building codes and regulations. Architects work closely with engineers to ensure the realization of their vision within technical and budgetary constraints.Once the design is finalized, the construction documentation phase begins. Detailed drawings and specifications are created to guide the construction process. Contractors, builders, and other professionals rely on these documents to bring the design to life. The accuracy and clarity of these documents are essential to ensure the successful execution of the project.Finally, comes the construction administration phase. Architects visit the construction site regularly to ensure that the design is being implemented correctly. They coordinate with contractors, address any issues or changes that arise during construction, and ensure that the building meets the required standards of quality and craftsmanship.As an example, let's consider the design of a hypothetical community center. The research phase would involve understanding the needs of the community, the available site, and the local climate. The conceptual design might include features such as flexible spaces that can be used for various communityactivities, sustainable elements like passive heating and cooling, and a design that integrates well with the surrounding natural environment.During the schematic design phase, floor plans and elevations would be developed to show the layout and overall form of the building. Design elements that promote community engagement, such as outdoor gathering spaces or shared gardens, may be considered. In the design development phase, specific materials and construction techniques would be chosen to ensure durability and cost-effectiveness.The construction documentation phase would involve creating detailed drawings and specifications for the contractors to follow. Clear instructions on material selections, finishing details, and building systems would be included. Finally, the construction administration phase would involve regular site visits to monitor progress and ensure that the construction aligns with the design vision.In conclusion, architectural design is a complex and iterative process that involves research, analysis, creativity, and collaboration. This process allows architects to create buildings that are both functional and visually appealing. By following a structured design process, architects can meet the diverse needs of clients and create buildings that improve the quality of life for communities.。
房屋建筑结构设计中建筑结构优化设计方法的应用探讨
建筑设计 Architectural Design房屋建筑结构设计中建筑结构优化设计方法的应用探讨文/李世磊 青岛博海建设集团有限公司 山东青岛 266000【摘要】经济的迅猛带动了人们生活质量的提升,在这样的背景下使得人们对房屋的质量提出了更高的要求。
其中房建结构设计水平如何会很大程度决定房屋的整体质量、安全性和外观美感度。
所以这就要求在进行房建结构设计时要控制好每一项设计环节,这样一来就可以使房建质量达到理想的质量要求。
【关键词】房屋建筑;结构设计;优化方法我国这些年以来对国民经济进行了宏观调控,其中一个主要目的就是为了能够使建筑设计企业在保证建筑外观的基础上提升居民居住的舒适度,而若想达到这一要求,最为重要的工作就是优化房建结构设计方法,以此全面提升房建的整体质量。
1、建筑结构设计优化方法的特点和意义1.1特点一是建筑结构优化设计方法结合了大量学科,所涵盖的知识面范围较广;二是进行结构优化设计,可以加强建筑的外观美感度以及增强舒适度和安全性;三是施工方便,并还能够保证随后的施工能够得到顺利开展;四是具有环保的作用,可以提升建筑的经济性。
由此能够看出,在对过去的房建结构设计进行优化以后,能够很大程度的提升房建施工的整体质量、安全性以及居住的舒适度,因此要予以高度的重视。
1.2意义在进行房建施工期间,若能够根据建筑特点来有针对性的进行结构优化设计,就可提升建筑的安全性,并还可使房建施工实现可持续性发展。
除此之外,制定出最为完善的结构设计方案,能够节省一部分的施工成本,给企业创造出足够的经济收益,并还可以避免环境受到污染。
施工企业在对房屋建筑进行施工时,所遵循的标准就是以最低的投入打造出质量合理的房屋工程,而进行合理的房建结构优化设计是实现这一目标的最为重要的环节。
在优化了建筑设计方案以后,能够使房屋的外观和使用性上都达到居住者的需求,因此具备非常好的发展趋势。
2、房屋建筑结构优化设计方法2.1对材料进行合理的使用通常,对房建工程进行结构优化设计,主要是为了让建筑在达到质量和安全性要求的基础上,尽量节省不必要的施工浪费,而想要实现这一目标,那么就要在建筑结构设计期间挑选出合适的施工材料,并要保证建筑材料得到合理的使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Eng.Opt.,2002,V ol.34(5),pp.461–484ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION JEREMY J.MICHALEK a,*,RUCHI CHOUDHAR Y b and PANOS Y.PAPALAMBROS aa Optimal Design Laboratory,Department of Mechanical Engineering,University of Michigan,Ann Arbor,Michigan48109-2125,USA;b College of Architecture and Urban Planning,University of Michigan,Ann Arbor,Michigan48109-2125,USA(Received28August2001;Infinal form26February2002)This article presents an optimization model of the quantifiable aspects of architecturalfloorplan layout design,and a companion article presents a method for integrating mathematical optimization and subjective decision making during conceptual design.The model presented here offers a new approach tofloorplan layout optimization that takes advantage of the efficiency of gradient-based algorithms,where appropriate,and uses evolutionary algorithms to make discrete decisions and do global search.Automated optimization results are comparable to other methods in this research area,and the new formulation makes it possible to integrate the power of human decision-making into the process.Keywords:Optimization;Architectural design;Floorplan;Layout1INTRODUCTIONSpatial configuration is concerned withfinding feasible locations and dimensions for a set of interrelated objects that meet all design requirements and maximize design quality in terms of design preferences.Spatial configuration is relevant to all physical design problems,so it is an important area of inquiry.Research on automation of spatial configuration includes component packing[11–13],route path planning[18],process and facilities layout,VLSI design½16;17 ,and architectural layout[3–10].Architectural layout is particularly interesting because in addition to common engineering objectives such as cost and performance,archi-tectural design is especially concerned with aesthetic and usability qualities of a layout, which are generally more difficult to describe formally.Also,the components in a building layout(rooms or walls)often do not have pre-defined dimensions,so every component of the layout is resizable.Reported attempts to automate the process of layout design started over35years ago[3]. Researchers have used several problem representations and solution search techniques to describe and solve the problem.One approach to spatial allocation is to define the available space as a set of grid squares and use an algorithm to allocate each square to a particular room or activity[4–7] (see Fig.1).This problem is inherently discrete and multi-modal.Because of the *Corresponding author.E-mail:michalek@ISSN0305-215X print;ISSN1029-0273online#2002Taylor&Francis LtdDOI:10.1080=0305215021000033735combinatorial complexity,it cannot be solved exhaustively for reasonably-sized layout pro-blems.Several heuristic strategies have been developed to find solutions without searching the design space exhaustively.Liggett and Mitchell [4]use a constructive placement strategy followed by an iterative improvement strategy.In this method,space is allocated for rooms one at a time based on the best probable design move at each step.Other researchers have used stochastic algorithms for search [5–7].Another approach to representing the building layout design space is to decompose the problem into two parts:topology and geometry.Topology refers to logical relationships between layout components.Geometry refers to the position and size of each component in the layout.Topological decisions define constraints for the geometric design space.For example,a topological decision that ‘‘room i is adjacent to the north wall of room j ’’restricts the geometric coordinates of room i relative to room j .Researchers have developed decision-tree-based combinatorial representations and used constraint satisfaction programming techniques to enumerate solutions without exhaustive search.Baykan and Fox [8]and Schwarz,Berry,and Saviv [9]developed variations of this model and have been able to enu-merate solutions for a studio apartment and for a nine-room building respectively.Medjeoub and Y annou [10]developed a similar model,but they use a technique of first enumerating all topologies that can produce at least one feasible geometry.The designer is then able to review the feasible topological possibilities and select those which s =he wants to explore geometri-cally.This technique reduces computation dramatically,and they have shown success for up to twenty rooms.Successful generation of global quality solutions has been achieved for medium-sized problems;however,there is still a need for a strategy that can handle larger problems computationally.It would be useful to take advantage of the speed of gradient-based algorithms on the geometric aspects of the layout,because they involve continuous variables.This article develops a mathematical model for the geometric decisions in the layout pro-blem that allows efficient solution with gradient-based and hybrid local–global methods.This model is then embedded into another model used for topology decisions that is solved with heuristic global methods.The geometric optimization process allows fast solution of large complex problems that also enables a true interactive design process described in a sequel article [2].The topology optimization component has had limited success due to the combinatorial nature of the topology decisions.The interactive optimization tool can be downloaded from http:==.FIGURE 1Sample fixed grid allocation layout.462J.J.MICHALEK et al.2OPTIMIZATION OF GEOMETRYThe geometric optimization problem is posed as a process offinding the best location and size of a group of interrelated rectangular units.A new decision model is formulated where all objectives and constraints are continuous functions,and all design variables have continuous domains.A Unit is defined as a rectangular,orthogonal space allocated for a specific architectural function.Examples of architectural functions include living spaces,storage spaces,facilities, and accessibility spaces.For simplicity,this representation assumes that all Units can be represented as rectangles or combinations of orthogonal rectangles.This simple representation can model a large array of architectural layouts,and more complex shapes could be added to the model to expand this array.Figure2shows a Unit represented as a point in spaceðx;yÞ,and the perpendicular distance from that point to each of the four walls:f N;S;E;and W g.This model has more variables than necessary to describe the shape;however,it allows an optimiza-tion algorithm to change the position of a Unit independently without affecting its size(by changing x or y),and it can change any of the four wall positions independently(by changing N;S;E,or W).Although this model increases the problem dimensionality,it offers a lot of flexibility to make the best design moves at each step of the optimization.Units are grouped into several categories based on their function:Rooms,Boundaries, Hallways,and Accessways.Rooms are Units used for sustained living activity as determined by the designer.The differentiation between living space vs.non-living space is important only in optimization objectives that maximize the amount of space used for living relative to all other space.A Boundary is a Unit that has other Units constrained inside of it,and it is not considered living space.A Hallway is a Unit with no physical walls that is not a living space.Hallways function as pathways.An Accessway is a Hallway that is constrained to geometrically intersect two Units.Accessways are generally restricted to be small, and they are forced to intersect two other Units.They function to keep the two Units adjacent and connected,and to ensure that there is room for a door or opening between the rooms. In Figure3,the external rectangle represents the building Boundary,the living room,bed-room,and bathroom are Rooms,the hall is a Hallway,and the three Units labeled‘‘A’’are Accessways that define space for a doorway between Units.Units that are along external walls may also have windows for natural lighting.Window height can befixed for each Unit,and window width is a variable.o N;o S;o E;o W represent the width of the north,south,east and west windows,respectively.2.1Mathematical Geometry Optimization ModelThe design optimization problem is formulated asminimizef ðx Þsubject to h ðx Þ¼0g ðx Þ 0x 2<n ð1Þwhere x is the vector of design variables,n is the number of variables,and h (x )and g (x )are vectors of equality and inequality constraints.2.1.1Design VariablesVariables for each Unit include a reference point location ðx ;y Þ,distances to each wall ðN ;S ;E ;W Þ,and the size of any windows added to each Unit:x ¼[n i ¼1f x i ;y i ;N i ;S i ;E i ;W i ;o N i ;o S i ;o E i ;o W i g x i ;y i ;N i ;S i ;E i ;W i 2<;o N i ;o S i ;o E i ;o W i 2<þð2ÞThe window variables drop out when the window is not physically present for a specific Unit and direction.In order to simplify calculations and notation,several ‘‘intermediate’’variables are used to describe geometry that results from the design variables.The following resultant variables are calculated from the design variables.y N i ¼y i þN iUnit north wall location ð3Þy S i ¼y i ÀS iUnit south wall location ð4Þx E i ¼x i þE i Unit east wall location ð5Þx W i ¼x i ÀW i Unit west wall location ð6Þl i ¼W i þE i Unit length ð7Þw i ¼N i þS i Unit widthð8ÞFIGURE 3An example layout showing four different types of Units.464J.J.MICHALEK et al.These relations are linear,so linear functions of these intermediate variables are also linear functions of the original variables.2.1.2Geometric Design ConstraintsThe following constraint groups form a toolbox of constraints that can be applied where appropriate for a particular layout ing the software described in the companion paper[2],default constraints are automatically added to the model whenever the designer adds a room,window,etc.The designer can also add,delete,or modify constraints individually. The Force Inside Constraint Group forces Units into the main building Boundary or other grouping Boundaries.In order to force Unit i inside Unit j,the following four constraints must all be satisfied:y Ni y Nj;y Sjy Si;x Eix Ej;and x Wjx Wið9ÞThe Prohibit Intersection Constraint functions to prevent two Units from occupying the same space.By default,one Prohibit Intersection Constraint is added for each combination of Rooms,Hallways,and Accessways,except where two Units are forced to intersect,or where one Unit is forced inside of another.In order to prevent Unit i from intersecting Unit j,at least one of the following constraints must be satisfiedðx Wi !x EjÞORðx Wj!x EiÞORðy Si!y NjÞORðy Sj!y NiÞð10ÞThe logical disjunction can be represented in negative null form using a min functionminðx Ej Àx Wi;x EiÀx Wj;y NjÀy Si;y NiÀy SjÞ0ð11ÞThis nonlinear,non-smooth formulation is undesirable for gradient-based calculations; however,the nature of the constraint makes it unavoidable.With this formulation,the con-straint function acts as a smooth linear function except when the close corners of two Units are nearly diagonal.The Force Intersection Constraint Group is used when Units are forced to intersect in order to ensure access(as Accessways do),or to make a more complex geometric shape by combining rectangular Units.Forcing intersection is the opposite of prohibiting intersec-tion,so forcing intersection can be written as the conjunction of the following constraintsy Si y Nj;y Sjy Ni;x Wix Ej;and x Wjx Eið12ÞAlthough these constraints ensure intersection of the two Units,they permit intersection at a point.Designers of architectural spaces are generally interested in intersection that provides enough room for a doorway or opening.To model this,an additional constraint is included to enforce overlap in one of the Cartesian directions that is at least as large as the doorway or opening.Therefore,in addition to intersection,at least one of the following conditions must be satisfiedy Nj Ày Si!maxðd i;d jÞUnit i overlaps north wall of Unit j;ð13Þy Ni Ày Sj!maxðd i;d jÞUnit i overlaps south wall of Unit j;ð14Þx Ej Àx Wi!maxðd i;d jÞUnit i overlaps east wall of Unit j;ð15Þx Ei Àx Wj!maxðd i;d jÞUnit i overlaps west wall of Unit j:ð16ÞARCHITECTURAL DESIGN465where d i is the minimum size for a door or opening in Unit i.This disjunctive set of constraints can be represented in negative null form using a min function similar to Eq.(11).min f maxðd i;d jÞÀx Ej þx Wi;maxðd i;d jÞÀx Eiþx Wj;maxðd i;d jÞÀy Nj þy Si;maxðd i;d jÞÀy Niþy Sjg0ð17ÞAlthough this constraint function is nonlinear and non-smooth in part of the design space,it is linear in most of the design space(similar to Eq.(11)).The complete Force Minimum Intersection Constraint Group is represented as a set of constraints that force intersection (Eq.(12))and another constraint to ensure that the overlap is large enough for access (Eq.(17)).The Force To Edge Constraints are used to force a Unit to the edge of a Boundary because of a window or external door.It is assumed that thefirst Unit i has already been forced inside Unit j by another constraint.In order to force a Unit to a particular wall,one of the following constraints can be added as appropriate.y Ni ¼y Nj;y Si¼y Sj;x Ei¼x Ej;or x Wi¼x Wjð18ÞIf connection to an edge is important,but the specific edge is not important,(for instance,a building may require an external door,but it is not important which direction the door faces), then the following constraint can be added to represent the disjunction in Eq.(18).minðx Ei Àx EjÞ2;ðx WiÀx WjÞ2;ðy SiÀy SjÞ2;ðy NiÀy NjÞ2Èɼ0ð19ÞThis representation is non-smooth at Unit corners;however,it is quadratic in most of the design space.The Bound Size Constraint Group includes three kinds of constraints to bound the area of a Unit:minimum area,minimum length=width,and maximum length=width.It is assumed that a maximum area constraint would not be used to bound the area.Instead,Unit area is only reduced to improve objective functions,such as cost objectives.Minimum area,A min, minimum length=width,l min,and maximum length=width,l max can be set for each Unit.A miniÀl i w i0minimum areað20Þl mini Àl i0and l miniÀw i0minimum length=widthð21Þl iÀl maxi 0and w iÀl maxi0maximum length=widthð22ÞThe Minimum Ratio Constraint Group can be used to maintain a desired aesthetic scheme or prevent long,narrow Rooms that may not be usable.The Minimum Ratio Constraint Group consists of two constraints.R mini l iÀw i0and R miniw iÀl i0ð23ÞThe Build Cost Constraint is used to keep the construction cost below some value,G budget. For simplicity,build cost is measured only in terms of material cost.Material costs for walls k wall and for windows k o are specified as dollars per square foot of material,and other costs are ignored.The build cost constraint is calculated ask wallðA NþA SþA EþA WÞþk oðA oN þA oSþA oEþA oWÞG budgetð24Þ466J.J.MICHALEK et al.where AN’AS’AE’A W are the areas of the external walls in each compass direction andA oN’A oS’A oE’A oWare the areas of windows facing each compass direction.These quantitiesare computed in Eq.(30)and Eq.(31).The Feasible Window Constraints ensure that the window width cannot be larger than the wall it is on.In addition to the simple bound restricting window size to be positive,this ensures feasible window size.Each window added to a Unit is given one of the following Feasible Window Constraints as appropriate.o Ni l i;o Sil i;o Eiw i;or o Wiw ið25ÞThe Bound Lighting Constraint is used to ensure minimum natural lighting for specific rooms.A simple estimation of the amount of daylight entering a Unit with windows is cal-culated using environmental and material information.The following procedure is used: First,available daylight at the window exterior is determined.IESNA[31]provides three standard skies for use in the evaluation of daylight designs.Approximate available daylight can be determined from these based on altitude and azimuth angles.E vkdm¼vertical sky illuminance(direct)E vksm¼vertical sky illuminance(sky)for month m.The coefficient of utilization,C U,a function of the room geometry and window size,determines the fraction of the available daylight that enters the room.C U can be found in pre-tabulated data[30]based on room depth,window width,and window height.The net transmittance for a window facing direction j is calculated asm j¼0:9m G A ojA jð26Þwhere j takes on each of the directions f N;S;E;W g;m G is the transmittance of the window(material property),A oj is the area of the glass in direction j,and A j is the area of the wall indirection j.Finally,the daylight at the room center is calculated.The horizontal illuminance at the center of room i is calculated asE i¼Xj XmA ojðE vkdm iþE vksm iÞm j C U102!ð27Þfor room i,where j takes on each direction f N;S;E;W g,and m spans the12months of the year.The illuminance is then converted into watts,Y i:Y i¼E i10À3i effð28Þwhere A i is the area of room i,and b eff is the efficacy of the light source(assumed to be80).The required natural lighting per square foot,y reqi ,is defined for each Unit by the designer(default1Watt=sq.ft.).Assuming uniform light distribution,total required natural lightingcan be calculated as A i y reqi .The minimum percentage of required lighting that is providedby natural light,j mini,can be specified by the designer.Thefinal constraint is written as:Y i A i y reqi !j minið29ÞARCHITECTURAL DESIGN4672.1.3Geometric Design ObjectivesSeveral objectives have been defined that can be used independently or together depending on the designer’s goals.The Minimize Heating Cost Objective estimates heating loss during cold months.The annual energy cost to heat the building is calculated as a function of the building Boundary Unit shape,volume,surface area,and material as well as environmental condi-tions.Simplified calculations (ASHRAE [30])are used as an approximation.The procedure for calculating heating loads is as follows.It is assumed that windows on all Units are constrained against external walls,so the net area of windows on each external wall is:A o D ¼X i 2Unit Do D i h o i ð30ÞHere D takes on the four directions f north,south,east,west g ,and Unit D refers to Units that have windows in direction D .The net area of each external wall isA D ¼l 1h 1ÀA o D ð31ÞHere D takes on the directions f north,south,east,west g ,and 1indicates Unit 1,which is assumed to be the building Boundary Unit.The heat loss calculation assumes that all heat is lost from the external walls and windows (no heat is lost through the roof ).This model could be changed depending on what type of building is being modeled.The coefficient of transmittance for the wall,U wall ,and window,U o ,are tabulated based on the materials used.The annual heat loss isQ heat ¼X iD T i ððA N þA S þAE þA W ÞU wall þðA o N þA o S þA o E þA o W ÞU o Þð32Þwhere i is the set of months where heat is used,and D T i is the average internal =external tem-perature difference for month i .Finally,the cost to maintain temperature is calculated.Gas heat is assumed,and the cost of gas per cubic foot,k gas and efficiency of the heater in Watts per cubic foot of gas,Z heater ,can be specified.The heating cost objective function is thenminimize G heat ¼k gas Q heatZ heater ð33ÞThe Minimize Cooling Cost Objective estimates heat gain during hot months.The proce-dure for calculating cooling loads is more complicated than heating loads because heat due to solar gain must be taken into account.The procedure works as follows.First,the net area of windows on each external wall is calculated using Eq.(30),and the net area of each external wall is calculated using Eq.(31).Next,the solar heat gain through the windows is estimated.Several parameters are important in calculating solar heat gain.Depending on the orientation of the windows (N ,S ,E ,or W ),the Solar Heat Gain Factor,b shgf ,can be found in tables for a given location [30].The shading coefficient,b sc ,is a property of the glass [30],and the time-lag factor,b tlf ,is a tabulated function of glass type and window orientation [30].The annual solar heat gain,Q solar ,is calculated asQ solar ¼b scX i ðA o N b shgf N b tlf N þA o S b shgf S b tlf S þA o E b shgf E b tlf E þA o W b shgf W b tlf W Þ!ð34Þ468J.J.MICHALEK et al.where i is the set of months where air conditioning is used.Next,the conductive heat gain through the building exterior is estimated.The orientation of each exterior wall and windows is accounted for in the factor.The cooling load due to conduction is calculated asQ cond¼Xi D T iðU oðA oNb tlfNþA oSb tlfSþA oEb tlfEþA oWb tlfWÞþU wallðA N b tlfNþA S b tlfSþA E b tlfEþA W b tlfWÞÞð35Þwhere i is the set of months where air conditioning is used.Finally,the cost to maintain room temperature is calculated.Electric cooling is assumed,and the rate of electricity,k elec,and efficiency of the air conditioning unit,Z ac,can be specified.The cooling cost objective function is thenminimize G cool¼k elecðQ solarþQ condÞZ acThe Minimize Lighting Cost Objective minimizes the cost spent on lighting the building by encouraging natural lighting.The amount of natural lighting in room i,Y i,is calculated as in Eq.(28).The minimum daylight requirement per square foot,b light,is set by the designer based on usage intention.The total required cost if all of this light is provided by electric lighting can be calculated as:G elecXi b lightiA i!b H10À3ð36Þwhere i is the set of Units,and b H is the number of hours of use per month.The total cost is then the maximum possible electricity cost minus the cost savings from natural lighting:minimize G light¼G elecÀXi Y i!b A10À3ð37Þwhere i is the set of Units,and b A is the number of hours of available light per month. The Minimize Wasted Space Objective minimizes building space that is not living space. This could be space used for hallways or un-allocated space inside the building Boundary. Wasted space is calculated as the area of the building Boundary minus the total area used as living space.The objective is formulated asminimize l1w1ÀXi2Rooms l i w i!ð38Þwhere1indicates Unit1,which is assumed to be the building Boundary Unit.The Minimize Accessways Objective brings connected Units together.Accessways may be constrained to be small to keep Units together.Alternatively,the Minimize Accessway Objective can be used to bring Units together if possible,but allow them to be separated if necessary,providing that there is an Accessway between them.This method allows Accessways to function similarly to Hallways depending on the design situation.The objec-tive is formulated asminimizeXi2Accessways l i w i!ð39ÞARCHITECTURAL DESIGN469The Minimize Hallway Objective is used to provide extra living space where possible.The objective is formulated asminimizeXi2Hallways l i w i!ð40ÞMultiple objectives can be selected and combined into a single objective function using a weighted sum of the individual objective functions.fðxÞ¼X Nj¼1w j f jðxÞð41Þwhere f jðxÞis the j th objective function,w j is the weighting(relative importance)of the j th objective function,and N is the total number of objective functions.Appropriate weights may be difficult to set for objective functions measured in different units.After obtaining results, weights can be adjusted to compensate and to guide the design to desired results.The objec-tives presented here do not compete in most of the design space,except for cost objectives, which are all measured in dollars.This makes multi-objective optimization much easier.In practice weights only need to be adjusted to keep the function values in the same order of magnitude to avoid computational problems.2.2Geometry Model Solution Methods2.2.1Local Optimization MethodCFSQP,a C implementation of Feasible Sequential Quadratic Programming[25],was used to solve the building geometric layout problem presented above.FSQP is similar to SQP except that once a feasible design is found,search directions are altered to maintain feasibility at every iteration.If the initial design is infeasible,a penalty function strategy is used tofind a feasible design.In addition,CFSQP also handles linear constraints separately so that they are solved more efficiently.A sample optimization of a particular layout problem is shown in Figure4.CFSQP is very fast for moderately sized problems using this formula,and it is relatively stable;however,sometimes the algorithm becomes stuck,partly due to non-smooth con-straints(Eqs.(11),(17),(19)).Still,in practice the algorithm almost always converges quickly,and convergence problems can usually be avoided by perturbing the design slightly to move it away from non-smooth areas of the design space.Gradient-based search algorithmsfind locally optimal designs.This means that the design is better than any neighboring design;however,the solution is highly dependent on the start-ing point,and there is no guarantee that the design is of global quality.The design space of this problem contains many local optima,some of which have poor global quality.Also,if the starting point is highly infeasible,then the algorithms often cannotfind feasible designs.2.2.2Global Optimization MethodsGlobal optimization methods have been developed to overcome the limitations of local search and tofind solutions of global quality.Several global search strategies were used to generate geometric layouts.Both Simulated Annealing(SA)and Genetic Algorithms(GA)were implemented to search the geometry design space for global solutions.Because of the highly constrained 470J.J.MICHALEK et al.。