初中数学七年级下册第3章因式分解3.3公式法作业
湘教版七年级数学下册教学课件(XJ) 第3章 因式分解 第2课时 利用完全平方公式进行因式分解
=(a ± b)² (首±尾)2
两个数的平方和加上(或减去) 这两个数的积的2倍,等于这 两个数的和(或差)的平方.
对照 a²±2ab+b²=(a±b)²,填空: 1. x²+4x+4= ( )²+2x·( )·( )+x( )²=2( 2 )² x + 2 2.m²-6m+9=( )²-m2·( ) ·( m)+( )²=3( 3)² m - 3 3.a²+4ab+4b²=( )²+2a·( ) ·( )a+( 2)b²=( 2b)² a + 2b
分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;
(2)中将a+b看成一个整体,设a+b=m,则原式化为m2-12m+36.
解: (1)原式=3a(x2+2xy+y2) =3a(x+y)2;
(2)原式=(a+b)2-2·(a+b) ·6+62 =(a+b-6)2.
利用公式把某些具有特殊形式(如平方差式,完全平方式 等)的多项式分解因式,这种分解因式的方法叫做公式法.
当堂练习
1.下列四个多项式中,能因式分解的是( )
B
A.a2+1
B.a2-6a+9
C.x2+5y D.x2-5y
2.把多项式4x2y-4xy2-x3分解因式的结果是( )
B
A.4xy(x-y)-x3 B.-x(x-2y)2
C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)
3.若m=2n+1,则m2-4mn+4n2的值是________. 1 4.若关于x的多项式x2-8x+m2是完全平方式,则m的值为___________ .
[新湘教版]七年级数学下册第3章《因式分解》《3.3.2因式分解-公式法--完全平方式》课件
我们前面学习了利用平方差公式来分
解因式即:a2-b2=(a+b)(a-b)
例如:学科网
4a2-9b2= (2a+3b)(2a-3b)
回忆完全平方公式
ab 2 a2 2abb2
ab 2 a2 2abb2
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2 Z.x.x. K
4
4
4、下列各式中,不能用完全平方公
式分解的是( D )
A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n
C、x6-4x3y3+4y6 D、x4+x2y2+y4
5、把 1 x2 3xy 9 y2 分解因式得
4
( B)
A、
1 4
x
3y
2
B、
1 2
x
3
y
2
6Hale Waihona Puke 把4 9x2y2
4 3
A、20 B、-20
C、10 D、-10
8、如果x2+mxy+9y2是一个完全平方式,
那么m的值为( Zx.xk
B)
A、6 B、±6
C、3 D、±3
9、把 a b2 4a b 4 分解因式得
(C )
A、a b 12 B、a b 12 C、a b 22 D、a b 22
10、计算1002 210099 992 的
(3) 1 ( rs ) r 2s2 ( 1 rs )2
4
2
让我们大家一起来想!
1、如果x2-6x+N是一个完全平方式,那么N是( D )
(A )-3 (B)3 (C)-9 (D)9
湘教版数学七年级下册第3章《因式分解》小结与复习(新课件)
结构图
7.把下列多项式因式分解:
(1)(a-b)(x-y)-(b-a)(x+y); (2)x3z-4x2yz+4xy2z.
=(a-b)(x-y)+(a-b)(x+y) =(a-b)(x-y+x+y) =2x(a-b)
=xz(x2-4xy+4y2) =xz(x-2y) 2
结构图
8.一种混凝土排水管,其形状为空心的圆柱体,它的内径d=68cm,外
解
(x-3)2-2(x-3)+1
=(x-3-1)2
=(x-4)2
因为2x-1=3,所以x=2.
原式=4.
结构图
11.把下列多项式因式分解:
(1)x2-4y2+x+2y; =(x+2y)(x-2y)+(x+2y) =(x+2y)(x-2y+1)
(2)(x+y)2-4(x+y-1); =(x+y)2-4(x+y)+4 =(x+y-2)2
课堂中要使学生体验数学与现实生活与其他学科的联系,锻炼了表达 和解决问题的能力;培养了学生运用数学思维进行表达与交流的能力,发 展应用意识与实践能力。课堂教学要让学生有充分的独立思考的时间,有 丰富的动手操作活动,培养学生学会观察,学会表达。只有坚持学习,与 时俱进,真正做到以培养学生的核心素养为目标,我们才能提高教学质量 。
(2)m2n-mn2+mn; =mn(m-n+1)
(3)9x3y3-21x3y2+12x2y2; (4)x2(x-y)+y2(x-y).
=3x2y2(3xy-7x+4)
=(x2+y2)(x-y)
七年级数学下册第3章因式分解提公因式法说课稿新版湘教版20210428258
提公因式法一、教材分析:(一)教材所处的地位与作用这节课是七年级下册第三章第二节《提公因式法》第一课时。
学习因式分解一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。
它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用(二)目标分析:A:知识与技能目标:了解因式分解的意义,会用提公因式法进行因式分解.B:过程与方法目标:经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式;进一步了解分解因式的意义,并渗透化归的思想方法C:情感与价值观目标:培养学生独立思考的习惯,同时又要培养大家合作交流意识。
二、本课内容及重点、难点分析:,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力.本章在呈现形式上力求突出:通过因数分解与因式分解的类比,让学生体会、理解、认识因式分解的意义;设置了对比整式的乘法来探索因式分解方法的相关活动,让学生感受整式乘法与因式分解之间的这种逆向恒等变形的价值;通过设置恰当的有一定梯度的题目,关注学生知识技能的发展和不同层次学生的学习需要.学习分解因式的作用主要是为后继学习方程与多项式的恒等变形作准备,虽然内容简单,课时也较少,但是,分解因式问题的提出,实际上是对整式乘法的逆过程的思考并运用,逆向思考的方法也是我们处理一般问题的一个重要方法,而且也是人们发现问题的重要方法(发现问题比解决一个问题更重要).教学重点:能观察出多项式的公因式,并根据分配律把公因式提出来。
2022春七年级数学下册 第3章《因式分解》3.3 公式法 第2课时 用完全平方公式分解因式习题课件
15. 用简便方法计算: (1) 212-42+1; 解:原式=212-2×21+1 =(21-1)2 =400; (2) 662-6600+502. 解:原式=662-2×66×50+502 =(66-50)2 =256.
16. 已知 a(a-2)-(a2-2b)=-4,求代数式a2+2 b2 -ab 的值.
【发现】根据你的阅读回答问题: (1)上述内容中,两数相乘,积的最大值为_6_2_5___; (2)设参与上述运算的第一个因数为 a,第二个因数 为 b,用等式表示 a 与 b 的数量关系是__a_+__b_=__5_0___.
【类比】观察下列两数的积:1×59,2×58,3×57, 4×56,…,m×n,…,56×4,57×3,58×2,59×1.
6. 分解因式:16-8(x-y)+(x-y)2= _(_4_-__x_+__y_)_2 __.
7. (2018·安徽)下列分解因式正确的是( C ) A.-x2+4x=-x(x+4) B.x2+xy+x=x(x+y) C.x(x-y)+y(y-x)=(x-y)2 D.x2-4x+4=(x+2)(x-2)
A.等边三角形
B.直角三角形
C.等腰三角形
D.锐角三角形
【解析】a2+2b2+c2-2b(a+c)=a2+b2-2ab+b2 +c2-2bc=(a-b)2+(b-c)2=0,所以 a=b=c,则三角 形 ABC 是等边三角形.
10. 已知正方形的面积为 9x2+6xy+y2(x>0,y>0), 则该正方形的边长为_3_x_+__y___.
猜想 mn 的最大值为__9_00___,并用你学过的知识加 以证明.
解:【类比】由题意,可得 m+n=60, 将 n=60-m 代入 mn, 得 mn=-m2+60m=-(m2-60m+900)+900=- (m-30)2+900, 所以 m=30 时,mn 的最大值为 分解 3.3 公式法
七年级数学下册 第3章 因式分解 3.3 公式法(第1课时)课件
9
3
3
其中(qízhōng)正确的有
B(
)
A.1个
B.2个
C.3个
D.4个
第十八页,共四十一页。
★3.因式(yīnshì)分解:(2a+b)2-(a+2b)2=________3_(a_+_b_)_(a_-_b_). ★4.因式分解: 世纪金榜导学号 (1)(a+b)2-4a2. (2)25(m+n)2-(m-n)2.
决下面的问题,并归纳结论: 1.计算下列各题:
(1)(x+2)(x-2)=_______x_2.-4 (2)(1+3a)(1-3a)=_________1_-9a2.
第三页,共四十一页。
(3)x2-4= ________(_x_+_2_)_(x_-_2.)
(4)1-9a2= _________(1_+_3_a_)_(_1_-3_a. )
第三十三页,共四十一页。
【火眼金睛(huǒ yǎn jīn 】 jīng)
因式分解:(x-y+1)2-(x+y-3)2
第三十四页,共四十一页。
【正解】原式=(x-y+1+x+y-3)(x-y+1-x-y+3)= (2x-2)(4-2y) =4(x-1)(2-y).
第三十五页,共四十一页。
【一题多变】
已知x-y=3,y-z=3,x+z=14,求x2-z2的值.
第三十六页,共四十一页。
解:因为(yīn wèi)x-z=(x-y)+(y-z)=6,
所以x2-z2=(x+z)(x-z)=14×6=84.
第三十七页,共四十一页。
苏教版数学七年级下期末复习三---因式分解
苏教版数学七年级下期末复习三---因式分解一、知识点:1、因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
(2)多项式的乘法与多项式因式分解的区别,简单地说:乘法是积.化和.,因式分解是和.化积.。
(3)因式分解的方法:①提公因式法;②运用公式法。
2、因式分解的应用:(1)提公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提出来。
把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
(2)公因式:多项式ab+ac+ad的各项ab、ac、ad都含有相同的因式a,a称为多项式各项的公因式。
(3)用提公因式法时的注意点:①公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。
如:4a2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);②当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使括号内的第一项的系数为正。
如:-2m3+8m2-12m= -2.m(m2-4m+6);③提公因式后,另一个多项式的求法是用原多项式除以公因式。
(4)运用公式法的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(5)因式分解的步骤和要求:把一个多项式分解因式时,应先提公因式...,注意公因式要提尽..,然后再应用公式,如果是二项式考虑用平方差公式,如果是三项式考虑用完全平方公式,直到把每一个因式都分解到不能再分解为止。
如:-2x5y+4x3y3-2xy5=-2xy(x4-2x2y2+y4) =-2xy(x2-y2)(x2+y2)=-2xy(x+y)(x-y)(x2+y2) 二、举例:例1:分解因式:(1)(a+b)2-2(a+b) (2)a(x-y)+b(y-x)+c(x-y) (3)(x+2)2-9 (4)4(a+b)2-9(a-b)2(5)80a2(a+b)-45b2(a+b)(6)(x2-2xy)2+2y2(x2-2xy)+y4(7)(m+n)2-4(m+n)+4 (8)x4-81 (9)(x+y)2-4(x2-y2)+4(x-y)2(10)16a4-8a2+1 (11)(x2+4)2-16x2(12)12422---yyx例2:计算:(1)20042-4008×2005+20052(2)9.92-9.9×0.2+0.01(3)22200120031001-(4)(1-221)(1-231)(1-241) (1)291)(1-2101) 例3:观察下列算式回答问题:32-1=8×1 52-1=24=8×3 72-1=48=8×692-1=80=8×10 ………问:根据上述的式子,你发现了什么?你能用数学式子来说明你的结论是正确的吗?例4:解答题:(1)已知x2-y2=-1 ,x+y=21,求x-y 的值。
七年级数学下册第3章因式分解公式法(第2课时)课件(新版)湘教版
解:原式=3x2y2(3xy-7x+4). 原式= x2(x-y)-y2(x-y)=(x-y)(x2-y2) =(x-y)(x-y)(x+y)=(x-y)2(x+y). 原式=(a-b-2c)2. 原式=m2-3m-4+3m= m2-4 =(m+2)(m-2).
【火眼金睛】
因式分解: 1 x2-2x+3.
4
解:原式=x2-x+ ( 1 )2
2
= (x 1 )2 .
2
知识点一 用完全平方公式进行因式分解(P65例5、6、 7拓展) 【典例1】因式分解: 4x2-12xy+9y2.
(x-y)4-2(x-y)2+1. (x2+2x)2+2(x2+2x)+1.
【思路点拨】题目可直接利用完全平方公式进行因式 分解. 题目注意要把(x-y)看成整体,并且要分解到每个因式 都不能再分解为止. 题目要两次运用完全平方公式进行因式分解.
【基础小练】
请自我检测一下预习的效果吧!
1.下列各式中,能用完全平方公式进行因式分解的是
(A)
A. 1 x2-xy+y2
4
B.2x2+4x+1
C.2x2+4xy+y2 D.x2-y2+2xy
2.多项式x2+ax+4能用完全平方公式分解因式,则a的值
是 __±__4____.
3.因式分解:x2-x+ 1 .
(A)
A.4x2-4x+1
B.9x2+3x+1
C.x2+4x+2y2
D.x2+5xy+25y2
(湘教版)七年级数学下册:第3章《因式分解》复习说课稿
(湘教版)七年级数学下册:第3章《因式分解》复习说课稿一. 教材分析《因式分解》是湘教版七年级数学下册第3章的内容,本章主要让学生掌握因式分解的方法和技巧。
因式分解是初中学过的最基本的数学运算之一,是解决方程、不等式和多项式运算的重要手段。
本章内容包括:提公因式法、公式法、分组分解法等。
这些方法不仅可以帮助学生更好地理解数学概念,还可以提高他们的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了整式的运算、方程的解法等基础知识。
但学生在因式分解方面可能会存在以下问题:1. 对因式分解的概念理解不深,容易与合并同类项混淆;2. 因式分解的方法掌握不全面,只会使用其中一种或几种方法;3. 在实际应用中,不能灵活运用因式分解解决问题。
三. 说教学目标1.知识与技能目标:使学生掌握因式分解的概念、方法和技巧,能够熟练地进行因式分解。
2.过程与方法目标:通过自主学习、合作交流,培养学生探究和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于挑战、克服困难的意志品质。
四. 说教学重难点1.教学重点:因式分解的概念、方法和技巧。
2.教学难点:如何灵活运用各种方法进行因式分解,以及在实际应用中解决问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学。
六. 说教学过程1.引入新课:通过一个实际问题,引发学生对因式分解的兴趣,导入新课。
2.自主学习:让学生自主探究因式分解的概念和方法,培养学生独立思考的能力。
3.合作交流:学生分组讨论,分享各自的解题方法,互相学习,共同提高。
4.课堂讲解:教师针对学生的讨论情况进行讲解,重点讲解因式分解的方法和技巧。
5.巩固练习:布置一些因式分解的练习题,让学生在实践中巩固所学知识。
6.课堂小结:教师引导学生总结本节课所学内容,加深对因式分解的理解。
七年级数学下册第3章因式分解3.3公式法第2课时习题课件新版湘教版20222221290
第二页,编辑于星期六:六点 一分。
(3)因为(2x+3y)2=____4_x_2_+_1_2_x_y_+,9y2 所以__4x_2_+_1_2x_y_+_9_y_2 _=(2x+3y)2. (4)因为(a+b)2=____a_2_+_2a_b_+,b2(a-b)2=_____a_2_-_2_a,b+b2 所以__a_2+_2_a_b_+_b_2 =(a+b)2,___a_2_-2_a_b_+_b=2(a-b)2.
(A)x2+1
(B)x2+2x-1
(C)x2+x+1
(D)x2+4x+4
【解析】选D.根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B
,C都不能用完全平方公式进行因式分解,D项可以,即
x2+4x+4=(x+2)2.
第十页,编辑于星期六:六点 一分。
2.下列各式因式分解正确的是( )
4
22
2
(2)9-12t+4t2=32-2×3·2t+(2t)2=(3-2t)2.
(3)m2n2-6mn+9=(mn)2-2mn·3+32=(mn-3)2.
(4)9(x+1)2+6(x+1)+1=[3(x+1)]2+2×3(x+1)·1+12
=[3(x+1)+1]2=(3x+4)2.
第十六页,编辑于星期六:六点 一分。
4
22
2
x4+2x2+1=(x2)2+2·x2·1+12=(x2+1)2,故选项C正确;m2+n2不是完
湘教版数学七年级下册第3章 因式分解 测试题
初中数学试卷第3章因式分解测试题(时间: 满分:120分)(班级:姓名:得分:)一、精心选一选(每小题3分,共24分)1.下面从左到右的变形属于因式分解的是()A.x+2y=(x+y)+y B.p(q+h)=pq+phC.4a2-4a+1=4a(a-1)+1 D.5x2y-10xy2=5xy(x-2y)2.将m2(a-2)+m(2-a)分解因式,正确的是()A.(a-2)(m2-m) B.m(a-2)(m+1) C.m(a-2)(m-1) D.m(2-a)(m-1)3.下列各式中,能用平方差公式分解因式的是()A.x2+4y2 B.x2-2y2+1 C.-x2+4y2 D.-x2-4y24.若多项式x2+mxy+9y2能用完全平方公式分解因式,则m的值可以是()A.2 B.-4 C.±3 D.±65.对于任意整数a,多项式(3a+5)2-4都能()A.被9整除 B.被a整除 C.被a+1整除 D.被a-1整除6.若a+b+1=0,则3a2+3b2+6ab的值是()A.3 B.-3 C.1 D.-17.如图1,边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为()A.70 B.60 C.130 D.1408.已知a,b,c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC图1的形状是()A.等腰三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形二、细心填一填(每小题4分,共32分)9.多项式6a2b-3ab2的公因式是__________.10.已知a=3,b-a=1,则a2-ab=____________.11.请你写一个能先提公因式,再运用公式法来分解因式的二项式:____________,写出分解因式的结果___________.12.将一块边长为a cm的正方形图片各边缩小相同的长度,若缩小后的正方形边长比原正方形少了2 cm(a>2),则缩小后的图片面积减少了.13.图2有三种卡片,其中边长为a的正方形卡片1张,边长分别为a,b的长方形卡片4张,边长为b的正方形卡片4张,若用这9张卡片拼成一个正方形,则该正方形的边长为____________.14.两个长方形的面积分别是9a2-4b2,9a2+12ab+4b2,它们有一边长相同,则这条相同的边的长为_________________.15.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=___________.16.观察填空:图3所示各块图形之和为a2+3ab+2b2,分解因式为________.三、耐心解一解(共64分)图3 17.(每小题4分,共12分)因式分解:(1)ax2-4ax+4a;(2)n2(m-2)-n(2-m);(3)(x-1)(x-3)+1.18.(6分)先因式分解,再求值:已知a+b=5,ab=3,求a3b+2a2b2+ab3的值.19.(8分)给出三个多项式:①2x2+4x-4;②2x2+12x+4;③2x2-4x.请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.20.(8分)若n为自然数,求证:(4n+3)2-(2n+3)2能被24整除.21.(10分)请观察以下解题过程:分解因式:x4-6x2+1.解:x4-6x2+1=x4-2x2-4x2+1=(x4-2x2+1)-4x2=(x2-1)2-(2x)2=(x2-1+2x)(x2-1-2x).以上分解因式的方法称为拆项法,请你用拆项法分解因式:a4-7a2+9.22.(10分)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n);(2)x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1).试用上述方法分解因式:(1)a2+2ab+ac+bc+b2;(2)4-x2+4xy-4y2.23.(10分)有一系列等式:1×2×3×4+1=(12+3×1+1)2;2×3×4×5+1=(22+3×2+1)2;3×4×5×6+1=(32+3×3+1)2;4×5×6×7+1=(42+3×4+1)2;(1)根据你的观察,归纳,发现规律,写出9×10×11×12+1的结果;(2)试猜想:n(n+1)(n+2)(n+3)+1的结果?(3)证明你的猜想.参考答案一、1.D 2.C 3.C 4.D 5.C 6.A 7.B 8.C二、9.3ab 10.-3 11.答案不唯一,如a3-ab2 a(a+b)(a-b) 12.(4a-4)cm2 13.a+2b14.3a+2b 15.-31 16.(a+b)(a+2b)三、17.解:(1)原式=a(x2-4x+4)=a(x-2)2;(2)原式=n2(m-2)+n(m-2)=n(m-2)(n+1);(3)原式=x2-4x+3+1=x2-4x+4=(x-2)2.18.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.将a+b=5,ab=3,代入原式=3×52=75.19. 解:①+②,得2x2+4x-4+2x2+12x+4=4x2+16x=4x(x+4);①+③,得2x2+4x-4+2x2-4x=4x2-4=4(x+1)(x-1);②+③,得2x2+12x+4+2x2-4x=4x2+8x+4=4(x2+2x+1)=4(x+1)2.20. 证明:(4n+3)2-(2n+3)2=[(4n+3)+(2n+3)][(4n+3)-(2n+3)]=2n(6n+6)=12n(n+1). ∵ n为正整数,∴ n,n+1中必有一个是偶数.∴n(n+1)是2的倍数.∴ 12n(n+1)必是24的倍数,即(4n+3)2-(2n+3)2一定能被24整除.21. 解:a4-7a2+9=a4-6a2-a2+9=(a4-6a2+9)-a2=(a2-3)2-a2=(a2-3+a)(a2-3-a).22. 解:(1)a2+2ab+ac+bc+b2=a2+2ab+b2+ac+bc=(a+b)2+c(a+b)=(a+b)(a+b+c);(2)4-x2+4xy-4y2=4-(x2-4xy+4y2)=4-(x-2y)2=(2+x-2y)(2-x+2y).23. 解:(1)根据观察、归纳、发现的规律,得到9×10×11×12+1=(92+3×9+1)2=1092;(2)依此类推:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2;(3)证明:等式左边=(n2+3n)(n2+3n+2)+1=n4+6n3+9n2+2n2+6n+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n+1)2=(n2+1)2+2•3n•(n2+1)+9n2=n4+2n2+1+6n3+6n+9n2=n4+6n3+11n2+6n+1,左边=右边.。
湘教版七年级下册数学 第3章 用完全平方公式分解因式
为什么要对5n2进行拆项呢? 聪明的小明理解了例题中解决问题的方法,很快解决 了下面两个问题.相信你也能很好地解决下面两个问 题. 解决问题:
18 见习题
19 见习题
20 见习题
答案显示
1.【中考·龙岩】下列各式中能用完全平方公式进行因式 分解的是( ) D
A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9
2.已知x2+16x+k是完全平方式,则常数k等于( A ) A.64B.48C.32D.16
3.给多项式x8+4加上一个单项式,使其成为一个完全平
【点拨】利用完全平方公式把原式整理成三个非 负数的和为零的形式,得到a=b=c,即可确定三 角形ABC的形状.
解:因为(a+b+c)2=3(a2+b2+c2), 所以a2+b2+c2+2ab+2bc+2ac=3a2+3b2+3c2. 所以2a2+2b2+2c2-2ab-2bc-2ac=0, 即(a-b)2+(b-c)2+(a-c)2=0. 所以a-b=0,b-c=0,a-c=0. 所以a=b=c. 故三角形ABC为等边三角形.
(1)若x2-2xy+2y2+2y+1=0,求xy的值;
解:因为x2-2xy+2y2+2y+1=0, 所以x2-2xy+y2+y2+2y+1=0, 则(x-y)2+(y+1)2=0, 则x-y=0,y+1=0,解得x=-1, y=-1,故xy=(-1)×(-1)=1.
(2)已知a,b,c是三角形ABC的三边长,且满足(a+b+ c)2=3(a2+b2+c2),试确定三角形ABC的形状.
湘教版初中数学七年级下册第3章因式分解 习题课件
(4) 1ax+ 1bx= 1x(a+b)等号的左侧是多项式,右侧是几个整式
3 33
的积的形式,所以该变形是因式分解. (5)4a2-8a-1=4a(a-2)-1等号的左侧是多项式,但等号的 右侧不是几个整式的积的形式,所以该变形不是因式分解.
【规律总结】 因式分解的两个要求
1.分解的结果要以积的形式表示. 2.每个因式必须是整式,且每个因式的次数都必须低于原来多项 式的次数.
m2-16
y2-6y+9
a3-a
2.根据上面的算式填空: (1)3x2-3x=________; ((23))my22--166y=+_9_=3__x__(__x__-__1__)_;__; (4)a3-a=__(_m_+_4_)_(_m_-_4_)_.
(y-3)2
a(a+1)(a-1)
【归纳】把一个多项式表示成若干个多项式_乘__积__的形式,称 为把这个多项式因式分解.
111 333
【解题探究】 (1)36a2b=3a·12ab等号的左侧是单项式,所以该变形不是因 式分解. (2)x2-2xy+y2=(x-y)2等号的左侧是多项式,右侧是几个整 式的积的形式,所以该变形是因式分解. (3)(a-1)(a+2)=a2+a-2等号的左侧是几个整式的积的形式, 不是多项式,所以该变形不是因式分解.
1
1
4
2
1.(2012·济宁中考)下列式子变形是因式分解的是( ) (A)x2-5x+6=x(x-5)+6 (B)x2-5x+6=(x-2)(x-3) (C)(x-2)(x-3)=x2-5x+6 (D)x2-5x+6=(x+2)(x+3)
湘教版七年级数学下册_3.3 公式法
感悟新知
特别提醒
知1-练
1. 确定公式中的“a”“b” 时,不能只看表面,如4x2=
( 2x ) 2,“a” 指 的 是 2x;16 ( ab ) 2=[4 ( a - b )]2, “a”
指的是4 ( a - b ).
2. 平方差公式可以连续运用.如(3)题,必须做到每个因式不
能再分解为止.
3. 运用平方差公式因式分解时,若 a,b都是多项式,要先
感悟新知
例4 因式分解: (1) -3a3b+48ab3; (2) x4-8x2+16; (3) 25x2( a-b) +36y2( b-a) .
知2-练
感悟新知
知2-练
解题秘方:先观察是否有公因式,若有,先提取 公因式,然后通过观察项数确定能用 哪个公式进行因式分解 .
感悟新知
解: (1)原式 =-3ab( a2-16b2) =-3ab( a+4b) ( a-4b) .
知2-练
方法点拨 求与完全平方式有关的字母取值的方法:
可根据首项、 尾项和中间项三者之间的关系, 由其中两项求出字母的值,要注意中间项的符号有 “±”两种情况 .
感悟新知
例3 因式分解: (1) x2 - 14x+49; (2) - 6ab - 9a2 - b2;
知2-练
(3)
1,然后套用公式,若多项 式是两项,则考虑用平方差公式,若多项式是三项, 则考虑用完全平方公式,最后检查乘积中每一个多 项式的因式是否能继续分解 .
课堂小结
公式法
用公 式法 因式 分解
利用平方差公 式因式分解
利用完全平方 公式因式分解
a2-b2=(a+b) (a-b)
湘教版七年级下册 第3章《因式分解》单元测试卷 包含答案解析
湘教版七年级下册第3章《因式分解》单元测试卷满分100分班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.下列等式从左到右的变形属于因式分解的是()A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣aC.6x2y3=2x2•3y3D.x2+1=x(x+)2.把多项式m2﹣16m分解因式,结果正确的是()A.(m+4)(m﹣4)B.m(m+4)(m﹣4)C.m(m﹣16)D.(m﹣4)23.下列多项式能直接用完全平方公式进行因式分解的是()A.x2+2x﹣1B.x2﹣x+C.x2+xy+y2D.9+x2﹣3x4.下列多项式中,不能用提公因式法因式分解的是()A.x3﹣x+1B.(a﹣b)﹣4(b﹣a)2C.1la2b﹣7b2D.5a(m+n)一3b2(m+n)5.下列多项式中可以用平方差公式进行因式分解的有()①﹣a2b2;②x2+x+﹣y2;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣144a2+121b2;⑥m2+2mA.2个B.3个C.4个D.5个6.计算21×3.14+79×3.14=()A.282.6B.289C.354.4D.3147.下列多项式,在实数范围内能够进行因式分解的是()A.x2+4B.C.x2﹣3y D.x2+y28.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值是()A.5B.﹣5C.1D.﹣19.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,5,x2+1,a,x+1分别对应下列六个字:益,爱,我,数,学,广,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱广益C.我爱广益D.广益数学10.已知ab=2,a﹣3b=﹣5,则代数式a2b﹣3ab2+ab的值为()A.﹣6B.﹣8C.﹣10D.﹣12二.填空题(共8小题,满分24分)11.分解因式:4a2﹣a=.12.已知x2﹣x﹣1=0,则2018+2x﹣x3的值是.13.将整式3x3﹣x2y+x2分解因式,则提取的公因式为.14.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.15.分解因式:x2﹣1+y2﹣2xy=.16.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.17.边长为a,b的矩形,它的长与宽之和为6,面积为7,则ab2+a2b的值为.18.若ab=﹣2,a﹣3b=5,则a3b﹣6a2b2+9ab3的值为.三.解答题(共6小题,满分46分)19.把下列各式分解因式(1)4x2﹣9y2(2)(2x+y)2﹣(x+2y)2(3)(4)﹣x2y﹣2xy+35y20.将下列多项式因式分解:(1)﹣a3+2a2b﹣ab2(2)x2(m﹣n)+y2(n﹣m)21.阅读理解:(1)计算①(x+1)(x+3)=;②(x+2)(x﹣1)=.(2)归纳(x+a)(x+b)=.(3)应用由(2)的结论直接写出结果(x+2)(x+m)=.(4)理解将下列多项式因式分解①x2﹣5x+6=;②x2﹣3x﹣10=.22.已知a﹣b=1,a﹣c=3.(1)求5b﹣5c+7的值:(2)求a2+b2+c2﹣ab﹣ac﹣bc的值.23.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).如:将式子x2+3x+2和2x2+x﹣3分解因式,如图:x2+3x+2=(x+1)(x+2);2x2+x﹣3=(x﹣1)(2x+3)请你仿照以上方法,探索解决下列问题:(1)分解因式:y2﹣7y+12;(2)分解因式:3x2﹣2x﹣1.24.阅读下列材料,然后解答问题:问题:分解因式:x3+4x2﹣5.解答:把x=1代入多项式x3+4x2﹣5,发现此多项式的值为0,由此确定多项式x3+4x2﹣5中有因式(x﹣1),于是可设x3+4x2﹣5=(x﹣1)(x2+mx+n),分别求出m,n的值.再代入x3+4x2﹣5=(x﹣1)(x2+mx+n),就容易分解多项式x3+4x2﹣5,这种分解因式的方法叫做“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2﹣9x﹣9.参考答案一.选择题(共10小题)1.【解答】解:A、是因式分解,故本选项符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:A.2.【解答】解:m2﹣16m=m(m﹣16),故选:C.3.【解答】解:A、x2+2x﹣1不能直接用完全平方公式进行因式分解,故此选项不合题意;B、x2﹣x+=(x﹣)2,能直接用完全平方公式进行因式分解,故此选项符合题意;C、x2+xy+y2不能直接用完全平方公式进行因式分解,故此选项不合题意;D、9+x2﹣3x不能直接用完全平方公式进行因式分解,故此选项不合题意;故选:B.4.【解答】解:A、x3﹣x+1,不能利用提公因式法分解因式,故此选项符合题意;B、(a﹣b)﹣4(b﹣a)2=(a﹣b)﹣4(a﹣b)2,可以提公因式a﹣b,能利用提公因式法分解因式,故此选项不符合题意;C、1la2b﹣7b2,可以提公因式b,能利用提公因式法分解因式,故此选项不符合题意;D、5a(m+n)一3b2(m+n)可以提公因式m+n,能利用提公因式法分解因式,故此选项不符合题意;故选:A.5.【解答】解:①﹣a2b2,无法分解因式;②x2+x+﹣y2=(x+)2﹣y2=(x++y)(x+﹣y),符合题意;③x2﹣4y2=(x+2y)(x﹣2y),符合题意;④(﹣m)2﹣(﹣n)2=(﹣m﹣n)(﹣m+n),符合题意;⑤﹣144a2+121b2=(11b+12a)(11b﹣12a),符合题意;⑥m2+2m,无法运用平方差公式分解因式.故选:C.6.【解答】解:原式=3.14×(21+79)=3.14×100=314,故选:D.7.【解答】解:A、x2+4不能分解,故此选项错误;B、x2﹣x+=(x﹣)2,故此选项正确;C、x2﹣3y不能分解,故此选项错误;D、x2+y2不能分解,故此选项错误;故选:B.8.【解答】解:(x+1)(x﹣3)=x2﹣3x+x﹣3=x2﹣2x﹣3,由x2+ax+b=(x+1)(x﹣3)=x2﹣2x﹣3知a=﹣2、b=﹣3,则a+b=﹣2﹣3=﹣5,故选:B.9.【解答】解:3a(x2﹣1)﹣3b(x2﹣1)=3(x2﹣1)(a﹣b)=3(x+1)(x﹣1)(a﹣b),∵x﹣1,a﹣b,5,x2+1,a,x+1分别对应下列六个字:益,爱,我,数,学,广,∴3(x+1)(x﹣1)(a﹣b)对应的信息可能是爱广益,故选:B.10.【解答】解:a2b﹣3ab2+ab=ab(a﹣3b+1),∵ab=2,a﹣3b=﹣5,∴原式=2×(﹣4)=﹣8,故选:B.二.填空题(共8小题)11.【解答】解:原式=a(4a﹣1),故答案为:a(4a﹣1).12.【解答】解:∵x2﹣x﹣1=0,∴x2=x+1,∴2018+2x﹣x3=2018+x(2﹣x2)=2018+x(1﹣x)=2018+x﹣x2=2018+x﹣(x+1)=2017.故答案为:2017.13.【解答】解:3x3﹣x2y+x2=x2(3x﹣y+1),故提取的公因式为:x2.故答案为:x2.14.【解答】解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10,∴m=﹣3,n=10,∴m﹣n=﹣3﹣10=﹣13.故答案为:﹣13.15.【解答】解:原式=(x2﹣2xy+y2)﹣1,=(x﹣y)2﹣1,=(x﹣y+1)(x﹣y﹣1).故答案为:(x﹣y+1)(x﹣y﹣1)16.【解答】解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.17.【解答】解:∵边长为a,b的矩形,它的长与宽之和为6,面积为7,∴a+b=6,ab=7,故ab2+a2b=ab(b+a)=42.故答案为:42.18.【解答】解:当ab=﹣2,a﹣3b=5时,原式=ab(a2﹣6ab+9b2)=ab(a﹣3b)2=﹣2×52=﹣50,故答案为:﹣50.三.解答题(共6小题)19.【解答】解:(1)原式=(2x+3y)(2x﹣3y);(2)原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y);(3)原式=x(+x2﹣x)=x(x﹣)2;(4)原式=﹣y(x2+2x﹣35)=﹣y(x+7)(x﹣5).20.【解答】解:(1)﹣a3+2a2b﹣ab2=﹣a(a2﹣2ab+b2)=﹣a(a﹣b)2;(2)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x﹣y)(x+y).21.【解答】解:阅读理解:(1)计算①(x+1)(x+3)=x2+3x+x+3=x2+4x+3;②(x+2)(x﹣1)=x2﹣x+2x﹣2=x2+x﹣2;(2)归纳(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab;(3)应用由(2)的结论直接写出结果(x+2)(x+m)=x2+(m+2)x+2m;(4)理解将下列多项式因式分解①x2﹣5x+6=(x﹣2)(x﹣3);②x2﹣3x﹣10=(x﹣5)(x+2).故答案为:(1)①x2+4x+3;②x2+x﹣2;(2)x2+(a+b)x+ab;(3)x2+(m+2)x+2m;(4)①(x﹣2)(x﹣3);②(x﹣5)(x+2)22.【解答】解:(1)∵a﹣b=1,a﹣c=3,∴b﹣c=3﹣1=2,∴5b﹣5c+7=5(b﹣c)+7=17;(2)a2+b2+c2﹣ab﹣ac﹣bc=×(a2+b2+c2+a2+b2+c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a﹣b=1,a﹣c=3,b﹣c=2,∴a2+b2+c2﹣ab﹣ac﹣bc=×(1+9+4)=7.23.【解答】解:(1)y2﹣7y+12=(y﹣3)(y﹣4)(2)3x2﹣2x﹣1=(x﹣1)(3x+1).24.【解答】解:(1)把x=1代入多项式x3+4x2﹣5,多项式的值为0,∴多项式x3+4x2﹣5中有因式(x﹣1),于是可设x3+4x2﹣5=(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n,∴m﹣1=4,n﹣m=0,∴m=5,n=5,(2)把x=﹣1代入x3+x2﹣9x﹣9,多项式的值为0,∴多项式x3+x2﹣9x﹣9中有因式(x+1),于是可设x3+x2﹣9x﹣9=(x+1)(x2+mx+n)=x3+(m+1)x2+(n+m)x﹣n,∴m+1=1,n+m=﹣9,∴m=0,n=﹣9,∴x3+x2﹣9x﹣9=(x+1)(x2﹣9)=(x+1)(x+3)(x﹣3).。
春七年级数学下册 第3章《因式分解》测试卷习题课件 湘教版
21. (8 分)已知 a2+2ab+b2=0,求代数式 a(a+4b) -(a+2b)(a-2b)的值.
解:a(a+4b)-(a+2b)(a-2b) =a2+4ab-(a2-4b2) =4ab+4b2 =4b(a+b). 因为 a2+2ab+b2=0, 所以 a+b=0. 所以原式=0.
22. (10 分)通过计算说明 255+511 能被 30 整除吗? 解:因为 255+511=510+511=510(1+5)=59×30, 所以 255+511 能被 30 整除.
因式分解成(ax+b)(8x+c),其中 a,b,c 均为整数,则
a+b+c 的值为( A )
A.-12
B.-32
C.38
D.72
7. 如果 x2+4xy+4y2=0,那么xy的值为( B )
A.2
B.-2
C.3
D.-3
8. 若关于 x 的多项式 x2-px-6 含有因式 x-3,则
实数 p 的值为( D )
谢谢观赏
You made my day!
我们,还在路上……
B.x-3x2
C.ab-ac
D.144-a2
5. 把多项式 xy2-2xy+2y-4 分解因式的结果是
(A ) A.(xy+2)(y-2)
B.(xy-y+2)(xy-y-2)
C.(xy+2)(2-y)
D.(xy+y-2)(xy+y+2)
6. 已知(19x-31)(13x-17)-(13x-17)(11x-23)可
23. (12 分)下面是某同学对多项式(x2-4x+2)(x2- 4x+6)+4 进行因式分解的过程.
解:设 x2-4x=y, 原式=(y+2)(y+6)+4 =y2+8y+16 =(y+4)2 =(x2-4x+4)2.
湘教版七下数学第3章因式分解3.3公式法3.3.2公式法教学设计
湘教版七下数学第3章因式分解3.3公式法3.3.2公式法教学设计一. 教材分析湘教版七下数学第3章因式分解3.3公式法3.3.2公式法是整式乘法与因式分解之间的桥梁,通过本节课的学习,使学生掌握公式法分解因式的技巧,培养学生观察、分析、归纳的能力。
二. 学情分析学生在学习了整式乘法的基础上,已经掌握了多项式乘以多项式的计算方法,为本节课的学习奠定了基础。
但学生在刚接触因式分解时,可能会觉得难以理解,因此,在教学过程中,要注重引导学生,激发学生的学习兴趣,突破学生的思维障碍。
三. 教学目标1.知识与技能:使学生掌握公式法分解因式的方法,能运用公式法分解简单的多项式。
2.过程与方法:通过观察、分析、归纳,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识。
四. 教学重难点1.重点:公式法分解因式的方法。
2.难点:如何引导学生发现并归纳公式法,以及如何运用公式法解决实际问题。
五. 教学方法采用“引导发现法”、“合作学习法”和“实践操作法”进行教学。
通过教师引导,学生自主探究、合作交流,实践操作,从而掌握公式法分解因式的方法。
六. 教学准备1.课件:制作课件,展示公式法分解因式的步骤和例子。
2.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问:“我们之前学习了整式乘法,那么有没有什么方法可以快速分解因式呢?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)教师展示公式法分解因式的步骤和例子,引导学生观察、分析、归纳公式法。
步骤1:确定多项式的最高次项和最低次项。
步骤2:找出最高次项和最低次项的系数。
步骤3:根据公式法,将多项式分解为两个因式的乘积。
例子:分解因式 x^2 - 43.操练(10分钟)学生分组合作,运用公式法分解因式。
教师巡回指导,解答学生的疑问。
1.分解因式:x^2 + 2x + 12.分解因式:x^2 - 2x + 13.分解因式:x^2 - 6x + 94.巩固(10分钟)教师选取一些学生的作业进行讲解,强调公式法分解因式的关键步骤和注意事项。
新湘教版七年级数学下册《3章 因式分解 3.3 公式法 3.3公式法(2)》课件_5
典例精析
例1 :将下列多项式因式分解
9x2 3x 1 4
(3x)2 2 3x 1 ( 1 ) 2 22
(3x 1 )2 2
4x2 12 xy 9 y2
(4x2 12 xy 9 y2 ) [(2x)2 2 2x 3y (3y)2 ]
(2x 3y)2
a4 2a2b b2
三、运用新知
1、判断:下列各式是不是完全平方式?并说明你的理由.
(1)a2-4a+4;
是 (2)1+4a²;
不是
(3)4b2+4b-1; 不是 (4)a2+ab+b2; 不是
分析: (2)因为它只有两项; (3)4b²与-1的符号不统一; (4)因为ab不是a与:
1. x²+4x+4= ( x)²+2·( x)·( 2)+( 2 )²=( x + 2 )² 2.m²-6m+9=( m)²- 2·(m)·(3 )+( 3 )²=( m - 3)² 3.a²+4ab+4b²=(a )²+2·( a ) ·(2b )+(2b )²=(a + 2b )² 像上面这样,把乘法公式从右到左使用,就可以把某些形式 的多项式进行因式分解,这种分解因式的方法叫做公式法.
1.简便计算(1)992 +198+1 (2)20142 −2014×4026+20132
2. 将 4x2 1 再加上一个整式,使它成为完全平方式,你 有几种方法?
课后作业: 课本第67页第2题 1、2、6、7。
a2+2ab+b2 观察这两个式子:
a2-2ab+b2
(1)每个多项式有几项? 三项 (2)每个多项式的首项和尾项有什么特征?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 公式法
一.选择题(共5小题)
1.下列变形正确的是( )
A.x3﹣x2﹣x=x(x2﹣x)B.x2﹣3x+2=x(x﹣3)﹣2
C.a2﹣9=(a+3)(a﹣3)D.a2﹣4a+4=(a+2)2
2.把多项式x3﹣4x分解因式所得的结果是( )
A.x(x2﹣4)B.x(x+4)(x﹣4)
C.x(x+2)(x﹣2)D.(x+2)(x﹣2)
3.若x2+px+q=(x+3)(x﹣5),则p、q的值分别为( )
A.﹣15,﹣2B.﹣2,﹣15C.15,﹣2D.2,﹣15 4.下列各式中,能用完全平方公式进行因式分解的是( )
A.x2﹣4B.x2﹣2x﹣1C.x2﹣4x+4D.x2+4x+1 5.因式分解x﹣4x3的最后结果是( )
A.x(1﹣2x)2B.x(2x﹣1)(2x+1)
C.x(1﹣2x)(2x+1)D.x(1﹣4x2)
二.填空题(共5小题)
6.分解因式:a2﹣9= .
7.分解因式:x2﹣4y2= .
8.分解因式:x2﹣xy+xz﹣yz= .
9.若m+n=10,m﹣n=2,则m2﹣n2= .
10.因式分解:x2﹣x﹣12= .
三.解答题(共5小题)
11.因式分解:x4﹣16y4.
12.因式分解:am2﹣6ma+9a.
13.因式分解:a2(2a﹣1)+(1﹣2a)b2.
14.将下列各式因式分解:
(1)a3﹣10a2+25a;
(2)x(x﹣y)﹣y(y﹣x).
15.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.
解:设x2﹣4x=y.
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步).
请问:
(1)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.
(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
参考答案
一.1.C 2.C 3.B 4.C 5.C
二.6.(a+3)(a﹣3) 7.(x+2y)(x﹣2y) 8.(x﹣y)(x+z) 9.20 10.(x﹣4)(x+3)
三.11.解:x4﹣16y4
=(x2+4y2)(x2﹣4y2)
=(x2+4y2)(x+2y)(x﹣2y).
12.解:原式=a(m2﹣6m+9)
=a(m﹣3)2.
13.解:原式=(2a﹣1)(a2﹣b2)
=(2a﹣1)(a+b)(a﹣b).
14.解:(1)原式=a(a2﹣10a+25)=a(a﹣5)2;
(2)原式=(x﹣y)(x+y).
15.解:(1)∵(x2﹣4x+4)2=(x﹣2)4,
∴该同学因式分解的结果不彻底.
(2)设x2﹣2x=y
原式=y(y+2)+1
=y2+2y+1
=(y+1)2
=(x2﹣2x+1)2
=(x﹣1)4.。