2019年中考数学总复习 第26讲 统计 新版 新人教版

合集下载

2019-2020年中考数学 第26讲 统计复习教案2 (新版)北师大版

2019-2020年中考数学 第26讲 统计复习教案2 (新版)北师大版

2019-2020年中考数学第26讲统计复习教案2 (新版)北师大版教学目标:1.能通过具体实际问题,辨认总体、个体、样本等基本概念.2.掌握三种统计图的画法,明确它们的优缺点及相互关系.特别是扇形统计图与条形统计图结合应用.3.会求一组数据的样本平均数、方差、标准差、中位数、众数等.能根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点.教学重、难点:重点:会求一组数据的平均数、方差、标准差、中位数、众数、极差等.难点:根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点.课前准备:教师:导学案、课件.学生:课前完成学案:知识要点回顾,以及知识树的构建.教学过程:一、解读中考,弄清目标活动内容:中考要求1.会收集、整理、描述和分析数据,能处理简单的统计数据.2果.3.会用扇形统计图表示数据.4.理解并会计算平均数、加权平均数、中位数、众数,能根据具体问题,选择合适的统计表示数据的不同特征与集中程度.5.会探索如何表示一组数据的离散程度,会计算极差与方差,并会用它们表示数据的离散程度.6.理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题.7.体会用样本估计总体的思想,能用样本的平均数、方差来估计总体平均数、方差.8.能根据统计结果作出合理的判断和预测,并清晰地表达自己的观点.9.能根据问题查找相关资料,获得数据信息,会对日常生活中的某些数据发表自己的看法.10.能应用统计知识解决在社会生活及科学领域中的一些简单实际问题.处理方式:先让学生独立思考,再小组交流,师生互动,补充完善,达成共识. 设计意图:让学生明确中考对本节知识点的要求,使学生在复习过程中把握复习的方向,明确复习的重点,掌握解题的方法与技巧.二、知识梳理,厚积薄发(多媒体展示,课前学案完成)活动内容1:导入新课导语:华罗庚教授说:读书要从薄到厚,又从厚到薄。

2019版中考数学一轮复习第26讲:统计课件最新版

2019版中考数学一轮复习第26讲:统计课件最新版

基础知识过关 栏目索引
2.频数和频率 (1)频数:在整理数据时,相同数据出现的次数称为频数;把数据分 成几个小组,每个小组中数据的个数称为这个小组的⑦ 频数 . (2)频率:频数与数据总数的比值称为这个数据出现的频率,某个 小组的频数与数据总数的比值也叫做这个小组的⑧ 频率 .
基础知识过关 栏目索引
泰安考点聚焦 栏目索引
例1 (2018重庆)下列调查中,最适合采用全面调查(普查)的是 ( D) A.对我市中学生每周课外阅读时间情况的调查 B.对我市市民知晓“礼让行人”交通规则情况的调查 C.对我市中学生观看电影《厉害了,我的国》情况的调查 D.对我国首艘国产航母002型各零部件质量情况的调查
基础知识过关 栏目索引
知识点五 数据的波动
1.极差:用一组数据中的最大数减去最小数所得的差来反映这组 数据的变化范围,用这种方法得到的差称为 极差 . 2.方差
(1)设有n个数据x1,x2,x3,…,xn,它们的平均数是 ,则它们的方差
为 s2= [(x1- x)2+(x2- x )2+(x3- x )2+…+(xn- x)2] .
基础知识过关 栏目索引
温馨提示 抽样时要保证每一个个体被抽取的机会是均等的,而 且抽取的样本要足够大,要保证调查对象具有代表性.对于一些科 技性调查,即使数量大,也不能用抽样调查的方法进行,例如长征5 号发射等.
基础知识过关 栏目索引
知识点二 统计的相关概念
1.总体、个体、样本及样本容量 在统计中,我们把所要考察的全体对象叫做③ 总体 ,其中 每一个考察对象叫做④ 个体 .当总体中个体数目较多时, 一般从总体中抽取一部分个体,这一部分个体叫做总体的一个 ⑤ 样本 ,样本中个体的数目叫做⑥ 样本容量 . 温馨提示 总体、个体、样本中的“考察对象”是指我们所要 考察的具体对象的属性.如为了了解某市中学生的身高情况,从中 抽取了500名学生进行了调查,这个问题中的样本是“抽取的500 名学生的身高”,而不是“抽取的500名学生”,其中样本容量是5 00,样本容量不含单位.

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。

2019年中考数学统计与概率

2019年中考数学统计与概率

2019年中考数学统计与概率·初中数学统计与概率知识点“统计与概率是中考数学的必考知识点了,是不能翻车、必须稳稳拿在手里的,但总有一部分同学因为粗心、因为混淆概念等等的小错误就丢了分数。

统计与概率的题目一旦出现了错误,就像扣错纽扣一样,一步错步步错。

在中考数学中常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等。

统计初步和概率考试一定要注意,平均数、中位数、众数、方差、极差、标准差、加权平均数的计算要准确。

统计科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N 是正整数。

扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

近似数字和有效数字:①测量的结果都是近似的。

②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最大的那个数据叫做这个组数据的众数。

中考数学考前热点聚焦《第26讲 圆的有关性质》(单课考点聚焦+热考精讲+知识点归类)课件 沪科版

中考数学考前热点聚焦《第26讲 圆的有关性质》(单课考点聚焦+热考精讲+知识点归类)课件 沪科版

推论 中有一组量相等,那么它们所对应的其余各组量也分
别相等
第26讲┃ 考点聚焦 考点5 圆周角
圆周角 定义
圆周角 定理 推论 1
推论 2
推论 3
顶点在圆上,并且两边都和圆相交的角叫做圆周角
在同圆或等圆中,同弧或等弧所对的圆周角__相__等____, 都等于该弧所对的圆心角的__一__半____ 在同圆或等圆中,相等的圆周角所对的弧__相__等__ 半圆(或直径)所对的圆周角是__直__角__;90°的圆周角所 对的弦是__直__径__ 如果三角形一边上的中线等于这边的一半,那么这个 三角形是__直__角____三角形
角形全等.(3)由∠ACB=90°,AC=
1 2
AB,可求得∠ABC的度
数,利用同弧所对的圆周角相等得∠P=∠A=60°,通过证 △PCB为等边三角形,由CD⊥PB,即可求出∠BCD的度数.
第26讲┃ 归类示例
解:(1)证明:∵AB为直径, ∴∠ACB=∠D=90°.
又∵∠CAB=∠DPC, ∴△PCD∽△ABC. (2)如图,当点P运动到PC为直径时, △PCD≌△ABC. 理由如下:∵PC为直径, ∴∠PBC=90°,则此时D与B重合, ∴PC=AB,CD=BC, 故△PCD≌△ABC.
第26讲┃ 考点聚焦 考点2 确定圆的条件及相关概念
确定圆 的条件
不在同一直线的三个点确定一个圆
三角形的 三角形三边_垂___直__平__分__线___的交点,即三角形外
外心 接圆的圆心
锐角三角形的外心在三角形的内部,直角三角
防错提醒 形的外心在直角三角形的斜边上,钝角三角形
的外心在三角形的外部
第26讲┃ 考点聚焦
考点3 垂径定理及其推论

中考数学第26讲统计复习教案1(新版)北师大版【教案】

中考数学第26讲统计复习教案1(新版)北师大版【教案】

课题:第26讲统计教学目标:1.能通过实际问题,辨认总体、个体、样本等基本概念.2.掌握三种统计图的画法,明确它们的优缺点及相互关系.特别是扇形统计图与条形统计图结合应用.3.会求一组数据的样本平均数、方差、标准差、中位数、众数等.能根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点.统计是中考的必考内容,在中考试卷中所占的比例约为7%,分值在8分左右,试题大多结合新的生活情境命题,主要考查对统计概念和统计思想的理解、运用.常以选择题、填空题的形式考查中位数、众数、平均数、方差和统计图表的概念及计算,以解答题的形式考查统计的基本思想、统计图表等综合知识.所以备考时,要加强对统计概念和统计思想的理解,能合理地运用统计知识(让学生了解、明确中考对本知识点的要求,使学生复习过程中明确复习的方向.)教学重点与难点:重点:会求一组数据的平均数、方差、标准差、中位数、众数、极差等.难点:根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点.课前准备:教师准备:设计导学案、制作多媒体课件.学生准备:尝试完成导学案、阅读课本.教学过程:一、情感交流,激志导入【师】同学们在前面的复习中表现的很棒!夯实基础是成功的基础!让我们踏上统计“动车组”继续向前挺进!(语气激扬)(教师板书课题:第二十六讲统计)【生】精神饱满,情绪高涨.【活动目的】通过情感交流引入复习课,调动学生学习的积极性;更快的让学生进入角色,为本节复习课奠定基础.二、知识梳理,夯基固本【课前学案展示】你能理清顺序,全盘把握吗?【设计意图】课下预习,温故所学,夯实基础.掌握初中所学的统计的基本概念;节省课上时间,为知识拓展打下基础.而知识结构网络,理清各板块内容间的联系,学生通过这种方式对所学的知识进行及时的巩固,最终达到掌握并灵活应用的目的.三、预习诊断,把握学情1.要调查下列问题,你认为适合抽样调查的是 ( )①调查市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区空气的质量;③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.今年某地有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析.以下说法正确的是 ( )A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量3.空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )A.扇形图 B.条形图C.折线图 D.直方图4.为调查某小区内30户居民月人均收入情况,制成了如图29-1所示的频数分布直方图,收入在1200~1240元的频数是________.图26-15.枣庄28中九年级(6)班十名同学进行定点投篮测试,每人投篮六次,投中次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数、众数分别为 ( ) A.4,5 B.5,4 C.4,4 D.5,56.某校女子排球队队员的年龄分布如下表,则该校女子排球队队员的平均年龄是________岁.7.为了比较甲、乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则下列说法正确的是( )A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙两种秧苗出苗一样整齐D.无法确定甲、乙两种秧苗谁出苗更整齐(学生先独立完成再小组交流,做错的题小组内帮助分析错因并纠错.老师巡视适时给予指导.)【设计意图】通过几道简单的统计题目进行课前检测,主要考查总体、个体、样本、样本容量的概念、众数、中位数、平均数、方差的概念.通过课前检测让学生初步了解统计内容.教师在课前进行批改,了解学生掌握情况.四、互动探究,方法归纳探究一从统计图表中获取信息例1为了了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了如图26-2所示的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题.(1)此次共调查了多少名同学?(2)将条形统计图补充完整,并计算扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师?图26—2[解析] (1)结合条形统计图和扇形统计图可知,绘画的人数为90人,所占的百分比为45%,故总人数为90÷45%=200(名);(2)由(1)中的总人数为200人,可求得乐器兴趣小组的人数为200-90-30-20=60(人),可以补全条形统计图,书法部分的圆心角的度数=书法兴趣小组的人数÷总人数×360°=20÷200×360°=36°;(3)每组所需教师数=1000×每组所占的百分比÷20.解:(1)90÷45%=200(名).(2)补全条形统计图如图所示,书法部分的圆心角为20×360°=36°.200(3)绘画需辅导教师书法需辅导教师1000×10%÷20=5(名);舞蹈需辅导教师1000×15%÷20=7.5≈8(名);乐器需辅导教师1000×30%÷20=15(名).中考点金:解决这类题目的关键是读懂统计图,结合两种统计图并从统计图中准确获取信息.跟踪练习 [2014·益阳]某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如图29-3所示的两幅不完整的统计图,请你结合图中的信息解答下列问题.图26-3(1)求被调查的学生人数; (2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人? 解:(1)被调查的学生人数为12÷20%=60. (2)如图.(3)全校最喜爱文学类图书的学生约有1200×2460=480(人).【设计意图】通过此题组使学生意识到,解决此类问题的关键是理解并能够从不同的统..........计图中获取信息........从而培养学生认真审题的良好解题习惯. 探究二 统计综合应用例 2 五一小长假,前往参观黄山的人非常多.其中一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10 min 而小于20 min ,其他类同.(1)这里采用的调查方式是____________;(2)求表中a ,b ,c 的值,并补全频数分布直方图;(3)在调查人数里,等候时间小于40 mi n 的有________人;(4)此次调查中,中位数所在的时间段是________~________min.图26-4[解析] (1)由题易知,调查方式为抽样调查;(2)根据频数分布表中的10~20或30~40或50~60中的任意一组都可以求出总人数c,则b=0.125c,再利用所有频率之和为1,可求出a,然后补全频数分布直方图;(3)等候时间小于40 min的有三组,分别是10~20,20~30,30~40,这三组的频数之和即为等候时间小于40 min的人数;(4)由于知道总人数为40人,那么中位数为第20个数和第21个数的平均数,故落在20~30 min时间段内.解:(1)抽样调查或抽查(填“抽样”也可以)(2)a=0.350,b=5,c=40,频数分布直方图略.(3)32 (4)20 30中考点金:准确理解频数与频率之间的关系及所有频率之和为1可解决频数分布表中的问题.补全频数直方图要结合频数分布表,从频数分布表中获取相关数据信息是关键.跟踪训练:[2014·金华] 九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图26-5所示的统计图.根据统计图,回答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数x甲组=7,方差s2甲组=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?图26—5解:(1)11÷55%=20(人),8+520×100%=65%. 答:第三次成绩的优秀率是65%. 补全条形统计图如图所示.(2)x 乙组=6+8+5+94=7,s 2乙组=14[(6-7)2+(8-7)2+(5-7)2+(9-7)2]=2.5,∵s 2甲组<s 2乙组,∴甲组成绩优秀的人数较稳定.【设计意图】通过设计这样一个问题,可以锻炼学生从统计图形中获取信息并加以分析整理的能力,根据统计结果作出合理的判断和预测,感受统计在社会生活及科学领域中的应用.五、反思小结,拓展提高谈谈你本节的收获?还有什么疑惑? 生1:我的收获是…… 生2:我学到数学思想是…… 生3: 我掌握……生4:我还有问题与困惑是……【设计意图】充分交流学习心得,可以从知识与技能,过程与方法,情感态度价值观等方面进行,有利于学生总结概括所学的知识,形成完整的知识体系,有利于学生相互交流,相互学习,达到共同提高的目的,有利于学生明确自身的优点与不足,便于今后扬长避短.对同学的回答,教师给予点评,对回答得好的学生教师给予表扬、鼓励. 六、自主训练,考点预测 自主训练1.[2014·漳州] 中学生骑电动车上学给交通安全带来隐患.为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是 ( )A .调查方式是普查B .该校只有360个家长持反对态度C .样本是360个家长D .该校约有90%的家长持反对态度2.[2014·呼和浩特]以下问题,不适合用全面调查的是( )A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命3.[2014·盐城] 数据-1,0,1,2,3的平均数是 ( )A.-1 B.0 C.1 D.54.[2014·聊城] 今年5月10日,在市委宣传部、市教育局等单位联合举办的“走复兴路,圆中国梦”中学生演讲比赛中,7位评委给参赛选手张阳同学的打分如下表:则张阳同学得分的众数为 ( )A.95 B.92 C.90 D.865.[2014·安徽] 某棉纺织厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这6.[2014·威海] 在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,你根据表中提供的数据,计算出这5名选手成绩的方差是 ( )A.2 B.6.8 C.34 D.937.[2014·杭州] 如图26-6是杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是________°C.图26-68.[2014·上海]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图26-7所示,那么三人中成绩最稳定的是________.图26-79.[2014·扬州] 如图26-8,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有________人.图26-810.[2014·黄冈]某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.海马中学为了了解学生对不同口味的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图26-9所示的两幅不完整的人数统计图.(1)本次被调查的学生有________名;(2)补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜欢的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味比原味多送多少盒?图26-9解:(1)200(提示:10÷5%=200) (2)补全条形图如图.喜好“菠萝味”牛奶学生人数在扇形统计图中所占圆心角度数为50200×360°=90°.(3)1200×(62200-38200)=1200×24200=144(盒).答:草莓味要比原味多送144盒. 考点预测1.某地区5月3日至5月9日这7天的日气温最高值统计图如图26-10所示.从统计图看,该地区这7天日气温最高值的众数与中位数分别是 ( )图26-10A .23,25B .24,23C .23,23D .23,24 2.甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9; 乙:5,9,7,10,9. (1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么? (3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差________(填“变大”“变小”或“不变”).解:(1)甲的众数为8,乙的平均数=15×(5+9+7+10+9)=8,乙的中位数为9.(2)因为他们射击成绩的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.【设计意图】通过此环节让学生经历自主探究、合作交流的过程,进一步巩固复习内容,采取“学生抢答”、“小组竞赛”等形式,检测本节复习是否达到预期效果并做到查漏补缺.有利于提高学生的合作意识,培养学生团队合作精神和竞争意识.七、布置作业,课后促学必做题:《新课程初中复习指导丛书》 152-155页第1、3、4、6、8、9、11题.选做题:《新课程初中复习指导丛书》 152-155 第2、5、7、、10、12、13题.【设计意图】作业的设计突出层次性,让学生都有所得、有所获,让不同层次的学生享受成功的喜悦.可更好地调动不同学生的学习热情,另一方面巩固了本课所学的知识,同时也了解了学生对本课知识的掌握情况.为后续的教学做准备.板书设计:。

第26讲圆的相关概念及性质(课件)-2025年中考数学一轮复习讲练测(全国通用)

第26讲圆的相关概念及性质(课件)-2025年中考数学一轮复习讲练测(全国通用)
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
【例3】(2022·湖北襄阳·模拟预测)如图,为⊙ 的直径,为⊙ 的弦,为优弧的中点, ⊥ ,
∴2 − 2 = 2 = 4002 ,
∵圆环 = 2 − 2 = (2 − 2 ),
∴圆环 = (2 − 2 ) = × 2 = × 4002 = 160000,
故选:D.

考点一 圆的相关概念
题型03 圆中的角度计算
【例3】(2022·河北廊坊·统考模拟预测)如图,是⊙ 的直径,弦 ∥,若∠ = 25°,则∠的度数为(

完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
称性
②圆的对称轴不是直径,而是直径所在的
直线.
的对称中心是圆心. 将圆绕圆心旋转任意角度都能与自身重合,这
说明圆具有旋转不变性.
A.40000 B.1600
C.64000 D.160000
【详解】解:如图所示,设同心圆的圆心为,连接,则大圆的半径为,小圆
的半径为,
∴设小圆的半径为 = ,大圆的半径 = ,
∵ = 400像素,∠ = 90°,∴ ⊥ ,
在Rt △ 中,2 + 2 = 2 ,即 2 + 2 = 2 ,
稿定PPT,海量素材持续更
新,上千款模板选择总有一

【数学课件】2019届人教版中考数学复习《统计初步》课件(共41张PPT)

【数学课件】2019届人教版中考数学复习《统计初步》课件(共41张PPT)

归纳:当我们要计算的数据比较大时,
可将各数据同时减去一个适当的常数a
新数 : x1 x1 a, x2 x2 a, x3 x3 a xn xn a 新数的平均数: x 1 (x1 x2 x3 xn)
n
x a
公式二:
x x a
方法三:
3个140;
• 把数进行归类: 2个135;
2个128;
1个130;1个147;1个132
先求每一类数的和再求它们的平均数
x 1403 135 2 128 2 130 147 132 10
=135.5
归纳:一般来说,当n个数中,x1出 现f1次,x2出现f2次,xk出现fk次 (这里f1+f2+f3++fk=n),那么根据 公式1,这n 数的平均数可以表示为
若一组数据1,2,4,X的极差为 6,则X的值是( ) A、7 B、8 C、9 D、7或-2
反映整体稳定性的特征数—方差
方 差: 设在一组数据 x1 ,x 2,, xn
中, 各数据与它们的平均数 x 的差
的平方分别是:
(x1 x )2 ,(x2 x)2 ,,(xn x)2
S 2那么1n它[(x们1 的x平)2均数(x就2 是 x方)2差: (xn x)2 ] 方差用来衡量一组数据的波动大小.
观察数的特征,你能想出哪 些计算平均数的方法?
方法一:
• 直接计算
x 140 147 140 135128130 132 135140 128 10
=135.5
归纳:一般地,当我们所要计算的数据
不复杂时,我们可以采取直接计算平均数 的方法:
公式一:
x 1 (x1 x2 x3 xn) n
公式三:

中考数学复习专题精品导学案:第26讲平移旋转与对称

中考数学复习专题精品导学案:第26讲平移旋转与对称

2013年中考数学专题复习第二十六讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就这说两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指各具有特殊形状的图形2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ平移不改变图形的与,即平移前后的图形Ⅱ平移前后的图形对应点连得线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ:旋转前后的图形Ⅱ:旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与自身重合它能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指一个图形的位置关系,而中心对称图形是指一个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称圆形里有四条对称轴,边数为偶数的正多边形,又是对称图形4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】考点一:轴对称图形例1 (2012•柳州)娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.圆等边三角形矩形等腰梯形考点:轴对称图形.分析:根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可.解答:解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误.故选C.点评:本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题.例2 (2012•成都)如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5)B.(3,5)C.(3.-5)D.(5,-3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.解答:解:点P(-3,5)关于y轴的对称点的坐标为(3,5).故选B.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.对应训练1. (2012•宁波)下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2012•沈阳)在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A.(-1,-2)B.(1,-2)C.(2,-1)D.(-2,1)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.解答:解:点P(-1,2)关于x轴的对称点的坐标为(-1,-2).故选A.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.考点二:最短路线问题例3 (2012•黔西南州)如图,抛物线y= 12x2+bx-2与x轴交于A、B两点,与y交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()A.2540B.2441C.2340D.2541考点:轴对称-最短路线问题;二次函数的性质;相似三角形的判定与性质.分析:首先可求得二次函数的顶点坐标,再求得C关于x轴的对称点C′,求得直线C′D的解析式,与x轴的交点的横坐标即是m的值.解答:解:∵点A(-1,0)在抛物线y=12x2+bx-2上,∴12×(-1)2+b×(-1)-2=0,∴b=-32,∴抛物线的解析式为y=12x 2-32x-2, ∴顶点D 的坐标为(32,-258), 作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小.设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴,∴∠OC′M=∠EDM ,∠C′OM=∠DEM∴△C′OM ∽△DEM .∴OM OC EM ED=, 即232528m m =-, ∴m=2441. 故选B .点评:本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形.对应训练3. (2012•贵港)如图,MN 为⊙O 的直径,A 、B 是⊙O 上的两点,过A 作AC ⊥MN 于点C ,过B 作BD ⊥MN 于点D ,P 为DC 上的任意一点,若MN=20,AC=8,BD=6,则PA+PB 的最小值是 .考点:轴对称-最短路线问题;勾股定理;垂径定理.专题:探究型.分析:先由MN=20求出⊙O 的半径,再连接OA 、OB ,由勾股定理得出OD 、OC 的长,作点B 关于MN 的对称点B′,连接AB′,则AB′即为PA+PB 的最小值,B′D=BD=6,过点B′作AC 的垂线,交AC 的延长线于点E ,在Rt △AB′E 中利用勾股定理即可求出AB′的值. 解答:解:∵MN=20,∴⊙O 的半径=10,连接OA 、OB ,在Rt △OBD 中,OB=10,BD=6,∴OD=2222106OB BD -=-=8;同理,在Rt △AOC 中,OA=10,AC=8,∴OC=2222108OA AC -=-=6,∴CD=8+6=14,作点B 关于MN 的对称点B′,连接AB′,则AB′即为PA+PB 的最小值,B′D=BD=6,过点B′作AC 的垂线,交AC 的延长线于点E ,在Rt △AB′E 中,∵AE=AC+CE=8+6=14,B′E=CD=14,∴AB′=22221414142AE B E '+=+=.故答案为:142.点评:本题考查的是轴对称-最短路线问题、垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.考点二:中心对称图形例4 (2012•襄阳)下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 考点:中心对称图形;轴对称图形.分析:依据轴对称图形与中心对称的概念即可解答.解答:解:B 选项是轴对称也是中心对称图形,C 、D 选项是轴对称但不是中心对称图形,A 选项只是中心对称图形但不是轴对称图形.故选A .点评:对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.对应训练4.(2012•株洲)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项正确;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.考点二:平移旋转的性质例5 (2012•义乌市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6 B.8 C.10 D.12考点:平移的性质.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.解答:解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选;C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.例6 (2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理.分析:证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=6+43,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.解答:解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+34×32=6+934,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.点评:本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①-结论④解题思路的拓展应用.对应训练5.(2012•莆田)如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得到,若AC=3cm,则A′C= cm.考点:平移的性质.分析:先根据平移的性质得出AA′=2cm,再利用AC=3cm,即可求出A′C的长.解答:解:∵将△ABC沿射线AC方向平移2cm得到△A′B′C′,∴AA′=2cm,又∵AC=3cm,∴A′C=AC-AA′=1cm.故答案为:1.点评:本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键.6.(2012•南通)如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+ 3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+ 3;…按此规律继续旋转,直到点P2012为止,则AP2012等于()A.2011+6713B.2012+6713C.2013+6713D.2014+6713考点:旋转的性质.专题:规律型.分析:仔细审题,发现将Rt△ABC绕点A顺时针旋转,每旋转一次,AP的长度依次增加2,3,1,且三次一循环,按此规律即可求解.解答:解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=3,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+3+1=3+3;又∵2012÷3=670…2,∴AP2012=670(3+3)+2+3=2012+6713.故选B.点评:本题考查了旋转的性质及直角三角形的性质,得到AP的长度依次增加2,3,1,且三次一循环是解题的关键.考点四:图形的折叠例7 (2012•遵义)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3B.2C.2D.2考点:翻折变换(折叠问题)。

中考数学考点聚焦(人教版,课件+考点跟踪):第26讲 几何作图

中考数学考点聚焦(人教版,课件+考点跟踪):第26讲 几何作图

,A)
,B)
,C)Biblioteka ,D)4.(2015·深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在 BC 上取一点 P,使得 PA+PC=BC,则下列选项正确的是( D )
,A)
,B)
,C)
,D)
5.(2016·丽水)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个 作图中,作法错误的是( )D
(2)设AB的垂直平分线交ME于点N,且MN=2(+1) km,在M处测得点 C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向 ,求点C到公路ME的距离.
解:(1)如图 (2)作 CD⊥MN 于点 D,由题意得:∠CMN=30°,
∠CND=45°,∵在 Rt△CMD 中,MCDD=tan∠CMN, ∴MD=CD3 = 3CD;
3.六个步骤 尺规作图的基本步骤: (1)已知:写出已知的线段和角,画出图形; (2)求作:求作什么图形,它符合什么条件,一一具体化; (3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程, 但图中必须保留基本作图的痕迹; (4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知 的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件 ; (5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况 下,问题有一个解、多个解或者没有解; (6)结论:对所作图形下结论.
1.(2014·安顺)用直尺和圆规作一个角等于已知角,如图,能得出 ∠A′O′B′=∠AOB的依据是( ) B
A.SAS B.SSS C.ASA D.AAS 2.(2016·曲靖)下列尺规作图,能判断AD是△ABC边上的高是(B )
3.(2015·嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直 线 l 和 l 外一点 P,用直尺和圆规作直线 PQ,使 PQ⊥l 于点 Q.”分别作出了 下列四个图形.其中作法错误的是( A )

2019年中考数学《3.1统计》总复习课件ppt

2019年中考数学《3.1统计》总复习课件ppt

第三章
考纲解读 命题解读
3.1 统

名师考点精讲 中考真题再现
安徽五年探究
-4-
2014—2016 年安徽中考命题分析 2017 年安徽中考命题预测 题 题 分 年份 考查点 型 号 值 考查内容:(1)数据的收集与整理;(2)平均数、 中位数和众数的定义;(3)利用统计图表解决实 选 际问题等. 2016 扇形统计图 择 7 4 考查题型:从安徽省近几年的中考试题可以看 题 出,有关本部分的题目每年都会考,有时是解 反映数据集中 答题,有时是选择题或填空题. 选 趋势的平均 中考趋势:预测 2017 年的中考,还会延续这种 2015 择 7 4 数、中位数和 趋势,一定会考一个有关本部分的题目,题型 题 众数 可能是选择题或填空题(这种可能性较大),也 利用统计图提 选 有可能考一个有关本部分的知识综合的或应 2014 供的信息解决 择 5 4 用的解答题. 实际问题 题
一组数据中所有小组的频数之和等于该组数据的总数目;该组数据的每个小组的频率之 和等于1.
第三章
考点扫描 备课资料
3.1 统

名师考点精讲 名师考点精讲
考点3 考点4
安徽五年探究
考点1 考点2
中考真题再现
-8-
典例2 (2016· 江苏苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数 分别为12,10,6,8,则第5组的频率是 ( ) A.0.1 B.0.2 C.0.3 D.0.4 【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.根据题意得40(12+10+6+8)=40-36=4,则第5组的频率为4÷40=0.1. 【答案】 A
第三章
考点扫描 备课资料

第26讲 抽样与数据分析-2020年中考数学总复习专项讲解(人教版)

第26讲 抽样与数据分析-2020年中考数学总复习专项讲解(人教版)

解:(1)本次被抽取的学生共有 30÷30%=100(名), 故答案为 100. (2)100-20-30-10=40(名),
补全条形图如图 D109. (3)扇形图中的选项“C.了解较少” 部分所占扇形的圆心角为 360°×30%=108°.
图 D109
故答案为 108.
(4) 该校对于扎龙自然保护区“十分了解”和“了解较
至 9 日这 4 天中出现次品的数量如下表:
日期
6月6日 6月7日 6月8日 6月9日
次品数量(个)
1
0
2
a
若出现次品数量的唯一众数为 1,则数据 1,0,2,a 的方差
等于__________.
答案:1 2
解决有关整理和描述数据的频数、频率与统计图 问题
例3:(2018 年辽宁阜新)为了完成《舌尖上的中国》的录 制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制 品类,D.豆制品类”四类特色美食若干种,将收集的数据整理 并绘制成下面两幅尚不完整的统计图(图 6-1-4),请根据图中信 息完成下列问题:
组员 甲 乙 丙 丁 戊 平均成绩 众数
得分 81 77 ■ 80 82
80

则被遮盖的两个数据依次是( )
A.80,80 答案:A
B.81,80
C.80,2
D.81,2
3.(2018 年四川泸州)某校对部分参加夏令营的中学生的年
龄(单位:岁)进行统计,结果如下表:
年龄 人数
13
14
15
16
17
1
分别是 s2甲=0.25,s2乙=0.3,s2丙=0.4,s2丁=0.35,你认为派谁去
参赛更合适( )
A.甲

2019版中考数学总复习 第26讲 统计

2019版中考数学总复习 第26讲 统计
(2)扇形统计图能够显示部分在总体中的百分比.
(3)折线统计图能够显示数据的变化趋势.
(4)频数分布直方图能够显示数据的分布情况.
例:空气中由多种气体混合而成,为了简明扼要地介绍空气的组成情况,较好地描述空气中各种成分所占的百分比,最适合采用的统计图是.
9.画频数分布直方图的步骤
(1)计算最大值与最小值的差;
2019版中考数学总复习 第26讲 统计
知识清单梳理
知识点一ห้องสมุดไป่ตู้数据收集、整理内容
关键点拨
1.数据收集
数据收集常用方法
(1)普查;(2)抽样调查.
例:为了了解某校2000名学生视力情况,从中测试了100名学生视力进行分析,在这个问题中,总体
是,样本容量是
收集数据时常见的统计量
(1)总体:要考察的全体对象;
(2)个体:组成总体的每一个考察对象;
(3)样本:被抽查的那些个体组成一个样本;
(4)样本容量:样本中个体的数目.
知识点二:反映数据集中程度的量
2.平均数
x1,x2,…,xn的平均数 =
计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.
例:某商品共10件,第一天以25元/件卖出2件,第二天以20元/件卖出3件,第三天以18元/件卖出5件,则这种商品的平均售价
为元/件.
3.加权平均数
(1)一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则 叫做这n个数的加权平均数.
(2)若x1出现f1次,x2出现f2次,…,xk出现fk次,且f1+f2+…+fk=n,则这k个数的加权平均数 =.
4.中位数
定义:
例:一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的中位数为.

2019年中考数学总复习第一部分考点梳理第六章统计与概率第32课时统计课件201812264130

2019年中考数学总复习第一部分考点梳理第六章统计与概率第32课时统计课件201812264130

◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵

2019中考数学考点之统计初步精品教育.doc

2019中考数学考点之统计初步精品教育.doc

中考数学考点之统计初步
科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学考点备考。

统计初步
★重点★
☆内容提要☆
一、重要概念
1.总体:考察对象的全体。

2.个体:总体中每一个考察对象。

3.样本:从总体中抽出的一部分个体。

4.样本容量:样本中个体的数目。

5.众数:一组数据中,出现次数最多的数据。

6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、计算方法
1.样本平均数:⑴;⑵若,,…,,则(a常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。

通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差:⑴;⑵若,,…,,则(a接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

2019-2020学年度最新中考数学总复习 第一部分 考点梳理 第六章 统计与概率 第32课时 统计课件

2019-2020学年度最新中考数学总复习 第一部分 考点梳理 第六章 统计与概率 第32课时 统计课件

◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 兵
◆知识清单 ◆考点突破 ◆课堂练兵
安老师·精 心 制 作
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)决定组距与组数;
(3)决 定分点;(4)列频数分布表;(5)画频数分布直方图.
课后练习:
内参:选择题:3、4、5、13、14、15、20、23
解答题:2、4、5、7、8、
(2) 扇形统计图能够显示部分在总体中的百分比 .
(3)折线统计图能够显示数据的变化趋势.
(4)频数分布直方图 能够显示数据的分布情况.
例:空气 中由多种气体混合而成,为了简明扼要地介绍空气的组成情况,较好地描述空气中各种成分所占的百分比,最适合采用的统计图是.
9.画频数分布直方图的步骤
(1)计算最大值与最小值的差;
统计
知识清单梳理
知识点一:数据收集、整理内容
关键点拨
1.数据收集
数据收集常用方法
(1)普查;(2)抽样调查.
例:为了了解某校2000名学生视力情况,从中测试了100名学生视力进行分析,在这个问题中,总体
是,样本容量是
收集数据时常见的统计量
(1)总体:要考察的全体对象;
(2)个体:组成总体的每一个考察对象;
为元/件.
3.加权平均数
(1)一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则 叫做这n个数的加权平均数.
(2)若x1出现f1次,x2出现f2次,…,xk出现fk次,且f1+f2+…+fk=n,则这k 个数的加权平均数 =.
4.中位数
定义:
例:一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的中位数为.
(3)样本:被抽查的那些个体组成一个样本;
(4)样本容量:样本中个体的数目.
知识点二:反映数据集中程度的量
2.平均数
x1,x2,…,xn的平均数 =
计算平均数时注意分辨是算 术平均数还是加权平均数,两者计算方法有差异,不能混淆.
例:某商品共10件,第一天以25元/件卖出2件,第二天以20元/件卖出3件,第三天以18元/件卖出5件,则这种商品的平均售价
方差意义
方差越大, ;
方差越小, .
知识点四:数据的整理和描述
7.频数、频率
(1)频数:每个对象出现的次数.
(2)频率:频数与数据总数的8~1.63(单位:m)这一个小组的频率为0.25,则该组的人数是
8.统计图
(1)条形统计图能够显示每组中的具体 数据.
5.众数
定义:.一组数据的众数可能有多个,也可能没有.
知识点三:反映数据离散程度的量
6.方差
方差公式
公式:设x1,x2,…,xn的平均数为 ,则这n个数据的方差为:
s2=
方差反映一组数 据的波动程度,若该组每个数据变化相同,则方差不变.若数据a1,a2,……an的方差是s,则数据a1+b,a2+b,……an+b的方差仍然是s,
相关文档
最新文档