材料科学与工程专业英语13-unit 19-20 nanostructured materials

合集下载

材料科学与工程专业英语13-unit 19-20 nanostructured materialsppt课件

材料科学与工程专业英语13-unit 19-20 nanostructured materialsppt课件
• Lithography:光刻 • Etching:刻蚀 • Semiconductor:半导体 • Self-organization:自组装 • Fabrication:构建
• the changes of the chemical properties: increase of the surface to volume ratio
B
4.The colloidal mask is removed.
.
3. The spheres size is reduced and a material B is depo1s3ited.
.
14
.
11
top-down and bottom-up approaches
• Bottoom-up techniques
Bulk materials
– Sol-gel 溶胶-凝胶
– Precipitation 沉淀
– Flame pyrolysis 火焰分解
– Electrodeposition 电沉积
• Ferromagnietic materials:铁磁性材料 • Thermal motion:热运动 • Permanent magnetic:永磁性的 • Paramagnet:顺磁体 • Superparamagnetism: 超顺磁性 • Giant magnetoresistive effect:巨磁阻效应
材料科学与工程专业英语
Special English for Materials Science and Engineering
Part 4 nanostructured materials
Unit19 Nanotechnology and nanostructured materials Unit 20 creation of nanostructured materials

材料科学与工程专业英语

材料科学与工程专业英语

adhesive[胶]allotropic[同素异形的amorphous[无定形的,非晶的anion[负离子]apuy[适当地]austenite[奥氏体]bainte「贝氏体binary isomorphous system[二元匀晶系统]Burgers vector[柏氏矢量]cadmium[镉]canon[正离子]carbide[碳化物Cast Iron[铸铁cementite[渗碳体]ceramic[陶瓷]chloride[氯chromium[铬]composite materials[复合材料cordinate system[坐标系统covalent bond[共价键crystal structure[晶体结构]crystallinity[结晶度ddiy[塑性deteriorative[劣化]dislocation[位错]edge dislocation[刃形位错]equilibrium[平衡]eutectic[共晶的eutectoid[共析的ferrite[铁素体fractional[分数的,部分的,相对的gain[晶粒grain boundary[晶界hase[相hexagonal dose-packed[密排六方的hexagonal[六方的]hypereutectoid[过共析hypoeutectoid[亚共析ion[硅Ionic Dond[离子键]isotherm[等温线lamellae[薄片]lattice[空间点阵,晶格]lever law[杠杆定律liquidus line[液相线martensite[马氏体]martensitic transformation[马氏体相变metallic bond[金属键]microstucture[显微组织monoclinic[单斜的nickel[镍nitride[氮化物]non-crystalline[非晶的]orthorhombic[正交的]parentheses[括孤]pearlite[珠光体periodic table[元素周期表phase diagram[相图]」phase transformation[相交]」point defect[点缺陷]polarize[极化polyethylene[聚乙烯polymerization[聚合]prism[棱镜]proeutectoid[先共析体provoke[诱发]reciprocal[倒数recrystallization[再结晶rhombohedral[菱方的screw dislocation[螺形位错]skew[歪斜]smal-(or low)angle grain boundary[小角度晶界sodium[钠solar cell [太阳能电池]solid solution strengthening[固溶强化solidus line[固相线solute[溶质solvus line[溶解度曲线spiral[螺旋形的]stifness[刚度]strucure[组织]synthesis[合成tetragonal[四方的tetrahedron[四面体thermoplastics[热塑性塑料]thermosets[热固性塑料tie linc[连接线]tilt boundary[倾侧晶界]translucent[半透明的]triclinic[三斜的troley[石油twin boundary[李晶界unit cell[晶胞vacancy[空位valence electron[价电子]Van de Waals bond[范德华键①材料科学是研究材料的加工、组织、性能和功能之间关系的科学。

【优质】材料科学与工程专业英语第二版127101316课后习题翻译答案

【优质】材料科学与工程专业英语第二版127101316课后习题翻译答案

【优质】材料科学与工程专业英语第二版127101316课后习题翻译答案Unit1:2.英译汉材料科学石器时代肉眼青铜器时代光学性质集成电路机械(力学)强度热导率1.材料科学指的是研究存于材料的结构和性能的相互关系。

相反,材料工程指的是,在基于材料结构和性能的相互关系的基础上,开发和设计预先设定好具备若干性能的材料。

2. 实际上,固体材料的所有重要性质可以概括分为六类:机械、电学、热学、磁学、光学和腐蚀降解性。

3. 除了结构和性质,材料科学和工程还有其他两个重要的组成部分:即加工和性能。

4. 工程师与科学家越熟悉材料的结构-性质之间的各种相互关系以及材料的加工技术,根据这些原则,他或她对材料的明智选择将越来越熟练和精确。

5. 只有在极少数情况下材料在具有最优或理想的综合性质。

因此,有必要对材料的性质进行平衡。

3. 汉译英Interdispline dielectric constantSolid materials heat capacityMechanical properties electro-magnetic radiationMaterials processing elasticity modulus1.直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。

It was not until relatively recent times that scientists came to understand the relationship between the structural elements ofmaterials and their properties .2.材料工程学主要解决材料的制造问题和材料的应用问题。

Material engineering mainly solve the problems of materials processing and materials application.3.材料的加工过程不但决定了材料的结构,同时决定了材料的特征和性能。

材料科学与工程专业英语

材料科学与工程专业英语

2.6 semiconductorFollowing the discussion of intrinsic ,elemental semiconductors we note that the fermi function indicates that the number of charge carriers increases exponentially with temperature. This effect so dominates the conductivity of semiconductors that conductivity also follows an exponential increase with temperature(an example of an arrhenius equation ).This increase is in sharp contrast to the behavior of metals.We consider the effect of impurities in extrinsic,elemental semiconductors.Doping a group IV a material(such as Si) with a group V a impurity (such as P)produces an n-type semiconductor in which negative charge carriers(conduction electrons)dominate.The “extea”electron from the group V A addition produces a donor level in the energy band structure of the semiconductor.As with instrinsic semiconductors,extrinsic semiconduction exhibits arrhenius behavior.in n-type material, the temperature span between the regions of extrinsic and insrinsic behavior is called the exhaustion range .A p-type semiconductor is produced by doping a group IV a material with a group III a impurity(such as Al).The group III A element has a “missing”electronproducing an acceptor level in the band stucture and leading to formation of positive charge carriers (electron holes). The region between extrinsic and instrinsic behavior for p-type semiconductors is called the saturation range . Hall effect measurements can distinguish between n-type and p-type conduction.Compound semiconductors usually have an MX composition with an average of four valence electrons per atom .The III-V and II-VI compounds are the common examples .amorphous semiconductors are the non-crystalline materials with semiconducting behavior.Elemental and compound material are both found in this category .To appreciate the applications of semiconductors,we review a few decades.the solid state rectifier (or diode) contains a single p-n junction .Current flows readily when this junction is forward biased but is almost completely choked off when reverse biased.the transistor is a device consisting of a pair of nearby pn junctions.The net result is a solid state amplifier. Replacing vacuum tubes with solid state elements such as these produced substantial miniaturization of electrical circuits.Further miniaturization has resulted by the production of microcircuis consisting of precise parrerns of n-type andp-type regions on a single crystal chip.The major electrical properties needed to specify an intrinsic semiconductor are band gap,electron mobility,hole mobility,and conduction electron density (=electron hole density ) at room temperature.For extrinsic semiconductors,one needs to specify either the donor level (for n-type material) or the acceptor level (for p-type material).2.7 compositesOne category of structural engineering material is that of composites .These materials involve some combination of two or more components from the “fundamental”materal types .A key philosophy in selecting composite materials is that they provide the “best of both worlds”that is ,attrative properties from each component. A classic example is fiberglass.The strength of small diameter glass fibers is combined with the ductility of the polymetric matrix.The combination of these two components provides a product superior to either component alone .Many composites,such as fiberglass,involve combinations that cross over the boundaries of different kinds of materials. Others,such as concrete,involve different component from within a single material type.In general,we shall use a fairly narrow definition ofcomposites.We shall consider only thode material thata combine different components on the microscopic(rather than macroscopic )scale .We shall noot include multiphase alloys and ceramics ,which are the result of routine processing.Similarly,the microcircuits be discussed later are not include because each component retains its distinctive character in these material systems. In spite of these restrictions,we shall find this category to include a tremendously diverse collection of materials,from the common to some of most sophisticated.We shall consider three categories of composites mateials. Conveninently ,these categories are demonstrated by three of our most common structural material ,fiberglass ,wood,and concrete .Fiberglass(or glass fiber reinforced polymer ) is an excellent example of a human made fiber reinforced composite.The glass-polymer system is just one of many important example .The fiber reinforcement is generally found in one of three primary configutations: aligned in a single direction ,randomly chopped,or woven in a fabric that is laminated with the matrix.Wood is a stuctural analog of fiberglass ,that is ,a natural fiber reinforced composite.The fibers of wood are elongated,biological cells. The matrixcorresponds to lignin and hemicellulose deposits.concrete is our best example of an aggregate composite, in which particles rather than fibers reinforce amatrix common concrete is rock and sand in a calcium aluminosilicate (cement)matrix.While concrete has been a construction material for centuries ,these are numerous c composites developed in recent decades that use a similar particulate reinforcement concept.The concept of property averaging is central to understanding the utility of composite material.an important example is the elastic modulus of a composite .The modulus is a sensitive function of the gemetry of the reinforcing component.similarly important is the srength of the interface betweeen the reinforcing component and the matrix .We sahll concentrate on these mechanical properties of composites in regard for their wide use as structural materials.So caaled “advanced”composites have provided some unusually attractive features,such as high strrenth to weight ratios.Some care is required in citing these properties,as they can be highly directional in nature.2.6there are numerous uses of piezoelectrics. for instance, plates cut from a single crystal can exhibit a specific naturalresonance frequency(i.e., the frequency of an electromagnetic wave that causes it to vibrate mechanically at the same frequency); these can be used as a frequency standard in highly stable crystal controlled clocks and in fixed frequency communications devices. other resonant applications include selective wave filters and transducers(e.g., for ultrasonic cleaning and drilling) and non-resonant devices(e.g., accelerometers, pressure gauges, microphone pickups) are dominated by ceramic piezoelectrics.2.7.3 fiberglass was a convenient and familiar example of fiber reinforced composites. Similarly ,concrete is an excellent example of an aggregate composite. As with wood,this common construction material is used in staggering quantities. The weight of concrete used annually exceeds that of all metals combined.For concrete, the term “aggregate”refers to a combination of sand(fine aggregate) and gravel(coarse aggregate). This component of concrete is a “natual”material in the same sense as wood. Ordinarily ,these materials are chosen for their relatively high density and strength. A table of aggregate compositions would be complex and largely meaningless. In general, aggregate materials are geological silicates chosenfrom locally available deposits. As such, these materials are complex and relatively impure examples of the crystalline silicates. Igneous rocks are common examples. “igneous”means solidified from a molten state. For quickly cooled igneous rocks ,some fraction of the resulting material may be non-crystalline, corresponding to the glassy silicates. The relative particle sizes of sand and gravel are measured(and controlled) by passing these materials through standard screens(or sieves). The reason for a combination of fine and coarse aggregate in a given concrete mix is that the space is more efficiently filled by a range of particle sizes. The combination of fine and coarse aggregate accounts for 60 to 75 percent of the total volume of the final concrete. Modern concrete uses portland cement,which is a calcium aluminosilicate. There are five common types of portland cement. They vary in the relative concentrations of four calcium containing minerals. The matrix is formed by the addition of water to the appropriate cement powder. The particle sizes for the cement powers are relatively small compared to the finest of the aggregates. Variation in cement particle size can strongly affect the rate at which the cement hydrates. As one might expect from inspecting the complexcompositions of portland cement, the chemistry of the hydration process is equally complex.In ploymer technology, we noted several “additives”which provided certain desirable features to the end product. In cement technology , there are a numble of admixtures,which are additions providing certain features. Any component of concrete other than aggregate,cement,or water is, by definition ,an admixture. One of the admixtures is an “air entrainer”which reminds us that air can be thought of as a fourth component of concrete. The air entrainer admixture increases the concentration of entrapped air bubbles, usually for the purpose of workability(during forming) and increased resistance to freeze thaw cycles.Why concrete is an important engineering material, a large numble of other composite systems are based on particle reinforcement. Particulate composites refer specifically to systems with relatively large size dispersed particles(at least several micrometers in diameter),and the particles are in relatively high concentration(greater than 25 and frequently between 60 and 90) of small diameter oxide particles. The oxide particles strengthen the metal by serving as obstacles to dislocation motion.2.7.2 like so many accomplishments of human beings, those fiber reinforced composites imitate nature. Common wood is such a composite, which serves as an excellent structural material. In fact, the weight of wood used each year in the Uited Sates exceeds the combined total for steel and concrete. We find two categories , softwoods and hardwoods. These are relative terms, although softwoods generally have lower strengths. The fundamental difference between the categories is their seasonal nature. Softwoods are “evergreens”with needlelike leaves and exposed seeds. Hardwoods are deciduous( i.e., lose their leaves annually)with covered seeds( i.e.,nuts)The microstructure of wood illustrates its commonality with the human-made composites. The dominant feature of the microstructure is the large number of tubelike cells oriented vertically. These longgitudinal cells are aligned with the vertical axis of the tree. There are some radial cells perpendicular to the longitudinal ones. As the name implies, the radial cells extend from the center of the tree trunk out radically toward the surface. The longitudinal cells carry sap and other fluids critical to the growth process. Early seaon cells are of larger diameter than later season cells. This growthpattern leads to the characteristic “ring structure”which indicates the tree’s age. The radial cells store food for the growing tree. The cell walls are composed of cellulose. The strength of the cells in the longitudinal direction is a function of fiber alignment in that direction. The cells are held together by a matrix of lignin and hemicellulose. Lignin is a phenol propane network ploymer, and hemicellulose is ploymeric cellulose with a relatively low degree of ploymerization. Related to this ,the dimensions as well as the proper ties of wood vary significantly with atmospheric moisture levels. Care will be required in specifying the atmospheric conditions for which mechanical property data apply.2.7.1 let us begin by concentrating on fiberglass, or glass fiber reinforced ploymer. This is a classic example of a modern composite system. A typical fracture surface of a composite shows fibers embedded in the ploymeric matrix, such fibers may have different composition since each is the result of substantial development that has led to optimal suitability for specific applications. For example, the most generally used glass fiber composition is E glass, in which E stands for its especially low electrical conductivity and its attractiveness as a dielectric. Its popularity in structural composites is related tothe chemical durability of the borosilicate composition. We should note that optimal strengh is achieved by the aligned, continuous fiber reinforcement. In other words, the strength is highly anisotropic.The fiber reinforced composites include some of the most sophisticated materials developed by man for some of the most demanding engineering applications. Important examples include boron reinforced aluminum, graphite epoxy, and al reinforced aluminum. Metal fibers are frequently small diameter wires. Especially high strength reinforcement come from “whiskers”which are small, single crystal fibers that can be grown with a nearly perfect crystalline structure. Unfortunately , whiskers cannot be grown as continuous filaments in the manner of glass fibers or metal wires.2.5polymerpolymers are chemical compounds that consist of long,chainlike molecules made up of multiple repeatinf units.The term polyner was coined in 1832 by the Swedish chemist Jins Jacob Berzelius from the Greek pols,or "many" and meros,or "parts."Polymers are also referred to as macromolecules,or "gaint molecules"-a term introduced by the German chemist Hermann Staudinger in 1992.Some gaintmolecules occur maturally.Proteins ,for example ,are natural polymers of amino acids that make up much of the structural material of animals;and the polymers deoxyribonucleic acid(DNA) and ribonucleic acid(RNA) are liner strands of nucleotides that define the genetic make up of living organisms.Other examples of natural polmers are silk ,wool.natural rubber,cellulose ,and shellac.There materials have been known and exploited since ancient times.Indeed,people in what is now Switzerland cultivates flax,a source of polymeric cellulose fibres,during the Neolithic Period,or New Stone Age,some 10 000 years ,while other ancients collected proteinaceous wool fibers from sheep and silk fibers from silkworms.About five millennia ago,tanners produced leather through the cross linking of proteins by gallic acid forming the basis of the oldest industry in continuous production.Even embalming,the art for which ancient Egypt is famous is based on the condensation and cross linking of proteins with form aldehyde.Early developments in polymer technology,taking place in the 19th century,involved the conversion of natural polymers to more useful products-for example,the conversion of cellulose,obtained from cotton or wood,into celluloid,one ofthe first plastic.Before the 1930s only a small number of synthetically produced polymers were available commercially,but after that period and especially after World War II,synthetic compounds came to dominance.Derived principally from the refining of petroleum and natural gas,synthetic polymers are made into the plastics,rubbers,man-made fibres,adhesives,and surface coatings that have become so ubiquitous in modern life.As an important materials,the polymers are available in a wide variety of commercial forms:fibers,thin films and sheets,foams and in bulk.A common synonym for polymers is "plastic",a name derived from the deformability associated with the fabrication of most polymeric products.To some critics,"plastic" is a synonym for modern culture.Accurate or not,it represents the impact that this complex family of engineering materials has had on our society.Polymers are distinguished from our previous types of materials by chemistry.Metal,ceramics.and glasses are inorganic materials.The polymers discussed here are organic.The student should not be concerned about a lack of background in organic chenistry.This passage is intended to provide any of the fundamentals of organic chemistry neededto appreciate the unique nature of polymeric materials.We begin our discussion of polymers by investigating polymerization,the process by which long chain or network molecules are made from relatively small organic molecules.The structural features of the resulting polymers are rather unique compared to the inorganic materials.Ingeneral,the ,elting point and rigidity of polymers increase with the extent of plymerization and with the complexity of the molecular structure.We shall find that polymers fall into one of two main categories.Thermoplastic polymers are materials that become less rigid upon heating,and thermosetting polymers become more rigid upon heating.For both categories,it is important to appreciate the roles played by additives,which provide important features such as color and resistance to combustion.As with ceramics and glasses,we shall discuss important mechanical and optical properties of polymers.Mechanically,polymers exhibit behavior associated with their long chain molecular structure.Examples include viscoelastic and elastomeric deformation .Optical properties such as transparency and color,so important in ceramic technology,are also significant in the selection of polymers.2.5.1 PolymerizationThe term polymer simply means "many mers" where mer is the building block of the long chain or network molecule.There are two distinct ways in which a poly merization reaction can take place.Chain growth(also known as addition polymerization)involves a rapid "chain reaction" of chemically activated monomers.Step growth(also known as condensation polymerization)involves individual chemical reactions between pairs of reactive monomers and is a much slower process.In either case,the critical feature of a monomer,which permits it to join with similar molecules and form a polymer,is the presence of reactive sites,that is double bonds(chain growth) or reactive functional groups (step geowth).Each covalent bond is a pair of electrins shared between adjacent atoms.The double bond is two such pairs.The chain growth reaction converts the double bond in the monomer to a single bond in the mer.The remaining two electrons become parts of the single bonds joining adjacent mers.2.5.2 Thermal Plastic PolymersThermoplastic polymers become soft and deformable upon heating.This is characteristic of linear polymeric molecules.The high temperature plasticity is due to the ability of the molecules to slide past one another.This is another example of a thermally activated,or Arrhenius process.In this sence ,thermoplastic materials are similar to metals that gain ductility at high temperatures.The key distinction between thermoplastics and metals is what we mean by "high" temperatures.The secondary bonding,which must be overcome to deform thermoplastics,may allow substantial deformation around 100,whereas metallic bonding generally restricts creep deformation to temperature closer to 1000 in typical alloys.It should be noted that,as with metals,the ductility of thermoplastic polymers is lost upon cooling.2.5.3 Thermal Setting PolymersThermosetting polymers are the opposite of the thermoplastics.They become hard and rigid upon heating.Unlike thermoplastic polymers,this phenomenon is not lost upon cooling.This is characteristic of network molecular structures formed by the step growth mechanism.The chemical reaction "steps" are enhanced byhigher temperatures and are irreversible,that is,the polymerization remains upon cooling.In fabricating thermosetting products,they can be removed from the mold at the fabrication temperature (typically 200 to 300).By contrast,thermoplastics must be cooled in the mokd to prevent distortion.It might also be noted that network copolymers can be formed similar to be the block and graft copolymers.The network copolymer will result from polymerization of a combination of more than one species of polyfunctional monomers.2.5.4 AdditivesCopolymers and blends were discussed above as analogs of metallic alloys.There are aeveral other alloylike additives that traditionally have been used in polymer technology to provide specific characteristics to the polymers .A plasticizer is added to soften a polymer.This addition is essentially blending with a low molecular weight (approximately 300 amu) polymer.A filler ,on the other hand .is added to strengthen a polymer primarily by restricting chain mobility.it also provides dimensional stability and reduced cost.Relatively inertmaterials are used.Examples include shortchanger cellulose (and organic filler) and asbestos (and inorganic filler).Roughly one third of the typical automobile tire is a filler (i.e.,carbon black).Reinforcements such as glass fibers are also categorized as additives but produce such fundamentally different materials (e.g.,fiberglass) that they are properly discussed later on composites.Stabilizers are additives used to reduce polymer degradtion.They represent a complex set of materials because of the large variety of degradation mechanisms(oxidation,thermal,and ultraviolet).As an example,polyisoprene can absorb up to 15% oxygen at room temperature with its elastic properties being destoryed by the first 1%.Natural rubber latex contains complex phenol groups that retard the room temperature oxidation reactions.However,these naturally occurring antioxidants are not effective at elevated temperatures.Therefore ,additional stabilizers(e.g.,other phenols,amines,sulphur compounds,etc.)are added to rubber intended for tire applications.Flame retardant are added to reduce the inherentcombustibility of certain polymers such as bustion is simply the reaction of a hydrocarbon with oxygen accompanied by substantial heat evolution.Many polymeric hydrocarbons exhibit combustibility.Others,such as polyvinylchloride(PVC),do not.The resistance of PVC to combustion appears to come from the evolution of the chlorine atoms from the polymeric chaim.These halogens hinder the process of combustion by terminating free radical chain reactions.Additives that provide this function for halogen free polymers include chlorine,bromine,and phosphorus containing reactants.Colorant are additions to provide color to a polymer where appearance is a factor in materials selection.Two types of colorants are used,pigments and dyes.A pigment is an insoluble,colored material added in powered form.Typical examples are crystalline ceramics such as titanium oxide and aluminum silicate,although organic pigments are availble.Dyes are soluble,organic colorants that can provide transparent colors.2.5.5 Viscoelastic DeformationAt relatively low temperature,polymers are rigid solids anddeform elastically.At relatively high temperatures,they are liquidlike and deform viscously.The boundary between elastic and viscous behavior is again known as the glass transition temperature,Tg.However,the variation in polymer deformation with temperature is not demonstrated in the same way.For glassws,the variation in viscosity was plotted against temperature.For polymers,the modulus of elasticity is plotted instead of viscosity.There is a drastic and complicated drop in modulis with temperature for a typical,commercial thermoplastic with approxinately 50% crystallinity.THe magnitude of the drop is illustrated by the use of a logarithmic scale for modulus.At "low" temperatures (well below Tg),a rigid modulus occurs corresponding to mechanical behavior reminiscent of metals and ceramics.However,the substantial component of secondary bonding in the polymers cause the modulus for these materials to be substantially lower than the ones found for metals and ceramics,which were fully bonded by primary chemical bonds (metallic,ionic,and covalent).In the glass transition temperature (Tg) range,the modulus drops precipitously and the mechanical behavior is leathery.The polymer can be extensively deformed and slowly returns to itTys original shape upon stress removal.Just above Tg,arubbery plateau is observed.In this region,extensive deformation is possible with rapid spring back to the original shape when stress is removed.These last two regions(leathery and rubbery) extend our understanding of elastic deformation.Sometimes the elastic deformation meant a relatively small strain directly proporyional to applied stress.For polymers,extensive,non-linear deformationcan be fully recovered and is ,by definition,elastic.This concept will be explored shortly when we discuss elastomers,those polymers with predominant rubbery region.2.5.6 ElastomersTypical linear polymers exhibits a rubbery deformation region.For certain polymers known as elastomers,the rubbery plateau is pronounced and establishes the normal room temperature behavior of these materials.(For these materials,the glass transition temperature is below room temperture.)This subgroup of thermoplastic polymers includes the natural and synthetic rubbers (such as polyisoprene).These materials provide a dramatic example of the uncoiling of a linear polymer.As a practical matter,the complete uncoiling of the molecule is not achieved,but huge elastic strains dooccur.The stress-strain curve for the elastic deformation of an elastomer shows dramatic contrast to the stress-strain curve for a common metal.In that case,the elastic modulus was constant throughout the elastic region (stress was directly proportional to strain).While the clastic modulus (slope of the stress-strain curve) increases with increasing strain.For low strains,the modulus is low corresponding to the small forces needed to overcome secondary bonding and to uncoil the molecules.For high strains,the modulus rises sharply,indicating the greater force needed to stretch the primary bonds along themolecular "backbone".In both region,however,there is a significant componrnt of secondary bonding involved in the deformation mechanism,and the moduli are much lower than those for common metals and ceramics.Tabulated values of moduli for elastomers are generally for the low strain region in which the materials are primarily used.Finally,it is important to emphasize that we are talking about elastic or temporary deformation.The uncoiled polymer molecules of an elastomer recoil to their original length upon removal of stress.2.5.7 Stress RelaxationFor metals and ceramics,we found creep deformation to be an important phenomenon at high temperatures (greater than one half the absolute melting point).A similar phenomenon,termed stress relaxation,occurs in polymers.This is perhaps more significant to polymers.Because of their loe melting points,stress relaxation can occur at room temperature.A familar example is the rubber band,understress for a long period of time,which does not snap back to its original size upon stress removal.2.4(88)Chemical substitutions in the BaTio3 structure can alter a number of ferro electric properties.For example,BaTio3 exhibits a large peak in dielectric constant near the Curie point-a property that is undesirable for stable capactior applications.This problem may be addressed by the substitution of lead (**) for (**),which increases the Curie point;by the substitutionof strontium,which lowers the Curie point;or by substituting Ba with calcium,which broadens the temperature range at which the peak occurs.Barium titanate can be produced by mixing and firing barium carbonate and titanium dioxide,but liquid-mixtechniques are increasingly used in order to achieve better mixing,precise control of the barium titanium ratio,high purity,and submicrometre particle size.Processing of the resulting powder varies according to whether the capacitor is to be of the disk or multilayer type.Disks are dry pressed or punched from tape and then fired at temperatures between 1250 and 1350.Silver-paste screen printed electrodes are bonded to the surfaces at 750.Leads are soldered to the electrodes,and the disks are epoxy coated or wax impregnated for encapsulation.The capacitance of cermic disk capacitors can be increased by using thinner capacitors;unfortunately,fragility result.Multilayer capacitors overcome this problem by interleaving dielectric and electrode layers.The electrode layers are usually palladium or a palladium-silver alloy.These metals have a melting point that is higher than the sintering temperature of the ceramic,allowing the two materials to be cofired.By connecting alternate layers in paralled,large capacitance can be realized with the MLC.The dielectric layers are processed by tape casting or doctor blading and then yer thickness as small as 5 micrometres have been achieved.Finished "build" of dielectric and electrode layers are。

材料科学与工程专业英语课文翻译(1,2,3,10).

材料科学与工程专业英语课文翻译(1,2,3,10).

United 1 材料科学与工程材料在我们的文化中比我们认识到的还要根深蒂固。

如交通、房子、衣物,通讯、娱乐和食物的生产,实际上,我们日常生活中的每一部分都或多或少地受到材料的影响。

历史上社会的发展、先进与那些能满足社会需要的材料的生产及操作能力密切相关。

实际上,早期的文明就以材料的发展程度来命名,如石器时代,铜器时代。

早期人们能得到的只有一些很有限的天然材料,如石头、木材、粘土等。

渐渐地,他们通过技术来生产优于自然材料的新材料,这些新材料包括陶器和金属。

进一步地,人们发现材料的性质可以通过加热或加入其他物质来改变。

在这点上,材料的应用完全是一个选择的过程。

也就是说,在一系列非常有限的材料中,根据材料的优点选择一种最适合某种应用的材料。

直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。

这个大约是过去的60 年中获得的认识使得材料的性质研究成为时髦。

因此,成千上万的材料通过其特殊的性质得以发展来满足我们现代及复杂的社会需要。

很多使我们生活舒适的技术的发展与适宜材料的获得密切相关。

一种材料的先进程度通常是一种技术进步的先兆。

比如,没有便宜的钢制品或其他替代品就没有汽车。

在现代,复杂的电子器件取决于所谓的半导体零件.材料科学与工程有时把材料科学与工程细分成材料科学和材料工程学科是有用的。

严格地说,材料科学涉及材料到研究材料的结构和性质的关系。

相反,材料工程是根据材料的结构和性质的关系来设计或操纵材料的结构以求制造出一系列可预定的性质。

从功能方面来说,材料科学家的作用是发展或合成新的材料,而材料工程师是利用已有的材料创造新的产品或体系,和/或发展材料加工新技术。

多数材料专业的本科毕业生被同时训练成材料科学家和材料工程师。

“structure”一词是个模糊的术语值得解释。

简单地说,材料的结构通常与其内在成分的排列有关。

原子内的结构包括介于单个原子间的电子和原子核的相互作用。

在原子水平上,结构包括原子或分子与其他相关的原子或分子的组织。

材料科学与工程_专业英语_Uni...

材料科学与工程_专业英语_Uni...

材料科学与工程_专业英语_Uni...Unit 3 Structure-Property Relationships of MaterialsToday’s materials can be classified as metals and alloys, as polymers or plastics, as ceramics, or as composites; composites, most of which are man-made, actually are combinations of different materials.译文:当今的材料可以分为金属和合金,聚合物或者塑料,陶瓷或复合材料;复合材料,它们大多数是人造的,实际上是不同材料组合而成。

A pplica tion of these m ateria ls de pe nd on their pr ope rties; theref ore, w e ne ed to know w hat pr operties are re quired by the a pplica tion and to be a ble to re late those s pecifica tion to the m aterial.译文:这些材料的应用取决于它们的性质;因此,根据应用的场合,我们需要知道什么样的性质是必需的,我们需要能够把这些详细说明同材料联系起来。

For exam ple, a la dder m ust w ithsta nd a des ign loa d, the w eight of a pe rs on us ing the la dde r. H ow ever, the m ateria l property that ca n be m easured is s tre ngth, w hich is af f ecte d by the loa d a nd desig n dim ension. S tre ngth values m us t theref ore be applie d to dete rm ine d the la dde r dim ensions to e ns ure saf e us e. Therefore, in ge ne ral, the s truc tures of m etallic m aterials have ef fects on the ir prope rties.译文:比如,一个梯子必须能经受住设计的载荷,也就是使用这个梯子的人的重量。

材料科学与工程专业英语翻译

材料科学与工程专业英语翻译

Unit1:交叉学科交叉学科 interdiscipline 介电常数介电常数 dielectric constant 固体性质固体性质 solid materials 热容热容 heat capacity 力学性质力学性质 mechanical property 电磁辐射电磁辐射 electro-magnetic radiation 材料加工材料加工 processing of materials 弹性模量(模数)elastic coefficient 1.直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。

It was not until relatively recent times times that that scientists came to to understand understand the relationship between the structural elements of materials and their properties . 2.材料工程学主要解决材料的制造问题和材料的应用问题。

Material Material engineering engineering mainly to solve the problem and create material application. 3.材料的加工过程不但决定了材料的结构,同时决定了材料的特征和性能。

Materials processing process is not only to de structure and decided that the material characteristic and performance. 4.材料的力学性能与其所受外力或负荷而导致的形变有关。

Material Material mechanical mechanical properties with the extemal force or in de deformation of the load. Unit2:先进材料先进材料 advanced material 陶瓷材料陶瓷材料 ceramic material 粘土矿物粘土矿物 clay minerals 高性能材料高性能材料 high performance material 合金合金 metal alloys 移植移植 implant to 玻璃纤维玻璃纤维 glass fiber 碳纳米管碳纳米管 carbon nanotub 1、金属元素有许多有利电子,金属材料的许多性质可直接归功于这些电子。

2021年材料科学专业英语词汇(N)

2021年材料科学专业英语词汇(N)

材料科学专业英语词汇(N)材料科学专业英语词汇(N) n-methacrylamiden- 甲基丙烯醯胺n-type semiconductorn型半导体n-vinylimidazole 氮领乙烯基咪唑nacrite 珍珠陶土nail head bonder 钉头式接合机,钉头式压接机nano glass 奈米玻璃nano photo-catalysis ceramics 奈米光触媒陶瓷nano-motor 奈米马达nano-sphere 奈米球nanoposite 奈米复合材料nanofabrication 奈米制造nanoimprint lithography 奈米印刷技术nanometric lithography 毫微米微影术nanomineral material 奈米矿物材料nanoparticle 奈米粒子nanostructured high-entropy alloys 奈米高熵合金nanowire 奈米线naple yellow 尼泊尔黄narrow gap reactive ion etching system 狭窄间隙反应性离子蚀刻系统native oxide layer 自然氧化膜`natural abrasive 天然研磨料natural cement 天然水泥natural glass 天然玻璃navigation 故障导航观察nc-control chamfer machine 数值控制去角取面机neat cement 净水泥neat work 净砖工neck 槽颈neck breaking 颈部断裂needle 膏球针nephelien 霞石nepheline syenite 霞长石nesting 阶层表达,阶层关系连线网data 连线网资料driven editor 连线网驱动器list 连线网表work-forming ion 网工形成离子work-modifying ion 纳工改性离子neutral atmosphere 中恍蒙气neutral glass 中性玻璃neutral refractory 中性耐火物neutral-tinted glass 中性有色玻璃neutralizer 中和剂neutron transmutation doping wafer 参杂中子变嬗变晶圆neutron-absorbing glass 中子吸收玻璃new donor 新施体nibbed saggar 内突匣钵nickel dipping 镍盐浸nickel metal hydride battery 镍氢电池nitrides 氮化物node 节点nodelock license 节点锁定许可证nodular-fireclay 节状火黏土nodules 生料粒nodulizer 制粒机nominal dimension 标称尺度nomogramnomograoh non filling 未填满,未注满non flammable solvent vapor drying 不可燃溶剂蒸汽乾燥non mirror wafer 非镜面晶圆non stick 没黏住,没固定non-clay refractory 非黏土耐火物non-load bearing tile 非载重砖(或瓦)non-metallic inclusion 非金属夹杂物non-standing wave type ultrasonic generator 非驻波型超音波产生器non-stoichiometric 非化学计算的non-vitreousnon-vitrified noncontact test system 非接触型测试系统normal bonding 正常接合,正向压接normal brick 普通砖normal single crystal 正常单结体nose-ring block 灰圈砖notch 凹槽,缺口notch test 缺口试验nozzle 喷嘴nozzle scan 喷嘴扫描nuclear magic resonance method 核磁共振法nuclear reactor ceramics 核反应器陶瓷nucleation number of clock 定时脉冲数number of timing phase 时钟脉冲相数numbers of unremovable particle 残留粒子数numerical aperture 数值孔径模板,内容仅供参考。

材料科学与工程专业英语1-19单元课后翻译答案

材料科学与工程专业英语1-19单元课后翻译答案

材料科学与工程专业英语1-19单元课后翻译答案Unit 11.“材料科学”涉及到研究材料的结构与性能的关系。

相反,材料工程是根据材料的结构与性质的关系来涉及或操控材料的结构以求制造出一系列可预定的性质。

2.实际上,所有固体材料的重要性质可以分为六类:机械、电学、热学、磁学、光学、腐蚀性。

3.除了结构与性质,材料科学与工程还有其他两个重要的组成部分,即加工与性能。

4.工程师或科学家越熟悉材料的各种性质、结构、性能之间的关系以及材料的加工技术,根据以上的原则,他或她就会越自信与熟练地对材料进行更明智的选择。

5.只有在少数情况下,材料才具有最优或最理想的综合性质。

因此,有时候有必要为某一性质而牺牲另一性能。

6.Interdisciplinary dielectric constant Solid material(s)heat capacity Mechanical property electromagnetic radiationMaterial processing elastic modulus 7.It was not until relativcalproperties relate deformation to an applied load or force.Unit 21. 金属是电和热很好的导体,在可见光下不透明;擦亮的金属表面有金属光泽。

2. 陶瓷是典型的导热导电的绝缘体,并且比金属和聚合物具有更高的耐热温度和耐恶劣环境性能。

3. 用于高科技领域的材料有时也被称为先进材料。

4.压电陶瓷在电场作用下膨胀和收缩;反之,当它们膨胀和收缩时,他们也能产生一个电场。

5. 随着能够观察单个原子或者分子的扫描探针显微镜的出现,操控和移动原子和分子以形成新结构成为可能,因此,我们能通过一些简单的原子水平的构建就可以设计出新的材料。

6. advanced materials ceramic materials high-performance materials clay mineralsalloy implant glass fibre carbon nanotube 7. Metallic materials have large numbers ofnonlocalized electrons and many properties of metals are directlyattributable to these electrons. 8. Many of polymeric materials areorganic compounds with very large molecular structures. 9. Semiconductors hace electrical properties that are intermediate betweenthe electrical conductors(viz. metals and metal alloys) andinsulators(viz. ceramics and polymers). 10. Biomaterials must notproduce toxic substances and must be compatible with body tissues.Unit 31.金属的行为(性质)不同于陶瓷的行为(性质),陶瓷的行为(性质)不同于聚合物的行为(性质)。

材料科学与工程专业英语 (1)

材料科学与工程专业英语 (1)

材料专业英语
Part 1 Introduction to materials science and engineering
• Unit 1 Physical and chemical properties of materials • Unit 2 Mechanical properties of materials
• 其他材料却截然不同,通常远大于真空值。
0 .
材料专业英语
• Materials that cause the lines of flux to move farther apart, resulting in a decrease in magnetic flux density compared with a vacuum, are called diamagnetic. Materials that concentrate magnetic flux by a factor of more than one but less than or equal to ten are called paramagnetic; materials that concentrate the flux by a factor of more than ten are called ferromagnetic. The permeability factors of some substances change with rising or falling temperature, or with the intensity of the applied magnetic field.
材料专业英语
• Mass (m) is a fundamental measure of the amount of matter. Weight (w) is a measure of the force exerted by a mass and this force is produced by the acceleration of gravity. • Therefore, on the surface of earth, the 因此,在地球表面,物体的质量由物体的重量和重力加速度 mass of an object is determined by 所决定。 dividing the weight of an object by 9.8 Since we are typically comparing things on the surface of the earth, the weight of an object is m/s2 (the acceleration of gravity on the commonly used rather than calculating its mass. surface of the earth).

材料学专业英语

材料学专业英语

加工方法Manufacturing Method 拉力强度Tensile Strength 机械性能Mechanical Properites 低碳钢或铁基层金属Iron & Low Carbon as Base Metal 镀镍Nickel Plated 镀黄铜Brass Plated 马氏铁体淬火Marquenching 退火Annealing 淬火Quenching高温回火High Temperature Tempering 应力退火温度Stress –relieving Annealing Temperature 晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented硬磁材料Hard Magnetic Material表面处理Surface Finish硬度Hardness 电镀方法Plating type 锌镀层质量Zinc Coating Mass表面处理Surface Treatment拉伸应变Stretcher Strains焊接Welding 防止生锈Rust Protection 硬度及拉力Hardness & Tensile strength test 连续铸造法Continuous casting process珠光体Pearlite 单相金属Single Phase Metal Ferrite渗碳体Cementitle奥氏体Austenite软磁Soft Magnetic硬磁Hard Magnetic疲劳测试Impact Test热膨胀系数Coefficient of thermal expansion比重Specific gravity化学性能Chemical Properties物理性能Physical Properties 再结晶Recrystallization硬化Work Hardening包晶反应Peritectic Reaction包晶合金Peritectic Alloy 共晶Eutectic临界温度Critical temperature 自由度Degree of freedom相律Phase Rule金属间化物Intermetallic compound 固熔体Solid solution 置换型固熔体Substitutional type solid solution 米勒指数Mill's Index晶体结构Crystal structure金属与合金Metal and Alloy金属特性Special metallic featuresStrength抗腐蚀及耐用Corrosion & resistance durability强度Strengthen 无机非金属inorganic nonmetallic materials 燃料电池fuel cell新能源new energy resources材料科学专业学术翻译必备词汇材料科学专业学术翻译必备词汇编号中文英文1 合金alloy2 材料material3 复合材料properties4 制备preparation5 强度strength6 力学mechanical7 力学性能mechanical8 复合composite9 薄膜films10 基体matrix11 增强reinforced12 非晶amorphous 13 基复合材料composites14 纤维fiber15 纳米nanometer16 金属metal17 合成synthesis18 界面interface19 颗粒particles20 法制备prepared21 尺寸size22 形状shape23 烧结sintering24 磁性magnetic25 断裂fracture26 聚合物polymer27 衍射diffraction28 记忆memory29 陶瓷ceramic30 磨损wear31 表征characterization32 拉伸tensile33 形状记忆memory34 摩擦friction35 碳纤维carbon36 粉末powder37 溶胶sol-gel38 凝胶sol-gel39 应变strain40 性能研究properties41 晶粒grain42 粒径size43 硬度hardness44 粒子particles45 涂层coating46 氧化oxidation47 疲劳fatigue48 组织microstructure49 石墨graphite50 机械mechanical51 相变phase52 冲击impact53 形貌morphology 54 有机organic55 损伤damage56 有限finite57 粉体powder58 无机inorganic59 电化学electrochemica l60 梯度gradient61 多孔porous62 树脂resin63 扫描电镜sem64 晶化crystallization 65 记忆合金memory66 玻璃glass67 退火annealing68 非晶态amorphous69 溶胶-凝胶sol-gel70 蒙脱土montmorillonit e71 样品samples 72 粒度size73 耐磨wear74 韧性toughness75 介电dielectric76 颗粒增强reinforced77 溅射sputtering78 环氧树脂epoxy79 纳米tio tio80 掺杂doped81 拉伸强度strength82 阻尼damping83 微观结构microstructure84 合金化alloying85 制备方法preparation86 沉积deposition87 透射电镜tem88 模量modulus89 水热hydrothermal90 磨损性wear91 凝固solidification92 贮氢hydrogen93 磨损性能wear94 球磨milling95 分数fraction96 剪切shear97 氧化物oxide98 直径diameter99 蠕变creep100弹性模量modulus留纞銅雀樓12:53:02101储氢hydrogen102压电piezoelectric103电阻resistivity104纤维增强composites105纳米复合材料preparation106制备出prepared107磁性能magnetic108导电conductive109晶粒尺寸size110弯曲bending111光催化tio112非晶合金amorphous113铝基复合材料composites114金刚石diamond115沉淀precipitation116分散dispersion117电阻率resistivity118显微组织microstructure119sic复合材料sic120硬质合金cemented121摩擦系数friction122吸波absorbing123杂化hybrid124模板template125催化剂catalyst126塑性plastic127晶体crystal128sic颗粒sic129功能材料materials130铝合金alloy131表面积surface132填充filled133电导率conductivity134控溅射sputtering135金属基复合材料composites136磁控溅射sputtering137结晶crystallization138磁控magnetron139均匀uniform140弯曲强度strength141纳米碳carbon142偶联coupling143电化学性能electrochemica l144及性能properties145al复合材料composite146高分子polymer147本构constitutive 148晶格lattice 149编织braided150断裂韧性toughness151尼龙nylon 152摩擦磨损性friction153耐磨性wear154摩擦学tribological 155共晶eutectic156聚丙烯polypropylene 157半导体semiconductor 158偶联剂coupling159泡沫foam 160前驱precursor161高温合金superalloy162显微结构microstructure 163氧化铝alumina164扫描电子显微镜sem165时效aging166熔体melt167凝胶法sol-gel168橡胶rubber169微结构microstructure170铸造casting171铝基aluminum172抗拉强度strength173导热thermal174透射电子显微镜tem175插层intercalation176冲击强度impact177超导superconducting178记忆效应memory179固化curing180晶须whisker181溶胶-凝胶法制sol-gel182催化catalytic183导电性conductivity184环氧epoxy185晶界grain186前驱体precursor187机械性能mechanical188抗弯strength189粘度viscosity190热力学thermodynamic191溶胶-凝胶法制备sol-gel192块体bulk193抗弯强度strength194粘土clay195微观组织microstructure196孔径pore197玻璃纤维glass198压缩compression199摩擦磨损wear200马氏体martensitic留纞銅雀樓12:53:57201制得prepared202复合材料性能composites203气氛atmosphere204制备工艺preparation205平均粒径size206衬底substrate207相组成phase208表面处理surface209杂化材料hybrid210材料中materials211断口fracture212增强复合材料composites213马氏体相变transformation214球形spherical215混杂hybrid216聚氨酯polyurethane217纳米材料nanometer218位错dislocation219纳米粒子particles220表面形貌surface221试样samples222电学properties223有序ordered224电压voltage225析出phase226拉伸性tensile227大块bulk228立方cubic229聚苯胺polyaniline230抗氧化性oxidation231增韧toughening 232物相phase 233表面改性modification 234拉伸性能tensile235相结构phase236优异excellent237介电常数dielectric238铁电ferroelectric 239复合材料力学性能composites 240碳化硅sic 241共混blends242炭纤维carbon243复合材料层composite244挤压extrusion245表面活性剂surfactant246阵列arrays 247高分子材料polymer248应变率strain249短纤维fiber250摩擦学性能tribological 251浸渗infiltration252阻尼性能damping 253室温下room254复合材料层合板composite255剪切强度strength256流变rheological257磨损率wear258化学气相沉积deposition259热膨胀thermal260屏蔽shielding261发光luminescence262功能梯度functionally263层合板laminates264器件devices265铁氧体ferrite266刚度stiffness267介电性能dielectric268xrd分析xrd269锐钛矿anatase270炭黑carbon271热应力thermal272材料性能properties273溶胶-凝胶法sol-gel274单向unidirectional275衍射仪xrd276吸氢hydrogen277水泥cement278退火温度annealing279粉末冶金powder280溶胶凝胶sol-gel281熔融melt282钛酸titanate283磁合金magnetic284脆性brittle285金属间化合物intermetallic286非晶态合金amorphous287超细ultrafine288羟基磷灰石hydroxyapatite289各向异性anisotropy290镀层coating291颗粒尺寸size292拉曼raman293新材料materials294tic颗粒tic295孔隙率porosity296制备技术preparation297屈服强度strength298金红石rutile299采用溶胶-凝胶sol-gel300电容量capacity301热电thermoelectric302抗菌antibacterial303聚酰亚胺polyimide304二氧化硅silica305放电容量capacity306层板laminates307微球microspheres308熔点melting309屈曲buckling310包覆coated311致密化densification312磁化强度magnetization313疲劳寿命fatigue314本构关系constitutive315组织结构microstructure316综合性能properties317热塑性thermoplastic318形核nucleation319复合粒子composite320材料制备preparation 321晶化过程crystallization 322层间interlaminar 323陶瓷基ceramic324多晶polycrystalline 325纳米结构nanostructures 326纳米复合composite327热导率conductivity 328空心hollow329致密度density330x射线衍射仪xrd331层状layered332矫顽力coercivity333纳米粉体powder334界面结合interface335超导体superconducto r336衍射分析diffraction337纳米粉powders338磨损机理wear339泡沫铝aluminum340进行表征characterized 341梯度功能gradient342耐磨性能wear343平均粒particle344聚苯乙烯polystyrene345陶瓷基复合材料composites346陶瓷材料ceramics347石墨化graphitization348摩擦材料friction349熔化melting350多层multilayer留纞銅雀樓12:55:33351及其性能properties352酚醛树脂resin353电沉积electrodeposition354分散剂dispersant355相图phase356复合材料界面interface357壳聚糖chitosan358抗氧化性能oxidation359钙钛矿perovskite360分层delamination361热循环thermal362氢量hydrogen363蒙脱石montmorillonite364接枝grafting365导率conductivity366放氢hydrogen367微粒particles368伸长率elongation369延伸率elongation370烧结工艺sintering371层合laminated372纳米级nanometer373莫来石mullite374磁导率permeability375填料filler376热电材料thermoelectric377射线衍射ray378铸造法casting379粒度分布size380原子力afm381共沉淀coprecipitation382水解hydrolysis383抗热thermal384高能球ball385干摩擦friction386聚合物基polymer387疲劳裂纹fatigue388分散性dispersion389硅烷silane390弛豫relaxation391物理性能properties392晶相phase393饱和磁化强度magnetization394凝固过程solidification395共聚物copolymer396光致发光photoluminescence397薄膜材料films398导热系数conductivity399居里curie400第二相phase401复合材料制备composites402多孔材料porous403水热法hydrothermal404原子力显微镜afm405压电复合材料piezoelectric 406尼龙6 nylon407高能球磨milling408显微硬度microhardness 409基片substrate410纳米技术nanotechnolog y411直径为diameter412织构texture413氮化nitride414热性能properties415磁致伸缩magnetostricti on416成核nucleation417老化aging 418细化grain 419压电材料piezoelectric 420纳米晶amorphous 421si合金si 422复合镀层composite423缠绕winding424抗氧化oxidation425表观apparent426环氧复合材料epoxy 427甲基methyl428聚乙烯polyethylene429复合膜composite430表面修饰surface431大块非晶amorphous432结构材料materials433表面能surface434材料表面surface435疲劳性能fatigue436粘弹性viscoelastic437基体合金alloy438单相phase439梯度材料material440六方hexagonal441四方tetragonal442蜂窝honeycomb443阳极氧化anodic444塑料plastics445超塑性superplastic446sem观察sem447烧蚀ablation448复合薄膜films449树脂基resin450高聚物polymer451气相vapor452电子能谱xps453硅烷偶联coupling454团聚particles455基底substrate456断口形貌fracture457抗压强度strength458储能storage459松弛relaxation460拉曼光谱raman461孔率porosity462沸石zeolite463熔炼melting464磁体magnet465sem分析sem466润湿性wettability467电磁屏蔽shielding468升温heating469致密dense470沉淀法precipitation471差热分析dta472成功制备prepared473复合体系composites474浸渍impregnation475力学行为behavior476复合粉体powders477沥青pitch478磁电阻magnetoresistance479导电性能conductivity480光电子能谱xps481材料力学mechanical482夹层sandwich483玻璃化glass484衬底上substrates485原位复合材料composites486智能材料materials487碳化物carbide488复相composite489氧化锆zirconia490基体材料matrix491渗透infiltration492退火处理annealing493磨粒wear494氧化行为oxidation495细小fine 496基合金alloy497粒径分布size498润滑lubrication499定向凝固solidification 500晶格常数lattice留纞銅雀樓12:56:20501晶粒度size 502颗粒表面surface503吸收峰absorption504磨损特性wear505水热合成hydrothermal 506薄膜表面films507性质研究properties508试件specimen509结晶度crystallinity 510聚四氟乙烯ptfe511硅烷偶联剂silane512碳化carbide513试验机tester514结合强度bonding 515薄膜结构films516晶型crystal517介电损耗dielectric518复合涂层coating519压电陶瓷piezoelectric520磨损量wear521组织与性能microstructure522合成法synthesis523烧结过程sintering524金属材料materials525引发剂initiator526有机蒙脱土montmorillonite527水热法制hydrothermal528再结晶recrystallization529沉积速率deposition530非晶相amorphous531尖端tip532淬火quenching533亚稳metastable534穆斯mossbauer535穆斯堡尔mossbauer536偏析segregation537种材料materials538先驱precursor539物性properties540石墨化度graphitization541中空hollow542弥散particles543淀粉starch544水热法制备hydrothermal545涂料coating546复合粉末powder547晶粒长大grain548sem等sem549复合材料组织microstructure550界面结构interface551煅烧calcined552共混物blends553结晶行为crystallization554混杂复合材料hybrid555laves相laves556摩擦因数friction557钛基titanium558磁性材料magnetic559制备纳米nanometer560界面上interface561晶粒大小size562阻尼材料damping563热分析thermal564复合材料层板laminates565二氧化钛titanium566沉积法deposition567光催化剂tio568余辉afterglow569断裂行为fracture570颗粒大小size571合金组织alloy572非晶形成amorphous573杨氏模量modulus574前驱物precursor575过冷alloy576尖晶石spinel577化学镀electroless578溶胶凝胶法制备sol-gel579本构方程constitutive580磁学magnetic581气氛下atmosphere 582钛合金titanium583微粉powder584压电性piezoelectric 585晶须sic 586应力应变strain587石英quartz 588热电性thermoelectric 589相转变phase590合成方法synthesis591热学thermal592气孔率porosity593永磁magnetic594流变性能rheological 595压痕indentation 596热压烧结sintering597正硅酸乙酯teos598点阵lattice 599梯度功能材料fgm600带材tapes 601磨粒磨损wear602碳含量carbon603仿生biomimetic 604快速凝固solidification605预制preform606差示dsc607发泡foaming608疲劳损伤fatigue609尺度size610镍基高温合金superalloy611透过率transmittance612溅射法制sputtering613结构表征characterization614差示扫描dsc615通过semsem616水泥基cement617木材wood618分析tem619量热calorimetry620复合物composites621铁电薄膜ferroelectric622共混体系blends623先驱体precursor624晶态crystalline625冲击性能impact626离心centrifugal627断裂伸长率elongation628有机-无机organic-inorganic629块状bulk630相沉淀precipitation631织物fabric632因数coefficient633合成与表征synthesis634缺口notch635靶材target636弹性体elastomer637金属氧化物oxide638均匀化homogenization639吸收光谱absorption640磨损行为wear641高岭土kaolin642功能梯度材料fgm643滞后hysteresis644气凝胶aerogel645记忆性memory646磁流体magnetic647铁磁ferromagnetic648合金成分alloy649微米micron650蠕变性能creep留纞銅雀樓12:56:46651聚氯乙烯pvc652湮没annihilation653断裂力学fracture654滑移slip655差示扫描量热dsc656等温结晶crystallization657树脂基复合材料composite658阳极anodic659退火后annealing660发光性properties661木粉wood662交联crosslinking663过渡金属transition664无定形amorphous665拉伸试验tensile666溅射法sputtering667硅橡胶rubber668明胶gelatin669生物相容性biocompatibility670界面处interface671陶瓷复合材料composite 672共沉淀法制coprecipitation 673本构模型constitutive 674合金材料alloy675磁矩magnetic676隐身stealth677比强度strength678改性研究modification 679采用粉末powder680晶粒细化grain681抗磨wear 682元合金alloy683剪切变形shear684高温超导superconducti ng685金红石型rutile686晶化行为crystallization 687催化性能catalytic688热挤压extrusion689微观microstructure 690tem观察tem691缺口冲击impact 692生物材料biomaterials693涂覆coating694纳米氧化nanometer695x射线光电子能谱xps696硅灰石wollastonite697摩擦条件friction698衍射峰diffraction699块体材料bulk700溶质solute701冲击韧性impact702锐钛矿型anatase703凝固组织microstructure704磨损试验机tester705丙烯酸甲酯pmma706光谱raman707减振damping708聚酯polyester709体材料materials710航空aerospace711光吸收absorption712韧化toughening713疲劳裂纹扩展fatigue714超塑superplastic715凝胶法制备gel716半导体材料semiconductor717剪应力shear718发光材料luminescence719凝胶法制gel720甲基丙烯酸甲酯pmma721硬质hard722摩擦性能friction723电致变色electrochromic724超细粉powder725增强相reinforced726薄带ribbons727结构弛豫relaxation728光学材料materials729sic陶瓷sic730纤维含量fiber731高阻尼damping732镍基nickel733热导thermal734奥氏体austenite735单轴uniaxial736超导电性superconductivity737高温氧化oxidation738树脂基体matrix739含能energetic740粘着adhesion741穆斯堡尔谱mossbauer742脱层delamination743反射率reflectivity744单晶高温合金superalloy745粘结bonded746快淬quenching747熔融插层intercalation748外加applied749钙钛矿结构perovskite750减摩friction751复合氧化物oxide。

【专业英语】材料科学与工程

【专业英语】材料科学与工程
材料科学与工程专业英语
Part 1 Introduction to materials science and engineering
• Unit 1 Physical and chemical properties of materials
• Unit 2 Mechanical properties of materials
材料科学与工程专业英语
Unit 1 Physical and chemical properties of materials
• Physical properties are those that can be observed without changing the identity of the substance. The general properties of matter such as color, density, hardness, are examples of physical properties. Properties that describe how a substance changes into a completely different substance are called chemical properties. Flammability and corrosion/oxidation resistance are examples of chemical properties.
材料科学与工程专业英语
材料科学与工程专业英语
ห้องสมุดไป่ตู้
• In general, some of the more important physical and chemical properties from an engineering material standpoint include phase transformation temperatures, density, specific gravity, thermal conductivity, linear coefficient of thermal expansion, electrical conductivity and resistivity, magnetic permeability, and corrosion resistance, and so on. 磁导率

材料科学与工程专业外语_字母排序版

材料科学与工程专业外语_字母排序版

actuators 传感器,驱动器actuators致动器Advanced ceramics 先进陶瓷材料AFM(Atomic Force Microscope)原子力显微镜Agglomerates (or aggregates) and aerogels 凝聚物和气凝胶Alumina氧化铝Amorphous 非晶的Anion 阴离子anisotropic各向异性的annealing退火anode 阳极axial projection轴投影BAWs bulk acoustic waves (声体波)BCC body-centered cubic体心立方Bioceramics 生物陶瓷biodegradable 生物所能分解的Biodegradable systems 生物可降解系统biodegradable可生物降解的bio-inspired medical prostheses仿生医学人工器官biological tagging生物标记biomedical applications 生物医学应用biomimetic 仿生的biomolecular single-electron devices 生物分子单电子器件Biotechnologybivalent/divalent 二价Bulk material 体材料Capacitor 电容器Catalyst 催化剂Cathode 阴极Cation 阳离子Cement水泥; 接合剂ceramic based composites 陶瓷基复合材料Ceramic coating 陶瓷涂层Chemical Composition化学成分Chemical reagent化学试剂civil engineering土木工程Cold isostatic pressing(CIPing) 冷等静压成形compacting equipment压实设备compatibilizer增容剂complementary metal-oxide semiconductor CMOS (互补金属氧化物半导体)Composition and structure 组成结构Condensed Matter Physics 凝聚态物理Considerable complexity相当复杂Consumer appliance 家电Container industry 集装箱业coordination number 配位数corrosion resistance耐(腐)蚀性, 耐蚀力, 抗腐(蚀)性cost-efficient automated computer-controlled looms造价低廉的自动化电脑控制的织机Covalent Valence共价:Covalent 共价键cross-disciplinary, 跨学科的Crystal structure 晶体结构crystalline 结晶的Crystallographic orientation 晶向degradable 能够自然分解的; 可降低的; 可降级的Dielectric constant 介电常数Differential Thermal Analysis,(DTA)差热分析domain 范围,领域,畴Ductility 延展性elastic modulus 弹性模量Elastodynamics 弹性动力学electrical conductivity电导率Electronegativity 电负性Electronic ceramics 电子陶瓷Electrostatic 静电的; 静电学的Energy levels 能级environmentally friendly环境友好,对环境无危害的fatigue resistance 抗疲劳强度fatigue resistance耐疲劳性FCC face-centered cubic 面心立方Ferrite 铁素体ferroconcrete钢筋混凝土; 钢骨水泥Ferroelasticity 铁弹性ferroelectric 铁电fine ceramics 精细陶瓷Fluorescent 萤光的fracture toughness 断裂韧性free electron gas自由电子气functional ceramics 功能陶瓷Functional materialGMR giant magnetoresistive effect 巨磁阻效应Gradient 梯度graphene n. 石墨烯Graphite石墨hardness硬度HCP hexagonal close-packed 六方密堆积Heat capacity 热容heat treatment furnace热处理炉Heat treatment热处理Heterogeneous structure多相结构; 多相组织; 不均匀组织heterogenous异质的heterojunction异质结high modulus fibre高模量纤维High-temperature superconductors 高温超导体homogenous同质的HRTEM高分辨透射电子显微镜high resolution transmission electronmicroscopyImportant progress 重大进展Incoherent or coherent interfaces非连续和连续界面Index of refraction 折射率induction hardening machine感应淬火机Infrared 红外Inhomogenous=heterogenous 异质的inorganic and nonmetallic materials 无机非金属材料Integrated circuit chip 集成电路芯片ICIntegrated circuits pakages 集成电路封装integrated circuit集成电路Interatomic spacing 原子间距interdigitated electrodes 叉指电极interdisciplinary 交叉学科的intermetallic compound金属间化合物Ionic 离子isotropic各向同性的Laser beam treatment 激光处理layered nanostructures 层状纳米结构lead-free materials 无铅材料life cycle assessment(LCA) 生命周期评估(LCA)light-emitting diode LED 发光二极管Lithography photolithography photo lithography光刻技术Lithography, photolithograpy 光刻Long and short range order 长程有序性low corrosion steel低腐蚀钢lubrication 润滑machine tools 机床Magnetic ferrites磁性铁氧体Magnetic 磁magnetoelastic磁致弹性的Magnetoresistive磁阻的Magnetostriction磁致伸缩Material properties 材料性能mechanical characteristics力学特性Mechanical reliability 机械可靠性Mechanical strength机械强度,力学强度Membrane film 膜片Mesoscopic scales介观尺度metallic materials 金属材料metal-organic chemical vapor deposition (MOCVD) 金属有机化学气相沉积系统micro electro mechanical systems MEMSs 微机电系统Microscopic-mesoscopic-macroscopic 微观-介观--宏观MicrostructureMiniaturization and integretion微型化和集成化Miniaturization of devices 小型化器件Modeling and numerical simulation 建模与模拟molecular beam epitaxy (MBE) 分子束外延Molecular weight分子量monolithic 单片multiferroics 多铁multifunctional materials 多功能材料NanochemistryNanometer-sized powder纳米尺寸粉体Nanosized efects 纳米尺寸效应NanostructureNanotechnologyNanotube,nanorod, carbon Nanotube纳米管,纳米棒,碳纳米管Narrow particle size distribution窄的粒度分布net-shape-form nanophase ceramic 网状纳米相陶瓷nonlinear非线性的On the order of 在某某数量级Optoelectroinc=photoelectronic光电orders of magnitude 数量级Organic light emitting diodes 有机发光二极管Organometallic Isotropic/anisotropic Anisotropic各向同性的/各向异性的paraelectric phases 顺电相Particulate (分散的)微粒(的)PECVD Plasma Enhanced Chemical Vapour Deposition 等离子体增强化学汽相沉积Performance 使用性能Periodic Table of Elements 元素周期表Permittivity =dielectric constantperovskite structure钙钛矿结构Perovskite钙钛矿PFM压电响应力显微镜Piezoresponse Force Microscopy photochromism对光反应变色Photomagnetic effect光磁效应Piezoelectric properties 压电性能Piezoelectricity 压电性Piezoelectric压电的piezoelelctric ceramic 压电陶瓷Piezolelctrics 压电性Piezotransformers压电陶瓷变压器plain-carbon steel普通碳钢Polarizability极化率Polycrystalline 多晶Polyethylene PE聚乙烯polymer composite高分子复合材料Porous catalysts and membranes 多孔催化剂和膜power tool 手提电动工具precipitation process沉淀过程Precipitation 沉淀Processing Parameters 加工参数product performance产品性能Protective coating保护涂层pseudocubic赝立方Pulsed laser deposition(PLD) 脉冲激光沉积pyroelectric热释电Quantum well/dot 量子阱quenching淬火radio frequency magnetron sputtering 射频磁控溅射raw material原材料Refractory耐火材料relaxor ferroelectrics 弛豫铁电体restorative 恢复健康的RHEED Reflection High Energy Electron Diffraction 反射高能电子衍射Sapphire 蓝宝石scaled up扩大规模,比例增大Self-assemble v. self-assembly n., adj. 自组装self-lubrication自润滑semiconductor on insulator SOISEM扫描式电子显微镜(=scanning electron microscope)sensors, 传感器side effect 副作用significant breakthough 重要进展Silicon nitride 氮化硅SIMS secondary ion mass spectroscopy 二次离子质谱(法) sintering 烧结size effects 尺寸效用smart materials智能材料SOFC固体氧化物燃料电池solid oxide fuel cellSol-gel 溶胶凝胶法Solid solution 固溶体Solid state chemistry 固体化学solute 溶质solvent 溶剂SPM扫描力显微镜(Scanning Force Microscope)Spray 喷stainless steel 不锈钢state of art 研究现状steel reinforcement钢筋STM扫描隧道显微镜(scanning tunneling microscope stress analysis 应力分析structural ceramics 结构陶瓷Structure/functional ceramics 结构、功能陶瓷Substrate 衬底Superamolecular 超晶格superconductive oxides 超导氧化物Superconductivity超导Superconductor超导体superior wear resistance优越的耐磨性Superlattice超晶格Supersaturated solid solution过饱和固溶体surface acoustic wave SAW 声表面波Surface effect表面效应surface finish表面光洁度surface hardening表面硬化Susceptibility 磁化率Synthesis and processing合成与制备过程telecommunication 无线电通讯tempering回火Template=templet 模板tetravalent/quadrivalent四价textile industry 纺织业textured growth 织构生长The archetypal bio-inspired synthesis route 典型的仿生合成路线The nearest-neighbor coordination 最近邻原子the outmost layer of electrons最外层的电子层theoretical simulation 理论模拟Thermal conductivity 导热性Thermochromism热致变色Thermodynamic热力学Thermogravimetric Analysis (TGA) 热重分析thermoplastic n. 热塑性塑料adj. 热塑性的tolerance公差transducers, 传感器transformer 变压器Transition metal 过渡金属Transportation industry 运输业trivalent三价well established 成熟的,已为大家接受的wurtzite structure: 纤锌矿结构XPS X射线光电子能谱X-ray photoelectron spectroscopyXRD X-ray Diffraction X射线衍射Yttria=yttrium oxide 钇Zirconia =zirconium dioxide 二氧化锆薄膜生长方法•射频磁控溅射radio frequency magnetron sputtering•金属有机化学气相沉积系统metal-organic chemical vapor deposition (MOCVD)•脉冲激光沉积Pulsed laser deposition(PLD)•溶胶-凝胶sol-gel•分子束外延molecular beam epitaxy (MBE)•PECVD Plasma Enhanced Chemical Vapour Deposition 等离子体增强化学汽相沉积材料检测方法•XRD X-ray Diffraction X射线衍射•XPS X射线光电子能谱X-ray photoelectron spectroscopy •AFM原子力显微镜(Atomic Force Microscope)•SPM扫描力显微镜(Scanning Force Microscope)•PFM压电响应力显微镜Piezoresponse Force Microscopy •SEM扫描式电子显微镜(=scanning electron microscope)•HRTEM高分辨透射电子显微镜high resolution transmission electronmicroscopy•STM扫描隧道显微镜(scanning tunneling microscope •RHEED Reflection High Energy Electron Diffraction 反射高能电子衍射•SIMS secondary ion mass spectroscopy 二次离子质谱(法) •差热分析Differential Thermal Analysis,(DTA)•热重分析Thermogravimetric Analysis (TGA)。

材料科学与工程专业英语总结

材料科学与工程专业英语总结

专业英语总结Stock 原料Extrusion 挤压Reaction injection moulding process 反应注射模型Blow moulding 吹塑模型Thermoforming 热成型Calendering 压延成型Whisker 晶须Eutectic 共晶组织Eutectoid共析的Transportation vehicles 交通工具Propulsion 推进器Vacuum melting 真空熔炼Investment casting 熔铸Catalyst 催化剂Net export 净出口额Turbine disk 涡轮盘Turbine blade 涡轮机叶片Combustor 燃烧室Periphery 外缘Leading edge 前缘V ocabularyMetallic 金属的Polymeric高分子的Ceramic 陶瓷的Composite 复合材料Electronic 电子学Organic 有机物Inorganic 无机的Ferrous 铁素体Nonferrous ?非铁素体Conductor 导体Insulator 绝缘体Furnace 加热炉Wear resistance 耐磨性Brittleness 脆性Fiber 纤维,光纤Intermetallic 金属间化合物Crystalline 晶态,晶粒Ductile 韧性Composition 构成Coordination number 配位数Atomic packing factor 原子堆垛密度FCC BCC HCPEdge/ screw dislocation 韧型、螺型位错Grain boundary 晶界Stacking fault 堆垛层错Impurity 杂质Vacancy 空位Passive-film 钝化膜Pitting corrosion 点蚀Stress-corrosion cracking 应力腐蚀断裂Concentration 浓度Driving force 驱动力,推动力Yield strength 屈服强度Toughness 韧性Dispersion 弥散Austenite 奥氏体Bainite 贝氏体Martensite 马氏体Cementite (iron carbide; Fe3C) 渗碳体Pearlite 珠光体Ferrite 铁素体Artificial ageing 人工时效Heat treatable 可热处理的Extrusion 挤压Drawing 拉拔Anneal 退火Recrystallization 再结晶Grain size 晶粒尺寸Grain refinement 晶粒细化Precipitation 沉淀物?Synthesize 合成Carbide 碳化物Oxide 氧化物Sensor 传感器Sinter 烧结Self-combustion 自燃Hydrothermal 水热?Precursor 前驱体Sol 溶胶Gel 凝胶Sialon 塞隆Extrusion 挤压Injection moulding 注射成型Blow moulding 吹塑成型Whisker 晶须Anisotropy 各向异性Reinforce 加强,强化Eutectic 共晶组织Eutectoid 先共析,共析体1 How types can materials be divided into? What types of metallic materials are there?2 What are the main crystalline defects(晶体缺陷)? Pls give a detailed description.3What are the principle types of heat treatment of steels?(钢的热处理原理)4Which is used to express the magnitude(量)and direction(方向)of dislocation(位错)of lattice distortion(晶体畸变)?答案:柏氏矢量Burgers Vecror5What act as the anode and cathode of a pitting corrosion cell respectively?6Which strengthening method can achieve good strength and ductility? Pls write down the relationship or equation.7What are the principle types of heat treatment of steel? What are the main affecting factors?8By which way the aluminium alloy can be strengthened?9How many ways to strengthen materials? And what are they?10What’s the effect of gr ain refinement on the mechanical properties?11What is PVD and CVD?12Which process or technique can be used to produce powders, monoliths, fibres, coatings and composites?13What is the most important processing and fabricating techniques for thermoplastics?14Which moulding processes are generally used for shaping thermoplastics?15What are the two main ingredient of metal matrix composites?16Pls give three types of metal matrix composite.17What is the remarkable characteristics of fibre-reinforced metals compared to the most metals and alloys?18What is the function of homogeneous or heterogeneous composite nanostructure?。

材料科学与工程专业英语课后答案

材料科学与工程专业英语课后答案

1.“Materials science"involves investigating the relationships that exist between the structures and properties of materials. In contrast, "Materials engineering" involves, on the basis of these structur e-property correlations, designing or engineering the structure of a material to produce a predeter mined set of properties.“材料科学”涉及研究材料的结构和性能之间的关系。

相反,“材料工程”是指在这些结构和性能相关性的基础上,基于预期的性能来设计或生产有预定性能的材料。

2.Virtually all important Properties of solid materials may be grouped into six different categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative实际上,固体材料的所有重要性质都可以分为六类:机械、电气、热、磁、光学和腐蚀性。

3.In addition to structure and properties, two other important components are involved in the scien ce and engineering of materials- namely“processing”and“performance”.除了结构和性能之外,材料科学和工程还涉及另外两个重要的组成部分,即“加工”和“性能”。

材料科学与工程专业学习英语

材料科学与工程专业学习英语

《材料科学与工程专业英语》Unit1 Materials Science and Metallurgical EngineeringMaterials are properly more deep-seated in our culture than most of us realize. Trans -portation, housing, clothing, communication, recreation and food production--virtually every segment of our everyday lives is influenced to one degree or another by materials. Historically, the development and advancement of societies have been intimately tied to the members' abilities to produce and manipulate materials to fill their needs. In fact, early civilizations have been designated by the level of their materials development (i.e.Stone Age, Bronze Age).The earliest humans has access to only a very limited number of materials, those that occur naturally stone, wood, clay, skins, and so on. With time they discovered techniques for producing materials that had properties superior to those of the natural ones: these new materials included pottery and various metals. Furthermore, it was discovered that the properties of a material could be altered by heat treatments and by the addition of other substances. At this point, materials utilization was totally a selection process, that is, deciding from a given, rather limited set of materials the one that was best suited for an application by virtue of its characteristic. It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties. This knowledge, acquired in the past 60 years or so, has empowered them to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of different materials have evolved with rather specialized characteristics that meet the needs of our modern and complex society.The development of many technologies that make our existence so comfortable has been intimately associated with the accessibility of suitable materials. Advancement in the under--standing of a material type is often the forerunner to the stepwise progression of a technology. For example, automobiles would not have been possible without the availability of inexpensive steel of some other comparable substitutes. In our contemporary era, sophisticated electronic devices rely on components that are made from what are called semiconducting materials.Materials Science EngineeringMaterials science is an interdisciplinary study that combines chemistry, physics, metallurgy, engineering and very recently life sciences. One aspect of materials science involves studying and designing materials to make them useful and reliable in the service of humankind. It strives for basic understanding of how structures and processes on the atomic scale result in the properties and functions familiar at the engineering level. Materials scientists are interested in physical and chemical phenomena acting across large magnitudes of space and time scales. In this regard it differs from physics of chemistry where the emphasis is more on explaining the properties of pure substances. In materials science there is also an emphasis on developing and using knowledge to understand how the properties of materials can be controllably designed by varying the compositions, structures, and the way in which the bulk and surfaces phase materials are processed.In contrast, materials engineering is, on the basis of those structure properties correlations, designing or engineering the structure of a material to produce a predetermined set of properties. In other words, materials engineering mainly deals with the use of materials in design and how materials are manufactured."Structure" is a nebulous term that deserves some explanation. In brief, the structure of a material usually relates to the arrangement of its internal components. Subatomic structure involves electrons within the individual atoms and interactions with their nuclei. On an atomic level, structure encompasses the organization of atoms or molecules relative to one another. The next large structural realm, which contains large groups of atoms that are normally agglomerated together, is termed "microscopic" meaning that which is subject to direct observation using some type of microscope. Finally, structural elements that may be viewed with the naked eye are termed "macroscopic".The notion of "property" deserves elaboration. While in service use, all materials are exposed to external stimuli that evoke some type of response. For example, a specimen subject to forces will experience deformation; or a polished metal surface will reflect light. Property is a material trait in terms of the kind and magnitude of response to a specific imposed stimulus. Generally, definitions of properties are made independent of material shape and size.Virtually all important properties of solid materials may be grouped into six different categories; mechanical, electrical, thermal, magnetic, optical, and deteriorative. For each there is s characteristic type of stimulus capable of provoking different responses. Mechanical properties relate deformation to an applied load or force: examples include elastic modulus and strength. For electrical properties, such as electrical conductivity and dielectric constant, the stimulus is an electric filed. The thermal behavior of solids can be represented in terms of heat capacity and thermal conductivity. Magnetic properties demonstrate the response of a material to the application of a magnetic field. For optical properties, the stimulus is electromagnetic or light radiation: index of refraction and reflectivity are representative optical properties. Finally, deteriorative characteristics indicate the chemical reactivity of materials.In addition to structure and properties, two other important components are involved in the science and engineering of materials, namely "processing" and "performance". With regard to the relationships of these four components, the structure of a material will depend on how it is processed. Furthermore, a material's performance will be a function of its properties. Thus, the interrelationship between processing, structure, properties, and performance is linear as follows:Processing→Structure→Properties→PerformanceWhy Study Materials Science and Engineering?Why do we study materials? Many an applied scientists or engineers, whether mechanical, civil, chemical, or electrical, will be exposed to a design problem involving materials at one time or another. Examples might include a transmission gear, the superstructure for a building, an oil refinery component, or an integrated circuit chip. Of course, materials scientists and engineers are specialists who are totally involved in the investigation and design of materials.Many times, a materials problem is to select the right material from many thousands available ones. There are several criteria on which the final decision is normally based. First of all, the in-service conditions must be characterized. On only rare occasion does a material possess the maximum or ideal combination of properties. Thus, it may be necessary to trade off one characteristic for another. The classic example involves strength and ductility; normally, a material having a high strength will have only a limited ductility. In such cases a reasonable compromise between two or more properties may be necessary.A second selection consideration is any deterioration of material properties that may occur during service operation. For example, significant reductions in mechanical strengthmay result from exposure to elevated temperatures or corrosive environments.Finally, probably the overriding consideration is economics. What will the finished product cost? A material may be found that has the ideal set of properties, but is prohibitively expensive. Here again, some compromise is inevitable. The cost of a finished piece also includes any expense incurred during fabrication.The more familiar an engineer or scientist is with the various characteristics and structure-property relationships, as well as processing techniques of materials, the more proficient and confident he or she will be to make judicious materials choices based on these criteria.(Selected from Materials Science and Engineering: AnIntroduction, by William D Callister,2002)New Words and Expressionspottery n. 陶瓷by virtue of 依靠(……力量),凭借,由于,因为empower vt.授权,准许,使能够empower sb.to do sth. 授权某人做某事forerunner n. 先驱(者),传令官,预兆stepwise a. 逐步地,分阶段地interdisciplinary a. 交叉学科的metallurgy n. 冶金学nebulous a. 星云的,云雾状的,模糊的,朦胧的agglomerate n. 大团,大块;a.成块的,凝聚的elaboration n. 详尽的细节,解释,阐述electrical conductivity 电导性,电导率dielectric constant 介电常数thermal conductivity 热导性,热导率heat capacity 热容refraction n. 衍射reflectivity n. 反射ductility n. 延展性corrosive a. 腐蚀的,蚀坏的,腐蚀性的;n. 腐蚀物,腐蚀剂overriding a. 最重要的;高于一切的prohibitive a. 禁止的,抵制的judicious a. 明智的criterion n. 标准,准则,尺度Notes1. It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties.这是一个强调句,强调时间。

材料科学专业英语词汇(U)

材料科学专业英语词汇(U)

材料科学专业英语词汇(U)ulexite 硼酸钠方解石ultimate analysis 元素分析ultimate line 住留谱线ultimate properties 极限特性ultimate strain 极限应变ultimate strength 极限强度ultra filter 超泸器ultra marine 群青ultra-high-molecular-weight polyethylene 超高分子量聚乙烯ultra-micro crystal 超微晶体ultra-micro-analysis 超微分析ultra-microscope 起显微镜ultra-red ray 红外线ultra-violet absorbing glass 吸紫外线玻璃ultra-violet ray intercepting glass 防紫外线玻璃ultra-violet ray transmitting glass 透紫外线玻璃ultrabasic rock 超硷性岩ultracentrifugation 超离心分离ultrafiltration 超滤ultrafiltration membranes 超滤膜ultramarine blue 群青ultrasonic cleaning equipment 超音波洗涤装置ultrasonic degradation 超音波退解ultrasonic energy 超音波装置ultrasonic equipment 超音波设备ultrasonic fabrication 超音波能ultrasonic frequencies 超音频率ultrasonic horn 超音波喇叭形辐射体ultrasonic inserting 超音波嵌镶ultrasonic power density 超音波输出功率密度ultrasonic radiation 超音波辐射ultrasonic sensing method 超音波感测器ultrasonic sewing 超音波缝制ultrasonic spray cleaning equipment 超音波喷洗洗条装置ultrasonic test 超声检测ultrasonic testing 超音波试验ultrasonic welding 超音波焊接ultrasonic wire bonder 超音波引线压接机ultrasonic wire bonding 超音波引线压接ultraviolet absorbers 紫外光吸收剂ultraviolet absorption 紫外光吸收ultraviolet accelerometer 紫外光加速计ultraviolet inhibitors (see ultravioler-radiation absorbers)紫外光抑制剂ultraviolet irradiation 紫外光照射ultraviolet lamp heating cvd system 紫外线灯加热型cvd系统ultraviolet preirradiation 紫外光前照射ultraviolet radiation 紫外光辐射ultraviolet-absorption spectra 紫外光吸收光谱ultraviolet-absorption spectroscopy 紫外光吸收分光器ultraviolet-radiation absorbers 紫外光吸收剂umber 棕土unaccomplished moisture change 未完成水份变化unbleached sulfate pulp 未漂白硫酸盐纸浆unbleached sulfite pulp 未漂白亚硫酸盐纸浆unbound moisture 非结合水份undecylenic acid 十一烯酸undecylenyl alcohol 十一烯醇under water conveyor 水中输送机under-burnt 欠热under-clay 下盘黏土under-cooling 过冷under-etching 蚀刻不足under-glaze color 釉下色料under-glaze decoration 釉下彩undercoat 底涂层undercure 欠硫化undercuring 欠硫化undercut 切割不足,蚀刻不足underdrain equipment 底座排水装置underground contruction 地下建筑underwriter's laboratories 保险业实验室uniaxial crystal 单轴晶釉uniaxial orientation 单轴定向uniaxial orientation distribution 单轴定向分布uniaxial orientation parameter 单轴定向参数uniform copolymers 均匀共聚体uniformly extension 均匀延伸uniformly labeled substances 均匀标志物质union fabrics 混织品unit capacitance 单位容量unit cell constants 单位细胞定数unit of traversing the reel 拉绕线架unit per hour 每单位小时universal stage 万向承台unloader 卸载机,卸货机unpaired electrons 弧单电子unpaired-electron concentration 弧单电子浓度unperturbed chain 未干扰练unperturbed dimensions 未干扰量次亏氢酸unsaturated acids (see acid, unsaturated)亏氢化合物unsaturated rubbers 亏氢橡胶unsaturated-site reactions 亏氢位反应unsaturation 不饱和unsintered tape 不烧结带unzipping (see depolymerization)解练up cutting 上行切割up set 上移安置up-draught kiln 升焰窑up-draw process 上引法(玻)up-flow filter 往上流过滤器up-take 升道(玻)upper criticalsolution temperatures 上临界溶解温度upper lapping plate 上方磨盘/上定盘upper surface grinding width 上侧平面研磨宽度upstroke press 上升冲程压机uranium 铀uranium alkoxide polymer 铀醇聚体use temperature 使用温度user interface(gui)图表使用者介面utilities/utility program 应用工程,公用设施utility box 公用设施箱uv irradiation equipment 紫外线照射装置uv oven 紫外线乾燥炉uvarovite 钙铬石榴子石。

材料科学与工程专业英语第三版-翻译以及答案

材料科学与工程专业英语第三版-翻译以及答案

UNIT 1一、材料根深蒂固于我们生活的程度可能远远的超过了我们的想象,交通、装修、制衣、通信、娱乐(recreation)和食品生产,事实上(virtually),我们生活中的方方面面或多或少受到了材料的影响。

历史上,社会的发展和进步和生产材料的能力以及操纵材料来实现他们的需求密切(intimately)相关,事实上,早期的文明就是通过材料发展的能力来命名的(石器时代、青铜时代、铁器时代)。

二、早期的人类仅仅使用(access)了非常有限数量的材料,比如自然的石头、木头、粘土(clay)、兽皮等等。

随着时间的发展,通过使用技术来生产获得的材料比自然的材料具有更加优秀的性能。

这些性材料包括了陶瓷(pottery)以及各种各样的金属,而且他们还发现通过添加其他物质和改变加热温度可以改变材料的性能。

此时,材料的应用(utilization)完全就是一个选择的过程,也就是说,在一系列有限的材料中,根据材料的优点来选择最合适的材料,直到最近的时间内,科学家才理解了材料的基本结构以及它们的性能的关系。

在过去的100年间对这些知识的获得,使对材料性质的研究变得非常时髦起来。

因此,为了满足我们现代而且复杂的社会,成千上万具有不同性质的材料被研发出来,包括了金属、塑料、玻璃和纤维.三、由于很多新的技术的发展,使我们获得了合适的材料并且使得我们的存在变得更为舒适。

对一种材料性质的理解的进步往往是技术的发展的先兆,例如:如果没有合适并且没有不昂贵的钢材,或者没有其他可以替代(substitute)的东西,汽车就不可能被生产,在现代、复杂的(sophisticated)电子设备依赖于半导体(semiconducting)材料四、有时,将材料科学与工程划分为材料科学和材料工程这两个副学科(subdiscipline)是非常有用的,严格的来说,材料科学是研究材料的性能以及结构的关系,与此相反,材料工程则是基于材料结构和性能的关系,来设计和生产具有预定性能的材料,基于预期的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

– Lithography 光刻蚀 – Etching 刻蚀
top-down and bottom-up approaches
• Bottoom-up techniques
Bulk materials
– Sol-gel 溶胶-凝胶 – Precipitation 沉淀 – Flame pyrolysis 火焰分解 – Electrodeposition 电沉积 – Cluster assembly/consolidation 簇组装/固化 Thin fims – Self-assembly 自组装 – Self-limitaion – Self-alignment – Selected area deposition – Focused ion beam deposition 聚焦离子束沉积
4.The colloidal mask is removed.
3. The spheres size is reduced and a material B is deposited.
Types of nanostructured materis Special nanostructures Nano films nanocomposites
Properties of nanomaterials
• • • • • Lithography:光刻 Etching:刻蚀 Semiconductor:半导体 Self-organization:自组装 Fabrication:构建
Electric /optical effects
• De Broglie wavelength:德布罗意波 • Discrete energy level: 能级分裂
Different samples of CdSe nanocrystals in toluene solution
Electric /optical effects
Submicrotechnology
Objects Supramolecular Structures Atoms, molecules
objects
Structuring Top-down
Atomic world
Schematic comparison of top-down and bottom-up approaches
What is a Nanomaterial? • •“….materials structured on the sub-100 nanometer scale, which may be assembled and organised to yield nanodevices and nanosystems that possess new or improved properties.” • ICSTI Statement on Nanotechnology
Mechanical effects
• Dislocation:位错
L
Frank-Read mechanism
Unit 20 Creation of nanostructured materials
Macroscpic world
Bottom-up Self-organization
Microtechnology
• the changes of the chemical properties: increase of the surface to volume ratio • The changes of the physical properties :size parameters smaller than some critical length with certain properties
top-down and bottom-up approaches
• Top-down techniques
– Bulk materials
– Mechnaical attrition:机械研磨 – Ball milling:球磨 – Ion implantation:离子注入
– Thin fims – Micro/nano structuring
Colloidal lithography
2.A colloidal mask of a monolayer of spherical nonoparticles is formed by self-assembly
Coated with A
Plasma etching Material B B
AFM
• Quantum dots:量子点 • Quantum well:量子阱 • Quantum wire:量子线
Magnetic effects
• • • • • • Ferromagnietic materials:铁磁性材料 Thermal motion:热运动 Permanent magnetic:永磁性的 Paramagnet:顺磁体 Superparamagnetism: 超顺磁性 Giant magnetoresistive effect:巨磁阻效应
材料科学与工程专业英语
Special English for Materials Science and Engineering
Part 4 nanostructured materials
Unit19 Nanotechnology and nanostructured materials Unit 20 creation of nanostructured materials
相关文档
最新文档