专题六 第2讲 基本初等函数、函数与方程及函数的应用
2019年高考数学二轮复习2 第2讲 基本初等函数、函数与方程及函数的应用
第2讲 基本初等函数、函数与方程及函数的应用基本初等函数的图象与性质(综合型)指数与对数式的8个运算公式(1)a m ·a n =a m +n .(2)(a m )n =a mn .(3)(ab )m =a m b m .(4)log a (MN )=log a M +log a N .(5)log a M N =log a M -log a N .(6)log a M n=n log a M .(7)a log a N =N .(8)log a N =log b Nlog b a.[注意] (1)(2)(3)中,a >0,b >0;(4)(5)(6)(7)(8)中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.[典型例题](1)(2018·高考天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b(2)函数y =1x+ln|x |的图象大致为( )【解析】 (1)因为a =log 2e>1,b =ln 2∈(0,1),c =log 1213=log 23>log 2e>1,所以c >a >b ,故选D.(2)当x <0时,y =1x +ln(-x ),由函数y =1x ,y =ln(-x )单调递减,知函数y =1x +ln(-x )单调递减,排除C ,D ;当x >0时,y =1x +ln x ,此时f (1)=11+ln 1=1,而选项A 中函数的最小值为2,故排除A ,只有B 正确.故选B.【答案】 (1)D(2)B基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a >1和0<a <1两种情况讨论:当a >1时,两函数在定义域内都为增函数;当0<a <1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y =x α的性质要注意α>0和α<0两种情况的不同.[对点训练]1.(2018·武汉模拟)已知定义在R 上的函数f (x )=2|x-m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C.函数f (x )=2|x-m |-1为偶函数,则m =0,则f (x )=2|x |-1,a =f (log 0.53)=2log 23-1=2,b =f (log 25)=2log 25-1=4,c =f (0)=20-1=0.故c <a <b ,选C.2.已知a 是大于0的常数,把函数y =a x 和y =1ax +x 的图象画在同一平面直角坐标系中,不可能出现的是( )解析:选D.因为a >0,所以y =1ax +x 是对勾函数,若0<a ≤1,则当x >0时,y =1ax +x 的值大于等于2,函数y =a x 和y =1ax+x 的图象不可能有两个交点,故选D.函数的零点(综合型)函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[典型例题]命题角度一 确定函数零点的个数或其存在情况(1)已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)(2)设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos πx |-f (x )在区间⎣⎡⎤-12,32上零点的个数为( ) A .3 B .4 C .5D .6【解析】 (1)因为a >1,0<b <1,f (x )=a x +x -b , 所以f (-1)=1a-1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点.(2)由f (-x )=f (x ),得f (x )的图象关于y 轴对称.由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称.当x ∈[0,1]时,f (x )=x 3,所以f (x )在[-1,2]上的图象如图.令g (x )=|cos πx |-f (x )=0,得|cos πx |=f (x ),两函数y =f (x )与y =|cos πx |的图象在⎣⎡⎤-12,32上的交点有5个. 【答案】 (1)B (2)C判断函数零点个数的方法(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)利用零点存在性定理:利用该定理还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:对于给定的函数不能直接求解或画出图形时,常会通过分解转化为两个能画出的函数图象交点问题.命题角度二 已知函数零点的个数或存在情况求参数的取值范围(2018·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x, x ≤0ln x , x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【解析】 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C.【答案】 C利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的位置关系问题,从而构建不等式求解.[对点训练]1.(2018·洛阳第一次统考)已知函数f (x )满足f (1-x )=f (1+x )=f (x -1)(x ∈R ),且当0≤x ≤1时,f (x )=2x-1,则方程|cos πx |-f (x )=0在[-1,3]上的所有根的和为( )A .8B .9C .10D .11解析:选D.方程|cos πx |-f (x )=0在[-1,3]上的所有根的和即y =|cos πx |与y =f (x )在[-1,3]上的图象交点的横坐标的和.由f (1-x )=f (1+x )得f (x )的图象关于直线x =1对称,由f (1-x )=f (x -1)得f (x )的图象关于y 轴对称,由f (1+x )=f (x -1)得f (x )的一个周期为2,而当0≤x ≤1时,f (x )=2x -1,在同一坐标系中作出y =f (x )和y =|cos πx |在[-1,3]上的大致图象,如图所示,易知两图象在[-1,3]上共有11个交点,又y =f (x ),y =|cos πx |的图象都关于直线x =1对称,故这11个交点也关于直线x =1对称,故所有根的和为11.故选D.2.已知函数f (x )=e xx -kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是________.解析:由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e xx -kx =0只有一个根,即方程e x x 2=k 只有一个根,设g (x )=e x x 2,则函数g (x )=e xx 2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)e xx 3,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值g (2)=e 24,且x →0时,g (x )→+∞,x →-∞时,g (x )→0,x→+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e 24.答案:⎝⎛⎭⎫0,e 24函数的实际应用(综合型)[典型例题]某食品的保鲜时间y (单位:h)与储存温度x (单位:℃)满足的函数关系式为y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192 h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是________ h.【解析】 由已知,得e b =192,e 22k +b =48,两式相除得e 22k =14,所以e 11k =12,所以e 33k +b =(e 11k )3e b =18×192=24,即该食品在33 ℃的保鲜时间是24 h.【答案】 24应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[对点训练]1.某公司为激励创新,计划逐年加大研发资金投入.若该公司2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2021年 B .2022年 C .2023年D .2024年解析:选B.根据题意,知每年投入的研发资金增长的百分率相同,所以,从2018年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n-1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2022年投入的研发资金开始超过200万元,故选B.2.某工厂某种产品的年固定成本为250万元,每生产x 千件该产品需另投入的成本为G (x )(单位:万元),当年产量不足80千件时,G (x )=13x 2+10x ;当年产量不小于80千件时,G (x )=51x +10 000x -1 450.已知每件产品的售价为0.05万元.通过市场分析,该工厂生产的产品能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是________万元.解析:因为每件产品的售价为0.05万元,所以x 千件产品的销售额为0.05×1 000x =50x 万元.①当0<x <80时,年利润L (x )=50x -13x 2-10x -250=-13x 2+40x -250=-13(x -60)2+950,所以当x =60时,L (x )取得最大值,且最大值为L (60)=950万元;②当x ≥80时,L (x )=50x -51x -10 000x +1 450-250=1 200-⎝⎛⎭⎫x +10 000x ≤1 200-2x ·10 000x=1 200-200=1 000,当且仅当x =10 000x,即x =100时,L (x )取得最大值1 000万元.由于950<1 000, 所以当产量为100千件时,该工厂在这一产品的生产中所获年利润最大,最大年利润为1 000万元. 答案:1 000一、选择题1.函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)解析:选A.要使函数有意义需满足⎩⎪⎨⎪⎧4x -3>0,log 0.5(4x -3)>0,解得34<x <1.2.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( ) A .-2 B .4 C .3D .-2或3解析:选C.f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3.3.若a =log 1π13,b =e π3,c =log 3cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:选B.因为0<1π<13<1,所以1=log 1π1π>log 1π13>0,所以0<a <1,因为b =e π3>e 0=1,所以b >1.因为0<cosπ5<1,所以log 3cos π5<log 31=0,所以c <0.故b >a >c ,选B. 4.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C.令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).5.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.6.(2018·贵阳模拟)20世纪30年代,为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0,其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.已知5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震的最大振幅的( )A .10倍B .20倍C .50倍D .100倍解析:选D.根据题意有lg A =lg A 0+lg 10M=lg (A 0·10M).所以A =A 0·10M,则A 0×107A 0×105=100.故选D.7.函数y =x 2ln |x ||x |的图象大致是( )解析:选D.易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D.8.设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z解析:选D.设2x =3y =5z =k (k >1), 则x =log 2k ,y =log 3k ,z =log 5k ,所以2x 3y =2log 2k 3log 3k =2lg k lg 2·lg 33lg k =2lg 33lg 2=lg 9lg 8>1,即2x >3y .①2x 5z =2log 2k 5log 5k =2lg k lg 2·lg 55lg k =2lg 55lg 2=lg 25lg 32<1, 所以2x <5z .② 由①②得3y <2x <5z .9.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b解析:选B.由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b =log 0.32,所以1a +1b =log 0.30.2+log 0.32=log 0.30.4,所以0<1a +1b <1,得0<a +b ab<1.又a >0,b <0,所以ab <0,所以ab <a +b <0.10.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:选C.当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x ,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象如图所示,观察到函数y =f (x )与y =e x 的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.11.已知函数f (x )是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若⎪⎪⎪⎪f (ln x )-f ⎝⎛⎭⎫ln 1x 2<f (1),则x 的取值范围是( )A.⎝⎛⎭⎫0,1e B .(0,e) C.⎝⎛⎭⎫1e ,eD .(e ,+∞)解析:选C.因为函数f (x )是定义在R 上的奇函数,所以f (ln x )-f ⎝⎛⎭⎫ln 1x =f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ), 所以⎪⎪⎪⎪f (ln x )-f ⎝⎛⎭⎫ln 1x 2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增, 所以-1<ln x <1,解得1e<x <e.12.(2018·沈阳教学质量监测)设函数f (x )是定义在R 上的偶函数,且f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫22x -1,若关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)在区间(-2,6)内有且只有4个不同的实根,则实数a 的取值范围是( )A.⎝⎛⎭⎫14,1 B .(1,4) C .(1,8)D .(8,+∞)解析:选D.因为f (x )为偶函数,且f (2+x )=f (2-x ),所以f (4+x )=f (-x )=f (x ), 所以f (x )为偶函数且周期为4,又当-2≤x ≤0时,f (x )=⎝⎛⎭⎫22x-1, 画出f (x )在(-2,6)上的大致图象,如图所示.若f (x )-log a (x +2)=0(a >0且a ≠1)在(-2,6)内有4个不同的实根,则y =f (x )的图象与y =log a (x +2)的图象在(-2,6)内有4个不同的交点.所以⎩⎪⎨⎪⎧a >1,log a (6+2)<1,所以a >8,故选D.二、填空题13.计算:2log 410-12log 225+823-(π-3)0=________.解析:2log 410-12log 225+823-(π-3)0=2×12log 210-log 25+(23)23-1=log 2105+22-1=1+4-1=4.答案:414.有四个函数:①y =x 12;②y =21-x ;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________.解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④15.(2018·高考全国卷Ⅲ)已知函数f (x )=ln(1+x 2-x )+1, f (a )=4,则f (-a )=________. 解析:由f (a )=ln(1+a 2-a )+1=4,得ln(1+a 2-a )=3,所以f (-a )=ln(1+a 2+a )+1=-ln 11+a 2+a+1=-ln(1+a 2-a )+1=-3+1=-2.答案:-216.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时.已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间的变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;11 ②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少;③到了此日13时,甲所购买的食品还在保鲜时间内;④到了此日14时,甲所购买的食品已过了保鲜时间.其中,所有正确结论的序号是________.解析:因为某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,所以24k +6=16,即4k +6=4,解得k =-12,所以t =⎩⎪⎨⎪⎧64,x ≤0,2-12x +6,x >0. ①当x =6时,t =8,故①正确; ②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414小时,到13时,甲所购买的食品不在保鲜时间内,故③错误;④由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确.所以正确结论的序号为①④.答案:①④。
第2部分 专题6 第2讲 基本初等函数、函数的应用 课件(共53张PPT)
log138,则( )
A.a<b<c
B.b<a<c
C.b<c<a
D.c<a<b
4
4
4
4
A
[因为
4 5
=log885,b=log85,(85
)5=84>55,所以85>5,所以45
=log885
4
4
4
>log85=b,即b<
4 5
.因为
4 5
=log1313
5
,c=log138,(13
5
)5=134<85,所以13
A.1
B.2
C.3
D.4
C [对于任意的x∈R,都有f(2+x)=f(2-x),
∴f(x+4)=f[2+(x+2)]=f[2-(x+2)]=f(-x)=f(x),
∴函数f(x)是一个周期函数,且T=4.
又∵当x∈[-2,0]时,f(x)=
2
2
x
-1,且函数f(x)是定义在R上的
偶函数,
且f(6)=1,则函数y=f(x)与y=log8(x+2)在区间(-2,6)上的图象 如图所示,
∴f(1)f
3 2
<0,根据零点存在定理可知,零点在区间
1,32
内.故选C.]
2.[判断零点的个数]设函数f(x)是定义在R上的偶函数,且对任
意的x∈R,都有f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=
2
2
x
-1,
则关于x的方程f(x)-log8(x+2)=0在区间(-2,6)上根的个数为( )
通性通法:应用函数模型解决实际问题的一般程序和解题关键 (1)一般程序:文读字语 题言⇒数建学语 模言⇒数求学解应用⇒检反验作 馈答. (2)解题关键:解答这类问题的关键是确切地建立相关函数解析 式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.
第一部分 专题六 第二讲 基本初等函数、函数与方程
[限时训练·直通高考] 科学设题 拿下高考高分[A 组 基础练]1.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( ) A .-2 B .4 C .3D .-2或3解析:f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3. 答案:C2.函数y =a x +2-1(a >0,且a ≠1)的图象恒过的点是( ) A .(0,0) B .(0,-1) C .(-2,0)D .(-2,-1)解析:令x +2=0,得x =-2,所以当x =-2时,y =a 0-1=0,所以y =a x +2-1(a >0,且a ≠1)的图象恒过点(-2,0). 答案:C 3.若c =log 3 cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:因为0<1π<13<1,所以1=>0,所以0<a <1,因为b =>e 0=1,所以b >1.因为0<cos π5<1,所以log 3 cos π5<log 3 1=0,所以c <0.故b >a >c ,选B. 答案:B4.(2020·西安一中月考)下列函数中,与函数y =2x -2-x 的定义域、单调性、奇偶性均一致的是( )A .y =sin xB .y =x 3C .y =⎝ ⎛⎭⎪⎫12xD .y =log 2 x解析:y =2x -2-x 是定义域为R 的单调递增函数,且是奇函数.而y =sin x 不是单调递增函数;y =⎝ ⎛⎭⎪⎫12x 是非奇非偶函数;y =log 2 x 的定义域是(0,+∞);只有y =x 3是定义域为R 的单调递增函数,且是奇函数,符合题意. 答案:B5.(2020·新乡模拟)若函数f (x )=log 2(x +a )与g (x )=x 2-(a +1)x -4(a +5)存在相同的零点,则a 的值为( ) A .4或-52 B .4或-2 C .5或-2D .6或-52解析:g (x )=x 2-(a +1)x -4(a +5)=(x +4)[x -(a +5)],令g (x )=0,得x =-4或x =a +5,则f (-4)=log 2(-4+a )=0或f (a +5)=log 2(2a +5)=0,解得a =5或a =-2. 答案:C6.(2020·大连模拟)已知偶函数y =f (x )(x ∈R )满足f (x )=x 2-3x (x ≥0),若函数g (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( )A .1B .3C .2D .4解析:作出函数f (x )与g (x )的图象,如图所示,由图象可知两个函数图象有3个不同的交点,所以函数y =f (x )-g (x )有3个零点,故选B. 答案:B7.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A. 答案:A8.(2020·绵阳模拟)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3)D .(0,2)解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C. 答案:C9.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若当x =0时,f (x )取得最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]解析:∵当x ≤0时,f (x )=(x -a )2,且当x =0时,f (x )取得最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.∴2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,∴a 的取值范围是[0,2].故选D. 答案:D10.函数f (x )=(3ax -b )2的图象如图所示,则( ) A .a >0且b >1 B .a >0且0<b <1 C .a <0且b >1 D .a <0且0<b <1解析:由题图可知,当x →-∞时,f (x )→+∞,若a >0,则3a >1,则3ax →0,f (x )→b 2,不合题意,若a =0,则3ax =1,则f (x )=(1-b )2,不合题意,故a <0,此时3a <1.设3ax =t ,则易知当t =b ,即3ax =b 时,f (x )取最小值,由图象可知此时x <0,故3ax >1,即b >1.综上所述,a <0且b >1.故选C. 答案:C11.已知函数f (x )=⎩⎨⎧2,x >m ,x 2+4x +2,x ≤m 的图象与直线y =x 恰有三个公共点,则实数m 的取值范围是( ) A .(-∞,-1] B .[-1,2) C .[-1,2]D .[2,+∞)解析:由题意可得直线y =x 与函数f (x )=2(x >m )有且只有一个交点.若要满足题目要求,则需满足直线y =x 与函数f (x )=x 2+4x +2的图象恰有两个交点,如图,由图象可知,函数y =x 与f (x )=x 2+4x +2的图象交点为A (-2,-2),B (-1,-1),故有m ≥-1.而当m ≥2时,直线y =x 和射线y =2(x >m )无交点,故实数m 的取值范围是[-1,2).故选B. 答案:B12.(2020·武汉调研)已知函数f(x)=e x-a ln(ax-a)+a(a>0),若关于x的不等式f(x)>0恒成立,则实数a的取值范围为()A.(0,e2] B.(0,e2)C.[1,e2]D.(1,e2)解析:因为f(x)=e x-a ln(ax-a)+a>0恒成立,所以e xa>ln(x-1)+ln a-1,e x-ln a+x-ln a>ln(x-1)+x-1,e x-ln a+x-ln a>e ln(x-1)+ln(x-1),令g(x)=e x+x,易得g(x)在(1,+∞)上单调递增,所以x-ln a>ln(x-1),即-ln a>ln(x-1)-x,因为ln(x-1)-x≤x-2-x=-2,所以-ln a>-2,所以0<a<e2,所以实数a的取值范围是(0,e2),故选B.答案:B13.(2020·新余一中质检)已知f(x)=22x+1+sin x,则f(-2)+f(-1)+f(0)+f(1)+f(2)=________.解析:∵f(x)+f(-x)=22x+1+sin x+22-x+1-sin x=22x+1+2x+11+2x=2,且f(0)=1,∴f(-2)+f(-1)+f(0)+f(1)+f(2)=5.答案:514.(2020·杭州期中测试)函数y=log2(-x2+4x)的增区间是________,值域是________.解析:函数y=log2(-x2+4x)的增区间,即函数t=-x2+4x在满足t>0的条件下,函数t的增区间,再利用二次函数的性质可得在满足t>0的条件下,函数t的增区间为(0,2].由于0<t ≤4,故y =log 2 t ∈(-∞,2]. 答案:(0,2] (-∞,2]15.(2020·三明模拟)物体在常温下的温度变化可以用牛顿冷却定律来描述:设物体的初始温度是T 0,经过一定时间t (单位:分)后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 称为环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降到40 ℃需要20分钟,那么此杯咖啡从40 ℃降温到32 ℃时,还需要________分钟.解析:由已知可得T a =24,T 0=88,T =40,则40-24=(88-24)×⎝ ⎛⎭⎪⎫1220h ,解得h =10.当咖啡从40 ℃降温到32 ℃时,可得32-24=(40-24)×⎝ ⎛⎭⎪⎫12t10,解得t =10.故还需要10分钟. 答案:1016.已知函数f (x )=⎩⎨⎧|lg (-x )|,x <0,x 2-6x +4,x ≥0,若关于x 的函数y =f 2(x )-bf (x )+1有8个不同的零点,则实数b 的取值范围是________. 解析:作出函数f (x )=⎩⎪⎨⎪⎧|lg (-x )|,x <0,x 2-6x +4,x ≥0的图象,如图所示.设f (x )=t ,由图可知,t ∈(0,4],f (x )=t 有4个根,∴在(0,4]上,方程t 2-bt +1=0有2个不同的解,∴⎩⎪⎨⎪⎧1>0,b2>0,Δ=b 2-4>0,16-4b +1≥0,解得2<b ≤174.答案:⎝ ⎛⎦⎥⎤2,174[B 组 创新练]1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3.已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为( ) A .{0,1,2,3} B .{0,1,2} C .{1,2,3} D .{1,2}解析:f (x )=2x +32x +1=(1+2x )+21+2x=1+21+2x ,又2x>0,∴21+2x ∈(0,2),∴1+21+2x∈(1,3).∴当f (x )∈(1,2)时,y =[f (x )]=1;当f (x )∈[2,3)时,y =[f (x )]=2.∴函数y =[f (x )]的值域是{1,2}.故选D. 答案:D2.在标准温度和大气压下,人体血液中氢离子的物质的量浓度(单位mol /L ,记作[H +])和氢氧根离子的物质的量浓度(单位mol /L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg [H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg3≈0.48)( ) A.12 B.13 C.16D.110解析:由题意可得pH =-lg [H +]∈(7.35,7.45),且[H +]·[OH -]=10-14,∴lg[H +][OH -]=lg[H +]10-14[H +]=lg [H +]2+14=2lg [H +]+14.∵7.35<-lg [H +]<7.45,∴-7.45<lg [H +]<-7.35,∴-0.9<2lg [H +]+14<-0.7,即-0.9<lg [H +][OH -]<-0.7.∵lg 12=-lg 2≈-0.30,故A 错误,lg 13=-lg 3≈-0.48,故B 错误,lg 16=-lg 6=-(lg 2+lg 3)≈-0.78,故C 正确,lg 110=-1,故D 错误,故选C. 答案:C3.(2020·重庆市学业质量调研)已知函数f (x )=2x +log 32+x 2-x,若不等式f ⎝ ⎛⎭⎪⎫1m >3成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,1) C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,1 解析:由2+x 2-x >0得x ∈(-2,2),又y =2x 在(-2,2)上单调递增,y =log 3 2+x2-x =log 3x -2+42-x =log 3⎝⎛⎭⎪⎫-1-4x -2在(-2,2)上单调递增,所以函数f (x )为增函数,又f (1)=3,所以不等式f ⎝ ⎛⎭⎪⎫1m >3成立等价于不等式f ⎝ ⎛⎭⎪⎫1m >f (1)成立,所以⎩⎨⎧-2<1m <2,1m >1,解得12<m <1,故选D.答案:D4.对于实数a 和b ,定义运算“*”:a *b ={a (a -b )3,a ≤b ,b (b -a )3,a >b ,设f (x )=(2x -1)*(x -1),若函数g (x )=f (x )-mx 2(m ∈R )恰有三个零点x 1,x 2,x 3,则m 的取值范围是________,x 1x 2x 3的取值范围是________.解析:当2x -1≤x -1,即x ≤0时,f (x )=(2x -1)x 3,当2x -1>x -1,即x >0时,f (x )=-(x -1)x 3,所以f (x )=⎩⎪⎨⎪⎧(2x -1)x 3,x ≤0,-(x -1)x 3,x >0,因为g (x )有三个零点,所以函数f (x )与y =mx 2的图象有三个交点,即k (x )=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0的图象与直线y =m 有三个交点,作出k (x )的图象,如图,其中x >0时,函数k (x )的最大值为-⎝ ⎛⎭⎪⎫12-1×12=14,所以0<m <14.不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=1,所以0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322=14. 由⎩⎨⎧(2x -1)x =14,x <0,解得x =1-34,所以1-34<x 1<0,所以1-316<x 1x 2x 3<0,且当m 无限接近14时,x 1x 2x 3趋近于1-316,当m 无限接近0时,x 1x 2x 3趋近于0.故x 1x 2x 3的取值范围为⎝ ⎛⎭⎪⎫1-316,0.答案:⎝ ⎛⎭⎪⎫0,14 ⎝⎛⎭⎪⎫1-316,0。
2020届数学(理)高考二轮专题复习与测试:第二部分 专题六 第2讲 基本初等函数、函数与方程 Word版含解析
A 级 基础通关一、选择题1.(2019·北京卷)下列函数中,在区间(0,+∞)上单调递增的是( )A .y =x 12 B .y =2-x C .y =log 12xD .y =1x解析:易知y =2-x 与y =log 12x ,在(0,+∞)上是减函数,由幂函数性质,y =1x在(0,+∞)上递减,y =x 12在(0,+∞)上递增.答案:A2.已知定义在R 上的奇函数f (x )满足当x >0时,f (x )=2x +2x -4,则f (x )的零点个数是( )A .2B .3C .4D .5 解析:由于函数f (x )是定义在R 上的奇函数, 故f (0)=0.由于f ⎝ ⎛⎭⎪⎫12·f (2)<0,而函数f (x )在(0,+∞)上单调递增,故当x >0时有1个零点,根据奇函数的对称性可知, 当x <0时,也有1个零点.故一共有3个零点. 答案:B3.(2019·山东省实验中学联考)设实数a 、b 、c 满足a =2-log 23,b =a -13,c =ln a ,则a 、b 、c 的大小关系为( )A .c <a <bB .c <b <aC .a <c <bD .b <c <a解析:因为a =2-log 23=2log 23-1=13.所以c =ln a =ln 13<0,b =⎝ ⎛⎭⎪⎫13-13=313>1.因此b >a >c . 答案:A4.若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是()解析:由于y =a |x |的值域为{y |y ≥1},所以a >1,则y =log a x 在(0,+∞)上是增函数,又函数y =log a |x |的图象关于y 轴对称.因此y =log a |x |的图象大致为选项B.答案:B5.(2019·衡水质检)若函数f (x )=|log a x |-3-x (a >0,a ≠1)的两个零点是m ,n ,则( )A .mn =1B .mn >1C .mn <1D .无法判断解析:令f (x )=0,得|log a x |=13x ,则y =|log a x |与y =13x 的图象有2个交点,不妨设a >1,m <n ,作出两函数的图象(如图). 所以13m >13n ,即-log a m >log a n ,所以log a (mn )<0,则mn <1. 答案:C6.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b=log 0.32.所以1a +1b =log 0.30.2+log 0.32=log 0.30.4,则0<1a +1b <1,即0<a +b ab <1.又a >0,b <0,知ab <0, 所以ab <a +b <0. 答案:B 二、填空题7.(2018·浙江卷改编)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________.解析:令f (x )=0,当x ≥λ时,x =4. 当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合如图函数的图象知,1<λ≤3或λ>4.答案:(1,3]∪(4,+∞)8.将甲桶中的a 升水缓慢注入空桶乙中,t min 后甲桶剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4升,则m 的值为________.解析:因为5 min 后甲桶和乙桶的水量相等, 所以函数y =f (t )=a e nt 满足f (5)=a e 5n =12a ,可得n =15ln 12,所以f (t )=a ·⎝ ⎛⎭⎪⎫12t5, 因此,当k min 后甲桶中的水只有a4L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12k5=14a ,即⎝ ⎛⎭⎪⎫12k5=14, 所以k =10,由题可知m =k -5=5. 答案:59.已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -m ),x >1.若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.解析:作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又因为1<x 1+x 1+x 3<8,所以2<x 3<9.结合图象可知A 点坐标为(9,3),代入函数解析式得3=log 2(9-m ),解得m =1.答案:1 三、解答题10.经测算,某型号汽车在匀速行驶过程中每小时耗油量y (单位:升)与速度x (单位:千米/时)(50≤x ≤120)的关系可近似表示为:y =⎩⎪⎨⎪⎧175(x 2-130x +4 900),x ∈[50,80),12-x 60,x ∈[80,120].(1)该型号汽车速度为多少时,可使得每小时耗油量最低? (2)已知A ,B 两地相距120千米,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?解:(1)当x ∈[50,80)时, y =175(x 2-130x +4 900)=175[(x -65)2+675], 当x =65时,y 有最小值175×675=9.当x ∈[80,120]时,函数单调递减,故当x =120时,y 有最小值10.因为9<10,故当x =65时每小时耗油量最低. (2)设总耗油量为l ,由题意可知l =y ·120x.①当x ∈[50,80)时,l =y ·120x =85⎝ ⎛⎭⎪⎫x +4 900x -130≥85⎝⎛⎭⎪⎫2x ×4 900x -130=16, 当且仅当x =4 900x ,即x =70时,l 取得最小值16.②当x ∈[80,120]时,l =y ·120x =1 440x -2为减函数,当x =120时,l 取得最小值10.因为10<16,所以当速度为120千米/时时,总耗油量最少.B 级 能力提升11.已知函数f (x )=⎩⎪⎨⎪⎧ln (x +1),x ≥0,x 3-3x ,x <0,若函数y =f (x )-k 有三个不同的零点,则实数k 的取值范围是( )A .(-2,2)B .(-2,1)C .(0,2)D .(1,3)解析:当x <0时,f (x )=x 3-3x ,则f ′(x )=3x 2-3,令f ′(x )=0,所以x =±1(舍去正根),故f (x )在(-∞,-1)上单调递增,在(-1,0)上单调递减,又f (x )=ln(x +1)在x ≥0上单调递增.则函数f (x )图象如图所示.f (x )极大值=f (-1)=-1+3=2,且f (0)=0.故当k ∈(0,2)时,y =f (x )-k 有三个不同零点.答案:C12.(2018·江苏卷节选)记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”; (2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值. (1)证明:函数f (x )=x ,g (x )=x 2+2x -2, 则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎪⎨⎪⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”. (2)解:函数f (x )=ax 2-1,g (x )=ln x , 则f ′(x )=2ax ,g ′(x )=1x.设x 0为f (x )与g (x )的“S 点”,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得⎩⎨⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 20=1,(*) 得ln x 0=-12,即x 0=e -12,则a =12(e -12)2=e2.当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”. 因此,a 的值为e 2.。
第2讲 基本初等函数、函数与方程
[解析] (1)设太阳的星等为 m1,天狼星的星等为 m2,则太阳与天狼星的 亮度分别为 E1,E2,由条件 m1=-26.7,m2=-1.45,m2-m1=52lgEE12,得52lgEE12 =-1.45+26.7=25.25.∴ lgEE21=25.25×25=10.1,
∴ EE21=1010.1,即太阳与天狼星的亮度的比值为 1010.1. (2)设该场 x(x∈N *)天购买一次饲料可使平均每天支付的总费用最少,平 均每天支付的总费用为 y 元. 因为饲料的保管费与其他费用每天比前一天少 200×0.03=6(元),所以 x 天饲料的保管费与其他费用共是 6(x-1)+6(x-2)+…+6=(3x2-3x)(元). 从而有 y=1x(3x2-3x+300)+200×1.8=3x00+3x+357≥417,当且仅当 3x00=3x,即 x=10 时,y 有最小值.故该场 10 天购买一次饲料才能使平均
B.0,12∪1,2 D.1,2
[解析] 关于 x 的方程 a=f(x)恰有两个不同
的实根,即函数 f(x)的图象与直线 y=a 恰有两
个不同的交点,作出函数 f(x)的图象如图所示,
由图象可得实数 a 的取值范围是0,12∪1,2,故选 B. [答案] B
数为
()
A.2
B.3
C.4
D.5
[解析] (1)因为 f′(x)=ex+3>0,所以函数 f(x)在 R 上单调
递增. 易知 f12=e21+32-4=e12-52, 因为 e<245,所以 e12<52,所以 f12<0,但 f(1)=e+3-4=
e-1>0, 所以结合选项可知,函数 f(x)的零点所在区间为12,1,故
是单调递减函数,则 f(log25),flog315,f(log53)的大小关系是
第2讲基本初等函数及其应用(原卷版)
第2讲 基本初等函数及其应用目录第一部分:知识强化第二部分:重难点题型突破突破一:指数与对数运算突破二:基本初等函数的图象与性质突破三:函数的零点及其应用角度1:确定函数零点的个数或范围角度2:根据函数零点求参数的取值范围突破四:函数模型应用第三部分:冲刺重难点特训第一部分:知识强化1、函数的零点与方程的根之间的联系(1)函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.(2)函数()()()F x f x g x =-的零点就是方程()()f x g x =的根,即函数()y f x =的图象与函数()y g x =的图象交点的横坐标.2、确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.A.B.C.D.()⊆f x[],m n D60C.一杯茶泡好后置于室80C、65C,给出三个茶温(单位:C)关于茶泡好后(0T at b a;③=+<.根据生活常识,从这三个函数模型中选择一个,模拟茶温T(单位:C)关(单位:分钟)的关系,并依此计算该杯茶泡好后到饮用至少需要等待的时间为x f x,则(f1)()000x x >,若关于的解,且 0x ∈cos m x 在区间A .B .C .D .2,00x x -⎧>,则满f .(湖北省鄂西北六校(宜城、枣阳、曾都、襄州、南漳、河口)1%,一年后是.可以计算得到,一年后的“进步”A .9B .10C .11D .12。
高考数学二轮总复习第2篇经典专题突破核心素养提升专题6函数与导数第2讲基本初等函数函数与方程课件
【解析】 由2x-2y<3-x-3-y得:
2x-3-x<2y-3-y,
令f(t)=2t-3-t,
(A )
∵y=2x为R上的增函数,y=3-x为R上的减函数, ∴f(t)为R上的增函数,∴x<y, ∵y-x>0,∴y-x+1>1, ∴ln(y-x+1)>0,则A正确,B错误; ∵|x-y|与1的大小不确定,故C、D无法确定. 故选A.
因为a>3是a>2的充分不必要条件,
所以“a>3”是“函数f(x)=(a-1)x在R上为增函数”的充分不必要条
件.故选A.
(2)已知函数 f(x)=ex+2(x<0)与 g(x)=ln(x+a)+2 的图象上存在关于
y 轴对称的点,则 a 的取值范围是
(B )
A.-∞,1e
B.(-∞,e)
C.-1e,e
D.-e,
1 e
【解析】 由题意知,方程f(-x)-g(x)=0在(0,+∞)上有解, 即e-x+2-ln(x+a)-2=0在(0,+∞)上有解, 即函数y=e-x与y=ln(x+a)的图象在(0,+∞)上有交点. 函数y=ln(x+a)可以看作由y=ln x左右平移得到, 当a=0时,两函数有交点, 当a<0时,向右平移,两函数总有交点, 当a>0时,向左平移,由图可知,将函数y=ln x的图象向左平移到 过点(0,1)时,两函数的图象在(0,+∞)上不再有交点, 把(0,1)代入y=ln(x+a),得1=ln a,即a=e,∴a<e.
断正确的是
(C )
A.c<b<a
B.b<a<c
C.a<c<b
D.a<b<c
【解析】 a=log52<log5 5=12=log82 2<log83=b,即 a<c<b.故
选 C.
基本初等函数、函数的应用
第17页
课前自测
课堂探究
返回目录
(2020·陕西百校联盟第一次模拟)设 a=log318,b=log424,c= 大小关系是( D )
A.a<b<c B.a<c<b C.b<c<a D.c<b<a
,则 a,b,c 的
第18页
课前自测
课堂探究
返回目录
解析 c= <2,a=log318=1+log36=1+log163,b=log424=1+log46=1+log164. 因为 0<log63<log64<1,所以log163>log164>1,所以 1+log163>1+log164>2,即 a>b >c,故选 D.
第21页
课前自测
课堂探究
返回目录
解析 ∵函数 f(x)=log3x+x 2-a 在区间(1,2)内有零点,且 f(x)在(1,2)内单调,∴ f(1)·f(2)<0,即(1-a)·(log32-a)<0,解得 log32<a<1.
第22页
课前自测
课堂探究
返回目录
确定函数 f(x)的零点所在区间的常用方法 (1)利用函数零点存在定理:首先看函数 y=f(x)在区间[a,b]上的图像是否连续, 其次看是否有 f(a)·f(b)<0.若有,则函数 y=f(x)在区间(a,b)内必有零点. (2)数形结合法:通过画函数图像,观察图像与 x 轴在给定区间上是否有交点来判 断.
2.函数 f(x)=2x+ln x-1 1的零点所在的大致区间是( B ) A.(1,2) B.(2,3) C.(3,4) D.(1,2)与(2,3)
解析 易知 f(x)=2x+ln x-1 1在(1,+∞)上为减函数, 又 f(2)=1>0,f(3)=23-ln 2=2-33ln 2=2-3ln 8, ∵e2<8,∴2<ln 8,∴f(3)<0, ∴f(x)在(2,3)上存在唯一一个零点,选 B.
2020高考数学精讲二轮第二讲 基本初等函数、函数与方程及函数的应用
2020高考数学复习:第二讲 基本初等函数、函数与方程及函数的应用考点一 指数函数、对数函数及幂函数1.指数与对数式的运算公式2.指数函数、对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况:当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.[对点训练]1.(2018·河南洛阳二模)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数[解析] ∵点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,∴a -1=1,解得a=2,则2b =12,∴b =-1,∴f (x )=x -1,∴函数f (x )是定义域(-∞,0)∪(0,+∞)上的奇函数,且在每一个区间内是减函数,故选A.[答案] A2.(2018·天津卷)已知a =log 2e ,b =ln2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 由已知得c =log 23,∵log 23>log 2e>1,b =ln2<1,∴c >a >b ,故选D.[答案] D3.(2018·山东潍坊一模)若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )[解析] 因函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,故0<a <1. 易知函数y =log a (|x |-1)是偶函数,定义域为{x |x >1或x <-1},x >1时函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,故选D.[答案] D4.(2018·江西九江七校联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是________.[解析] 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).[答案][-4,4)[快速审题]看到指数式、对数式,想到指数、对数的运算性质;看到指数函数、对数函数、幂函数,想到它们的图象和性质.基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y=xα的性质要注意α>0和α<0两种情况的不同.考点二函数的零点1.函数的零点及其与方程根的关系对于函数f(x),使f(x)=0的实数x叫做函数f(x)的零点.函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.2.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.角[解析]当x≤0时,由f (x )=0,即x 2+2017x -2018=0, 得(x -1)(x +2018)=0, 解得x =1(舍去)或x =-2018;当x >0时,设g (x )=x -2,h (x )=ln x ,如图,分别作出两个函数的图象, 由图可知,两函数图象有两个交点,所以函数f (x )在x >0时有两个零点. 综上,函数f (x )有3个零点,故选C. [答案] C[快速审题] 看到函数的零点,想到求方程的根或转化为函数图象的交点.[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图,而函数y =mx -12恒过定点⎝ ⎛⎭⎪⎫0,-12,设过点⎝ ⎛⎭⎪⎫0,-12与函数y =ln x 的图象相切的直线为l 1,切点坐标为(x 0,ln x 0).因为y =ln x 的导函数y ′=1x ,所以图中y =ln x 的切线l 1的斜率为k =1x 0,则1x 0=ln x 0+12x 0-0,解得x 0=e ,所以k =1e.又图中l 2的斜率为12,故当方程f (x )=mx -12恰有四个不相等的实数根时,实数m 的取值范围是⎝ ⎛⎭⎪⎫12,e e .[答案] ⎝ ⎛⎭⎪⎫12,e e[探究追问] 将例2中“方程f (x )=mx -12恰有四个不相等的实数根”改为“方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实数根”,结果如何?[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图.函数y =m ⎝ ⎛⎭⎪⎫x -54恒过定点⎝ ⎛⎭⎪⎫54,0,设过点⎝ ⎛⎭⎪⎫54,0与函数y =1-x 2的图象相切的直线为l 1,设切点坐标为(x 0,1-x 20),因为y =1-x 2(x ≤1)的导函数y ′=-2x 0,所以切线l 1斜率k =-2x 0,则-2x 0=1-x 20x 0-54,解得x 0=12或x 0=2(舍).所以直线l 1的斜率为-1,结合图可知,当方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实根时,实数m 的取值范围是(-1,0).[答案](-1,0)(1)判断函数零点个数的3种方法(2)利用函数零点的情况求参数值(或范围)的3种方法[对点训练]1.[角度1]已知函数f(x)=6x-log2x.在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2)C.(2,4) D.(4,+∞)[解析]易知f(x)是单调递减函数.∵f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4)=64-log24=32-2<0,∴选项中包含f(x)零点的区间是(2,4).[答案] C[解析]f(x)=k有三个不同的实数根,即函数y=f(x)的图象与函数y=k的图象有三个交点,如图所示.当-1<k<0时,y=f(x)与y=k有三个交点.故-1<k<0.[答案](-1,0)考点三函数的实际应用解决函数实际应用题的关键(1)认真读题,缜密地审题,确切地理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题.(2)合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解.[对点训练]1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A.y=2x-2 B.y=12(x2-1)C.y=log2x D.y=log12x[解析]由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B.[答案] B2.(2018·西安四校联考)某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)()A.2019年B.2020年C.2021年D.2022年[解析]设从2018年起,过了n(n∈N*)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg 2013lg1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2018=2022,故选D.[答案] D3.如图,某小区有一边长为2的正方形地块OABC ,其中阴影部分是一个游泳池,计划在地块OABC 内修一条与池边AE 相切的直路l (宽度不计),切点为M ,并把该地块分为两部分.现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立如图所示的平面直角坐标系,若池边AE 为函数y =-x 2+2(0≤x ≤2)的图象,且点M 到边OA 的距离为t ⎝ ⎛⎭⎪⎫23≤t ≤43,则地块OABC 在直路l 不含泳池那侧的面积的最大 值为________.[解析] M (t ,-t 2+2),过切点M 的切线l :y -(-t 2+2)=-2t (x -t ),即y =-2tx +t 2+2,令y =2得x =t 2,故切线l 与AB 交于点⎝ ⎛⎭⎪⎫t 2,2;令y =0,得x=t 2+1t ,故切线l 与OC 交于点⎝ ⎛⎭⎪⎫t 2+1t ,0,又x =t 2+1t 在⎣⎢⎡⎦⎥⎤23,43上单调递减,所以x =t 2+1t ∈⎣⎢⎡⎦⎥⎤1712,116,所以地块OABC 在切线l 右上部分区域为直角梯形,面积S=12⎝ ⎛⎭⎪⎫2-t 2-1t +2-t 2×2=4-t -1t =4-⎝ ⎛⎭⎪⎫t +1t ≤2,当且仅当t =1时等号成立,故地块OABC 在直路l 不含泳池那侧的面积的最大值为2.[答案] 2[快速审题] 看到实际应用题,想到函数模型.应用函数模型解决实际问题的一般程序[解析][答案] A2.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)[解析] g (x )=f (x )+x +a 存在2个零点等价于函数f (x )=⎩⎨⎧e x,x ≤0,ln x ,x >0与h (x )=-x -a 的图象存在2个交点,如图,当x =0时,h (0)=-a ,由图可知要满足y =f (x )与y =h (x )的图象存在2个交点,需要-a ≤1,即a ≥-1,故选C.[答案] C3.(2017·北京卷)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与M N 最接近的是 ( )(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093 [解析] 因为lg3≈0.48,所以3≈100.48,所以M N =33611080≈(100.48)3611080=100.48×3611080=10173.281080=1093.28≈1093,故选D. [答案] D4.(2018·全国卷Ⅲ)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.[解析] 令f (x )=0,得cos ⎝ ⎛⎭⎪⎫3x +π6=0,解得x =k π3+π9(k ∈Z ).当k =0时,x=π9;当k =1时,x =4π9;当k =2时,x =7π9,又x ∈[0,π],所以满足要求的零点有3个.[答案] 35.(2018·天津卷)已知a >0,函数f (x )=⎩⎨⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.[解析] 设g (x )=f (x )-ax =⎩⎨⎧x 2+ax +a ,x ≤0,-x 2+ax -2a ,x >0,方程f (x )=ax 恰有2个互异的实数解即函数y =g (x )有两个零点,即y =g (x )的图象与x 轴有2个交点,满足条件的y =g (x )的图象有以下两种情况:情况一:则⎩⎨⎧Δ1=a 2-4a >0,Δ2=a 2-8a <0,∴4<a <8. 情况二:则⎩⎨⎧Δ1=a 2-4a <0,Δ2=a 2-8a >0,不等式组无解. 综上,满足条件的a 的取值范围是(4,8). [答案] (4,8)1.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,一般出现在第5~11题的位置,有时难度较大.2.函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国课标卷考查较少,但也要引起重视,题目可能较难.热点课题5 复合函数的零点[感悟体验]1.(2018·山西质量检测)已知f (x )=⎩⎨⎧2x +1,x ≤0,|ln x |,x >0,则方程f [f (x )]=3的根的个数是( )A .3B .4C .5D .6 [解析][答案] C2.(2018·安徽马鞍山一模)已知函数f (x )=⎩⎨⎧3|x -1|,x >0,-x 2-2x +1,x ≤0,若关于x的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,则实数a 的取值范围是( ) A .[1,2] B .(1,2) C .(-2,-1) D .[-2,-1][解析]函数f (x )={ 3|x -1|,x >0,-x 2-2x +1,x ≤0的图象如图.关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,即[f (x )+a ][f (x )-1]=0有7个不等的实数根,易知f (x )=1有3个不等的实数根,∴f (x )=-a必须有4个不相等的实数根,由函数f (x )的图象可知-a ∈(1,2),∴a ∈(-2,-1),故选C.[答案] C专题跟踪训练(十一)一、选择题[解析][答案] C2.(2018·广东揭阳一模)曲线y =⎝ ⎛⎭⎪⎫13x与y =x12 的交点横坐标所在区间为( )A.⎝ ⎛⎭⎪⎫0,13 B.⎝ ⎛⎭⎪⎫13,12 C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫23,1 [解析]根据零点存在性定理可得函数零点所在区间为⎝ ⎛⎭⎪⎫13,12,即所求交点横坐标所在区间为⎝ ⎛⎭⎪⎫13,12,故选B.[答案] B3.(2018·孝感一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14 B.⎝ ⎛⎭⎪⎫-14,12 C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤-14,12 [解析] 依题意并结合函数f (x )的图象可知,[答案] C4.(2018·河南焦作二模)已知函数f (x )=⎩⎨⎧e x,x ≤0,x 2+ax +1,x >0,F (x )=f (x )-x -1,且函数F (x )有2个零点,则实数a 的取值范围为( ) A .(-∞,0] B .[1,+∞) C .(-∞,1)D .(0,+∞)[解析] 当x ≤0时,F (x )=e x -x -1,此时有一个零点0;当x >0时,F (x )=x [x +(a -1)],∵函数F (x )有2个零点,∴1-a >0,∴a <1,故选C. [答案] C5.(2018·湖南十三校二模)函数f (x )=ln x +e x (e 为自然对数的底数)的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫0,1e B.⎝ ⎛⎭⎪⎫1e ,1 C .(1,e) D .(e ,+∞)[解析][答案] A6.(2018·河南郑州模拟)已知函数f (x )=x 2+m 与函数g (x )=-ln 1x -3x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,2的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤54+ln2,2 B.⎣⎢⎡⎦⎥⎤2-ln2,54+ln2C.⎣⎢⎡⎦⎥⎤54+ln2,2+ln2 D .[2-ln2,2][解析] 由已知,得方程x 2+m =ln 1x +3x ,∴m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解.设h (x )=-ln x +3x -x 2,求导,得h ′(x )=-1x +3-2x =-2x 2-3x +1x=-(2x -1)(x -1)x∵12≤x ≤2,令h ′(x )=0,解得x =12或x =1. 当h ′(x )>0时,12<x <1,函数单调递增, 当h ′(x )<0时,1<x <2,函数单调递减, ∴h (x )在x =1处有唯一的极值点. ∵h ⎝ ⎛⎭⎪⎫12=ln2+54,h (2)=-ln2+2,且知h (2)<h ⎝ ⎛⎭⎪⎫12,∴h (x )最大值=h (1)=2,h (x )min =2-ln2.故方程m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解等价于2-ln2≤m ≤2.所以m 的取值范围是[2-ln2,2],故选D. [答案] D 二、填空题7.(2018·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x 的零点是-2,则实数m =________.[解析] 由m +⎝ ⎛⎭⎪⎫13-2=0,得m =-9.[答案] -98.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________.[解析] f (x )的对称轴为x =-1.当a >0时,f (2)=4a +4a +1=8a +1,f (-3)=3a +1.∴f (2)>f (-3),即f (x )max =f (2)=8a +1=4,∴a =38;当a <0时,f (x )max =f (-1)=a -2a +1=-a +1=4,∴a =-3.综上所述,a =38或a =-3.[答案] 38或-39.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.[解析] 设每辆车的月租金为x (x >3000)元,则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -300050·(x -150)-x -300050×50,整理得y =-x 250+162x -21000=-150(x-4050)2+307050.所以当x =4050时,y 取最大值为307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大为307050元.[答案] 4050 三、解答题10.(2018·唐山一中期末)已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.[解] (1)∵f (x )=e x -⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则 f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立, ⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立, ⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立,⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14 =⎝ ⎛⎭⎪⎫t +122≤0, 又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0, ∴t =-12.∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立. 11.(2018·江西三校联考)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P (单位:万元)、种黄瓜的年收入Q (单位:万元)与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大? [解] (1)依题意f (x )=80+42x +14(200-x )+120=-14x +42x +250,其中⎩⎨⎧x ≥20,200-x ≥20,所以20≤x ≤180.故f (50)=-14×50+42×50+250=277.5.(2)由(1)知f (x )=-14x +42x +250(20≤x ≤180), 令x =t ,则25≤t ≤65,y =-14t 2+42t +250=-14(t -82)2+282,因此当t =82时,函数取得最大值282,此时x =128,故投入甲大棚128万元,乙大棚72万元时,总收益最大,最大总收益是282万元.12.(2018·江西吉安一中摸底)已知函数f (x )=⎩⎨⎧e x ,x ≥0,lg (-x ),x <0, 若关于x 的方程[f (x )]2+f (x )+t =0有三个不同的实数根,求实数t 的取值范围.[解] 原问题等价于[f (x )]2+f (x )=-t 有三个不同的实数根,即直线y =-t 与y =[f (x )]2+f (x )的图象有三个不同的交点.当x ≥0时,y =[f (x )]2+f (x )=e 2x +e x 为增函数,在x =0处取得最小值2,其图象与直线y =-t 最多只有一个交点.当x <0时,y =[f (x )]2+f (x )=[lg(-x )]2+lg(-x ),根据复合函数的单调性,其在(-∞,0)上先减后增,最小值为-14.所以要使函数的图象有三个不同的交点,只需-t ≥2,解得t ≤-2.。
第2讲 基本初等函数、函数的应用
第2讲 基本初等函数、函数的应用
1
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
高考定位 1.掌握二次函数、分段函数、幂函数、指数函数、对数函数的图象与 性质;2.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理; 3.能利用函数解决简单的实际问题.
2
真题感悟 考点整合
=19⇒0.23(t*-53)=ln 19⇒t*=l0n.2139+53≈0.323+53≈66.故选 C. 答案 C
7
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
4.(2020·天津卷)已知函数 f(x)=x-3,x,x≥x<0,0.若函数 g(x)=f(x)-|kx2-2x|(k∈R)恰有 4 个 零点,则 k 的取值范围是( ) A.-∞,-12∪(2 2,+∞) B.-∞,-12∪(0,2 2) C.(-∞,0)∪(0,2 2) D.(-∞,0)∪(2 2,+∞)
8
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
解析 法一 注意到 g(0)=0,所以要使 g(x)恰有 4 个零点,只需方程|kx-2|=f(|xx|) 恰有 3 个实根即可.令 h(x)=f(|xx|),即 y=|kx-2|与 h(x)=f(|xx|)的图象有 3 个交点. h(x)=f(|xx|)=x12,,xx<>00. , 当 k=0 时,此时 y=|kx-2|=2,如图①,y=2 与 h(x)=f(|xx|)的图象有 1 个交点, 不满足题意; 当 k<0 时,如图②,此时 y=|kx-2|与 h(x)=f(|xx|)的图象恒有 3 个交点,满足题意;
13
真题感悟 考点整合
热点聚焦 分类突破
基本初等函数、函数与方程及函数的应用(题型归纳)
基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。
2020届数学(理)高考二轮专题复习课件:第二部分 专题六 第2讲 基本初等函数、函数与方程 (数理化网)
于( )
A.1
B.2
C.3
D.4
解析:(1)当 x>1 时,f(x)=ln(x-1)=0,得 x=2. 当 x≤1 时,2x-1-1=0,得 x=1. 所以 f(x)有两个零点 x=1 与 x=2. (2)因为 f(2)=ln 2-1<0,f(3)=ln 3-23>0, 又 f(x)=ln x-2x在(0,+∞)上是增函数, 所以 x0∈(2,3),从而 g(x0)=2. 答案:(1)C (2)B
答案:①130 ②15
从近年高考命题看,基本初等函数着重于分段函数、 幂函数、指数函数、对数函数的图象性质;以基本初等 函数为载体考查函数与方程,以及函数简单的实际应用, 突出数形结合与转化思想方法的考查.题目以中档难度 为主,大多以选择题、填空题的形式呈现.考查的数学 核心素养主要有数学运算、直观想象、数学建模.
(RM+1r)2+Mr22=(R+r)MR31.
设
α
=
r R
.
由
于
α
的值很小,因此在近似计算中
3α(3+1+3αα4)+2α5≈3α3,则 r 的近似值为(
)
A. MM21R
B. 2MM21R
3 C.R
解析:由 α=Rr 得 r=αR, 代入(RM+1r)2+Mr22=(R+r)MR31, 整理得3α(3+1+3αα4)+2α5=MM21. 又因为3α(3+1+3αα4)+2α5≈3α3,所以 3α3≈MM21,所以 α≈
热点 1 基本初等函数的图象与性质(自主演练) 1.指数函数 y=ax(a>0,a≠1)与对数函数 y=logax(a >0,a≠1)的图象和性质,分 0<a<1,a>1 两种情况, 当 a>1 时,两函数在定义域内都为增函数,当 0<a<1 时,两函数在定义域内都为减函数. 2.同底的指数函数 y=ax 与对数函数 y=logax(a>0, 且 a≠1)的图象关于直线 y=x 对称.
初中数学知识归纳函数与方程的应用
初中数学知识归纳函数与方程的应用初中数学知识归纳:函数与方程的应用数学是一门涵盖广泛的学科,而初中数学作为数学学科的基础,为我们打下了坚实的数学基础。
在初中数学中,函数与方程是两个非常重要的概念。
本文将围绕函数和方程的应用展开探讨,帮助读者更好地理解和应用数学知识。
一、函数的应用函数作为初中数学中的重要内容,具有广泛的应用。
我们来看几个具体的例子。
1. 函数在图像表示中的应用函数图像是函数概念的一种直观表示。
通过绘制函数的图像,我们可以更好地理解函数的性质和规律。
例如,平方函数y = x^2的图像是一个开口向上的抛物线,通过观察抛物线的开口朝向、顶点位置等特点,可以更好地理解平方函数的增减性和最值等概念。
2. 函数在实际问题中的应用函数在解决实际问题中起到了重要的作用。
例如,我们可以利用函数的性质解决最优化问题,如求最大值、最小值等。
另外,函数还可以用来拟合实验数据,通过函数拟合可以更好地理解和预测实验结果。
3. 函数在几何问题中的应用函数在几何问题中也有广泛的应用。
例如,我们可以通过函数的图像来解决直线与曲线之间的位置关系问题。
另外,利用函数的性质,可以判断两个图形是否相似,从而解决几何形状的变化问题。
二、方程的应用方程是数学中常见的一种表示关系的方式,也是初中数学中的重要内容。
下面我们来看几个方程的应用例子。
1. 方程在代数问题中的应用方程在解决代数问题中起到了关键的作用。
例如,通过列方程可以解决应用问题,如鸡兔同笼问题、水桶倒水问题等。
通过建立方程,我们可以将实际问题转化为代数问题,进而求解出问题的答案。
2. 方程在几何问题中的应用方程在几何问题中也有广泛的应用。
例如,我们可以通过建立方程解决线与线的位置关系问题,如平行线和垂直线问题。
另外,方程还可以帮助我们计算图形的面积、周长等属性。
3. 方程在自然科学中的应用方程在自然科学领域也有着广泛的应用。
例如,物理学中的运动方程、化学方程式、生物学中的遗传方程等都是通过方程来描述和解决自然现象。
专题六小题专项2基本初等函数函数与方程课件共41张PPT
解 以函数g(x)=f (x)-1的所有零点之和等于2。故选B。
析
答案 B
|2x-1|,x<2, (2)(2021·长春市质量监测)若函数f (x)=x-3 1,x≥2, 则函数g(x)=f (f (x))-2
的零点个数为( )
A.3B.4C.5源自D.6答 解析 作出函数f (x)的图象如图所示,由g(x)=0,得f (f (x))=2。令f (x)=t,
4.应用函数模型解决实际问题的一般程序
读题
建模
求解
反馈
文字语言⇒数学语言⇒数学应用⇒检验作答。
考向突破 精析精研 重点攻关
考向一 基本初等函数的图象与性质 【例1】 (1)已知函数f (x)=logax+b的图象如图所示,那么函数g(x)=ax+b的图 象可能为( )
答 解析 因为函数y=logax的图象过定点(1,0),当a>1时,y=logax在定义域上
必备知识 明确考点 扣准要点
1.指数式与对数式的七个运算公式 (1)aman=am+n; (2)(am)n=amn; 注:a>0,m,n∈Q。 (3)loga(MN)=logaM+logaN; (4)logaMN =logaM-logaN; (5)logaMn=nlogaM(n∈R); (6)alogaN =N; (7)logaN=llooggbbNa , 注:a,b>0且a,b≠1,M>0,N>0。
与
x>0,
解 析
所以logax+logb(2x-1)=logax-loga(2x-1)=loga2x-x 1>0⇒22xx- -x 11<>10,
⇒x>1。故选A。
答案 A
方法悟通 (1)对数函数与指数函数的单调性都取决于其底数的取值,若底数a的值不确定, 要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当 0<a<1时,两函数在定义域内都为减函数。 (2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换 元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性 质之间的关系进行判断。
第2讲 基本初等函数、函数与方程
ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x∈(0,1)时, f(x)单调 递增,x∈(1,2)时, f(x)单调递减,则A、B选项错误;t(x)的图象关于直线x=
1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C选
项正确,D选项错误.故选C. (2)∵f(x)为奇函数,∴f(-x)=-f(x), ∴a=-f(-log25)=f(log25), 而log25>log24.1>2>20.8,且y=f(x)在R上为增函数, ∴f(log25)>f(log24.1)>f(20.8),即a>b>c,故选C.
考点聚焦
栏目索引
方法归纳 研究指数、对数函数图象应注意的问题 (1)指数函数、对数函数的图象和性质受底数a的影响,解决与指数、对 数函数特别是与单调性有关的问题时,首先要看底数a的范围.
高考导航
(2)研究对数函数的性质,应注意真数与底数的限制条件.
考点聚焦
栏目索引
跟踪集训
1.(2016课标全国Ⅰ,8,5分)若a>b>0,0<c<1,则 ( A.logac<logbc C.ac<bc B.logca<logcb D.ca>cb )
栏目索引
高考导航
第 2讲
基本初等函数、函数与方程
考情分析
栏目索引
考情分析
高考导航
总纲目录
栏目索引
总纲目录
考点一 基本初等函数的图象与性质
高考导航
考点二
函数的零点
考点三
函数的实际应用
考点聚焦
栏目索引
考点一 基本初等函数的图象与性质
2021高考数学复习课件:专题六 微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
专题六ꢀ函数与导数
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
微专题2 基本初等函数、函数与方程
对点训练
谢谢观赏
第2讲 基本初等函数的性质及应用
第2讲基本初等函数的性质及应用基本初等函数的有关运算1.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)等于( D )(A)e x-e-x (B)(e x+e-x)(C)(e-x-e x) (D)(e x-e-x)解析:因为f(x)+g(x)=e x, ①所以f(-x)+g(-x)=e-x,所以f(x)-g(x)=e-x, ②①-②得g(x)=,故选D.2.若函数f(x)=则f(f(10))等于( B )(A)lg 101 (B)2 (C)1 (D)0解析:f(f(10))=f(lg 10)=f(1)=12+1=2.故选B.3.(2015安徽卷)lg+2lg 2-()-1= .解析:lg+2lg 2-()-1=lg+lg 4-()-1=lg 10-2=-1.答案:-1比较函数值的大小4.已知a=,b=,c=(),则( C )(A)a>b>c (B)b>a>c(C)a>c>b (D)c>a>b解析:因为0<log43.6<1,所以b=<5,而又log23.4>1,log3>1,所以a=>5,c=()==>5,所以a>b,c>b.因为log23.4>log33.4>log3,所以a>c.所以a>c>b,故选C.5.(2015广州一模)已知log2a>log2b,则下列不等式一定成立的是( C )(A)> (B)log2(a-b)>0(C)()a<()b(D)2a-b<1解析:由log2a>log2b,得a>b>0,则选项A,D不成立,选项B不一定成立,对于选项C,()a<()b<()b,故选C.6.设函数f(x)=e x+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则( A )(A)g(a)<0<f(b) (B)f(b)<0<g(a)(C)0<g(a)<f(b) (D)f(b)<g(a)<0解析:因为函数f(x)=e x+x-2在R上单调递增,且f(0)=1-2<0,f(1)=e-1>0,所以f(a)=0时a∈(0,1).又g(x)=ln x+x2-3在(0,+∞)上单调递增,且g(1)=-2<0,所以g(a)<0.由g(2)=ln 2+1>0,g(b)=0得b∈(1,2),又f(1)=e-1>0,且f(x)=e x+x-2在R上单调递增,所以f(b)>0.综上可知,g(a)<0<f(b).7.(2015杭州一检)设函数f(x)=e|ln x|(e为自然对数的底数).若x1≠x2且f(x1)=f(x2),则下列结论一定不成立的是( C )(A)x2f(x1)>1 (B)x2f(x1)=1(C)x2f(x1)<1 (D)x2f(x1)<x1f(x2)解析:f(x)==由x1≠x2且f(x1)=f(x2),得x1,x2中一个大于1、一个小于1,且x1x2=1,若x1>1,则f(x1)=x1,x2f(x1)=1;若0<x1<1,则x2>1,f(x1)=,x 2f(x1)=>1,故选C.8.已知函数f(x)=若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)的取值范围是.解析:作出函数f(x)的图象,由图知所以x1f(x2)=(-)·=(-)2-∈[,),即x1f(x2)的取值范围是[,).答案:[,)求参数的取值(范围)9.(2015福建卷)若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.解析:当x≤2时,f(x)=-x+6,f(x)在(-∞,2]上为减函数,所以f(x)∈[4,+∞).当x>2时,若a∈(0,1),则f(x)=3+log a x在(2,+∞)上为减函数,f(x)∈(-∞,3+log a2),显然不满足题意,所以a>1,此时f(x)在(2,+∞)上为增函数,f(x)∈(3+log a2,+∞),由题意可知(3+log a2,+∞)⊆[4,+∞),则3+log a2≥4,即log a2≥1,所以1<a≤2.答案:(1,2]一、选择题1.下列函数中,不满足f(2x)=2f(x)的是( C )(A)f(x)=|x| (B)f(x)=x-|x|(C)f(x)=x+1 (D)f(x)=-x解析:若f(x)=|x|,则f(2x)=|2x|=2|x|=2f(x),若f(x)=x-|x|,则f(2x)=2x-|2x|=2(x-|x|)=2f(x),若f(x)=x+1,则f(2x)=2x+1≠2f(x),若f(x)=-x,则f(2x)=-2x=2f(x),故选C.2.(2015河南郑州市第二次质量预测)若正数a,b满足2+log2a=3+log3b=log6(a+b),则+的值为( C )(A)36 (B)72 (C)108 (D)解析:设2+log2a=3+log3b=log6(a+b)=x,则a=2x-2,b=3x-3,a+b=6x.所以+===22×33=108.故选C.3.(2015上饶市一模)函数f(x)=-|x-|的图象为( D )解析:函数f(x)的定义域为(0,+∞),当0<x<1时,f(x)=+(x-)=x;当x≥1时,f(x)=x-(x-)=,故选D.4.(2015烟台二模)f(x)=则f(f(-1))等于( D )(A)-2 (B)2 (C)-4 (D)4解析:f(-1)=-()=2>0,所以f(f(-1))=f(2)=3+log22=3+1=4.故选D.5.(2015慈溪市、余姚市联考)函数f(x)=x2lg的图象( B )(A)关于x轴对称 (B)关于原点对称(C)关于直线y=x对称(D)关于y轴对称解析:因为f(x)=x2lg,所以其定义域为(-∞,-2)∪(2,+∞),所以f(-x)=x2lg=-x2lg=-f(x),所以函数为奇函数,所以函数的图象关于原点对称,故选B.6.(2015信阳二检)若函数f(x)=2++sin x在区间[-k,k](k>0)上的值域为[m,n],则m+n等于( D )(A)0 (B)1 (C)2 (D)4解析:f(x)=2++sin x,设h(x)=+sin x,得h(-x)=-h(x),函数h(x)是奇函数,则h(x)的值域为关于原点对称的区间.当-k≤x≤k时,设-p≤h(x)≤p,则m=2-p,n=2+p,得m+n=4,故选D.7.已知x=ln π,y=log52,z=,则( D )(A)x<y<z (B)z<x<y(C)z<y<x (D)y<z<x解析:x=ln π>ln e=1,y=log52<log55=1,又log25>2,所以y<.又z==,所以<z<1.所以y<z<x,故选D.8.(2015山东卷)设函数f(x)=若f(f())=4,则b等于( D )(A)1 (B)(C)(D)解析:f(f())=f(3×-b)=f(-b),当-b<1,即b>时,3×(-b)-b=4,解得b=(舍去).当-b≥1,即b≤时,=4,解得b=.故选D.9.(2015石家庄市调研)已知函数f(x)=|lo x|,若m<n,有f(m)=f(n),则m+3n的取值范围是( D )(A)[2,+∞) (B)(2,+∞)(C)[4,+∞) (D)(4,+∞)解析:因为f(x)=|lo x|,若m<n,有f(m)=f(n),所以lo m=-lo n,所以mn=1,因为0<m<1,n>1,所以m+3n=m+在m∈(0,1)上单调递减.当m=1时,m+3n=4,所以m+3n>4.10.(2015河南郑州市第一次质量预测)设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,…,2015),记I k=|f k(a2)-f k(a1)|+|f k(a3)-f k(a2)|+…+|f k(a2015)-f k(a2014)|,k=1,2,则( A )(A)I1<I2(B)I1=I2(C)I1>I2(D)无法确定解析:因为I1=|f1(a2)-f1(a1)|+|f1(a3)-f1(a2)|+…+|f1(a2015)-f1(a2014)|=|a2-a1|+|a3-a2|+…+|a2015-a2014|=|-|+|-|+…+|-|=++…+=.I2=|f2(a2)-f2(a1)|+|f2(a3)-f2(a2)|+…+|f2(a2015)-f2(a2014)|=|log2015-log2015|+|log2015-log2015|+…+|log2015-log2015|=|log20152-log20151|+|log20153-log20152|+…+|log20152015-log20152014| =log20152-0+log20153-log20152+…+1-log20152014=1-0=1.所以I1<I2.11.(2015烟台一模)已知函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=给出下列命题:①F(x)=|f(x)|;②函数F(x)是偶函数;③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;④当a>0时,函数y=F(x)-2有4个零点.其中正确命题的个数为( D )(A)0 (B)1 (C)2 (D)3解析:因为函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=所以|f(x)|=|a|log2x|+1|,所以F(x)≠|f(x)|,①不对.因为F(-x)==F(x),所以函数F(x)是偶函数,故②正确.因为当a<0时,若0<m<n<1,所以|log2m|>|log2n|,所以a|log2m|+1<a|log2n|+1,即F(m)<F(n)成立,故F(m)-F(n)<0成立,所以③正确.因为f(x)=a|log2x|+1(a≠0),定义函数F(x)=所以x>0时,F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以x>0时,F(x)的最小值为F(1)=1,故x>0时,F(x)与y=2有2个交点.因为函数F(x)是偶函数,所以x<0时,F(x)与y=2有2个交点.故当a>0时,函数y=F(x)-2有4个零点.所以④正确.二、填空题12.(2015广东省揭阳市二模)已知幂函数y=f(x)的图象过点(3,),则lo f(2)的值为.解析:设f(x)=xα,则f(3)=3α=,解得α=-1,所以f(x)=x-1,f(2)=,所以lo f(2)=lo=1.答案:113.(2015北京卷)2-3,,log25三个数中最大的数是.解析:因为2-3==,=≈1.732,而log 24<log25,即log25>2,所以三个数中最大的数是log25.答案:log2514.(2015肇庆二模)已知函数f(x)=在R上不是单调函数,则实数a的取值范围是.解析:当函数f(x)在R上为减函数时,有3a-1<0且0<a<1且(3a-1)×1+4a≥log a1,解得≤a<;当函数f(x)在R上为增函数时,有3a-1>0且a>1且(3a-1)×1+4a≤log a1,解得a无解;所以当函数f(x)在R上为单调函数时,有≤a<.所以当函数f(x)在R上不是单调函数时,有a>0且a≠1且a<或a≥,即0<a<或≤a<1或a>1.答案:(0,)∪[,1)∪(1,+∞).15.函数y=x2(x>0)的图象在点(a k,)处的切线与x轴的交点的横坐标为a k+1,其中k∈N*,若a1=16,则a1+a3+a5的值是.解析:因为y′=2x,所以k=y′=2a k,所以切线方程为y-=2a k(x-a k),令y=0,得x=a k,即a k+1=a k,所以{a k}是以首项为16,公比为的等比数列,所以a k=16×()n-1,所以a1+a3+a5=16+4+1=21.答案:21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 基本初等函数、函数与方程及函数的应用[做真题]1.(2017·高考全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)2.(2019·高考全国卷Ⅲ)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A .2 B .3 C .4D .53.(2019·高考全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A .f ⎝⎛⎭⎫log 314>f ⎝⎛⎭⎫2-32>f ⎝⎛⎭⎫2-23 B .f ⎝⎛⎭⎫log 314>f ⎝⎛⎭⎫2-23>f ⎝⎛⎭⎫2-32 C .f ⎝⎛⎭⎫2-32>f ⎝⎛⎭⎫2-23>f ⎝⎛⎭⎫log 314 D .f ⎝⎛⎭⎫2-23>f ⎝⎛⎭⎫2-32>f ⎝⎛⎭⎫log 314 4.(2019·全国Ⅰ卷)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A.a <b <c B.a <c <b C.c <a <bD.b <c <a5.(2019·全国Ⅱ卷)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通信联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1(R +r )2+M 2r 2=(R +r )M 1R 3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( )A.M 2M 1R B.M 22M 1R C.33M 2M 1R D.3M 23M 1R 6.(2018·全国Ⅰ卷)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)7.(2019·北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.[明考情]1.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,有时难度较大.2.函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国卷考查较少,但也要引起重视,题目可能较难.考 点 整 合1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog b a(注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.基本初等函数的图象及性质(综合型)[知识整合]指数与对数式的8个运算公式(1)a m ·a n =a m +n . (2)(a m )n =a mn . (3)(ab )m =a m b m .(4)log a (MN )=log a M +log a N . (5)log aMN=log a M -log a N . (6)log a M n =n log a M . (7)a log a N =N . (8)log a N =log b Nlog b a.注:(1)(2)(3)中,a >0,b >0;(4)(5)(6)(7)(8)中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.[典型例题](1)(2019·湖南省五市十校联考)若f (x )=e x -a e -x 为奇函数,则满足f (x -1)>1e2-e 2的x 的取值范围是( )A .(-2,+∞)B .(-1,+∞)C .(2,+∞)D .(3,+∞)(2)(2018·高考全国卷Ⅲ)已知函数f (x )=ln(1+x 2-x )+1, f (a )=4,则f (-a )=________. 【例2】 (1)(2019·浙江卷)在同一直角坐标系中,函数y =1a x ,y =log a ⎝⎛⎭⎫x +12(a >0,且a ≠1)的图象可能是( )(2)(2019·广州调研)已知a (a +1)≠0,若函数f (x )=log 2(ax -1)在(-3,-2)上为减函数,且函数g (x )=⎩⎨⎧4x ,x ≤12,log|a |x ,x >12在R 上有最大值,则a 的取值范围为( ) A.⎣⎡⎦⎤-22,-12 B.⎝⎛⎦⎤-1,-12 C.⎣⎡⎭⎫-22,-12 D.⎣⎡⎭⎫-22,0∪⎝⎛⎦⎤0,12 探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f (x )=ln(x 2-3x +2)的单调区间,只考虑t =x 2-3x +2与函数y =ln t 的单调性,忽视t >0的限制条件.研究指数、对数函数的图象及性质应注意的问题(1)指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.(2)研究对数函数的性质,应注意真数与底数的限制条件.如求f (x )=ln(x 2-3x +2)的单调区间,只考虑t =x 2-3x +2与函数y =ln t 的单调性,易忽视t >0的限制条件.[对点训练]1.(2019·高考天津卷)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A .c <b <a B .a <b <c C .b <c <aD .c <a <b2.已知函数f (x )=log a x (a >0且a ≠1)满足f (2a )>f (3a ),则f (1-1x )>0的解集为( )A .(0,1)B .(-∞,1)C .(1,+∞)D .(0,+∞)3.若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )4.(2019·天津卷)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A.c <b <a B.a <b <c C.b <c <aD.c <a <b函数的零点(综合型)[知识整合]函数的零点及其与方程根的关系对于函数f(x),使f(x)=0的实数x叫做函数f(x)的零点.函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.角度1 确定函数零点个数或其范围【例3】函数f (x )=log 2x -1x 的零点所在的区间为( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫12,1C.(1,2)D.(2,3)探究提高 1.函数零点(即方程的根)的确定问题,常见的类型有:(1)函数零点值大致存在区间的确定;(2)零点个数的确定;(3)两函数图象交点的横坐标或有几个交点的确定. 2.判断函数零点个数的主要方法:(1)解方程f (x )=0,直接求零点;(2)利用零点存在定理;(3)数形结合法:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个能画出的函数图象交点问题.【对点训练】定义在R 上的函数f (x ),满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点有( ) A.3个B.2个C.1个D.0个角度2 根据函数的零点求参数的值或范围 【例4】 (1)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)(2019·天津卷)已知函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,1x ,x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( ) A.⎣⎡⎦⎤54,94 B.⎝⎛⎦⎤54,94 C.⎝⎛⎦⎤54,94∪{1}D.⎣⎡⎦⎤54,94∪{1}探究提高 1.求解本题的关键在于转化为研究函数g (x )的图象与y =a (x ≤0),y =2a (x >0)的交点个数问题:常见的错误是误认为y =2a ,y =a 是两条直线,忽视x 的限制条件.2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【对点训练】1.(2019·衡水质检)若函数f (x )=|log a x |-3-x (a >0,a ≠1)的两个零点是m ,n ,则( ) A.mn =1 B.mn >1 C.0<mn <1D.无法判断2.(2019·河南八市联考)已知函数f (x )=⎩⎪⎨⎪⎧(x -2)×|2x-1|,x <2,3-3x -1,x >2,若函数g (x )=f (x )-mx +2m 有三个不同的零点,则实数m 的取值范围为( ) A.(-1,0) B.(0,1) C.(-1,1)D.(1,3)例5. (1)(2018·福建市第一学期高三期末考试)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y=f (x )+3x 的零点个数是( )A .0B .1C .2D .3(2)(2019·江西八所重点中学联考)已知f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12|x |(x ≤1)-x 2+4x -2(x >1),若关于x 的方程a =f (x )恰有两个不同的实根,则实数a 的取值范围是( )A .(-∞,12)∪[1,2)B .(0,12)∪[1,2)C .(1,2)D .[1,2)利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的位置关系问题,从而构建不等式求解.[对点训练]1.已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)2.已知在区间(0,2]上的函数f (x )=⎩⎪⎨⎪⎧1x -3,x ∈(0,1],2x -1-1,x ∈(1,2],且g (x )=f (x )-mx 在区间(0,2]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12 C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23 D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23函数的实际应用(综合型)[知识整合]构建函数模型解决实际问题的常见类型与求解方法(1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解.(2)构建分段函数模型,应用分段函数分段求解的方法.(3)构建f (x )=x +a x(a >0)模型,常用基本不等式、导数等知识求解. [典型例题](2019·高考北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg 10.1D. 10-10.1应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答. (2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[对点训练]1.某工厂某种产品的年固定成本为250万元,每生产x 千件该产品需另投入的成本为G (x )(单位:万元),当年产量不足80千件时,G (x )=13x 2+10x ;当年产量不小于80千件时,G (x )=51x +10 000x-1 450.已知每件产品的售价为0.05万元.通过市场分析,该工厂生产的产品能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是________万元.2.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P =P 0e -kt .如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.1.指数函数与对数函数的图象和性质受底数a (a >0,且a ≠1)的取值影响,解题时一定要注意讨论,并注意两类函数的定义域与值域所隐含条件的制约.2.(1)函数的零点不是一个“点”,而是函数图象与x 轴交点的横坐标.(2)零点存在性定理注意两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.3.利用函数的零点求参数范围的主要方法:(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的位置关系问题,从而构建不等式求解.4.构建函数模型解决实际问题的常见类型与求解方法:(1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解.(2)构建分段函数模型,应用分段函数分段求解的方法.(3)构建f (x )=x +a x(a >0)模型,常用基本不等式、导数等知识求解.。