Enhancement of docosahexaenoic acid production by

合集下载

橙皮苷对DOCA

橙皮苷对DOCA

网络出版时间:2023-08-3014:39:20 网络出版地址:https://link.cnki.net/urlid/34.1086.R.20230830.1153.002橙皮苷对DOCA/Salt高血压大鼠心肾组织损害的保护作用杨 彬1,陈 哲2,全虹翰1,高海英1,朱 青1(1.广东药科大学中医药研究院,2.广州中医药大学科技创新中心,广东广州 510006)收稿日期:2023-03-10,修回日期:2023-06-20基金项目:国家自然科学基金资助项目(No81770707)作者简介:杨 彬(1996-),女,硕士,研究方向:高血压及肾脏疾病的中医药防治,E mail:young9612@163.com;朱 青(1980-),男,博士,教授,硕士生导师,研究方向:高血压及肾脏药理学,通信作者,E mail:zyq973@hotmail.comdoi:10.12360/CPB202208041文献标志码:A文章编号:1001-1978(2023)09-1705-06中国图书分类号:R 332;R284 1;R322 11;R322 61;R364 5;R544 1摘要:目的 探讨橙皮苷(hesperidin,HES)对高血压大鼠心肾损害的保护作用及可能机制。

方法 雄性SD大鼠18只随机分为3组:对照组(Ctrl)、高血压模型组(DOCA/Salt)、橙皮苷给药组(DOCA/Salt+HES)。

HES持续给药4周,检测血压、血清肌酐、尿素氮等指标,HE、马松和天狼星红染色观察心、肾组织病理改变,Westernblot检测α SMA、collagenⅠ和TGF β等蛋白表达,qRT PCR分别检测Nlrp3、TNF α、IL 1β、IL 6和NOXs的mRNA表达。

结果 与模型组比较,HES给药明显减缓DOCA/Salt高血压的发生,改善高血压大鼠肾功能指标,减少肾脏和心脏组织纤维化,降低α SMA、collagenⅠ和TGF β的表达,抑制Nlrp3,TNF α、IL 1β和IL 6等炎症因子释放,减少肾脏和心脏组织中NOXs表达。

南洋楹溃疡病菌巢式PCR快速检测

 南洋楹溃疡病菌巢式PCR快速检测

南洋楹溃疡病菌巢式PCR快速检测作者:敖莉丝王伟任董董李慧静黄嘉琪纪春艳来源:《热带作物学报》2020年第02期摘要:由可可毛色二孢菌(Lasiodiplodia theobromae)引致的潰疡病是目前威胁南洋楹健康生产和品质的重要病害。

快速、准确检测病原菌是进行病害有效防控的基础。

本研究用南洋楹溃疡病菌翻译延伸因子(EF 1-α)编码基因上保守靶基因区域的序列设计特异性引物EF-AF/AR。

利用EF 1-α编码基因通用引物EF-688F/986R和特异性引物EF-AF/AR组合进行巢式PCR扩增,获得264 bp的单一条带,灵敏度检测最低限度为1 fg/µL。

利用建立的巢式PCR方法对林间疑似溃疡病的病样进行检测,能够特异性地检测到L. theobromae。

本研究建立的巢式PCR检测方法准确、特异且灵敏性高,可为南洋楹溃疡病的早期诊断和及时防控提供基础的理论和实践依据。

关键词:南洋楹溃疡病;可可毛色二孢;巢式PCR中图分类号:S432.4 文献标识码:AAbstract: A rapid nested-PCR detection system for Falcataria moluccana stem canker disease was established. The outer pair of primers EF-688F/986R and the inner pair of primers EF-AF/AR were designed based on the EF 1-α gene sequences of Lasiodiplodia t heobromae. The established specific nested-PCR could amplified a single product of 264 bp with annealing temperature of 63℃,reaction cycles of 37. The lowest detectable concentration was 1 fg/µL. L. theobromae could be specifically detected by nested-PCR from the diseased plant samples. The establishment of rapid,sensitive nested-PCR detection system of L. theobromae might have significance in early diagnosis,and disease control of F. moluccana stem canker.Keywords: Falcataria moluccana stem canker; Lasiodiplodia theobromae; nested-PCR南洋楹(Falcataria moluccana)是世界著名的热带速生树种,树形美观,木质纤维丰富,韧性强,材质轻,经营周期短,是家具、造纸制浆等的优良原料。

香蕉花及其提取物的急性毒性评价_王必尊

香蕉花及其提取物的急性毒性评价_王必尊
根据预实验结果,设计以受试物两个品种的香蕉 花及其乙醇提取物5g/kg体重的剂量,经口一次灌胃。 药后及停药观察期间,各组小鼠进食、饮水均正常, 体重呈增长趋势,用SPSS单因素方差分析供试品组与 阴性对照组各时段体重的差异,供试品组与空白对 照组比较无明显差异(p>0.05),详见表2~表5。各组 小鼠外观特征基本正常,毛发色泽正常,有少数动物 出现耸毛现象,皮肤颜色粉红正常,耳、眼、口、鼻未 见异样分泌物,呼吸道反应正常,未见咳嗽、哮喘及 喷嚏现象,四肢活动、步态正常,灌胃后24h内,药物 组多数动物排出棕黑色软粪便,24h以后粪便逐渐恢 复正常,呈灰褐色,颗粒状成形粪便,无一动物死亡。
natural drug. Mice were fed by intragastric administration once,after that was fed normal. Then the symptom of
mice were observed and recorded in the next 14d. Results showed that there was no evident poisoning
1.3 数据处理
用 SPSS 软 件 选 择“ 单 因 素 方 差 分 析 ”法 进 行 统 计学处理 ,计算出均数 标准差,并 且分析 供 试 品 组 、 阴性对照组与空白对照组之间的体重差异。
观察症状 腹式呼吸
喘息 呼吸暂停 呼吸急促
紫绀 鼻分泌物 鼻出血 自发活动
探究 梳理毛发 运动增加 运动减少
1.2 实验方法
1.2.1 动物实验预实验 取16只检疫合格的KM种 小鼠,雌雄各半,按照“实验中实验动物的标记”标准 操作规程将动物分为4组,每组逐一编号。禁食(不 禁水)24h后,分别将供试的香蕉花干样及其乙醇提 取物配制成125mg/mL的供试品混悬液,1日内给药1 次,上午给药。给药途径采用灌胃给药,给药体积为

牛肉样品中产志贺毒素大肠埃希氏菌和肠致病性大肠埃希氏菌的分离鉴定

牛肉样品中产志贺毒素大肠埃希氏菌和肠致病性大肠埃希氏菌的分离鉴定

牛肉样品中产志贺毒素大肠埃希氏菌和肠致病性大肠埃希氏菌的分离鉴定朱应飞,聂 翔,熊丽霞,吴学平,占忠旭,匡佩琳(江西省检验检测认证总院食品检验检测研究院,江西南昌 330000)摘 要:于2018年9月—2019年3月,每个月从超市和农贸市场中抽取20个样本,共抽取140个牛肉及制品样本,在qPCR初筛时stx阳性率为45.8%,eae的阳性率为52.2%。

每月的stx初筛阳性率分别为65%、60%、80%、5%、25%、45%和40%;eae初筛阳性率分别为70%、70%、65%、0%、40%、65%和55%。

检出携带stx基因的产类志贺毒素大肠埃希氏菌样本4份,样本阳性菌株检出率为2.9%;检出携带eae基因的肠致病性大肠埃希氏菌样本12份,样本阳性菌株检出率为8.6%。

关键词:产志贺毒素大肠埃希氏菌;肠致病性大肠埃希氏菌;分离;鉴定Isolation and Identification of Shiga Toxin Producing Escherichia coli and Enteropathogenic Escherichia coli in BeefSamplesZHU Yingfei, NIE Xiang, XIONG Lixia, WU Xueping, ZHAN Zhongxu, KUANG Peilin (Jiangxi General Institute of Testing and Certification Food Testing Institute, Nanchang 330000, China)Abstract: From September 2018 to March 2019, 20 samples were taken from supermarkets and farmers’ markets every month, with a total of 140 beef and product samples taken. the positive rate of stx was 45.8%, and the positive rate of eae was 52.2%. The monthly positive rates of stx initial screening positive rates of 65%, 60%, 80%, 5%, 25%, 45%, and 40%, respectively; The positive rates of eae initial screening were 70%, 70%, 65%, 0%, 40%, 65%, and 55%, respectively. Four Shiga toxin producing Escherichia coli samples carrying the stx gene were detected, with a positive strain detection rate of 2.9%; From September 2018 to March 2019, 12 samples of enteropathogenic Escherichia coli carrying the eae gene were detected, with a positive strain detection rate of 8.6%.Keywords: Shiga toxin producing Escherichia coli; enterogenic Escherichi coli; separation; appraisal产志贺菌毒素的大肠杆菌(Shiga Toxin Producing Escherichia coli,STEC)和肠致病性埃希氏菌(Enterogenic Escherichi coli,EPEC)是世界上最重要的食源性病原体之一。

不同珊瑚对酸化、苯并[a]芘单一和复合胁迫的生理响应

不同珊瑚对酸化、苯并[a]芘单一和复合胁迫的生理响应

生态毒理学报Asian Journal of Ecotoxicology第18卷第3期2023年6月V ol.18,No.3Jun.2023㊀㊀基金项目:国家自然科学基金资助项目(4196070185);2020年海南省普通高等学校研究生创新科研课题(Hys2020-186)㊀㊀第一作者:陈雨梅(1998 ),女,硕士研究生,研究方向为海洋环境胁迫与生态系统响应,E -mail:*****************㊀㊀*通信作者(Corresponding author ),E -mail:*******************.cnDOI:10.7524/AJE.1673-5897.20221003001陈雨梅,齐钊,尹连政,等.不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应[J].生态毒理学报,2023,18(3):456-464Chen Y M,Qi Z,Yin L Z,et al.Physiological responses of different corals under single and combined stress of acidification and benzo[a]pyrene [J].Asi -an Journal of Ecotoxicology,2023,18(3):456-464(in Chinese)不同珊瑚对酸化㊁苯并[a ]芘单一和复合胁迫的生理响应陈雨梅1,2,齐钊1,2,尹连政1,2,常逢彤1,2,鞠涵烨3,刁晓平1,*1.南海海洋资源利用国家重点实验室,海口5702282.海南大学生态与环境学院,海口5702283.海南师范大学生命科学学院,海口571158收稿日期:2022-10-03㊀㊀录用日期:2023-01-11摘要:海洋酸化和持久性有机污染物的排放对珊瑚礁生态系统的健康具有负面影响㊂为阐明酸化㊁苯并[a]芘(benzo[a]pyrene,BaP)单一及复合胁迫对2种不同形态珊瑚共生虫黄藻光合生理指标和抗氧化酶活性的影响,本研究以澄黄滨珊瑚(Porites lut -ea )和多孔鹿角珊瑚(Acropora milllepora )为研究对象,分析了不同胁迫处理(酸化㊁BaP 胁迫㊁酸化与BaP 复合胁迫)对2种珊瑚的共生虫黄藻密度㊁叶绿素a 含量以及抗氧化酶活性的毒性效应㊂研究结果显示,单一酸化胁迫(pH =7.8)下,多孔鹿角珊瑚共生虫黄藻密度㊁叶绿素a 含量和超氧化物歧化酶(SOD)酶活性呈显著下降(P <0.01),过氧化物酶(POD)酶活性显著上升(P <0.01);澄黄滨珊瑚共生虫黄藻密度㊁叶绿素a 含量无显著变化,SOD ㊁POD 酶活性显著下降(P <0.01)㊂单一BaP(10μg ㊃L -1)胁迫下,多孔鹿角珊瑚共生虫黄藻的密度㊁叶绿素a 含量显著下降(P <0.01),SOD ㊁POD 酶活性无显著变化;澄黄滨珊瑚共生虫黄藻密度无显著变化,叶绿素a 含量显著下降(P <0.01),SOD ㊁POD 酶活性明显升高(P <0.01);在海水酸化复合BaP 胁迫下,多孔鹿角珊瑚的共生虫黄藻叶绿素a 含量㊁SOD 酶活性显著下降(P <0.01),澄黄滨珊瑚共生虫黄藻密度显著升高(P <0.05),POD 酶活性显著下降(P <0.01)㊂研究结果表明,珊瑚对不同环境的胁迫响应存在种间差异,多孔鹿角珊瑚较澄黄滨珊瑚更加敏感;珊瑚共生虫黄藻叶绿素a 含量变化更适合作为海洋酸化㊁BaP 胁迫的指示因子㊂关键词:海水酸化;苯并[a]芘;珊瑚;共生虫黄藻;生理响应文章编号:1673-5897(2023)3-456-09㊀㊀中图分类号:X171.5㊀㊀文献标识码:APhysiological Responses of Different Corals under Single and Combined Stress of Acidification and Benzo [a ]pyreneChen Yumei 1,2,Qi Zhao 1,2,Yin Lianzheng 1,2,Chang Fengtong 1,2,Ju Hanye 3,Diao Xiaoping 1,*1.State Key Laboratory of Marine Resources Utilization in South China Sea,Haikou 570228,China2.College of Ecology and Environment,Hainan University,Haikou 570228,China3.College of Life Sciences,Hainan Normal University,Haikou 571158,ChinaReceived 3October 2022㊀㊀accepted 11January 2023Abstract :The health of coral reef ecosystem has been negatively impacted by ocean acidification (OA)and the第3期陈雨梅等:不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应457㊀discharge of persistent organic pollutants(benzo[a]pyrene,BaP).In order to elucidate the individual and combined effects of OA and BaP on the algal photo-physiology and antioxidant system of coral holobionts,we measured the Symbiodiniaceae density and chlorophyll a content,as well as antioxidant enzyme activities of holobionts in two reef-building corals,Acropora milllepora and Porites lutea,respectively.The results showed that OA(pH=7.8) caused a significant decrease in Symbiodiniaceae density,chlorophyll a content,and superoxide dismutase(SOD) activity,but a significant increase in peroxide(POD)activity(P<0.01)in lepora,whereas no significant vari-ation in two algal photo-physiological indexes and a significant decrease(P<0.01)in SOD and POD activities of P.lutea.An exposure of10μg㊃L-1induced significant decrease in Symbiodiniaceae density and chlorophyll a con-tent(P<0.01),but there has no significant change in SOD and POD activities of lepora.Additionally,chloro-phyll a content significantly decreased(P<0.01),but SOD and POD activities were significantly elevated in P.lutea (P<0.01).Under combined stressors exposure,the chlorophyll a content and SOD activity significantly declined(P <0.01)in lepora,while Symbiodiniaceae density significantly increased(P<0.05)in P.lutea accompanied with significantly decreased POD activity(P<0.01).Our findings suggested that lepora is more sensitive than P.lutea to the environmental stress.The chlorophyll a content appears suitable as the bio-indicator to monitor ocean acidification and BaP pollution.Keywords:acidification;benzo[a]pyrene;coral;Symbiodiniaceae;physiological index㊀㊀海洋酸化已经成为珊瑚礁生态系统健康的主要威胁[1]㊂据美国国家海洋和大气管理局(National O-ceanic and Atmospheric Administration,NOAA)报告,2021年全球平均大气CO2含量为414.72mg㊃L-1㊂如果全球能源需求持续增长,到21世纪末,大气中的CO2含量可能达到800mg㊃L-1甚至更高[2]㊂近20年来,海洋表层水pH值每10年下降0.017~ 0.027个单位[3],随着大气中CO2浓度不断增加,海洋对大气中CO2的吸收速度继续加快㊂预计到21世纪末pH将下降0.2~0.4个单位[4]㊂随着海洋酸化程度的加深,最终会导致珊瑚礁结构的损坏和珊瑚的生长[5]㊂Vogel等[6]指出,酸化程度的加剧对珊瑚产生了负面影响,且海水酸化和其他环境胁迫可能对珊瑚产生累加的负面影响㊂因此,不同种类的珊瑚对海洋酸化的响应差异,以及多种环境压力因素之间的相互作用还需要进行更多的研究[7]㊂苯并[a]芘(benzo[a]pyrene,BaP)是持久性有机污染物多环芳烃(PAHs)的典型代表㊂近年来,持续的人类活动导致更多的PAHs通过空气-水交换和沉积进入海洋,威胁到珊瑚礁生物和整个珊瑚礁生态系统[8]㊂据报道,PAHs广泛存在于南海沿岸甚至近海的海水和珊瑚礁区中[9]㊂在海南岛近岸的部分珊瑚礁区中,水体的PAHs含量为13.60~407.82ng㊃L-1,沉积物中25.3~387.5ng㊃g-1(以干质量计),而珊瑚体内含量达到209.41~824.52ng㊃g-1(以干质量计),显著高于周围环境中的浓度,说明珊瑚对PAHs 具有较强的富集效应[10-11]㊂由于全球变化和人类活动的影响,海水酸化和BaP均已成为威胁珊瑚生存的重要环境因子,而海洋酸化与有机污染物污染在海洋环境中更多是相伴出现,海水酸化极有可能改变BaP等污染物的海洋环境行为,进而影响其毒理效应㊂目前,海水酸化和BaP对造礁珊瑚毒理效应的相关研究大多是针对单一的因素开展,关于酸化和BaP联合胁迫影响珊瑚的研究尚鲜有文献报道,与单一环境因子相比,联合因子的协同作用对珊瑚的影响研究更复合实际[12]㊂珊瑚共生虫黄藻的叶绿素含量和细胞密度情况以及珊瑚共生体抗氧化酶活性可以反映珊瑚的健康状况[11,13-14],因此,本研究选用2种不同形态的珊瑚为受试对象,探究酸化㊁BaP单一和复合污染对珊瑚共生虫黄藻细胞密度㊁叶绿素含量和珊瑚共生体抗氧化酶活性的影响,筛选出敏感的生物标志物,以期为阐明海洋酸化-BaP的联合毒性效应和不同形态珊瑚的环境耐受性提供科学依据和基础数据㊂1㊀材料与方法(Materials and methods)1.1㊀实验试剂苯并[a]芘(BaP)为色谱纯,购自Sigma公司,二甲基亚砜(DMSO)为分析纯,购自西陇科学股份有限公司㊂超氧化物歧化酶(SOD)㊁过氧化物酶(POD)和考马斯亮蓝法蛋白定量(TP)均由南京建成生物工程458㊀生态毒理学报第18卷研究所提供㊂1.2㊀实验材料2021年6月在三亚凤凰岛采集澄黄滨珊瑚(Porites lutea)和多孔鹿角珊瑚(Acropora milllepora),分为3~5cm2左右的断枝,继续进行2周适应性养殖㊂养殖珊瑚使用经过沉淀和0.5μm滤膜过滤的自然海水,盐度34‰~35‰,pH为8.10ʃ0.20,每天固定12h光照和12h黑暗,光照强度为300μmol photons㊃m-2㊃s-1,水温保持在24~25ħ㊂之后,健康的珊瑚块被用于单一胁迫和海水复合BaP胁迫实验㊂1.3㊀珊瑚暴露实验及样品采集依据文献报道和实验室前期研究结果[11,13-16],实验设置空白对照组(CK)㊁酸化处理组(pH7.80)㊁BaP处理组(10μg㊃L-1)和酸化BaP复合处理组(pH 7.80,BaP10μg㊃L-1)㊂所有实验处理组均设3个平行,每组放置9~16个珊瑚断枝㊂实验期间,其海水温度㊁盐度㊁光照时间与驯养期间的保持一致㊂酸化胁迫pH控制:由CO2加富器(武汉瑞华仪器设备有限公司,CE100D型)注入CO2,实现水体pH调节,并使用pH计(梅特勒-托利多仪器(上海)有限公司,Five Easy Plus FP20pH/mV,仪表级别0.01级)进行监测㊂BaP胁迫浓度控制:BaP处理组中溶剂DMSO 的终浓度低于海水体积(5L)的1‰,以避免溶剂干扰;每日定时更换全部海水,并分别向各胁迫组添加固定体积的BaP母液,以确保每日BaP胁迫浓度一致㊂实验样品采集:收集胁迫实验第7天的珊瑚样品,立即转移到-40ħ冰箱保存㊂1.4㊀虫黄藻叶绿素含量和密度的测定珊瑚骨骼表面积测定[11]:锡箔纸包裹缠绕珊瑚表面,只包裹有虫黄藻部分;去除多余锡箔纸,将包裹珊瑚表面的锡箔纸平铺粘贴于测量纸上并备注好对应样品编号,设置标尺㊂扫描结果于Image J估算表面积(至少测3次重复)㊂所测珊瑚骨骼表面积(cm2)用于虫黄藻叶绿素和细胞密度单位面积含量的计算㊂虫黄藻收集:人工海水(GB17378.4 2007)[17]事先放置于4ħ冰箱保存,洗牙器加入人工海水将珊瑚骨骼冲洗至白化,冲洗液过300目细胞筛后装入离心管,4ħ㊁4000r㊃min-1离心10min去上清定容至10mL;定容好的藻液分装5mL用于叶绿素测定,其余用于虫黄藻细胞计数㊂虫黄藻密度测定[11]:100μL藻液每次匀浆并吸取10μL血球计数板于显微镜下(物镜10ˑ,目镜10ˑ)计数,并重复9次㊂按照式(1)计算㊂细胞数(cells㊃mL-1)=80小格细胞数/80ˑ400ˑ104(1)丙酮萃取叶绿素:分装好的5mL藻液于4ħ㊁4000r㊃min-1离心10min,去除海水,加入等体积90%丙酮[11],锡纸包裹避光;细胞破碎仪70Hz破碎60s后放入-20ħ冰箱萃取24h㊂萃取结束后4500r㊃min-1离心15min去除杂质,上清用于紫外分光光度计测量(645nm㊁663nm),测量3次重复㊂按照式(2)计算[11],CHLa=12.7A663-2.69A645(2)式中:CHLa为叶绿素a含量(μg㊃L-1);A663为波长663的吸光度;A645为波长645的吸光度㊂1.5㊀珊瑚抗氧化酶活性的测定人工海水事先放置于4ħ冰箱保存,洗牙器加入人工海水将珊瑚骨骼冲洗至白化,获得珊瑚组织冲洗液,装入50mL离心管里,4ħ㊁4000r㊃min-1离心10min去上清定容至10mL;定容好的珊瑚组织液根据以下方法制备组织匀浆㊂参照试剂盒附送的‘实验方法学“,按照最佳取样量制备对应浓度组织匀浆㊂总蛋白含量:珊瑚组织液4ħ㊁4000r㊃min-1离心10min去上清,获得珊瑚待测组织质量,按珊瑚组织沉淀质量(g)ʒ体积(mL)=1ʒ49的比例加入49倍体积的生理盐水(2%组织匀浆),冰水浴的条件机械匀浆1min,4ħ㊁2500r㊃min-1离心10min,取上清待测㊂SOD酶:珊瑚组织液4ħ㊁4000r㊃min-1离心10min去上清,获得珊瑚待测组织质量,按珊瑚组织沉淀质量(g)ʒ体积(mL)=1ʒ9的比例加入9倍体积的生理盐水(10%组织匀浆),冰水浴的条件机械匀浆1min,4ħ㊁3500r㊃min-1离心10min,取上清待测㊂POD酶:珊瑚组织液4ħ㊁4000r㊃min-1离心10min去上清,获得珊瑚待测组织质量,按珊瑚组织沉淀质量(g)ʒ体积(mL)=1ʒ4的比例加入4倍体积的生理盐水(20%组织匀浆),冰水浴的条件机械匀浆1min,4ħ㊁3500r㊃min-1离心10min,取上清待测㊂匀浆制备完成,上清用于测定总蛋白含量和抗氧化酶活性,所测总蛋白含量用以计算,并统一酶活第3期陈雨梅等:不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应459㊀单位㊂1.6㊀数据分析与统计使用IBM SPSS Statistics 26.0统计软件进行单因素方差分析和Duncan 多重比较,以P <0.05㊁P <0.01作为差异显著水平,使用Origin 2022软件进行数据可视化㊂2㊀结果(Results )2.1㊀单一及复合胁迫对2种珊瑚共生虫黄藻细胞密度的影响酸化㊁苯并[a]芘单一和复合胁迫对澄黄滨珊瑚(P.lutea )和多孔鹿角珊瑚(llepora )共生虫黄藻细胞密度的影响如图1所示㊂胁迫7d 后,酸化组㊁BaP 组澄黄滨珊瑚的共生虫黄藻密度与对照组相比无显著差异(P >0.05),复合胁迫组共生虫黄藻密度则明显升高(P<0.05)㊂多孔鹿角珊瑚的共生虫黄藻密度在酸化组㊁BaP 组明显降低,与对照组相比,具有显著差异(P <0.01);复合胁迫组与对照组相比,虫黄藻密度呈下降趋势,但无显著差异(P >0.05)㊂多孔鹿角珊瑚虫黄藻密度的变化对不同胁迫方式更加敏感㊂图1㊀单一及复合胁迫对2种珊瑚共生虫黄藻细胞密度的影响注:Control 表示空白对照组,Acid 表示海水酸化组,BaP 表示苯并[a]芘胁迫组,Acid+BaP 表示复合胁迫组;*表示P <0.05,**表示P <0.01㊂Fig.1㊀Effects of single and combined stresses on cell densityof two coral symbionts SymbiodiniaceaeNote:Control indicates blank control group,Acid indicates seawater acidification group,BaP indicates benzo[a]pyrene stress group,and Acid+BaP indicates compound stress group;*symbol of significantdifference P <0.05,**symbol of significant difference P <0.01.2.2㊀单一及复合胁迫对2种珊瑚共生虫黄藻叶绿素a 含量的影响酸化-苯并[a]芘复合胁迫对澄黄滨珊瑚(P.lutea )和多孔鹿角珊瑚(llepora )共生虫黄藻叶绿素a 含量的影响如图2所示㊂胁迫7d 后,与对照组相比,澄黄滨珊瑚的共生虫黄藻叶绿素a 含量在酸化组㊁复合胁迫组呈下降趋势,但与对照组相比均无显著差异(P >0.05),BaP 胁迫组虫黄藻叶绿素a 含量明显下降,与对照组相比具有显著差异(P <0.01)㊂酸化组㊁BaP 胁迫组和复合胁迫组多孔鹿角珊瑚共生虫黄藻叶绿素a 含量均明显减低,与对照组相比具有显著差异(P<0.01),说明相较于澄黄滨珊瑚,多孔鹿角珊瑚虫黄藻叶绿素a 含量变化对环境胁迫更加敏感㊂图2㊀单一及复合胁迫对2种珊瑚共生虫黄藻叶绿素a 含量的影响注:*表示显著P <0.05,**表示显著P <0.01㊂Fig.2㊀Effects of single and combined stresses on chlorophylla content of two coral symbionts SymbiodiniaceaeNote:*symbol of significant difference P <0.05,**symbol of significant difference P <0.01.2.3㊀单一及复合胁迫对澄黄滨珊瑚抗氧化酶活性的影响3种不同的胁迫处理对澄黄滨珊瑚SOD 酶(图3(a))和POD 酶活性(图3(b))的影响趋势是一致的,表现为酸化胁迫导致2种酶的活性显著下降,BaP 胁迫则能够明显诱导2种酶的活性,与对照组相比均具有显著差异(P <0.01);复合胁迫后,澄黄滨珊瑚SOD 酶有下降趋势,但与对照组相比,并未存在显著性差异(P >0.05);而POD 酶活性明显降460㊀生态毒理学报第18卷低,表现出显著差异(P <0.01)㊂结果表明,单一胁迫对澄黄滨珊瑚SOD 酶活性的影响要大于复合胁迫,澄黄滨珊瑚SOD 和POD 酶活对不同胁迫的响应一致㊂2.4㊀单一及复合胁迫对多孔鹿角珊瑚抗氧化酶活性的影响不同的胁迫方式对多孔鹿角珊瑚SOD 酶(图4(a))和POD 酶活性(图4(b))的影响不同㊂由图4可知,酸化胁迫后SOD 酶活性受到明显抑制,而POD 酶活性受到诱导增加,与对照组相比具有显著差异(P <0.01);BaP 暴露后,对SOD 酶和POD 酶活性没有明显影响㊂而复合胁迫能抑制2种酶的活性,导致SOD 酶活性显著下降(P<0.01);POD 酶活性与对照组相比虽有下降趋势,但未存在明显差异㊂与其他2种胁迫方式相比,酸化胁迫对多孔鹿角珊瑚抗氧化酶活性的影响更大㊂图3㊀单一及复合胁迫对澄黄滨珊瑚(P.lutea )抗氧化酶活性的影响注:(a)超氧化物歧化酶(SOD)活性,(b)过氧化物酶(POD)活性;*表示显著P <0.05,**表示显著P <0.01㊂Fig.3㊀Effects of single and combined stresses on the antioxidant enzyme activities of P.luteaNote:(a)Superoxide dismutase (SOD)activity;(b)Peroxide (POD)activity;*Symbol of significant difference P <0.05,**Symbol of significant difference P<0.01.图4㊀单一及复合胁迫对多孔鹿角珊瑚(llepora )抗氧化酶活性的影响注:(a)超氧化物歧化酶(SOD)活性,(b)过氧化物酶(POD)活性;*表示显著P <0.05,**表示显著P <0.01㊂Fig.4㊀Effects of single and combined stresses on the antioxidant enzyme activities of lleporaNote:(a)Superoxide dismutase (SOD)activity;(b)Peroxide (POD)activity;*Symbol of significant difference P <0.05,**Symbol of significant difference P <0.01.第3期陈雨梅等:不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应461㊀3㊀讨论(Discussion)珊瑚共生虫黄藻的叶绿素含量和细胞密度可以用来区分珊瑚的应激和功能失调的状态[18],因此可被作为一种生物测定方法用以评估珊瑚所面临的压力㊂有研究显示,珊瑚共生虫黄藻正常发育需要偏碱性环境[19]㊂我们的研究结果显示,在单独的海水酸化条件下(pH=7.8),胁迫第7天时,澄黄滨珊瑚和多孔鹿角珊瑚的共生虫黄藻细胞密度和叶绿素a浓度下降,其中多孔鹿角珊瑚表现为显著下降(P <0.01),表明海水酸化可导致珊瑚单位面积共生虫黄藻的光合色素和虫黄藻密度明显降低,影响珊瑚与共生虫黄藻的共生关系㊂珊瑚共生虫黄藻为珊瑚提供了大部分的营养来源[20],海洋酸化降低了珊瑚共生虫黄藻的密度,影响了虫黄藻的光合作用,进而阻碍了营养的供应,对珊瑚健康造成威胁㊂有研究显示,不同种类的珊瑚对海洋酸化具有不同的抵抗力,我们的研究结果显示,多孔鹿角珊瑚对海水酸化的环境变化更加敏感,这与前人的研究结果相一致[21-22]㊂多孔鹿角珊瑚是枝状珊瑚,与澄黄滨珊瑚(块状)相比,具有更快的生长速度㊂研究发现,生长较快的珊瑚更容易受到海水酸化的影响[23-24]㊂有研究显示,在海洋酸化的背景下,对酸化敏感的物种会相对减少,抗酸性强的物种则会相对增多,生态系统内的多样性随之降低[25],而多样性下降很可能抑制珊瑚的生长和存活并引发负反馈,导致进一步的生态系统衰退[26],因此,枝状珊瑚的多样性,还能够间接体现其生活环境的基本情况㊂BaP主要通过细胞生物过程对生物产生毒性, Kennedy等[27]证实了BaP在共生虫黄藻中的累积会随着时间的推移和正常的光周期的增加而增加,而珊瑚失去共生虫黄藻可能是一种有效的解毒方式㊂有研究表明,BaP暴露可导致不同鹿角珊瑚共生虫黄藻光合效率和虫黄藻密度的降低,珊瑚与共生虫黄藻的共生关系受到胁迫[11,13]㊂在本研究中,BaP (10μg㊃L-1)胁迫7d后,澄黄滨珊瑚和多孔鹿角珊瑚共生虫黄藻的叶绿素a含量显著下降,且多孔鹿角珊瑚共生虫黄藻的细胞密度显著下降,这与上述文献的研究结果基本一致㊂此外,BaP暴露与海水酸化暴露对珊瑚影响的研究结果一致,同样表现为多孔鹿角珊瑚比澄黄滨珊瑚更容易受到影响㊂Scheufen等[18]强调不同珊瑚种类的骨架单元对珊瑚共生虫黄藻光合能力的重要性㊂因此,可以认为,由于形态和骨骼结构的差异,澄黄滨珊瑚(块状)与多孔鹿角珊瑚(枝状)对BaP的响应表现不一,这为识别物种形态在珊瑚表现和竞争能力方面的差异提供了依据㊂值得注意的是,我们研究的2种珊瑚中,耐受性更强的澄黄滨珊瑚在BaP胁迫下其共生虫黄藻密度未发生显著改变,但其共生虫黄藻叶绿素a 含量却显著下降,表明珊瑚共生虫黄藻密度的反应滞后于叶绿素a含量变化,这与雷新明等[28]的研究结果一致㊂由此可见,澄黄滨珊瑚的耐受性可能与更为稳定的珊瑚-虫黄藻共生关系相关㊂我们的研究发现,海水酸化-BaP复合胁迫下,澄黄滨珊瑚比多孔鹿角珊瑚更具耐受性㊂复合胁迫下,多孔鹿角珊瑚的共生虫黄藻单位面积密度㊁叶绿素a含量显著下降;澄黄滨珊瑚的共生虫黄藻单位面积密度显著上升,但其叶绿素a含量无显著变化, Terán等[29]的研究显示,增加虫黄藻密度能更有效地抵消细胞色素失衡,并且增强珊瑚吸收率㊂因此,澄黄滨珊瑚比多孔鹿角珊瑚更具耐受性,可能是其在应对复杂的环境胁迫时,能够增加虫黄藻密度,有效地调控机体内稳态㊂SOD酶是生物体内常见的抗氧化酶,能够消除机内的活性氧(reactive oxygen species,ROS),在抗氧化防御过程发挥了非常重要的作用[30]㊂然而,如果ROS产生过多,超出了机体自身的防御和去除能力,机体就会受到氧化胁迫[31]㊂我们的研究发现,在3种胁迫处理下,澄黄滨珊瑚和多孔鹿角珊瑚中的SOD酶活性呈现相同的反应模式,即与对照组相比,单一海水酸化胁迫和酸化-BaP复合胁迫均导致珊瑚SOD酶活性降低㊂海水酸化暴露7d后,2种珊瑚的SOD酶活性均呈显著下降(P<0.01),说明SOD酶活性受海水酸化(pH=7.8)的影响较大,可能是因为海水酸化刺激了细胞内芬顿(Fenton)反应产生更多的羟基自由基,导致细胞内酸中毒,从而抑制了珊瑚SOD酶的解毒功能[32],而韦晓慧[33]和张天宇等[34]研究中海水酸化(pH=7.6)导致日本虎斑猛水蚤(Tigriopus japonicus)和大马蹄螺(Trochus niloticus)的SOD酶活性上升,与本研究结果相反,可能是由于珊瑚作为共生有机功能体,对海水酸化胁迫更为敏感,pH=7.8时就表现出了免疫功能抑制㊂相较于对照组,BaP暴露7d后,2种珊瑚的SOD酶活性均上升,说明BaP胁迫的刺激促使了珊瑚产生抗氧化防御反应,增加体内的SOD酶活性来消除多余的ROS[13]㊂在海洋无脊椎动物免疫应答过程中,氧化应激462㊀生态毒理学报第18卷产生的抗氧化酶有SOD㊁过氧化氢酶(CAT)㊁POD和谷胱甘肽过氧化物酶(GPx)等,SOD酶能以超氧阴离子为作用底物,将其歧化成为H2O2和O2,紧接着POD酶将H2O2分解或利用,从而避免了氧化伤害[35],POD还参与了黑色素合成途径,具有消除过氧化氢和酚类㊁胺类㊁醛类㊁苯类毒性的双重作用,在大多数情况下为珊瑚提供了抵抗真菌病原体的能力[36-37],有研究证明POD活性较低的珊瑚容易患病[38]㊂黄昇[39]研究发现,酸化海水促进中华乌塘鳢(Bostrychus sinensis)黏液的分泌,引起体表黏液细胞的应激反应,使其皮肤表层免疫力减弱,且海水pH 为7.8时,有利于致病菌的繁殖和生物膜的形成,最终引起中华乌塘鳢出现皮肤红肿病㊂在我们的研究中,澄黄滨珊瑚POD酶活性应对各胁迫处理的响应与SOD酶一致,但POD酶活性反应比SOD酶活性更为灵敏㊂海水酸化会抑制澄黄滨珊瑚POD酶的活性,而BaP胁迫则导致机体产生O2-㊁H2O2和羟基自由基,从而启动POD酶的上调,引发珊瑚的抗氧化防御反应,在复合胁迫处理下,POD酶的活性受到抑制显著下降(P<0.01)㊂与澄黄滨珊瑚不同,多孔鹿角珊瑚在胁迫7d后,海水酸化组的POD酶活性显著上升,而BaP胁迫组和复合胁迫组则无显著变化,珊瑚应对不同的环境因子的响应过程不同且具有种间差异㊂崔雯婷[40]在海水酸化和镉复合胁迫褐牙鲆(Paralichthys olivaceus)仔鱼的研究中发现,海水酸化影响了受试生物抗氧化防御系统对重金属镉暴露的响应㊂我们的研究发现,海水酸化抑制了珊瑚的抗氧化酶活性,BaP则引发珊瑚的抗氧化防御反应,而海水酸化-BaP复合胁迫下,澄黄滨珊瑚和多孔鹿角珊瑚抗氧化酶活性受到抑制,表明海水酸化影响了珊瑚抗氧化防御系统对BaP暴露的响应,与前人研究相类似㊂综上所述,这些生理指标都反映珊瑚在海水酸化和BaP污染的环境胁迫下处于异常状态,且2种珊瑚应对单一及复合胁迫具有不同的生理响应㊂海水酸化(pH=7.8)胁迫7d后,珊瑚共生虫黄藻的光合色素和虫黄藻密度降低,珊瑚与虫黄藻的共生关系受到威胁㊂相较澄黄滨珊瑚,多孔鹿角珊瑚对海水酸化更加敏感;BaP(10μg㊃L-1)胁迫7d后,2种珊瑚单位面积共生虫黄藻的光合色素和虫黄藻密度降低,且多孔鹿角珊瑚共生虫黄藻比澄黄滨珊瑚更容易受到BaP的影响;海水酸化-BaP复合胁迫下,2种珊瑚共生虫黄藻的光合色素含量和密度比单一胁迫组更高㊂海水酸化和BaP污染对珊瑚的抗氧化防疫系统的影响因生理指标类别和珊瑚种类而异, POD㊁SOD酶活性在不同胁迫条件下的变化,体现了珊瑚的抗氧化防御酶在活性氧清除过程中的协调作用㊂珊瑚共生虫黄藻叶绿素a含量变化更适合作为海洋酸化㊁BaP胁迫的指示因子,我们的研究结果显示,多孔鹿角珊瑚对酸化㊁BaP单一胁迫和复合胁迫较澄黄滨珊瑚更加敏感㊂通信作者简介:刁晓平(1963 ),女,博士,教授,主要研究方向为环境胁迫对海洋生物的生态毒理效应㊂参考文献(References):[1]㊀Jiang J Y,Lu Y D.Metabolite profiling of Breviolumminutum in response to acidification[J].Aquatic Toxicol-ogy,2019,213:105215[2]㊀National Oceanic and Atmospheric Administration.Cli-mate Change:Atmospheric carbon dioxide[R].ColoradoBoulder,United States of America:National Oceanic andAtmospheric Administration(NOAA),2022[3]㊀Intergovernmental Panel on Climate Change2019:Chan-ging Ocean,Marine Ecosystems,and Dependent Commu-nities.IPCC Special Report on the Ocean and Cryospherein a Changing Climate[R].Genève:IntergovernmentalPanel on Climate Change(IPCC),2022[4]㊀Meron D,Rodolfo-Metalpa R,Cunning R,et al.Changesin coral microbial communities in response to a naturalpH gradient[J].The ISME Journal,2012,6(9):1775-1785[5]㊀Morais J,Medeiros A P M,Santos B A.Research gaps ofcoral ecology in a changing world[J].Marine Environ-mental Research,2018,140:243-250[6]㊀V ogel N,Meyer F W,Wild C,et al.Decreased light avail-ability can amplify negative impacts of ocean acidificationon calcifying coral reef organisms[J].Marine EcologyProgress Series,2015,521:49-61[7]㊀Kroeker K J,Kordas R L,Crim R N,et al.Meta-analysisreveals negative yet variable effects of ocean acidificationon marine organisms[J].Ecology Letters,2010,13(11): 1419-1434[8]㊀Zhang R J,Han M W,Yu K F,et al.Distribution,fate andsources of polycyclic aromatic hydrocarbons(PAHs)inatmosphere and surface water of multiple coral reef re-gions from the South China Sea:A case study in spring-summer[J].Journal of Hazardous Materials,2021,412: 125214。

4-羟基-3,5-二甲氧基肉桂酸英文

4-羟基-3,5-二甲氧基肉桂酸英文

4-羟基-3,5-二甲氧基肉桂酸英文4-Hydroxy-3,5-dimethoxy cinnamic acid, also known as ferulic acid, is a potent antioxidant that is commonly found in various plants. In this article, we will explore the benefits, sources, and potential applications of 4-hydroxy-3,5-dimethoxy cinnamic acid in detail.Benefits of 4-Hydroxy-3,5-Dimethoxy Cinnamic Acid:1. Antioxidant Properties: 4-Hydroxy-3,5-dimethoxy cinnamic acid is a powerful antioxidant that helps to protect cells from damage caused by free radicals. This can help to prevent oxidative stress and reduce the risk of chronic diseases such as cancer and heart disease.2. Anti-inflammatory Effects: 4-Hydroxy-3,5-dimethoxy cinnamic acid has been shown to have anti-inflammatory properties, which can help to reduce inflammation in the body and alleviate symptoms of conditions such as arthritis and inflammatory bowel disease.3. Skin Health: 4-Hydroxy-3,5-dimethoxy cinnamic acid is often used in skincare products due to its ability to protect the skin from UV damage and promote collagen production. Thiscan help to prevent premature aging and improve the overall health and appearance of the skin.Sources of 4-Hydroxy-3,5-Dimethoxy Cinnamic Acid:4-Hydroxy-3,5-dimethoxy cinnamic acid is found in a variety of plant-based foods, with the highest concentrations typically found in fruits such as apples, oranges, and grapes. It is also present in vegetables such as carrots, corn, and tomatoes.Potential Applications of 4-Hydroxy-3,5-Dimethoxy Cinnamic Acid:1. Dietary Supplements: 4-Hydroxy-3,5-dimethoxy cinnamic acid is often used as a dietary supplement due to its antioxidant and anti-inflammatory properties. It can help to boost overall health and reduce the risk of chronic diseases.2. Skincare Products: 4-Hydroxy-3,5-dimethoxy cinnamic acid is commonly used in skincare products such as serums and creams due to its ability to protect the skin from oxidative damage and promote collagen production. It can help to improve the overall health and appearance of the skin.3. Pharmaceutical Applications: 4-Hydroxy-3,5-dimethoxy cinnamic acid has been studied for its potential therapeutic effects in the treatment of conditions such as cancer, diabetes,and neurodegenerative diseases. It shows promise as a natural alternative to traditional medications.In conclusion, 4-Hydroxy-3,5-dimethoxy cinnamic acid is a powerful antioxidant with numerous health benefits. It can be found in a variety of plant-based foods and is commonly used in dietary supplements and skincare products. Further research is needed to fully understand the potential applications of this compound, but current evidence suggests that it may have a wide range of health-promoting effects.。

低聚甘露糖醛酸或其药用盐在制备防治白细胞减少症药物中的应用[

低聚甘露糖醛酸或其药用盐在制备防治白细胞减少症药物中的应用[

专利名称:低聚甘露糖醛酸或其药用盐在制备防治白细胞减少症药物中的应用
专利类型:发明专利
发明人:管华诗,李春霞,李海花,胡婷,李全才,于广利
申请号:CN201210439029.0
申请日:20121106
公开号:CN102920729A
公开日:
20130213
专利内容由知识产权出版社提供
摘要:本发明提供了一种低聚甘露糖醛酸或其药用盐在制备防治白细胞减少症药物中的应用。

在体外细胞实验中,低聚甘露糖醛酸能明显促进CFU-GM的形成,同时能促进骨髓基质细胞的增殖,促进骨髓基质细胞分泌GM-CSF,促进脾淋巴细胞分泌白介素-3。

体内实验进一步表明低聚甘露糖醛酸能明显抑制环磷酰胺所致的小鼠白细胞的减少,提高小鼠的骨髓有核细胞数量,提高CFU-GM的形成。

实验结果证明本发明提供的低聚甘露糖醛酸可以开发成为一种临床上有效的防治白细胞减少症的药物。

申请人:中国海洋大学
地址:266003 山东省青岛市市南区鱼山路5号
国籍:CN
代理机构:青岛联智专利商标事务所有限公司
代理人:崔滨生
更多信息请下载全文后查看。

《佛州参岩藻聚糖硫酸酯的化学结构及抗凝活性研究》

《佛州参岩藻聚糖硫酸酯的化学结构及抗凝活性研究》

《佛州参岩藻聚糖硫酸酯的化学结构及抗凝活性研究》摘要:本文通过对佛州参岩藻聚糖硫酸酯(以下简称“藻聚糖”)的化学结构进行深入分析,并对其抗凝活性进行实验研究,探讨了其结构与功能之间的关系,为藻聚糖在医药、生物科技等领域的应用提供理论依据。

一、引言佛州参岩藻是一种海洋生物资源,其成分中包含的藻聚糖具有独特的生物活性。

近年来,随着对海洋生物资源的研究深入,藻聚糖因其具有多种生物活性,特别是其抗凝活性,引起了科学界的广泛关注。

本文旨在通过对其化学结构的分析,进一步研究其抗凝活性的作用机制。

二、佛州参岩藻聚糖的化学结构佛州参岩藻聚糖是一种复杂的硫酸化多糖,其基本结构单元由糖醛酸和硫酸基团组成。

通过现代分析技术如核磁共振(NMR)、质谱(MS)等手段,可以确定其分子量、糖苷键的连接方式以及硫酸基团的分布情况。

其结构特点是存在大量的硫酸基团,这些硫酸基团在多糖链上以特定的方式排列,形成了独特的空间构象。

三、抗凝活性的实验研究1. 材料与方法:选用适当的实验材料如佛州参岩藻提取的藻聚糖样品、标准抗凝剂等。

采用凝血时间测定法、活化部分凝血活酶时间(APTT)等实验方法,对藻聚糖的抗凝活性进行定量和定性分析。

2. 实验结果:通过实验发现,佛州参岩藻聚糖具有显著的抗凝活性。

在一定的浓度范围内,藻聚糖能够延长凝血时间和APTT,表明其具有抗凝血酶的作用。

此外,实验还发现藻聚糖的抗凝活性与其分子量、硫酸基团的分布和空间构象密切相关。

四、结构与功能的关系根据实验结果,我们可以推断佛州参岩藻聚糖的抗凝活性与其化学结构之间存在着密切的关系。

一方面,硫酸基团的分布和数量影响了多糖与凝血酶的结合能力;另一方面,多糖的空间构象决定了其与细胞表面受体之间的相互作用。

这些因素共同决定了藻聚糖的抗凝活性。

五、结论通过对佛州参岩藻聚糖的化学结构和抗凝活性的研究,我们深入了解了其结构和功能之间的关系。

藻聚糖的独特化学结构赋予了其显著的抗凝活性,为其在医药、生物科技等领域的应用提供了理论依据。

毛裂蜂斗菜中两个新的倍半萜硫酸酯_英文_

毛裂蜂斗菜中两个新的倍半萜硫酸酯_英文_

药学学报Acta Pharmaceutica Sinica2014,49(10):1433−1437・1433・Two new sulfated sesquiterpenoids from Petasites tricholobus ZHANG Yong1,GAO Yuan-yuan2,JIA Qi2,GUO Fu-jiang2,LI Bo1,XU Zhi-jian1,LI Yi-ming2*,ZHU Wei-liang1*,CHEN Kai-xian1,2(1.Key Laboratory of Receptor Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai201203, China; 2.Department of Phytochemistry,School of Pharmacy,Shanghai University of Traditional Chinese Medicine,Shanghai201203,China)Abstract:Two new sulfated sesquiterpenoids,megastigman-7-ene-3,5,6,9-tetrol-3-O-β-D-6'-sulfonated-glucopyranoside(1)and3-O-β-D-6'-sulfonated-glucopyranosyl-6-(3-oxo-2-butenylidenyl)-1,1, 5-trimethylcy clohexan-5-ol(2),along with one known sesquitepenoid compound icariside B1(3)were isolated from the whole herb of Petasites tricholobus Franch.Their structures were identified by their chemical and spectroscopic characters.All obtained compounds were tested for their cytotoxicity against four cancer cell lines.Key words:Petasites tricholobus;Asteraceae;sulfated sesquiterpenoidsCLC number:R284Document code:A Article ID:0513-4870(2014)10-1433-05毛裂蜂斗菜中两个新的倍半萜硫酸酯张勇1,高媛媛2,贾琦2,郭夫江2,李波1,徐志建1,李医明2*,朱维良1*,陈凯先1,2(1.中国科学院上海药物研究所受体结构与功能重点实验室,上海201203;2.上海中医药大学中药学院中药化学教研室,上海201203)摘要:从毛裂蜂斗菜全草中分离得到两个新的倍半萜硫酸酯类化合物megastigman-7-ene-3,5,6,9-tetrol-3-O-β-D-6'-sulfonated-glucopyranoside(1)、3-O-β-D-6'-sulfonated-glucopyranosyl-6-(3-oxo-2-butenylidenyl)-1,1,5-trimethylcyclohexan-5-ol(2)和一个已知化合物icariside B1(3)。

《矢车菊素-3-O-葡萄糖苷对脂多糖诱导内皮细胞的保护作用及其在急性肺损伤中治疗作用》

《矢车菊素-3-O-葡萄糖苷对脂多糖诱导内皮细胞的保护作用及其在急性肺损伤中治疗作用》

《矢车菊素-3-O-葡萄糖苷对脂多糖诱导内皮细胞的保护作用及其在急性肺损伤中治疗作用》一、引言急性肺损伤(ALI)是一种严重的临床病症,其发病机制复杂,涉及多种炎症介质的参与。

内皮细胞的损伤在ALI的发病过程中起着关键作用。

近年来,矢车菊素-3-O-葡萄糖苷(Cyanidin-3-O-glucoside,C3G)因其具有抗氧化、抗炎等生物活性,被广泛关注。

本文旨在探讨C3G对脂多糖(LPS)诱导的内皮细胞保护作用及其在急性肺损伤中的治疗作用。

二、方法1. 材料与试剂实验所需的主要试剂包括C3G、LPS、细胞培养基等。

实验细胞为人肺微血管内皮细胞(HPMVECs)。

2. 实验方法(1)细胞培养与处理:将HPMVECs置于培养基中培养,并分别用不同浓度的C3G和LPS进行处理,以模拟内皮细胞在ALI 中的损伤状态。

(2)指标检测:通过测定细胞活性、炎症因子水平、氧化应激指标等,评估C3G对内皮细胞的保护作用及在急性肺损伤中的治疗作用。

三、结果1. C3G对LPS诱导的内皮细胞损伤的保护作用实验结果显示,C3G能够显著提高HPMVECs的细胞活性,降低LPS诱导的炎症因子水平,如IL-6、TNF-α等。

同时,C3G 还能降低氧化应激指标,如MDA、ROS等,表明C3G具有显著的抗氧化、抗炎作用,能够有效保护内皮细胞免受LPS的损伤。

2. C3G在急性肺损伤中的治疗作用在急性肺损伤模型中,给予C3G治疗能够显著改善肺组织损伤,降低炎症因子水平,提高肺功能。

此外,C3G还能降低急性肺损伤患者血清中炎症因子的水平,提高患者的生活质量。

四、讨论C3G作为一种天然的生物活性物质,具有显著的抗氧化、抗炎作用。

在LPS诱导的内皮细胞损伤模型中,C3G能够提高细胞活性,降低炎症因子和氧化应激指标的水平,从而保护内皮细胞免受损伤。

在急性肺损伤模型中,C3G同样表现出显著的治疗作用,能够改善肺组织损伤,降低炎症因子水平,提高肺功能。

红藻扇形叉枝藻中的降碳倍半萜及其衍生物

红藻扇形叉枝藻中的降碳倍半萜及其衍生物

红藻扇形叉枝藻中的降碳倍半萜及其衍生物红藻扇形叉枝藻是一种重要的海洋生物,其体内含有丰富的降碳倍半萜及其衍生物。

降碳倍半萜是一类具有广泛生物活性的化合物,不仅在医药领域有着重要的应用潜力,还在环境保护方面发挥着重要的作用。

降碳倍半萜具有很多生物活性,例如抗菌、抗炎、抗肿瘤、抗氧化等。

它们可以作为药物候选物质,用于研发新药。

研究表明,红藻扇形叉枝藻中提取的降碳倍半萜具有显著的抗肿瘤活性,可以抑制多种癌细胞的生长,对乳腺癌、结肠癌等常见癌症有很好的治疗效果。

此外,降碳倍半萜还具有抗炎作用,可以减轻炎症反应,缓解关节炎、炎性肠病等疾病的症状。

除了在医药领域的应用,降碳倍半萜及其衍生物还可以用于环境保护。

它们具有良好的生物降解性,可以降解油污、重金属等污染物,减少环境污染对生态系统的危害。

此外,降碳倍半萜还可以用作植物的防御物质,具有抗真菌、抗昆虫的作用,可以保护农作物的生长,降低农药的使用量,对农业生产具有积极意义。

在研究和开发红藻扇形叉枝藻中的降碳倍半萜及其衍生物时,应注意以下几点。

首先,有效的提取方法对于获得高纯度的降碳倍半萜至关重要,可以利用超声波提取、溶剂萃取等方法。

其次,需要进一步研究其生物活性机制,探索其与疾病治疗的关联,并进行药物筛选和研发工作。

此外,还应加强对降碳倍半萜的环境影响和生态效应的研究,优化其在环境保护中的应用。

总之,红藻扇形叉枝藻中的降碳倍半萜及其衍生物具有重要的生物活性和应用潜力。

通过深入研究其生物活性机制和优化提取方法,可以为新药研发和环境保护提供重要的候选物质和方法。

相信在未来的研究中,红藻扇形叉枝藻中的降碳倍半萜及其衍生物将会发挥更大的作用,为人类的健康和环境的可持续发展做出更大的贡献。

硫酸化羊肚菌多糖调控胆固醇代谢作用

硫酸化羊肚菌多糖调控胆固醇代谢作用

Morchella angusticeps Peck[J]. Food Science, 2019, 40(21): 136-142. (in Chinese with English abstract) DOI:10.7506/
Regulation of Cholesterol Metabolism by Sulfated Polysaccharides from Morchella angusticeps Peck
TANG Yuwan1, ZHANG Yueqiao1, LI Yao1, LEI Lin1, LI Fuhua1,2, ZHAO Jichun1,2, WU Surui3, MING Jian1,2,*
Abstract: Polysaccharide extracted from Morchella angusticeps Peck (PMEP) has been proved to have a
hypocholesterolemic effect. This study aimed to compare the cholesterol-lowering activity of PMEP and its sulfated
potency than PMEP (P < 0.05). PMEP and SPMEP down-regulated the expression of hepatic 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase and up-regulated the expression of cholesterol-7α-hydroxylase (P < 0.05). Besides, both of them

吃鱼会让人聪明的英语作文

吃鱼会让人聪明的英语作文

吃鱼会让人聪明的英语作文标题,The Benefits of Eating Fish for Cognitive Enhancement。

In recent years, there has been a growing body of research suggesting that consuming fish can enhancecognitive function. This essay explores the various ways in which eating fish can contribute to improved intelligence and overall brain health.First and foremost, fish is rich in omega-3 fatty acids, particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). These fatty acids areessential for brain development and function. DHA, in particular, is highly concentrated in the brain and plays a crucial role in neurotransmission, synaptic plasticity, and overall cognitive function. Studies have shown that individuals with higher levels of omega-3 fatty acids in their diet tend to have better cognitive performance and a lower risk of cognitive decline as they age.Moreover, fish is a good source of protein, which is essential for the growth and repair of brain cells. Proteins are made up of amino acids, some of which are precursors to neurotransmitters – the chemical messengers that transmit signals between brain cells. Consuming fish ensures an adequate supply of these amino acids, thereby supporting optimal brain function.In addition to omega-3 fatty acids and protein, fish also contains various micronutrients that are beneficial for brain health. For example, fish is a rich source of vitamins B12 and D, both of which play important roles in cognitive function. Vitamin B12 is involved in the synthesis of neurotransmitters and the maintenance of myelin, a fatty substance that insulates nerve cells and facilitates efficient signaling. Vitamin D, meanwhile, has neuroprotective effects and is thought to modulate neurotransmitter synthesis and neuronal growth.Furthermore, fish consumption has been associated with a reduced risk of neurodegenerative diseases such asAlzheimer's and Parkinson's. The anti-inflammatory and antioxidant properties of omega-3 fatty acids help protect against the oxidative stress and inflammation thatcontribute to the development of these conditions. Additionally, omega-3 fatty acids may promote the clearance of amyloid-beta plaques, which are characteristic of Alzheimer's disease.It is worth noting that not all fish are equally beneficial for cognitive health. Fatty fish such as salmon, mackerel, and sardines are particularly rich in omega-3fatty acids and are therefore the most advantageous choices. On the other hand, certain types of fish may contain high levels of mercury, which can be harmful to the brain in excessive amounts. Pregnant women and young children, in particular, should be cautious about consuming fish that may be contaminated with mercury.In conclusion, the consumption of fish can have significant benefits for cognitive enhancement and overall brain health. From its rich content of omega-3 fatty acidsto its contribution of essential proteins andmicronutrients, fish offers a variety of nutrients that support optimal brain function. By incorporating fish into their diet, individuals can potentially improve their intelligence, protect against cognitive decline, and reduce their risk of neurodegenerative diseases. However, it is important to choose fish varieties that are low in mercury and to consume them as part of a balanced diet for maximum benefit.。

灯心柳珊瑚皂苷[发明专利]

灯心柳珊瑚皂苷[发明专利]

专利名称:灯心柳珊瑚皂苷
专利类型:发明专利
发明人:漆淑华,张偲
申请号:CN200410027588.6申请日:20040614
公开号:CN1715290A
公开日:
20060104
专利内容由知识产权出版社提供
摘要:本发明涉及新颖的通式(1)甾体皂苷——灯心柳珊瑚皂苷,其中R=R=H和R=CHCO或R =R=H和R=CHCO或R=CHCO和R=R=H或R=R=R=H。

该通式中甾体皂苷是从柳珊瑚目鞭柳珊瑚科的灯芯柳珊瑚(Junceella juncea)中分离得到,具有细胞毒性、抗炎、抗真菌及抗癌的作用。

申请人:中国科学院南海海洋研究所
地址:510301 广东省广州市新港西路164号
国籍:CN
代理机构:广州科粤专利代理有限责任公司
代理人:潘伟健
更多信息请下载全文后查看。

甘露葡萄糖醛酸多(寡)糖及其硫酸化衍生物在制备治疗骨质疏松症药物中的应用[发明专利]

甘露葡萄糖醛酸多(寡)糖及其硫酸化衍生物在制备治疗骨质疏松症药物中的应用[发明专利]

专利名称:甘露葡萄糖醛酸多(寡)糖及其硫酸化衍生物在制备治疗骨质疏松症药物中的应用
专利类型:发明专利
发明人:金维华,方秋福,毛根祥,暴一众,张文静,袁航,翁莹政申请号:CN202110185517.2
申请日:20210210
公开号:CN112870217B
公开日:
20220621
专利内容由知识产权出版社提供
摘要:本发明提供一种甘露葡萄糖醛酸多糖或寡糖及其硫酸化衍生物在制备预防或治疗骨质疏松症的药物中的应用。

本发明提供的甘露葡萄糖醛酸多(寡)糖及其硫酸化衍生物具有极强的抑制破骨细胞分化,可以用于治疗骨质疏松症,毒副作用小,安全有效。

申请人:浙江工业大学
地址:310014 浙江省杭州市下城区潮王路18号
国籍:CN
代理机构:杭州天正专利事务所有限公司
代理人:黄美娟
更多信息请下载全文后查看。

一种硫醇过氧化物酶提高毕赤酵母外源蛋白质表达量的方法[发明专利]

一种硫醇过氧化物酶提高毕赤酵母外源蛋白质表达量的方法[发明专利]

专利名称:一种硫醇过氧化物酶提高毕赤酵母外源蛋白质表达量的方法
专利类型:发明专利
发明人:李春,皇甫洁,普鸿丽
申请号:CN201410077460.4
申请日:20140304
公开号:CN103898142A
公开日:
20140702
专利内容由知识产权出版社提供
摘要:本发明针对提高毕赤酵母外源重组蛋白质制备能力,公开了一种硫醇过氧化物酶作为辅助因子提高毕赤酵母外源重组蛋白质表达量的方法,属于生物化工领域。

本发明将硫醇过氧化物酶基因与来自毕赤酵母或酿酒酵母的诱导型启动子或组成型启动子相连接,构建基因表达载体,转化入表达外源重组蛋白质的甲醇诱导型毕赤酵母菌株中进行共表达或过表达,硫醇过氧化物酶基因作为氧化还原应激应答的全局调控基因,在不同强度的启动子及基因拷贝数的转录水平调控作用下,提高外源重组蛋白质在甲醇诱导型毕赤酵母中表达量。

该发明为提高细胞生产重组蛋白质的能力和生物反应效率提供新方法,对于生物技术过程强化具有重要价值。

申请人:北京理工大学
地址:100081 北京市海淀区中关村南大街5号
国籍:CN
更多信息请下载全文后查看。

马桑水提取物对烧伤创面感染常见3种耐药菌的抑制作用

马桑水提取物对烧伤创面感染常见3种耐药菌的抑制作用

马桑水提取物对烧伤创面感染常见3种耐药菌的抑制作用黄德斌;胡泽华;余昭芬;陈薛妃;黄谨【摘要】Aim To explore the inhibition of Sinica Maxim′s extract( CSME) on resistant infections of burn wounds,such as the methicillin-resistant staphylococcus aureus ( MRSA ) , resistant pseudomonas aeruginosa (RPA) and resistant escherichia coli(RECO). Meth-ods The resistant strains were cultured by MH agar plates. After resistance genes of quality control strains were extracted and appraised, such as mecA, mexB, merA, qacE△1-sull, tnpU/A and mexB, etc, and then,some projects of CSME were detected,such as the antibacterial spectrum, the minimum inhibitory con-centration(MIC), different concentrations of sensitive rate and inhibition curves, etc. Finally, these results were compared with the inhibitory effects of some anti-biotics to determine the sensitivity rates of CSME. Re-sults The MIC of CSME was 62. 5 ,125 ,250 g · L-1 respectively on the MESA, RPA and RECO. The inhi-bition rates of CSME appeared concentration-dependent on these three kinds of resistant bacteria,and the inhi-bition rates of the multi-concentration CSME on RECO were significantly lower than on MRSA and RPA ( P<0. 05). While in MIC,the resistance rates of MRSA on carbenicillin, cefazolin, erythromycin were significant-ly higher than those of CSME(P<0. 05); The inhibi-tion zones of CSME were significantly smaller than those of ceftriaxone, cefepime, imipenem, but greater than those of other antibiotics( P<0. 05 ); The inhibi-tion zones of CSME on RPA were significantly smaller than those of carbenicillin, andgreater than those of other antibiotics ( P <0. 05 ) . The inhibition zones of CSME on RECO were significantly smaller than those ofceftriaxone,cefepime,imipenem,ciprofloxacin,nitro-furazone,and greater than those of other antibiotics ( P<0. 05 ) . Conclusions CSME has a significant inhi-bition on burn wound infection with these three kinds of resistant bacteria,such as MRSA,RPA and RECO. It is prompted that CSME could become one of the effective drugs to control burn wound infections with multi-re-sistant strains.%目的探讨马桑水提取物( CSME)对烧伤创面感染耐药金黄色葡萄球菌( MRSA)、铜绿假单胞菌( RPA)和大肠埃希菌( RECO)的抑制作用。

鲍曼不动杆菌.pptx

鲍曼不动杆菌.pptx
存活25天, 远远超过其他革兰阴性杆菌
第4页/共22页
传染途径与感染症状
人体传染源
患者定植
•皮肤 •咽喉 •腋窝 •腹股沟 •会阴部 •消化道
感染患者
•肺炎、支气管炎 •血流感染 •尿路感染 •中枢神经系统感染 •腹膜炎 •皮肤和软组织感染
健康护理工作者
•经手传染
非生命体传染源
医疗器械
•呼吸机 •听诊器 •监护仪 •静脉泵 •支气管镜 •血压表套袖等
剂量
3.0g Q6h
严重感6h 1g Q8h或Q6h
与其他药物联合治疗XDRAB或 PDRAB,全球范围内(包括中国)的耐药率
在50%以上
中枢神经系统感染,剂量可增至2g Q8h
第14页/共22页
药品名称
多粘菌素E
用法用量
每天2.5-5mg/kg 或每天200-400万U (100万u相当于多黏菌素E 甲磺酸盐80 mg) 分2~4次静脉滴注
美国辉瑞惠氏药物公司开发 2005年6月FDA批准上市 2012年初中国上市 2013年初国内仿制药上市
替加环素
第17页/共22页
鲍曼不 动杆菌
化学结构
替加环素 9-叔丁基甘氨酰氨基米诺环素 四环素类,第一个甘氨酰环素类抗生素,米诺环素衍 生物
四环素
米诺环素
第18页/共22页
替加环素
第20页/共22页
超级细菌与抗生素发展趋势
新药数量
1983- 19881987 1992
19931997
19982002
20032007
• “ESKAPE”耐药现象日益严重,但当前 新型抗菌药物的研发逐渐减缓,未来 可能面临无药可用的局面3
未来抗微生物感染治疗的关键在于控制致病 原的进化而不是只针对病原体的治疗药物本 身!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ORIGIN AL ARTI CLEEnhancement of docosahexaenoic acid production by Schizochytrium ing a two-stage oxygen supply control strategy based on oxygen transfer coefficientL.Qu,X.-J.Ji,L.-J.Ren,Z.-K.Nie,Y.Feng,W.-J.Wu,P.-K.Ouyang and H.HuangState Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering,Nanjing University of Technology,Nanjing,ChinaIntroductionDocosahexaenoic acid[DHA;22:6(n-3)]is a long-chain polyunsaturated fatty acid(PUFA)which belongs to the omega-3group.In recent years,DHA has attracted much attention because of its benefits to human health includ-ing both infants and adults(Lauritzen et al.2001;Nordoy et al.2001;Ratledge2004;Sijtsma and de Swaaf2004). Microbial oils(single cell oils)are currently being devel-oped because they have many superiorities:possibility to obtain oils with high and specific PUFAs content,with higher oxidative stability,production from sustainable raw materials,lower purification costs,the disappearance of environmental man-made pollutants and a more constant product quality is possible(Ratledge2004;Sijtsma and de Swaaf2004).Strains from the marine protists Traustochy-trid and dinoflagellate Crypthecodinium cohnii have tradi-tionally been considered to have the most potential in a commercial setting,especially the former,which belongs to the genus Thraustochytrium and Schizochytrium(Chi et al.2007).Schizochytrium sp.possesses a PUFA synthase complex which has an O2-independent,polyketide syn-thase-like mode of action(Jakobsen et al.2008). Jakobsen et al.(2008)found that the lipid content of Aurantiochytrium sp.T66,which was also a genus of Schizochytrium,could be increased under oxygen limita-tion condition.A two-stage growth of Schizochytrium limacinum SR21with shifting dissolved oxygen level in shakeflask scale was also investigated and DHA content increased from3Æ65to6Æ56g l)1(Chi et al.2009).These studies used dissolved oxygen to show the oxygen supply during fermentation process,which could not be easily used for scale-up process.The two-stage growth in Chi’s study was not carried out as a constant process,so this method needs further investigation before its application in large-scale process.Keywordsdocosahexaenoic acid,oxygen transfer, Schizochytrium sp.,two-stage strategy.CorrespondenceHe Huang,State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering,Nanjing University of Technology,No.5Xinmofan Road,Nanjing 210009,China.E-mail:biotech@2010⁄1112:received29June2010,revised 17October2010and accepted18October 2010doi:10.1111/j.1472-765X.2010.02960.x AbstractAims:To improve the yield and productivity of docosahexaenoic acid(DHA) by Schizochytrium sp.in terms of the analysis of microbial physiology. Methods and Results:A two-stage oxygen supply control strategy,aimed at achieving high concentration and high productivity of DHA,was proposed.At thefirst40h,K L a was controlled at150Æ1h)1to obtain high l for cell growth, subsequently K L a was controlled at88Æ5h)1to maintain high q p for high DHA accumulation.Finally,the maximum lipid,DHA content and DHA productiv-ity reached46Æ6,17Æ7g l)1and111mg l)1h)1,which were43Æ83%,63Æ88% and32Æ14%over the best results controlled by constant K L a.Conclusions:This paper described a two-stage oxygen supply control strategy based on the kinetic analysis for efficient DHA fermentation by Schizo-chytrium sp.Significance and Impact of the study:This study showed the advantage of two-stage control strategy in terms of microbial physiology.As K L a is a scaling-up parameter,the idea developed in this paper could be scaled-up to industrial process and applied to other industrial biotechnological processes to achieve both high product concentration and high productivity.Letters in Applied Microbiology ISSN0266-8254In our previous study(Ren et al.2010),a stepwise aer-ation control strategy was developed for efficient DHA production in a1,500-l bioreactor using fed-batch fer-mentation.However,this work only studied the effect of aeration condition,and the agitation condition,which also affects the oxygen supply greatly,was not discussed. In the present study,the effect of different oxygen supply conditions,as measured by the volumetric oxygen mass transfer coefficient(K L a),which was a scaling-up parame-ter,was investigated in a50-l bioreactor using fed-batch fermentation.Subsequently,a two-stage oxygen supply control strategy was designed based on the kinetic analysis of fed-batch processes controlled by single oxygen supply and was confirmed experimentally.Materials and methodsMicro-organismSchizochytrium sp.HX–308(CCTCC M209059),which was isolated from seawater in our previous work and stored in China Center for Type Culture Collection (CCTCC)(Huang et al.2009),was used in the present study.This strain was preserved in20%(v⁄v)glycerol at )80°C.Culture conditionsThe seed culture medium and the conditions were as indi-cated in our previous study(Ren et al.2009).The culture preserved in the glycerine tube was inoculated into a250-mlflask with50ml medium and cultivated for24h.After three generation cultivation,the preculture was inoculated into a10-l seed fermentor with an inoculum size of1% (v⁄v)and cultivated for24h,and the seed culture(20%, v⁄v)was then transferred to a50-l fermentor with a work-ing volume of35l.The bioreactor was equipped with three impellers and a frit sparger with an average pore diameter of40l m.Dissolved oxygen concentration of cultures was measured using a polarographic electrode and was expressed as percentage of O2saturation.The oxygen transfer rate was studied as the volumetric oxygen mass transfer coefficient(K L a).The agitation and aeration rates werefirst set at different values,characterizing differ-ent oxygen transfer conditions:27Æ3h)1(100rev min)1, 1vvm),88Æ5h)1(200rev min)1,1vvm)and150Æ1h)1 (250rev min)1,1Æ4vvm).During the fermentation pro-cess,in addition to adding glucose at the initial fermenta-tion stage,intermittent glucose feeding was also supplied to keep its concentration above15g l)1.The fed-batch fermentation was performed at25°C until the glucose concentration did not change.The bioreactor had agita-tion and temperature controlled by a computer system,while pH was not controlled in this study.All fermenta-tions were inoculated with the same culture.Analytical methodsTen millilitres broth was used to determine cell dry weight by gravimetric method.The methods of lipid extraction and fatty acid methyl esters(FAMEs)prepara-tion were according to our previous study(Ren et al. 2009).The measurements of individual FAMEs,glucose, glutamate and pH used the same method as our previous study(Ren et al.2010).Calculation of kinetic parametersThe specific cell growth rate(l,h)1),specific glucose consumption rate(q s,h)1)and specific lipid accumula-tion rate(q p,h)1)were estimated from experimental data of cell growth(x,g l)1),residual glucose concentration(s, g l)1)and lipid accumulation(p,g l)1)according to the method mentioned in our previous study(Ji et al.2009). The measurement of oxygen transfer coefficients,K L a,in bioreactorThe sulfite method(Na2SO3method)is proposed for the measurement of oxygen transfer coefficients,K L a,in bior-eactors(Puskeiler and Weuster-Botz2005).ResultsEffect of different K L a on DHA fermentationEffects of different K L a(27Æ3,88Æ5and150Æ1h)1)on DHA fermentation were investigated,respectively.The results indicated that K L a played a vital role in lipid and DHA production.As shown in Fig.1,the relative high final lipid and DHA concentration up to32Æ4and 10Æ8g l)1were obtained at the K L a of88Æ5h)1.While when the K L a was higher or lower,thefinal lipid and DHA concentration decreased(21Æ8and8Æ5g l)1at 27Æ3h)1,24Æ8and8Æ25g l)1at150Æ1h)1).This indicated that either lower K L a(27Æ3h)1)or higher K L a(150Æ1h)1) was not beneficial for lipid and DHA accumulation. However,although thefinal DHA concentration at the K L a of88Æ5h)1was higher compared with the K L a of 150Æ1h)1,the former DHA productivity was lower than the latter(75mg l)1h)1at88Æ5h)1,84mg l)1h)1at 150Æ1h)1).The above-mentioned observations indicated that the K L a for obtaining high concentration and high yield of DHA was not suitable for ensuring high DHA productivity.It can therefore be concluded that high con-centration,high yield and high productivity of DHAL.Qu et al.Enhancement of docosahexaenoic acid productioncould not be achieved simultaneously by controlling a constant K L a throughout the whole culture process. Kinetic analysis of DHA fermentation at different K L a To analyse the kinetic characteristics of the above-mentioned processes at different K L a,three kinetic parameters,including l,q s and q p,were calculated based on the data of Fig.1.As shown in Fig.2,compared with the K L a of88Æ5h)1,l and q s were higher at the K L a of 150Æ1h)1at the early stage of DHA fermentation(before 40h).It showed that the K L a of150Æ1h)1was better for cell growth and glucose consumption during thefirst 40h.But after40h,the K L a of88Æ5h)1was beneficial for DHA accumulation with a high value of q bin-ing this result with that obtained in the experiments of constant K L a fermentation,it could be concluded that the lower K L a was beneficial for high DHA accumulation in the later stage of cultivation.Based on the analysis of l, q s and q p,a two-stage oxygen supply control strategy based on oxygen transfer coefficient was therefore pro-posed.In this strategy,the K L a was controlled at 150Æ1h)1in thefirst40h to maintain high l and q s for fast cell growth and glucose consumption and then switched to88Æ5h)1after40h to maintain high q p for high DHA production.DHA production with two-stage oxygen control strategy Time course of two-stage oxygen supply control strategy for DHA fermentation was shown in Fig.3.Table1listed the results of constant and two-stage oxygen supply con-trolling experiments.It was observed that by using the two-stage oxygen supply control strategy,the maximum concentration of lipid and DHA reached46Æ6and 17Æ7g l)1with the productivity of111mg l)1h)1.The results were both higher than that of constant K L a pro-cesses(10Æ8g l)1of DHA concentration at the K L a of 88Æ5h)1and85mg l)1h)1of DHA productivity at the K L a of150Æ1h)1).It can be concluded that this two-stage oxygen supply control strategy could not only consider-ably improve lipid and DHA concentration but also increase DHA productivity.The proposed two-stage oxy-gen supply control strategy was therefore proved to be effective for efficient DHA production.Enhancement of docosahexaenoic acid production L.Qu et al.DiscussionIn this paper,the unification of relatively high concentra-tion and high productivity of DHA was achieved by applying a two-stage oxygen supply control strategy,com-bining the advantages of high DHA concentration under lower K L a and high DHA productivity under higher K L a. Thefinal concentration and productivity of DHA reached 17Æ7g l)1and111mg l)1h)1,respectively,which approaches the highest published value of134mg l)1h)1 by Schizochytrium sp.SR21(Yaguchi et al.1997), 115mg l)1h)1for Schizochytrium mangrovei Sk-02(Una-gul et al.2006),and117mg l)1h)1for strain12B,(Perveen et al.2006)and much higher than93mg l)1h)1by using Aurantiochytrium sp.T66(Jakobsen et al.2008).A two-stage growth of Schizochytrium limacinum SR21 with shifting dissolved oxygen level in shakeflask scale was studied in the previous work(Chi et al.2009).In our previous study(Ren et al.2010),a stepwise aeration con-trol strategy was developed for efficient DHA production in a1,500-l bioreactor using fed-batch fermentation.In this study,we investigated the characteristics of DHA fermentation under different oxygen supply conditions, and it was interesting tofind that significant differences occurred in l,q s and q p in fed-batch fermentation experi-ments using Schizochytrium sp.HX-308under different K L a conditions.And a proper oxygen supply method using a two-stage oxygen supply control strategy was therefore developed from a kinetic stand point.Finally, 43Æ83,63Æ89and32Æ14%improvements in lipid concen-tration,DHA concentration and productivity of DHA over the best results controlled by constant K L a were observed under this two-stage oxygen supply control strategy.And this might be attributed by the following reasons.The two-stage growth is common in oleaginous micro-organisms.Thefirst stage can be considered as a cell growth stage in which cell density increased rapidly,while the cell accumulated a low content of lipids.The second stage can be considered as a product accumulation stage in which cell number increased little,but lipid content in the cell,cell body weight and cell size was all increased, leading to a high biomass concentration(Chi et al.2009). In terms of oxygen demand in the fermentation process, a high oxygen consumption rate is preferred for thefirst stage,because cell growth requires a large amount of pri-mary metabolites such as enzymes,nucleic acids and other proteins.In this study,kinetic analysis of DHA fer-mentation at different K L a values showed that the K L a of 150Æ1h)1was better for cell growth and glucose con-sumption during thefirst40h.This might be caused by the fact that in thefirst40h during the fermentation,the relatively high K L a led to a relatively high dissolved oxy-gen concentration(Fig.4),so in this two-stage fermenta-tion process,high oxygen supply in thefirst stageTable1Comparison of parameters infed-batch production of docosahexaenoic acid(DHA)by Schizochytrium sp.HX-308at differ-ent oxygen supply control strategies Parameters K L a(h)1)Increment(%)* 27Æ388Æ5150Æ1150Æ1(0–40h),88Æ5(after40h)Cell dry weight(g l)1)72Æ0273Æ1074Æ0292Æ7225Æ3Total lipids(g l)1)21Æ832Æ424Æ846Æ643Æ83DHA content(g l)1)8Æ510Æ88Æ2517Æ763Æ88DHA productivity(mg l)1h)1)42Æ5758411132Æ14Total lipids content in celldry weight(%)30Æ2744Æ3233Æ5050Æ2613Æ4Fermentation time(h) 20014498160–DHA⁄TFA(%)48Æ3942Æ7035Æ7841Æ96–TFA,total fatty acids.*Compared with the best result controlled by constant K L a.Fermentation time was defined as the time when the glucose concentration did not change. L.Qu et al.Enhancement of docosahexaenoic acid productionbrought about faster cell growth and glucose consump-tion,which is favourable for high cell density considered as thefirst concern for high production of intracellular products.Furthermore,in the lipids’accumulation stage,how-ever,low oxygen supply is more favourable.Chi et al. (2009)found that high dissolved oxygen concentration set at50%level during the later phase of fermentation proved to have an adverse effect on lipid production, because cell size remained small and no improvement in dry cell weight was noted.Bailey et al.(2003)showed a similar result in their study,in which a high dissolved oxygen level of40%produced18Æ2%lipids in the bio-mass,but low dissolved oxygen at5%produced24Æ4%. Both of these results prove that lower oxygen is more beneficial for lipids production in Schizochytrium sp.Our study showed the similar results,lipid and DHA concen-tration up to32Æ4and10Æ8g l)1were obtained at the K L a of88Æ5h)1while when the K L a was higher,thefinal lipid concentration and DHA concentration decreased to24Æ8 and8Æ25g l)1at the K L a of150Æ1h)1.These results may be explained by two facts:First,high oxygen supply in the lipid accumulation stage may lead to more carbon source used for cell respiration and energy metabolism rather than lipid synthesis.Therefore,the decrease in oxy-gen supply in the lipid accumulation stage could promote the carbon source utilization efficiency and increase the lipid accumulation.In addition,Schizochytrium species synthesize long-chain PUFAs via a kind of PUFA synthase (Metz et al.2001),which is O2-independent.So low oxy-gen supply in the lipids’accumulation stage is more favourable for DHA and other long-chain PUFAs accumulation.In our study,the DHA concentrations in the total fatty acids under different oxygen supply condi-tions showed that lower oxygen supply led to higher DHA concentration(Table1).This result proved that low oxygen supply is more favourable for DHA accumulation. In conclusion,this paper described a two-stage oxygen supply control strategy based on the kinetic analysis for efficient DHA fermentation by Schizochytrium sp.Finally, the maximum concentration of lipid and DHA reached 46Æ6and17Æ7g l)1with the productivity of111mg l)1h)1.This is another example to showing the advantage of two-stage control strategy in terms of microbial physi-ology.As K L a is a scaling-up parameter,the idea devel-oped in this paper could be scaled-up to industrial process and applied to other industrial biotechnological processes to achieve both high product concentration and high productivity.AcknowledgementsThis work wasfinancially supported by the Key Program of National Natural Science Foundation of China(no. 20936002),the National Basic Research Program of China (nos.2007CB707805and2009CB724700),the Scientific Research Project for Postgraduate in Jiangsu Province (no.CX07s_032z),the Fifth of Six Projects Sponsoring Talent Summits of Jiangsu Province(no.2008-D-63),the College Industrialization Project of Jiangsu Province(no. JH09-30),the Fok Ying Tung Education Foundation(no. 123014)and the Program for Century Excellent Talents in University from the Ministry of Education of China (no.NCET–09–0157).We also thank both managerial and technical staff of Jiangsu TianKai Biotechnology Co., Ltd.(Nanjing,P.R.China)for providing the manufactur-ing facilities and technical assistance.ReferencesBailey,R.B.,DiMasi,D.,Hansen,J.M.,Mirrasoul,P.J., Ruecker,C.M.,Veeder,G.T.III,Kaneko,T.and Barclay,W.R.(2003)Enhanced production of lipids containingpolyenoic fatty acid by very high density cultures ofeukaryotic microbes in Patent6607900. Chi,Z.Y.,Hu,B.,Liu,Y.,Frear,C.,Wen,Z.Y.and Chen,S.L.(2007)Production of x-3Polyunsaturated Fatty AcidsFrom Cull Potato Using an Algae Culture Process.ApplMicrobiol Biotechnol134-140,805–815.Chi,Z.Y.,Liu,Y.,Frear,C.and Chen,S.L.(2009)Study of a two-stage growth of DHA-producing marine algae Schizo-chytrium limacinum SR21with shifting dissolved oxygenlevel.Appl Microbiol Biotechnol81,1141–1148.Huang,H.,Ren,L.J.,Xiao,A.H.,Jin,L.J.and Li,J.(2009)A kind of Schizotrium sp.and the method for DHA-rich oilEnhancement of docosahexaenoic acid production L.Qu et al.production using thereof.Chinese Patent(in Chinese),200910033869.5.Jakobsen,A.N.,Aasen,I.M.,Josefsen,K.D.and Strom,A.R.(2008)Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp.strain T66:effects of N and P starvation and O2limitation.Appl MicrobiolBiotechnol80,297–306.Ji,X.J.,Huang,H.,Du,J.,Zhu,J.G.,Ren,L.J.,Hu,N.and Li, S.(2009)Enhanced2,3-butanediol production by Klebsiel-la oxytoca using a two-stage agitation speed control strat-egy.Bioresour Technol100,3410–3414.Lauritzen,L.,Hansen,H.S.,Jorgensen,M.H.and Michaelsen, K.F.(2001)The essentiality of long chain n-3fatty acids in relation to development and function of the brain andretina.Prog Lipid Res40,1–94.Metz,J.G.,Roessler,P.,Facciotti,D.,Levering,C.,Dittrich,F., Lassner,M.,Valentine,R.,Lardizabal,K.et al.(2001)Production of polyunsaturated fatty acids by polyketidesynthases in both prokaryotes and eukaryotes.Science293, 290–293.Nordoy,A.,Marchioli,R.,Arnesen,H.and Videbaek,J.(2001) n-3polyunsaturated fatty acids and cardiovascular diseases.Lipids36,127–129.Perveen,Z.,Ando,H.,Ueno,A.,Ito,Y.,Yamamoto,Y., Yamada,Y.,Takagi,T.,Kaneko,T.et al.(2006)Isolation and characterization of a novel thraustochytrid-like micro-organism that efficiently produces docosahexaenoic acid.Biotechnol Lett28,197–202.Puskeiler,R.and Weuster-Botz,D.(2005)Combined sulfite method for the measurement of the oxygen transfer coeffi-cient KLa in bioreactors.J Biotechnol120,438. Ratledge,C.(2004)Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production.Biochimie86,807–815.Ren,L.J.,Huang,H.,Xiao,A.H.,Lian,M.and Ji,X.J.(2009) Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp.HX-308.Bioprocess Biosyst Eng32,837–843.Ren,L.J.,Ji,X.J.,Huang,H.,Feng,Y.,Qu,L.,Tong,Q.Q.and Ouyang,P.K.(2010)Development of a stepwise aerationcontrol strategy for efficient docosahexaenoic acid produc-tion by Schizochytrium sp.Appl Microbiol Biotechnol87,1649–1656.Sijtsma,L.and de Swaaf,M.E.(2004)Biotechnological pro-duction and applications of the x-3polyunsaturated fatty acid docosahexaenoic acid.Appl Microbiol Biotechnol64,146–153.Unagul,P.,Assantachai,C.,Phadungruengluij,S.,Pongsuteera-gul,T.,Suphantharika,M.and Verduyn,C.(2006)Bio-mass and docosahexaenoic acid formation bySchizochytrium mangrovei Sk-02at low salt concentrations.Bot Mar49,182–190.Yaguchi,T.,Tanaka,S.,Yokochi,T.,Nakahara,T.and Higashihara,T.(1997)Production of high yields ofdocosahexaenoic acid by Schizochytrium sp.strain SR21.J Am Oil Chem Soc74,1431–1434.L.Qu et al.Enhancement of docosahexaenoic acid production。

相关文档
最新文档