高等工程数学题091数值分析部分

合集下载

数值分析试题与答案

数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。

高等工程数学数值分析部分试题(3)

高等工程数学数值分析部分试题(3)

一、填空题
1. 设*
2.40315x =是真值 2.40194x =的近似值,则*
x 有 位有效数字. 2. 数值求积公式⎰++≈10)1(6
1)21(32)0(61)(f f f dx x f 具有 次代数精度 . 3. 已知352)(4
7+++=x x x x f ,则均差=]2,,2,2[810 f .
4.取步长2.0=h ,用Euler 法求解初值问题x y y +-=',1)0(=y ,10≤≤x 的迭代格式为________.
二、计算题
1. 当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

2. 确定求积公式101()()(0)();h h f x dx A f h A f A f h --≈-++⎰中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度。

3. 设线性方程组b X =A 的系数矩阵为
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=a a a A 232131 试求能使Jacobi 迭代收敛的a 的取值范围。

4. 写出用四阶经典的龙格—库塔方法求解初值问题)10(<<+='x y x y ,1)0(=y 的计算公式,并计算出1y 的近似值.(精确到小数点后四位)。

数值分析试题及答案汇总

数值分析试题及答案汇总

数值分析试题及答案汇总TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】数值分析试题一、 填空题(2 0×2′) 1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]=0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。

8. 要使20的近似值的相对误差小于%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 (B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

(完整版)数值分析整理版试题及答案,推荐文档

(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x

xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4

a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5

09下数值分析答案(A)

09下数值分析答案(A)

《数值分析》I课程试题参考答案及评分标准(中文试卷)( A卷)适用专业年级:信息与计算科学07级 考试时间: 100分钟命题人:吕勇一、解------------------------------------------------------5分则插值多项式。

---------------------------------------- -------10分二、 证明设,以为节点的Lagrange插值多项式为 --3分余项为-----------------------------------------------------6分由于为线性函数,当时,。

--------------------------------9分则:,所以结论得证-------------------------------------------------10分三、证明 ----------------------------------------------------5分-------------------------8分 ---------------------------------------------------10分四、证明设则根据插值多项式原理-------------------------------------------------------------------------------------6分两端在上积分-------------------------------------------------------------10分五、解设,。

--------------------------------------------------------------------3分,---------------------------------------------------------------6分,。

数值分析习题(含答案)

数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

数值分析习题(含标准答案)

数值分析习题(含标准答案)

]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。

数值分析练习题附答案

数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。

(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。

"(1)计算01)1(<-=f ,故有根区间为[1,2]。

(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。

(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。

(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。

数值分析课后题答案

数值分析课后题答案

数值分析 第二章2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+--则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =为互异节点,求证:(1)0()nkkj j j x l x x=≡∑ (0,1,,);k n =(2)0()()0nk jj j xx l x =-≡∑ (0,1,,);k n =证明(1) 令()kf x x = 若插值节点为,0,1,,j x j n =,则函数()f x 的n 次插值多项式为0()()nk n j j j L x x l x ==∑。

插值余项为(1)1()()()()()(1)!n n n n f R x f x L x x n ξω++=-=+又,k n ≤(1)()0()0n n f R x ξ+∴=∴=0()nk kj j j x l x x =∴=∑ (0,1,,);k n =000(2)()()(())()()(())nk j j j n nj i k i k j j j i nnik ii kj j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑0i n ≤≤又 由上题结论可知()nk ij jj x l x x ==∑()()0ni k i ik i k C x x x x -=∴=-=-=∑原式∴得证。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

数值分析习题及答案解析

数值分析习题及答案解析

数值分析习题及答案解析第⼀章绪论习题⼀1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满⾜,⽽,故即2.下列各数都是经过四舍五⼊得到的近似值,试指出它们有⼏位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才⽐较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利⽤:式计算误差最⼩。

四个选项:第⼆、三章插值与函数逼近习题⼆、三1. 给定的数值表⽤线性插值与⼆次插值计算ln0.54的近似值并估计误差限. 解:仍可使⽤n=1及n=2的Lagrange插值或Newton插值,并应⽤误差估计(5.8)。

线性插值时,⽤0.5及0.6两点,⽤Newton插值误差限,因,故⼆次插值时,⽤0.5,0.6,0.7三点,作⼆次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若⽤⼆次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:⽤误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这⾥p≤n+1.解:,由均差对称性可知当有⽽当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并⽤均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表⽤Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,⽤n=4得Newton前插公式误差估计由公式(5.17)得其中计算时⽤Newton后插公式(5.18)误差估计由公式(5.19)得这⾥仍为0.5658.求⼀个次数不⾼于四次的多项式p(x),使它满⾜解:这种题⽬可以有很多⽅法去做,但应以简单为宜。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、已知函数表求的解:(1)故所求二次拉格朗日插值多项式为(2)一阶均差、二阶均差分别为例2、设,,试求在[0,1]上关于,的最佳平方逼近多项式。

解:若,则,,且,这样,有所以,法方程为,经过消元得再回代解该方程,得到,故,所求最佳平方逼近多项式为例3、设,,试求在[0, 1]上关于,的最佳平方逼近多项式。

解:若,则,,这样,有所以,法方程为解法方程,得到,,故,所求最佳平方逼近多项式为例4、用的复合梯形和复合辛普森公式计算积分。

解:(1)用的复合梯形公式由于,,,所以,有(2)用的复合辛普森公式由于,,,,所以,有例5、用列主元消去法求解下列线性方程组的解。

解:先消元再回代,得到,,所以,线性方程组的解为,,例6、用直接三角分解法求下列线性方程组的解。

解:设则由的对应元素相等,有,,,,,,,,因此,解,即,得,,解,即,得,,所以,线性方程组的解为,,1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。

()2、当时,Newton-cotes型求积公式会产生数值不稳定性。

()3、形如的高斯(Gauss)型求积公式具有最高代数精确度的次数为。

()4、矩阵的2-范数=9。

()5、设,则对任意实数,方程组都是病态的。

(用)()6、设,,且有(单位阵),则有。

()7、区间上关于权函数的直交多项式是存在的,且唯一。

()1、(Ⅹ) 2、(∨)3、(Ⅹ) 4、(∨)5、( Ⅹ)6、(∨)7、(Ⅹ) 8、( Ⅹ)一、判断题(10×1′)1、若A是n阶非奇异矩阵,则线性方程组AX=b一定可以使用高斯消元法求解。

( ×)2、解非线性方程f(x)=0的牛顿迭代法在单根x*附近是平方收敛的。

( √)3、若A为n阶方阵,且其元素满足不等式则解线性方程组AX=b的高斯-—塞德尔迭代法一定收敛。

(×) 4、样条插值一种分段插值。

(√)5、如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。

数值分析参考答案

数值分析参考答案

数值分析参考答案1.4 习题解答或提示1、解:(1)>> a=[1 2 3 ;4 5 6 ]'a =1 42 53 6(2)>> b=[9;7;5;3;1]b =97531(3)>> c=b(2:4)c =753(4)>> d=b(4:-1:1)d =3579(5)>> e=sort(b)e =13579(6)>> f=[3:b']f =3 4 5 6 7 8 92、解:>> x=[7 4 3 ];y=[-1 -2 -3];(1)>> u=[y,x]u =-1 -2 -3 7 4 3 (2)>> u=[x,y]u =7 4 3 -1 -2 -33、解:sum=0;a=[4 -1 2 -8 4 5 -3 -1 6 -7]; for i=1 : length(a)if a(i)>0, sum=sum+a(i); endendsumsum =214、解:m=input('input an array:')input an array:[1 2 5;3 1 2;4 1 3]m =1 2 53 1 24 1 35、解:sum(m)ans =8 4 10>> max(m)ans =4 2 5>> min(m)ans =1 1 26、解:function y=fun_es(x)y=0.5.*exp(x./3)-x.^2.*sin(x);>> fun_es(3)ans =0.0891>> fun_es([1 2 3])ans =-0.1437 -2.6633 0.08917、提示:本题主要考查的是随机数生成函数rand的使用方法,以及选取种子数的方法之一:使用clock命令。

可以参照课本的例1.5来编写函数。

8、解:function y=fun_xa()x=input('input the value of x:');n=input('input the value of n:');y=1;for i=1:1:ny=y+x^i/factorial(i); end>> fun_xa()input the value of x :1 input the value of n :4ans =2.70832.4 习题解答1 解:E(lnx)=(ln ’E(x)=)(1x E x =xδ=Er(x) 2. 解 Er(x 2)=)(22x Er x xx ⨯=4% 3. 解:123451.1021,0.031,385.6,56.430,7 1.0x x x x x *****=====⨯分别有5 位,2位,4位,5位,2位有效数字4 解 4*1105.0)(-⨯=x E3*2105.0)(-⨯=x E1*3105.0)(-⨯=x E3*4105.0)(-⨯=x E=++)(*4*2*1x x x E +)(*1x E +)(*2x E )(*4x E =0.00105))()((*4*2x E x E E =)()()(*42*4*2*4*2x E x x x x E -5. 解 V=334r π Er(v)=)(//x Er V x dx dV ⨯⨯=3Er(x)%1)(3≤x Er%33.0)(≤x Er6. 解 7830100-=Y Y)783()(100E Y E ==0.00057.解 x 1,2=24561122-±=56783±21,2105.0)x (-⨯=E 2105.0)783(-⨯=E98.27783≈x 1,2=83.98 或 28.02 8.略。

数值分析第九章习题

数值分析第九章习题
对方程$f(x) = 0$进行求解,然后得到$x = 1$。
答案解析
难度:简单。
解析:利用已知的函数性质,我们可以直接求得$x = frac{1}{2}$。
答案解析
难度:中等。 解析:通过观察函数的图像,我们可以得出$x = -1$。
难度:简单。
05
总结与展望
本章总结
01
02
03
内容回顾
详细总结了第九章的主要 知识点,包括数值逼近、 插值方法、样条函数、数 值积分和微分等。
重点难点解析
对第九章中的重点和难点 进行了深入的解析,帮助 学生更好地理解和掌握相 关内容。
例题解析
选取了具有代表性的例题, 进行了详细的解答和解析, 帮助学生掌握解题方法和 技巧。
迭代法的关键在于选择合适的迭代公式和迭代初值,以保证迭代过程的收敛性和稳 定性。
常见的迭代法包括雅可比迭代法、高斯-赛德尔迭代法和松弛迭代法等。
解题技巧二:矩阵分解
矩阵分解是将一个复杂矩阵分解 为几个简单的、易于处理的矩阵,
从而简化数值计算过程。
常见的矩阵分解方法包括LU分解、 QR分解和SVD分解等。
习题四解析
总结词
矩阵的特征值和特征向量
详细描述
该习题主要介绍了矩阵的特征值和特征向量的基本概念和计算方法,包括特征多项式、特征值和特征 向量的计算以及特征值的性质。通过该习题的解析,可以更好地理解矩阵的特征值和特征向量的基本 原理和应用。
03
解题技巧总结
解题技巧一:迭代法
迭代法是一种通过不断逼近解的方法,适用于求解线性方程组、非线性方程组以及 优化问题。
习题二解析
总结词
数值积分方法
详细描述
该习题主要介绍了数值积分的基本概念和方法,包括复化梯形公式、复化 Simpson公式和复化Cotes公式。通过比较不同方法的精度和稳定性,可以更好 地理解数值积分的基本原理和应用。

高等工程数学题091数值分析部分

高等工程数学题091数值分析部分

数值分析(计算方法)部分一. (8分)求一个次数不高于3的多项式)(x f ,使它满足:(1)1,(0)0,f f -==(1)1,(2)16,f f ==,并求差商[2,1,0,2]f --的值。

解:商差表:-1 1 0 0 -111112 16 15 7 2∴ f(x)=1-(x+1)+x(x+1)+2(x+1)x(x-1)=2x 3+x 2-2x∴ (3)f()23!f [2,1,0,2]23!3!ξ⨯--===二.(10分)用迭代法求解方程:2ln 40x x --=的所有实数根(要求判断根的个数及范围,构造收敛的迭代格式,并且求出精确到610-的近似根)。

解:设f(x)=x 2-lnx-4,显然x>0 f ’(x)=2x-1/x ,故f(x)在(0,2)上单调递减,在(2,+∞)上单调递增又x →0+时 f(x)→-4,f(2)=1/2-ln2-4<0∴x ∈(0,2)时f(x)<0又x →+∞时 f(x)→+∞∴方程有且仅有一个实根x *,并且x *∈(2,+∞)容易计算出,f(2)=-ln2<0,f(3)=5-ln3>0∴方程有且仅有一个实根x *,并且x *∈(2,3) 选用Neuton 迭代法2k k k k 1k k k k kf (x )x ln x 4x x x 1f '(x )2x x +--=-=--(k=0,1,2,……)它在单根x *附近至少平方收敛 计算,选取x 0=2x 1=2.1980421,x 2=2.1869229,x 3=2.1868881,x4=2.1868881 精确到10-6的近似根为2.186888三.(12分)1.用列主元素法解方程组: 123422351121242532713230x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2.写出用 G auss Seidel - 迭代法求解线性方程组1231231232231242122316x x x x x x x x x -++=⎧⎪-++=⎨⎪++=⎩ 的迭代格式,并讨论其收敛性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析(计算方法)部分
一. (8分)求一个次数不高于3的多项式)(x f ,使它满足:(1)1,(0)0,f f -==
(1)1,(2)16,f f ==,并求差商[2,1,0,2]f --的值。

解:
商差表:-1 1 0 0 -1
1
1
1
1
2 16 15 7 2
∴ f(x)=1-(x+1)+x(x+1)+2(x+1)x(x-1)=2x 3+x 2-2x
∴ (3)
f
()
23!f [2,1,0,2]23!
3!
ξ⨯--==
=
二.(10分)用迭代法求解方程:2
ln 40x x --=的所有实数根(要求判断根的个数及范围,构造收敛的迭代格式,并且求出精确到610-的近似根)。

解:设f(x)=x 2-lnx-4,显然x>0 f ’(x)=2x-1/x ,故f(x)在
(0,
2)上单调递减,在
(
2
,+∞)上单调递增
又x →0+时 f(x)→-4,
f(2
)=1/2-ln
2
-4<0
∴x ∈
(0,
2
)时f(x)<0
又x →+∞时 f(x)→+∞
∴方程有且仅有一个实根x *
,并且x *

(
2
,+∞)
容易计算出,f(2)=-ln2<0,f(3)=5-ln3>0
∴方程有且仅有一个实根x *,并且x *∈(2,3) 选用Neuton 迭代法
2
k k k k 1k k k k k
f (x )x ln x 4x x x 1f '(x )
2x x +--=-
=-
-
(k=0,1,2,……)
它在单根x *
附近至少平方收敛 计算,选取x 0=2
x 1=2.1980421,x 2=2.1869229,x 3=2.1868881,x4=2.1868881 精确到10-6的近似根为2.186888
三.(12分)
1.用列主元素法解方程组: 1
2
3
4
2
235112124253271
3
2
30x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪
- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪
⎝⎭⎝
⎭⎝⎭ 2.写出用 G auss Seidel - 迭代法求解线性方程组
1231231
2322312
42122316
x x x x x x x x x -++=⎧⎪
-++=⎨⎪++=⎩ 的迭代格式,并讨论其收敛性。

解:1. 对方程组的增广矩阵施行如下初等行变换
2
2351121241
21241212422351025172532725327011211323
01323
001
1
5
4-----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---- ⎪

⎪→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭
121241
2124011210112102517003390115
40
003
3--⎛⎫⎛⎫
⎪ ⎪-- ⎪
⎪→→ ⎪ ⎪- ⎪ ⎪--⎝
⎭⎝⎭
∴ 原方程组同解于1234234344x 2x x 2x 4x x 2x 13x 3x 93x 3++-=⎧⎪++=-⎪⎨-=⎪⎪=-⎩ 回代得123
4
x 2x 1
x 2x 1=⎧⎪=-⎪⎨=⎪⎪=-⎩
2. G-S 迭代格式为
(k 1)(k )(k )
123(k 1)(k 1)(k )
2
13(k 1)(k 1)(k 1)3
121x (122x 3x )21x (124x x )21x (16x 2x )3++++++⎧=---⎪⎪
⎪=+-⎨⎪
⎪=--⎪⎩
(k=0,1,2,……) 其迭代矩阵B S =(D-L)-1U
∴ 方程|λI-B S |=0同解于|λD-λL-U|=0
即 223421023λ
λ
λλ
λ
λ
--= 即 3
2
12220λλλ--+=
∴ 123110,,3
2
λλλ===-
∴ 1()12
s B ρ=
<
∴ G-S 迭代法收敛
四.(12分)
1.求系数210,,A A A ,
使数值公式:10121
()((0)f x dx A f A f A f -≈++⎰

代数精度尽量高,并求其最高的代数精度。

2.用Romberg 算法求积分0
cos x
I e xdx π
=⎰
的近似值。

(精确到610-)
解:1. f(x)=1时,左=
11
1dx -⎰
=2,右=A 0+A 1+A 2,即A 0+A 1+A 2=2 (1)
f(x)=x 时,左=
11xdx -⎰
=0,右
=-A 0
+2,即A 0-A 2=0 (2)
f(x)=x 2
时,左=
12
1
x dx -⎰
=2/3,右=2A 0/3+2A 2/3,即A 0+A 2=1 (3)
由(1)(2)(3)式解得 0121A 2A 11A 2⎧
=⎪⎪
=⎨⎪⎪=

取f(x)=x 3
时,左=
13
1
x dx -⎰=0,右
3
3/2=0=左
取f(x)=x 4
时,左=
14
1
x dx -⎰
=2/5,右
)4
)4/2=4/9≠左
∴ 取A 0=1/2,A 1=1,A 2=1/2,有最高的代数精度,为3
2.
812142142116842T 34.77851866T 17.38925933S 11.59283955T 13.33602285S 11.98494402C 12.01108432T 12.38216243S 12.06420896C 12.06949329R 12.07042041T 12.14800410S 12.06995132C 12.07033415R ≈-≈-≈-≈-≈-≈-≈-≈-≈-≈-≈-≈-≈-≈-32168412.07034749T 12.08974212
S 12.07032146
C 12.07034613
R 12.07034632
≈-≈-≈-≈- ∴ 0
cos 12.070346=≈-⎰
x
I e xdx π
五.(8分)用改进的Euler 法(预报—校正公式)计算积分:
2
x
t
y e
dt
-=

在0.5,0.75,1x =时的近似值。

(取步长0.25,h =小数点后至少保留6位) 解:2
x
t
y e
dt -=

2
1-=-x
dy e
dx
x=0时,显然y=0
预报—校正公式为: 2
k 2
2k k 1
x k 1
k x x k 1k y y h (e 1)h y y e 1e 12
+-+--+⎧=+-⎪
⎨⎡⎤=+-+-⎪⎣⎦⎩。

相关文档
最新文档