第13讲.几何综合.提高班.教师版
华师大版数学八年级上册第13章《全等三角形》教学设计
华师大版数学八年级上册第13章《全等三角形》教学设计一. 教材分析华师大版数学八年级上册第13章《全等三角形》是学生在学习了平面几何基本概念、三角形、四边形等知识后,进一步研究全等三角形的性质和判定方法。
全等三角形是几何中的重要概念,是解决几何问题的基础。
本章内容主要包括全等三角形的定义、性质、判定方法以及全等三角形的应用。
通过本章的学习,使学生掌握全等三角形的性质和判定方法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何基本概念、三角形、四边形等知识,具备一定的逻辑思维能力和空间想象能力。
但全等三角形的学习对于学生来说是一个新的挑战,因为全等三角形的性质和判定方法较为抽象,需要学生能够理解和运用。
此外,学生对于实际问题的解决能力也有待提高。
三. 教学目标1.理解全等三角形的定义和性质,掌握全等三角形的判定方法。
2.能够运用全等三角形的性质和判定方法解决实际问题。
3.培养学生的逻辑思维能力、空间想象能力和解决实际问题的能力。
四. 教学重难点1.全等三角形的定义和性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索全等三角形的性质和判定方法。
2.运用多媒体辅助教学,直观展示全等三角形的性质和判定方法。
3.采用小组合作学习,培养学生团队合作精神。
4.注重实践操作,让学生在动手实践中掌握全等三角形的性质和判定方法。
六. 教学准备1.多媒体教学设备。
2.全等三角形的教学课件。
3.全等三角形的练习题。
4.三角板、直尺、圆规等绘图工具。
七. 教学过程1.导入(5分钟)利用多媒体展示全等三角形的图片,引导学生思考:什么是全等三角形?全等三角形有哪些性质?2.呈现(10分钟)讲解全等三角形的定义和性质,通过示例演示全等三角形的判定方法。
3.操练(10分钟)学生分组讨论,运用全等三角形的性质和判定方法解决实际问题。
图形的综合提高
一、考点突破图形的初步认识是几何的入门知识,引导我们将对周围物体形状的感性认识逐步上升为抽象的几何图形。
这部分内容的概念较多,在学习时要多结合图形,加深对概念的理解,抓住其本质属性,认识它们之间的区别和联系。
同时应加强几何语言的训练,体会几何语言的严密性。
二、重难点提示重点:两条直线的相交和平行的位置关系,以及相交、平行的综合应用。
难点:垂直、平行的性质和判定的综合应用。
能力提升类例1 将图(1)中a×b的矩形剪去一些小矩形得图(2),图(3),请分别求出各图形的周长,其中EF=c。
一点通:把原题图(2)中的CD、EF、GH平移到AB上,DE、FG和AH移到BC上,把图(3)中的CD、IJ平移到AB上,DE、FG、HI和JA平移到BC上,即可得出各图形的周长。
解:原矩形图(1)的周长为2(a +b );图(2)的周长为2(a +b );图(3)的周长为2(a +b +c )点评:本题考查求不同图形的周长。
采用平移的方法,将分开的长度平移到某条已知的直线上,再计算。
例2 如图,已知AB ∥CD ,∠1=∠2。
试问∠BEF =∠EFC 吗?为什么?一点通:已知AB ∥CD ,在两平行线之间建立联系,不妨连接BC ,再考虑平行线的性质解题.或者根据逆向思维,若要证明∠BEF =∠EFC ,只需证明EB ∥CF ,根据已知条件证明。
解:∠BEF =∠EFC 。
证明:连结BC 。
∵AB ∥CD , ∴∠ABC =∠BCD 。
又∵∠1=∠2, ∴∠EBC =∠FCB , ∴EB ∥CF , ∴∠BEF =∠EFC 。
点评:本题即使在两平行线间出现拐角,也不采用作平行线的方法,而是连接BC ,使已知的平行线被第三条直线所截。
综合运用类例3 一位父亲有一块正方形的土地,他把其中的41留给自己,其余的平均分给他的四个儿子,如图所示,他想使每个儿子获得的土地面积相等,形状相同,这位父亲应该怎么分?一点通:父亲和四个儿子分割一个正方形,父亲留41,则所剩的三个小正方形每一个再分割为四个相等的小正方形,并且让出一个小正方形,土地面积就会相等。
【沪教版】三年级上册数学第13讲《几何图形认知》有答案
学员姓名:学科教师:年级:辅导科目:授课日期时间主题轴对称图形、三角形的分类教学内容1.初步认识轴对称图形,能找出对称轴,按对称轴将轴对称图形画完整;2.进一步认识常见的三角形,能根据三角形边的关系将三角形进行分类,在探究三角形的分类过程中,感受数学思考的条理性。
(此环节设计时间在10—15分钟)➢认识轴对称图形问题1:(1)比较它们的左边与右边?它们有什么共同的特点?揭题:象这样左边与右边都对称的图形叫做轴对称图形。
1、对称图形对折后会重合。
2、折痕所在的这条直线,我们就叫这个轴对称图形的对称轴。
问题2:生活中,你还看到过这样的轴对称图形吗?问题3:折一折、剪一剪先把一张纸对折,在折好的一侧画出图形,用剪刀剪下来,再把这个图形打开,观察得到的图形,你发现了什么?A问题4:正方形是不是轴对称图形?它有几条对称轴?长方形呢?在动手实践及验证中得到正方形有4条对称轴,长方形中两条对角线不能完全重合,所以长方形有2条对称轴,练习:画出对称轴➢三角形的分类问题1:同学们,下面我们来猜一个谜语“三个头尖尖角,我们学习离不了。
打一个图形”三角形问题2:你知道哪些关于三角形的知识?说说你对这些三角形的认识?(三角形按角来分类,可以分为钝角三角形、直角三角形和锐角三角形。
)问题3:下面这几个图形,是不是还可以按边分?请你用尺来量一量,分一分,看看怎么分?(一般情况下,我们可以先目测,再用尺量一量,如果三条变长都不相等,是任意三角形;如果有两条变长相等,那么是等腰三角形;如果三条变长都行等,则是等边三角形,也叫正三角形。
或者折一折:等腰三角形折一折,两半叠合;等边三角形折三次,两半都叠合。
所以等腰三角形有一条对称轴,等边三角形有三条对称轴,它们都是轴对称图形)练习:判断下列说法正确吗?(1)三角形是轴对称图形()(2)等腰三角形两条边相等,两个底角相等。
()(3)等边三角形的三条对称轴交于同一点()答案:(1)×(2)√ (3)√(此环节设计时间在40—50分钟)例题1:找一找对称轴,用红线把它画出来。
初一数学.春.直升班.教师版.第13讲 一次函数和几何综合(一)
则 △ABC 的面积是__________.
y
y
A
C
C B
O B
D x
O
A
x
图 4-1
图 4-2
【解析】(1)答案:10.过 A、C 点作 x 轴垂线,垂足分别为 E、F.(“割”) (2)答案:12.过 B、C 点作 x 轴垂线,垂足分别为 D、E.(“补”) 则 S△ABC= S梯形BDEC − S△BDA − S△CEA .
第十三讲
一次函数和几何综 合(一)
模块一 直线与坐标轴围成的面积 模块二 割补思想和铅锤法 模块三 一次函数和全等综合
记 区
初一数学目标名校直升班
———让学习2更有效!
第十三讲 一次函数和几何综合(一)
笔
模 块 一 :直线与坐标 轴围成的面积
1. 一 条 直线和坐标轴 围成的面积
(1)求一次函数 =y
kx
+
b
和坐标轴的交点坐标,即
(0,
b)
和
−
b k
,
0
;
(2)直线和坐标轴围成的面积: S =1 ⋅ | b | ⋅ | b | .
2
k
2. 两 条 直线和坐标轴 围成的面积
(1)求两个一次函数的交点,联立方程组,解方程组;
(2)求直线和 x 轴或 y 轴的交点,进行面积求解.
模 块 二 :几何中的割 补思想和铅锤法
y
O
x
y = − 4 x + 4 3
【解析】(1)设该一次函数与 x 轴的交点为 A,与 y 轴的交点为 B. 令 y = 0 ,得 − 4 x + 4 =0 ,解得 x = 3,故 A(3, 0) , OA = 3; 3
第13讲 四点共圆(教师版)
第13讲 四点共圆知识导航定义如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”性质⑴同弧所对的圆周角相等⑵圆内接四边形的对角互补⑶圆内接四边形的外角等于内对角如图,若四点共圆,则,,.常用判定⑴若一个四边形的一组对角互补,则这个四边形的四个顶点共圆⑵若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆⑶共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆经典例题如图,在四边形中,、、、分别是、、、的中点,.求证:、、、四点共圆.一、四点共圆的判定方法例题1答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:四点共圆的应用证明见解析连接、、、、、、分别是、、、的中点,,,又,四边形是矩形,、、、四点共圆.如图,,,且、相交于.为延长线上的一点,.求证:、、、四点共圆.例题2答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:四点共圆的应用证明见解析. ∵,,∴,∴,∵,,∴,∴,∴、、、四点共圆.答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:四点共圆的应用如图,在正中,点,分别在边,上,且,,相交于点.求证:,,,四点共圆.证明见解析.∵在正中,,又∵,,∴≌,∴,∴,,,四点共圆.例题3经典例题答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:圆内接四边形综合、是以为直径的半圆上的两点,,在直径上,且,求.连接,,、、、四点共圆,,,,,,,.如图,、分别是正方形的边、的中点,、相交于,求证:.二、四点共圆的应用例题4例题5证明见解析.方法一:连接,、是、的中点,,,,即,、、、四点共圆,,,很明显,,.≌方法二:连接,∵、是、的中点,∴≌,∴,∴,即,∴、、、四点共圆,标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:四点共圆的应用∴,,很明显,∴,∴.答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:四点共圆的应用如图,是正方形的边上的一点,过点作的垂线交的外角平分线于点,求证:.证明见解析.连接、.∵,,∴.又∵,∴、、、四点共圆,∴,∴.例题6例题7答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆幂定理 > 题型:相交弦定理如图,在等腰中,,.若,求..以为圆心,长为半径作,则点在上,延长交于,∵,∴点在上,∴,∵,,∴,,∴,∴.古希腊人在争论、证明和创新方面的成就和埃及、美索不达米亚、印度、中国相比,希腊形成国家要晚一些。
数学提高班教本课程材料
B 数学提高班教本课程材料(一) 班级:_________姓名:_________空间中的线面关系一、基本知识点:(一)线面平行的判定与性质定理1、线面平行的判定定理如果 的一条直线和平面内的一条直线 ,那么这条直线和这个平面 。
2、线面平行的性质定理如果一条直线和一个平面 , 这条直线的 和这个平面相交,那么这条直线就和两平面的 。
(二)平面与平面平行的判定1、定理:如果一个平面内有两条 平行于另一个平面,那么这两个平面平行。
2、推论:如果一个平面内有两条 分别平行于另一个平面内的 ,则这两个平面平行。
(三)平面与平面平行的性质定期理如果两个平行平面同时与第三个平面相交,那么它们的交线 ,(简言之:面面平行⇒线线平行)(四)线面垂直1. 定义:直线和一个平面相交,并且和这个平面内的_______________________直线都垂直, 记作:a ⊥α.直线叫做平面的垂线,平面叫做直线的垂面, 交点叫做垂足提问:若直线与平面内的无数条直线垂直,则直线垂直与平面吗?2 判定定理:如果一条直线和一个平面内的两条___________直线都垂直,那么这条直线垂直于这个平面 若l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α,则l ⊥α推论1.如果两条平行线中,有一条垂直于平面,那么另一条推论2.如果两条直线 那么这两条直线平行(五)面面垂直1.面面垂直的定义:___________________________2.面面垂直的判定定理:_____________________________________________________3.面面垂直的性质定理:______________________________________________________________二、典例探究:例1、如图所示,已知正方体ABCD — A 1B 1C 1D 1,求证:平面AB 1D 1//平面B DC 1。
九年级数学上册 圆 几何综合(提升篇)(Word版 含解析)
九年级数学上册圆几何综合(提升篇)(Word版含解析)一、初三数学圆易错题压轴题(难)1.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.⑴当t为何值时,线段CD的长为4;⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,∴四边形CFOE是矩形,∴OF=CE=t,OE=CF=4-t,在Rt△CFD中,DF2+CF2=CD2,∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,解得:t=,t=4,∵0<t<4,∴当t=时,线段CD的长是4;(2)过点O作OG⊥DE于点G(如图2),∵AD∥CE,AD=CE=t∴四边形ADEC是平行四边形,∴DE∥AB∴∠GEO=30°,∴OG=OE=(4-t)当线段DE与⊙O相切时,则OG=,∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;(3)当⊙C与⊙O外切时,t=;当⊙C与⊙O内切时,t=;∴当t=或秒时,两圆相切.考点:圆的综合题.2.已知:图1 图2 图3 (1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC =(2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值.(3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值.【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】 【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BNPC BP=,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===, ∴24,4PB BN BC =⋅=, ∴2PB BN BC =⋅,∴BN BPBP BC =, ∵B B ∠=∠,∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BCPBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽, ∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC=,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=23,CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.3.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似4.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.5.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(﹣32,﹣12)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(﹣32,﹣12)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,∵⊙C的圆心在直线y=﹣2x+1上,∴此直线和y轴,x轴的交点D(0,1),F(12,0),∴OF=12,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴OD OF DE CE=,∴112 DE=,∴DE=2,∴OE=3,t的最大值为3,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.同理可得t的最小值为﹣1.综上所述,t 的取值范围为﹣1≤t ≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.6.已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且222EH BE DH =+,求CAG ∠的度数;(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =O 半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62【解析】【分析】(1)证∠ABD=∠ACB 可得;(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合,证△ALE ≌△AHE ,利用勾股定理逆定理推导角度;(3)如下图,延长QR 交AB 于点T ,分别过点N 、Q 作BD 的垂线,交于点V ,I ,取QU=AE ,过点U 作UK 垂直BD.先证△AEN ≌△QUD ,再证△NVE ≌△RKU ,可得到NV=KR=DK ,进而求得OB 的长.【详解】(1)∵∠CED 是△BEC 的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合∵△ALB是△AHD旋转所得∴∠ABL=∠ADB,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222=+EH BE DH∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN ≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE ,∵△ANE 的周长为20∴QD+QR=20在△DQR 中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE ≌△RKU∴NV=KR=DK=522∴BN=5∴BD=122,OB=62r =【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形7.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)10 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H ∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.8.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒,∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形,∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,252OP OA ==,延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,227PE OP OE =-=在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+- ∴257PH =. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.9.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】 (1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN∴AFN DFM ∆~∆ ∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM =O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.10.在O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD(1)如图1,求证:CD AB ⊥;(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点K ,若165,55FK DB BE ==,求AB .【答案】(1)证明见解析;(2)证明见解析;(3)185AB =.【解析】【分析】(1)连接,OC OD,根据AC AD=得出COA DOA∠=再根据OC OD=得出OCD ODC∠=∠,从而得证;(2)连接,BC BD,根据AC AD=得出,BC BD BA CD=⊥,CBA ABD∠=∠,再根据CE CD=,得出CBE CBD∠=∠,从而得出结论;(3)作,CM DB CN BE⊥⊥,过点P作,PT BE PS BD⊥⊥,,5BE BP a DB a===先证CDM CEN∆≅∆,DM EN=,再证,CMB CNB BM BN∆≅∆=,设DM b=,得出2b a=,再算出,CM CD得出CPD∆为等腰三角形,再根据BP是角平分线利用角平分线定理得出BCPEBPS DP BDS PE BE∆==,从而算出,PE DE,再根据三角函数值算出BG,,,,AB r OG OH,再根据//FH DE得出HO OFGO OK=,从而计算AB.【详解】(1)连接OC,CD因为AC AD=,所以COA DOA∠=∠OC OD=,,OA CD CD AB∴⊥∴⊥;(2)连接BC,,BC BD BA CD=⊥所以AB平分CBD∠,设ABD ABCα∠=∠=2CBDα∴∠=CD CE∴=2CBE CBDα∴∠=∠=,3EBAα∴∠=3EBA ABD∴∠=∠.(3) 2,90EBC BPE PEB αα︒∠=∠=∠=-设,5BE BP a DB a ===作,CM DB CN BE ⊥⊥,可证:CDM CEN ∆≅∆,DM EN =,再证:,CMB CNB BM BN ∆≅∆=设,5,2DM EN b a b a b b a ==+=-∴=在CBM ∆中勾股4CM a =在CDM ∆中勾股25CD a =得CPD ∆为等腰三角形25DP DC a ==因为BP 为角平分线,过点P 作,PT BE PS BD ⊥⊥ 可证:5BCP EBP S DP BD S PE BE∆=== 2525,53PE a DE a ∴== 14tan ,tan 223αα== 2555,32BG a AB a ∴== 557535,,4124r a OG a OH a === //FH DE97HO OF GO OK ∴== 99518516OF KF AB ===【点睛】本题是一道圆的综合题目,难度较大,考查了圆相关的性质以及与三角形综合,掌握相关的线段与角度转化是解题关键.。
中考数学专题复习——几何综合(最新讲义)
中考数学——几何综合(讲义)➢ 知识点睛1. 几何综合问题的处理思路①标注条件,合理转化 ②组合特征,分析结构 ③由因导果,执果索因 2. 常见的思考角度304560 1 ↔⎧⎪↔⎪⎪↔⎨⎪↔⎪⎪︒︒︒↔⎩,,同位角、内错角、同旁内角平行内角、外角、对顶角、余角、补角转化计算角圆心角、圆周角在圆中,由弧找角,由角看弧直角互余、勾股定理、高、距离、直径特殊角等在直角三角形中,找边角关系() 2 ↔⎧⎪⎧⎪↔⎨⎪⎩⎪⎪⎧⎨⎪⎪⎪↔⎨⎪⎪⎪⎪⎪⎩⎪↔⎩、角平分线、垂直平分线轴对称性质勾股定理放在直角三角形中边角关系遇弦,作垂线边、线段连半径转移边放在圆中遇直径找直角遇切线连半径结合全等相似线段间比(例关系) 3 n ⎧⎧⎪⎪⎪⎪→⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪→⎨⎪⎩⎩倍长中线中位线中点三线合一特殊点斜边中线等于斜边的一半相似等分点面积转化() 4 ⎧⎧⎪⎪⎧⎪⎪→⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪→⎨⎪⎩⎩公式法相似规则图形转化法同底面积共高分割求和不规则图形割补法)补形作差(3. 常见结构、常用模型⎧→⎧⎪⎪→⎪⎪⎨⎪→⎪⎪⎪→⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩中点结构中点的思考角度直角结构斜转直常见结构旋转结构全等变换折叠结构轴对称的思考层次角平分线模型弦图模型常用模型相似基本模型三等角模型半角模型 ➢ 课前预习1. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F .若∠AEF =55°,则∠EAF=________.F EDCBA提示:倍长中线,构造全等三角形转移条件.具体操作:D 为中点,延长AD 到G 使DG =AD ,连接BG .得到△ADC ≌△GDB .2. 如图,在直角梯形ABCD 中,AB ∥CD ,∠ADC =90°,∠C =70°,点E 是BC的中点,CD =CE ,则∠EAD 的度数为( ) A .35°B .45°C .55°D .65°提示:平行夹中点,构造全等三角形补全图形.AD CE B具体操作:AB ∥CD ,E 为BC 的中点,延长AE 交直线CD 于点F .得到△ABE ≌△FCE .3. 如图,在四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,CD ,AC 的中点,若∠ACB =66°,∠CAD =20°,则∠EFG =____.AB CD FEG提示:多个中点考虑中位线,利用中位线性质转移角、转移边.具体操作:GF ,GE 分别为△CDA ,△ABC 的中位线.4. 如图,在△ABC 中,AB =AC ,BD =DC =3,sin C =45,则△ABC 的周长为______.提示:等腰三角形底边上的的中点——通过等腰三角形三线合一,构造直角三角形.具体操作:连接AD ,得到Rt △ADC .5. 如图,在锐角三角形ABC 中,∠BAC =60°,BN ,CM 为高,P 是BC 的中点,连接MN ,MP ,NP .则以下结论:①NP =MP ;②当∠ABC =60°时,MN ∥BC ;③BN =2AN ;④当∠ABC =45°时,BNPC .其中正确的有( )具体操作:在Rt △BMC 中,MP 为斜边中线;在Rt △BNC 中,NP 为斜边中线.6. 如图,正方形ABCD 边长为9,点E 是线段CD 上一点,且CE 长为3,连接BE ,作线段BE 的垂直平分线分别交线段AD ,BC 于点F ,H ,垂足为G ,则AF 的长为______.H G F EDCBA方法1:提示:从边的角度考虑直角,往往先表达,然后用勾股定理建等式. 具体操作:连接BF ,EF ,则BF =EF ,设AF 为x ,分别在Rt △BAF 和Rt △EDF 中表达BF 2,EF 2,再利用BF 2=EF 2求解. 方法2:提示:从角度转移考虑直角,往往先找角相等,然后证相似或全等. 具体操作:过点F 作FM ⊥BC 于点M ,则可证△FMH ≌△BCE ,则MH =CE =3,连接EH ,利用勾股定理求解EH (BH ),则AF =BH -MH . 7. 如图,在△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC 于D .则AD 的长为_______________.DCBA提示:①特殊角+直角;②直角两边可看做是面积中的底或高.具体操作:①过点C 作CE ⊥AB ,交BA 延长线于点E ,在Rt △CAE 中利用特殊角60°求解;②将AD 看成高,求出BC 后,利用CE AB AD BC ⋅=⋅求解.8. 如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,则BD =________.ABECD提示:直角+角平分线,逆用三线合一构造出等腰三角形.具体操作:BE 既是角平分线、又是高.延长BA ,CE 交于点F ,可证△CAF ≌△BAD .9. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BD =2,AD =8,则CD =_________.DC提示:多个直角(直角三角形斜边上的高),考虑母子型相似.具体操作:由∠ACB =∠ADC =90°,考虑△BDC ∽△CDA ∽ △BCA .10. 如图,在梯形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若∠AED =90°,则CE =_____.ABCDE提示:多个直角(一线三等角),考虑三等角模型.具体操作:∠ABE =∠ECD =∠AED =90°,考虑△ABE ∽△ECD .11. 如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =5,OC=BC 的长为________.CB OAED提示:多个直角(斜放置的正方形、等腰直角三角形),考虑弦图.具体操作:过点D 作DF ⊥CB ,交CB 延长线于点F ,连接OF .由弦图可知,△OCF 是等腰直角三角形.12. 如图,将三角板放在矩形ABCD 上,使三角板的一边恰好经过点B ,三角板的直角顶点E 落在矩形对角线AC 上,另一边交CD 于点F .若AB =3,BC =4,则EF EG=________. FEDCG (B )A提示:斜直角要放平(关键是与其他直角配合),利用互余转移角后,寻找三角形相似或全等.具体操作:过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N ,则△EMF ∽△ENG .13. 已知直线l 1:y =112x b -+与直线l 2垂直,且直线l 2经过定点A (3,0),则直线l 2表达式为________________.提示:坐标系下的垂直,优先考虑121k k ⋅=-. 具体操作:由121k k ⋅=-求得k 2,再利用A (3,0)求b 2.14. 如图,在⊙O 中,弦AB,弦ADACB =45°,则弦AD 所对的圆心角为_______.CA提示:圆背景下,要构造直角,考虑:①直径所对的圆周角是直角;②垂径定理.具体操作:连接AO 并延长交⊙O 于点E ,连接DE ,BE .在Rt △ABE 中,求解直径AE ;在Rt △ADE 中,利用边角关系,求解∠AED 进而得到∠AOD . 15. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边上的点B ′处.若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是__________.B'A'F EDCBA提示:折叠,考虑:①利用对应边、对应角相等,考虑转移边、转移角;②矩形中的折叠常出现等腰三角形.具体操作:由折叠∠EFB =∠EFB′=60°,AE =A′E =2,∠B =∠A′B′F =90°,结合内错角∠B′EF =∠BFE =60°,可在Rt △A′B′E 中求解A′B′,即AB 的长.16. 如图,将长为4cm ,宽为2cm 的矩形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN ,则线段AM 的长为__________.BCFAEMD提示:折叠,考虑折痕是对应点连线的垂直平分线.具体操作:连接BE ,BM ,ME ,则BM =ME ,在Rt △BAM 和Rt △MDE 中表达BM 2,ME 2,利用相等建等式求解.17. 如图,已知直线l :y =122x -+与x 轴交于点A ,与y 轴交于点B ,将△AOB沿直线l 折叠,点O 落在点C 处,则点C 的坐标为_________.提示:折叠,可考虑折痕垂直平分对应点连线.函数背景下的折叠可以考虑121k k ⋅=-和中点坐标公式的组合应用.具体操作:连接OC ,先利用原点坐标和121k k ⋅=-求得OC 解析式;联立OC 和AB 解析式求出OC 的中点坐标后,进而求出点C 坐标.18. 如图,Rt △ABC 的边BC 位于直线l 上,ACACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路线长为__________.(结果保留π)19.的位置,使得CC′∥AB ,则∠BAB′的度数为( ) A .30°B .35°C .40°D .50°C'B'ABC提示:旋转是全等变换,对应边相等,对应角相等;会出现等腰三角形. 具体操作:由旋转可知AC =AC′(对应边相等),∠BAB′=∠CAC′(旋转角相等).20. 如图,P 是等边三角形ABC 内的一点,连接P A ,PB ,PC ,以BP 为边作∠PBQ =60°,且BQ =BP ,连接PQ ,CQ .若P A :PB :PC =3:4:5,则∠PQC =________.QBCPA提示:利用旋转可以重新组合条件.当看到等腰结构时往往会考虑利用旋转思想构造全等.具体操作:由等腰结构AB =BC ,PB =BQ ,先考虑△APB 和△BQC 的旋转关系,证明△APB ≌△CQB 后验证,重新组合条件后利用勾股定理进行证明.➢ 精讲精练1. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________. FEDBA2. 如图,矩形ABCD 中,AB =8,点E 是AD 上一点,且AE =4,BE 的垂直平分线交BC 的延长线于点F ,交AB 于点H ,连接EF 交CD 于点G .若G 是CD 的中点,则BC 的长是_______.HGOB A DEC F3. 如图,在□ABCD 中,AB :BC =3:2,∠DAB =60°,点E 在AB 边上,且AE :EB =1:2,F 是BC 的中点,过点D 分别作DP ⊥AF 于点P ,DQ ⊥CE 于点Q ,则DP :DQ 等于( ) A .3:4BCD.QDCFBPEACBGFEDA第3题图 第4题图4. 如图,在△ABC 中,∠ABC =90°,BD 为AC 边上的中线,过点C 作CE ⊥BD于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF .若AG =13,CF =6,则四边形BDFG 的周长为________.5. 如图,已知四边形ABCD 为等腰梯形,AD ∥BC ,AB =CD,AD =CD 中点,连接AE,且AE =BF =________.BCEADF6. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 逆时针方向旋转90°并缩小,恰好使DE =23CD ,连接AE ,则△ADE 的面积是________.7. 如图,在平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC .线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD .若直线CD 与直线y =x 交于点Q ,则点Q 的坐标为__________.8. 如图,把矩形ABCD 沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC =3:5,则ADAB的值为_________. ED C B AEDCBA9. 如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF ;如图2,展开再折叠一次,使点C 落在线段EF 上,折痕为BM ,BM 交EF 于O ,且△NMO的周长为3,展开再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为P ,EP 交AB 于Q ,则△AQE 的周长为_______.图1BAD FC EMN图2OBAD F CE PHG 图3Q BA D F CE10.如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE ,BH .若BH =8,则FG =_______.GHBA D F CE11.顺时针旋转得到△A B′C′,连接CC ′并延长,交AB 于点O ,交BB ′于点F .若CC ′=CA ,则BF =_____.C'O B AFC B'12. 如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过点A 作AE 的垂线交DE 于点P ,连接BP .若AE =AP =1,PB =APD ≌△AEB ;②BE ⊥DE ;③点B 到直线AE;④1△△APD APB S S +=⑤4ABCD S =正方形 ) A .③④⑤B .①②⑤C .①③⑤D .①②④⑤PDA B CE【参考答案】 ➢ 课前预习1. 55°2. A3. 23°4. 165. B6. 27.7 8. 10 cm 9. 410. 1或6 11. 712. 4313. 26y x =-14.120°15.16.138cm17.816 () 55,18.(4π19.C20.90°➢精讲精练1.12.73.D4.205.4-6.27.99 () 44,8.1 29.1210.11.5 212.B。
部编版数学五年级暑假第13讲.容斥原理.超常体系
第13讲四年级春季排列组合初步五年级暑假枚举法进阶五年级暑假容斥原理五年级秋季排列组合进阶五年级秋季几何计数进阶两量容斥原理,三量容斥原理,容斥原理中的最值问题漫画释义知识站牌容斥,从字面上理解就是“包容”与“排斥”。
为了计算几种物体的总个数,首先计算所有包容了的物体个数,但包含多了(出现重叠对象),又要排斥某些物体,当排斥多了,又要包容若干物体……,如此继续下去,最终就可以得到我们所要求的物体个数。
容斥原理所体现的这种数学思想就是一种“多退少补,逐步淘汰”的取舍思想。
也许这样说比较枯燥,如果用图形和符号来研究这些问题就比较直观了,那么我们就用图形和符号这两个“拐杖”来学习容斥原理,借用教育家苏荷姆林斯基的一句名言来说:“用直观来照亮我们认识的路途!”1.熟练掌握两量容斥原理并处理两量最值问题;2.会利用容斥原理处理三量重叠及最值问题;3.会利用方程解决较复杂的容斥问题.容斥原理容斥原理I :两量重叠问题A B A B A B =+- (其中符号“ ”读作“并”,相当于中文“和”或者“或”的意思;符号“ ”读作“交”,相当于中文“且"的意思.)图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即容斥原理II :三量重叠问题A B C A B C A B B C A C A B C=++---+ 图示如下:经典精讲课堂引入教学目标第13讲C A B AC B BA C 模块1:两量的容斥例1-3例1:两量容斥例2:容斥最值(利用线段图)例3:容斥最值(需要判断)模块2:三量容斥例4:截长度例5:开关灯例6:容斥最值(浇花,答题)模块3:容斥综合例7:普通方程解容斥例8:不定方程解容斥在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?【分析】1~100,2的倍数有1002⎡⎤⎢⎥⎣⎦=50,3的倍数有1003⎡⎤⎢⎣⎦=33个,因为既是2的倍数,又是3的倍数的数一定是6的倍数,所以标签为这样的数有1006⎡⎤⎢⎥⎣⎦=16个.于是,既不是2的倍数,例题思路又不是3的倍数的数在1~100中有100-50-33+16=33.所以,游艺会为该项活动准备的奖品铅笔共有:50×2+33×3+33×1=232支.(1)有100种食品.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是____、_____.(2)某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班三项运动都会的人数的最大值和最小值分别是____、_____.(3)某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,那么,这个班四项运动都会的人数的最大值和最小值分别是____、_____.(4)在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,那么,恰好被3个人浇过的花最少有____盆.(5)60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,那么,这三项运动都不会的最多有___人.(6)甲、乙、丙都在读同一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么,甲、乙、丙3人共同读过的故事最少有____个.【分析】最大值不能超过几类中的最小值;而求最小值,则应该让次数平均分配.(1)最大值就是含铁的有43种.根据容斥原理最小值68+43-100=11,最小值可以用下图表示:(2)最大值为27.三项都会的最少,那么两项都会的应该最多.因此可以先让所有人都会两项.剩下的就是三项都会的最小值.27+33+40-48×2=4(3)同上分析:最大值为27,最小值为40+38+35+27-46×3=140-138=2人(4)为了恰好被3个人浇过的花盆数量最少,那么被四个人浇过的花、两个人浇过的花数量都要尽量多,那么应该可以知道被四个人浇过的花数量最多是30盆,那么接下来就变成乙浇了45盆,丙浇了50盆,丁浇60盆了,这时共有1003070-=盆花,我们要让这70盆中恰好被3个人浇过的花最少,这就是简单的容斥原理了,恰好被3个人浇过的花最少有45506070215++-⨯=盆.(5)2346040;6045;6048345⨯=⨯=⨯=.此题中有22人三项全会,要让都不会的最多,那么会两项的就应该最多.(40+45+48-22×3)÷2=33…1.因此除了22人外,至少还有34人会2项或1项运动.都不会的最多有60-22-34=4人.(6)考虑甲乙两人情况,有甲乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.第13讲(1)参加语文竞赛的有8人,参加数学竞赛的有9人,参加英语竞赛的有11人,每人最多参加两科,那么至少有人参加这次竞赛.(2)某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.(3)参加语文竞赛的有8人,参加数学竞赛的有9人,参加英语竞赛的有21人,每人最多参加两科,那么至少有人参加这次竞赛.【分析】此类问题算出最值后,一定要检验是否能办到.原因可见(3)小题.(1)由于每人最多参加2科,也就是说有参加2科的,有参加1科的,要求参加的人最少,那么尽可能让每人都参加2科,所以理论上至少有(8911)214++÷=人参加竞赛,1495-=,14113-=,参加语文和英语竞赛的有5人,参加语文和数学竞赛的有3人,参加数学和英语竞赛的有6人,符合题意,因此至少有14人参加竞赛(2)根据题意可知,该班参加竞赛的共有28232071++=人次.由于每人最多参加2科,也就是说有参加2科的,有参加1科的,也有不参加的,共是71人次.要求参加2科的人数最多,则让这71人次尽可能多地重复,而712351÷= ,所以至多有35人参加2科,此时还有1人参加1科.那么是否存在35人参加两科的情况呢?由于此时还有1人是只参加一科的,假设这个人只参加数学一科,那么可知此时参加语文、数学两科的共有(282220)215+-÷=人,参加语文、英语两科的共有281513-=人,参加数学、英语两科的共有20137-=人.也就是说,此时全班有15人参加语文、数学两科,13人参加语文、英语两科,7人参加数学、英语2科,1人只参加数学1科,还有14人不参加.检验可知符合题设条件.所以35人是可以达到的,则参加2科的最多有35人.(当然本题中也可以假设只参加一科的参加的是语文或英语)(3)由于每人最多参加2科,也就是说有参加2科的,有参加1科的,要求参加的人最少,那么尽可能让每人都参加2科,所以理论上至少有(8921)219++÷=人参加竞赛,但参加英语竞赛的有21人,因此至少应该有21人参加竞赛.一根1001厘米长的木棒,从同一端开始,第一次每隔7厘米画一个刻度,第二次每隔11厘米画一个刻度,第三次每隔13厘米画一个刻度,如果按刻度把木棒截断,那么可以截出多少段?(学案对应:超常1,带号1)【分析】要求出截出的段数,应当先求出木棒上的刻度数,而木棒上的刻度数,相当于1、2、3、…、1000、1001这1001个自然数中7或11或13的倍数的个数,为:100110011001100110011001100128171113711713111371113⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++---+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⨯⨯⨯⨯⨯⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,故木棒上共有281个刻度,可以截出281段.(注:此题中1001恰好是7,11,13的倍数,因此最后一个刻度不需要截.若是1002,那么刻度还是281个,但截成的是282段.)有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3,…,2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?棣莫弗的传奇容斥原理有一个有趣的历史,该原理最早的数学表述是有法国数学家棣莫弗在他关于概率论的教材——《机会的学说》中提出的。
新教材高中数学第13章立体几何初步章末综合提升课件苏教版必修第二册
(2)由正方体性质得 B1D1∥BD, ∵B1D1⊄平面 BDF,BD⊂平面 BDF, ∴B1D1∥平面 BDF. 连接 HB,D1F, 易证 HBFD1 是平行四边形, 得 HD1∥BF.
∵HD1⊄平面 BDF,BF⊂平面 BDF, ∴HD1∥平面 BDF. ∵B1D1∩HD1=D1, ∴平面 BDF∥平面 B1D1H.
(3)∵DM∥BN,BN⊥平面 ECA,∴DM⊥平面 ECA. 又 DM⊂平面 DEA, ∴平面 DEA⊥平面 ECA.
空间垂直关系的判定方法 (1)判定线线垂直的方法 ①计算所成的角为 90°(包括平面角和异面直线所成的角); ②线面垂直的性质(若 a⊥α,b⊂α,则 a⊥b).
(2)判定线面垂直的方法 ①线面垂直的定义(一般不易验证任意性); ②线面垂直的判定定理(a⊥m,a⊥n,m⊂α,n⊂α,m∩n=A⇒ a⊥α); ③平行线垂直平面的传递性质(a∥b,b⊥α⇒a⊥α); ④面面垂直的性质定理(α⊥β,α∩β=l,a⊂β,a⊥l⇒a⊥α); ⑤面面平行的性质(a⊥α,α∥β⇒a⊥β); ⑥面面垂直的性质(α∩β=l,α⊥γ,β⊥γ⇒l⊥γ).
[思路点拨] (1)取 B1D1 的中点 O,证明四边形 BEGO 是平行四 边形.
(2)证 B1D1∥平面 BDF,HD1∥平面 BDF.
[证明] (1)取 B1D1 的中点 O,连接 GO,OB, 易证 OG 12B1C1,BE 12B1C1, ∴OG BE,四边形 BEGO 为平行四边形, ∴OB∥GE. ∵OB⊂平面 BDD1B1,GE⊄平面 BDD1B1, ∴GE∥平面 BDD1B1.
空间图形的体积及表面积 【例 3】 如图,四棱锥 P-ABCD 中,PA⊥底面 ABCD,AD∥BC, AB=AD=AC=3,PA=BC=4,M 为线段 AD 上一点,AM=2MD, N 为 PC 的中点.
几何综合问题(上课课件)
课件教育
10
我们要研究两个图形之间的关系,那么 就要解决两个什么样的图形可以结合的问题。 从综合题的构成角度思考,一般讲,两个或 者两个以上的图形之间应该存在着内在的关 系,实际上综合题的解决首先就应该依赖于 对这个问题的认识与理解。
根据需要我们做这种分类:
一、同类图形问题;
课件教育
5
由于北京市的新课标实施后中考命题的 设计中出现了新的所谓的综合题,因此, 几何综合题已经不是原来的意义了。
现在在中考题目设计中出现的纯几何知 识应用,设计的题面比较新、且有一定难 度、题型比较新颖、解题方法也比较新的 题目称之为综合题了。
我们这样的认识它,实际上是从题目的 功能上认识的。因为一般讲这样的题目起 的作用是区分学生水平,即体现选拔作用 的功能。
几何综合问题
综合题复习的思考
课件教育
1
大家一直都在研究综合题。
观察一般研究的角度,或者观察研究的 对象基本都是针对题目的外在形式研究的, 或者利用以往的考题,例如什么几何变换 型的题目等等。
其实既然称之为综合题,那么只从外在 的形式研究显然是不全面的,或者说是只 关注结果的研究方法,难免会出现猜题的 嫌疑。
课件教育
7
这两类题目的解题特征:
第一类是先分析,后移动;
第二类是先运动,后分析。
这两类题目的图形构成特征:
我们知道一个几何问题的构成至少由两个 以上的图形根据图形的边,角关系,依据 不同的位置而形成的。那么中考中的两类 题目的图形呈现的现象是相反的。
课件教育
8
第一类题目:
它是把两个以上的图形经过运动后形成 的图形关系中,把一些干扰图形结论的线 或者角隐藏起来形成的简化的图形,我们 要做的是把那些隐藏的图形显现出来,找 到需要的条件,即分析,再动起来。
学高中数学立体几何初步阶段综合提升立体几何初步教师用书教案北师大版必修
第1课立体几何初步[巩固层·知识整合][提升层·题型探究]由三视图求几何体的表面积与体积A.1B.错误!C.错误!D.2C[根据三视图,可知几何体的直观图为如图所示的四棱锥VABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=错误!,在Rt△VBD中,VD=错误!=错误!.]1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和,组合体的表面积问题要注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.错误!1.一个几何体的三视图如图所示,其中左视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8π[由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V=错误!×π×23×错误!=8π.]c111111(1)当错误!等于何值时,BC1∥平面AB1D1?(2)若平面BC1D∥平面AB1D1,求错误!的值.[解] (1)如图所示,取D 1为线段A1C1的中点,此时错误!=1.连接A1B,交AB1于点O,连接OD1.由棱柱的性质知,四边形A1ABB1为平行四边形,所以点O为A1B的中点.在△A1BC1中,点O,D1分别为A1B,A1C1的中点,所以OD1∥BC1.又因为OD1平面AB1D1,BC1平面AB1D1,所以BC1∥平面AB1D1,所以当错误!=1时,BC1∥平面AB1D1.(2)由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D=D1O,得BC1∥D1O,所以错误!=错误!,又由题可知错误!=错误!,错误!=1,所以错误!=1,1即错误!=1.1.证明线线平行的依据(1)平面几何法(常用的有三角形中位线、平行四边形对边平行);(2)公理4;(3)线面平行的性质定理;(4)面面平行的性质定理;(5)线面垂直的性质定理.2.证明线面平行的依据(1)定义;(2)线面平行的判定定理;(3)面面平行的性质定理.3.证明面面平行的依据(1)定义;(2)面面平行的判定定理;(3)线面垂直的性质定理;(4)面面平行的传递性.错误!2.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF,EF∥AB,H为BC的中点,求证:FH∥平面EDB.[证明] 连接AC交BD于点G,则G为AC的中点.连接EG,GH,∵H为BC的中点,∴GH綊错误!AB.又EF綊错误!AB,∴EF綊GH,∴四边形EFHG为平行四边形,∴EG∥FH,∵EG平面EDB,FH平面EDB,∴FH∥平面EDB.垂直关系的判定和性质【例3】如图,在四棱锥PABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[证明] (1)因为平面PAD⊥底面ABCD,且PA⊥AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE,所以四边形ABED为平行四边形,所以BE∥AD.又因为BE平面PAD,AD平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.又AD∩PA=A,所以CD⊥平面PAD,所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF.又EF∩BE=E,所以CD⊥平面BEF.又CD平面PCD,所以平面BEF⊥平面PCD.1.两条异面直线相互垂直的证明方法(1)定义;(2)线面垂直的性质定理.2.直线和平面垂直的证明方法(1)线面垂直的判定定理;(2)面面垂直的性质定理.3.平面和平面相互垂直的证明方法(1)定义;(2)面面垂直的判定定理.错误!3.如图,直三棱柱ABCA1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA=错误!,D是A1B1的中点.1(1)求证:C1D⊥平面AA1B1B;(2)若点F为BB1上的动点,则当点F在BB1上的什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.[解] (1)证明:由题意知,A1C1=B1C1=1,且∠A1C1B1=90°.∵D是A1B1的中点,∴C1D⊥A1B1.∵AA1⊥平面A1B1C1,C1D平面A1B1C1,∴AA1⊥C1D.∵AA1∩A1B1=A1,∴C1D⊥平面AA1B1B.(2)点F为BB1的中点时,AB1⊥平面C1DF.证明如下.∵C1D⊥平面AA1B1B,AB1平面AA1B1B,∴C1D⊥AB1.易知A1B1=错误!,∵AA1=错误!,∴四边形AA1B1B为正方形.又D为A1B1的中点,F为BB1的中点,∴AB1⊥DF,又DF∩C1D=D,∴AB1⊥平面C1DF.截面问题【例4】如图,已知正三棱锥SABC,过B和侧棱SA,SC的中点E,F作一截面,若这个截面与侧面SAC垂直,求此三棱锥的侧面积与底面积之比.[思路探究] 构建截面,利用几何知识巧妙判断各棱之间的关系.[解] 取AC的中点M,连接SM,设SM∩EF=D.如图.在△SAC中,E,F分别为SA,SC的中点,所以EF∥AC,所以错误!=错误!,而SF=FC,所以SD=DM,所以D为SM的中点.连接BD,BM.因为SABC为正三棱锥,所以SM⊥AC.而AC∥EF,所以SM⊥EF,又截面BEF⊥平面SAC,所以SM⊥BD.又SD=DM,所以△SBM为等腰三角形,SB=BM.设正三棱锥SABC的底面边长为a,则BM=错误!a,从而SA=SB=SC=BM=错误!a,又SM=错误!=错误!=错误!a,所以S侧=3×错误!×a×错误!a=错误!a2,S底=错误!a2,所以S侧∶S底=错误!∶1.在中学数学中,有关截面的问题主要有面积、距离和角的计算问题以及与截面的位置、形状、数量有关的证明和判定问题.在解有关截面问题时要注意:1截面的位置;2截面的形状及有关性质;3截面的元素及其相互关系;4截面的有关数量.错误!4.一个圆锥底面半径为R,高为错误!R,求此圆锥的内接正四棱柱表面积的最大值.[解] 如图,△SAB 为圆锥SO 的一个轴截面,且该轴截面经过正四棱柱的对角面,DF 为棱柱的底面对角线,要求棱柱的表面积,只要求出底面正方形边长及棱柱的高即可.设正四棱柱高为h ,底面正方形边长为a ,则DE =错误!a . ∵△SDE ∽△SAO ,∴错误!=错误!. ∵AO =R ,SO =错误!R ,∴错误!=错误!,∴h =错误!R —错误!a . ∴S 表=2a 2+4ah =2a 2+4a 错误!.整理得S 表=(2—2错误!)错误!2+错误!,0<a <错误!R . ∵2—2错误!<0,错误!<错误!R , ∴当a =错误!时,S 表有最大值错误!=错误!. 即圆锥的内接正四棱柱表面积最大值是错误!R 2.折叠问题位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .[思路探究] 运用线线垂直证明线面垂直,运用线面垂直证明面面垂直. [证明] 如图所示,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =错误!AD ,E 是AD 的中点, ∴A ′B =A ′E ,∴A ′N ⊥BE . ∵A ′C =A ′D ,∴A ′M ⊥CD .在矩形ABCD 中,DC ⊥MN ,又MN ∩A ′M =M , ∴DC ⊥平面A ′MN ,∴CD ⊥A ′N .∵ED ∥BC ,且ED ≠BC ,∴BE 必与CD 相交,∴A′N⊥平面BCDE.又A′N平面A′BE,∴平面A′BE⊥平面BCDE.把一个平面图形按某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.求解折叠问题的两个关键点:1画好两个图——折叠前的平面图和折叠后的立体图;2分析好两者之间的关系——折叠前后哪些量发生了变化,哪些量没有发生变化.错误!5.如图(1)所示,梯形ABCD中,AB∥CD,E,F分别为BC,AD的中点,将平面CDFE沿EF 翻折起来,使CD到C′D′的位置,如图(2)所示,G,H分别为AD′,BC′的中点,求证:四边形EFGH 为平行四边形.[证明] 梯形ABCD中,AB∥CD,E,F分别为BC,AD的中点,∴EF∥AB且EF=错误!(AB+CD).翻折后,C′D′∥EF,∴C′D′∥AB.又G,H分别为AD′,BC′的中点,∴GH∥AB且GH=错误!(AB+C′D′)=错误!(AB+CD),∴GH綊EF,∴四边形EFGH为平行四边形.。
几何综合.知识精讲
几何综合知识网络图知识精讲一、几何常见辅助线秘籍1、中点类辅助线秘籍一:见中点-------倍长中线解读:凡是与中点连线的线段都可看作是中线,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的,构成八字全等。
秘籍二:见多个中点------构造中位线解读:凡是出现中点或多个中点,都可以考虑取另一边中点,或延长三角形一边,或连接中点,从而达到构造三角形中位线的目的。
秘籍三:见等腰三角形底边中点------连接顶点与中点,构造三线合一解读:只要出现等腰三角形,或等腰三角形与中点时,就需要考虑构造三线合一,从而找到突破口;其他位置的也要能看出秘籍四:见垂直平分线------构造等腰三角形秘籍五:见直角三角形与中点----------构造直角三角形斜边中线解读:只要出现直角三角形,或直角,还有中点,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
注:有关此类辅助线常常由中点倍长引出,再构造直角三角形。
他位置的也要能看出2、角平分线类辅助线秘籍一:见角平分线----------作垂线解读:用角平分线上的点往角两边作垂线,这是常用的辅助线,可以利用边角边构造全等秘籍二:见角平分线------翻折解读:在角两边截取相等的线段,这也是角平分线常用的辅助线,常用于解决线段和差问题秘籍三:见角平分线是高线------补全等腰三角形解读:过角平分线上的点作垂线,常用于构造三线合一,构造等腰三角形 秘籍四:见角平分线------过角平分线上的点作角一边的平行线解读:可以构造等腰三角形,可以记作口诀:“角平分线+平行线,等角三角形现。
3、线段间关系类辅助线秘籍一:见线段间数量关系---------截长补短或旋转解读:只要出现类似AB±CD=nEF 的线段关系,就可以采取截长补短的方法来做辅助线,注意这个方法可以说是四个方法,由于方向性的不同,所以截长两种,补短两种;出现类似222n AB CD EF ±=的线段关系时,截长补短就不行了,就得采取旋转的方法来做辅助线。
老封几何提高班讲义
老封几何提高班讲义一、引言几何学是数学的一个重要分支,它研究空间和图形的性质与关系。
而在几何学中,老封几何被认为是一门非常经典且重要的学科。
本文将为大家介绍老封几何提高班的讲义内容,帮助读者更好地理解和掌握老封几何知识。
二、基础概念1. 点、线、面:几何学中最基本的概念就是点、线和面。
点是几何学中最简单的对象,它没有长度、宽度和高度;线是由无数个点组成的,它没有宽度和高度,只有长度;面是由无数条线组成的,具有长度和宽度,但没有高度。
2. 直线与曲线:直线是由无数个点连成的,它没有弯曲;曲线是由无数个点组成的,它可以弯曲。
3. 角:角是由两条线段或线段延长线的交点组成的,可以用来描述物体的转向。
4. 角度的度量:角度可以通过度数和弧度来度量。
度数是最常见的角度度量方式,一圈等于360度;弧度是在数学中常用的角度度量方式,一圈等于2π弧度。
三、几何运算1. 重要定理:在老封几何中,有一些重要的定理需要掌握。
例如:勾股定理、相似三角形定理、正弦定理、余弦定理等,这些定理可以帮助我们解决几何问题。
2. 平移、旋转和缩放:几何运算中常用的操作包括平移、旋转和缩放。
平移是指将一个图形沿着一定的方向移动一定的距离;旋转是指将一个图形绕着某个点旋转一定的角度;缩放是指将一个图形按照比例因子进行拉伸或压缩。
四、几何证明1. 构造证明:在老封几何中,构造证明是一种常用的证明方法。
通过构造图形和辅助线,可以帮助我们更好地理解和解决几何问题。
2. 反证法:反证法是一种常用的证明方法,通过假设问题的反面,然后推导出矛盾的结论,从而证明原命题的正确性。
五、几何应用1. 几何测量:几何学在测量方面有着广泛的应用,例如测量一条线段的长度、一个角的大小等。
2. 几何构造:几何学的构造方法可以应用于建筑、设计等领域。
例如通过几何构造来设计一座桥梁或者一栋建筑物。
3. 几何推理:几何学的推理方法可以应用于解决实际问题。
例如通过几何推理来解决交通规划、物流路径等问题。
人教版数学九年级上册平面几何进阶2023教案
人教版数学九年级上册平面几何进阶2023教案一、教学目标1. 理解平面几何的基本概念和性质。
2. 掌握利用平面几何知识解决实际问题的方法。
3. 培养分析和解决几何问题的能力。
二、教学重点1. 平面几何的基本概念和性质。
2. 利用平面几何知识解决实际问题的方法。
三、教学难点1. 如何灵活运用平面几何知识解决实际问题。
四、教学方法采用启发式教学方法,结合示例和实际问题,引导学生自主发现和分析解决方法。
五、教学准备教学课件、教辅资料、学生练习题册。
六、教学过程1. 导入(5分钟)向学生介绍平面几何的重要性和应用,激发学生学习的兴趣。
2. 知识讲解(20分钟)依次介绍平面几何的基本概念和性质,包括点、线、面、平行线、垂直线等。
通过示例和图形展示,使学生理解并记住这些概念和性质。
3. 解题方法讲解(15分钟)结合实际问题,讲解解决平面几何问题的方法。
重点讲解如何运用平行线、相似三角形、勾股定理等概念和方法解决问题。
通过实例演练,培养学生解决问题的能力。
4. 练习演练(25分钟)针对不同难度的平面几何问题,让学生进行练习和演练。
通过个别辅导和组织小组讨论,帮助学生解决问题,并纠正他们的错误。
5. 归纳总结(10分钟)让学生归纳总结本节课所学的平面几何知识和解题方法,重点强调学习方法和注意事项。
八、课堂小结通过本节课的学习,学生对平面几何的概念和性质有了初步理解,掌握了解决平面几何问题的方法。
同时,培养了学生的分析和解决问题的能力。
九、作业布置1. 完成课堂练习册上的习题。
2. 预习下节课内容。
十、教学反思本节课采用了启发式教学方法,通过示例和实际问题引导学生自主发现和分析解决方法。
然而,由于时间有限,学生在练习过程中仍然存在一些困难。
故下节课需要更多的练习和巩固。
学而思初二数学秋季班第13讲.几何综合.提高班.学生版
43初二秋季·第13讲·提高班·学生版全等三角形是初中几何学习中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS 、ASA 、AAS 、SSS 和HL (直角三角形),如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件,引出相应的辅助线然后再证明。
一、常见辅助线的作法有以下几种:1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对称”;2. 若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”;3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对称”,所考知识点常常是角平分线的性质定理或逆定理;思路导航13名校期末试题点拨——几何部分题型一:全等三角形与轴对称44 初二秋季·第13讲·提高班·学生版4. 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;5. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
二、常见模型1.最值问题:“将军饮马”模型;2. 全等三角形经典模型:三垂直模型、手拉手模型、半角模型以及双垂模型等。
三、尺规作图部分地区会考察尺规作图,难点在于构造轴对称图形解决几何问题。
【例1】 ⑴如下左图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=95°,则∠2的度数为( )A .24°B .25°C .30°D .35°⑵长为20,宽为a 的矩形纸片(10<a <20),如上右图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n =3时,a 的值为 . 典题精练21C'B'FE CBA 第二次操作第一次操作45初二秋季·第13讲·提高班·学生版【例2】 ⑴如图所示,在长方形ABCD 称轴l 上找点P ,使得△P AB 、△PBC 均为等腰三角形,则满足条件的点P 有( ).A .1个B .3个C .5个D .6个⑵已知,横线和竖线相交的点叫做格点,P 、A 、B 为格点上的点,A 、B 的位置如图所示,若此三点能够构成等腰三角形,P 点有 种不同的位置?【例3】 ⑴ 如图1,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小;⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小;⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.图4图3图2图1P DCB AOP C BAP E D CB AP E D CBA【例4】 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB AC BC 、、于点N E M 、、. ⑴当直线l 经过点C 时(如图2),证明:BN CD =; ⑵当M 是BC 的中点时,写出CE 和CD 之间的等量关 系,并加以证明; lD CBA46 初二秋季·第13讲·提高班·学生版⑶请直接写出BN CE CD 、、之间的等量关系.一、直角三角形的性质 1. 直角三角形的两个锐角互余;2. 直角三角形斜边上的中线等于斜边的一半;3. 直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab =c h ;4. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,即222c b a =+;5. 在直角三角形中,30°角所对的直角边等于斜边的一半(或含30°的直角三角形三边之比为1:3:2);6. 含45°角的直角三角形三边之比为1:1:2. 思路导航题型二:直角三角形与勾股定理47初二秋季·第13讲·提高班·学生版二、直角三角形的判定1. 有一个角为90°的三角形是直角三角形;2. 两个锐角互余的三角形是直角三角形;3. 勾股定理的逆定理:在以a 、b 、c 为边的三角形中,若222c b a =+,则这个三角形是以c 为斜边的直角三角形;4. 一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.【例5】 在给定的图形内作一条折线AB 1C 1D 1E ,使AB 1⊥AB ,B 1C 1⊥BC ,C 1D 1⊥CD ,D 1E ⊥DE ,且A ,B ,C ,D ,E ,B 1,C 1,D 1都是格点.EDCBA【例6】 如图,AC =AB ,DC =DB ,∠CAB =60°,∠CDB =120°,E 是AC 上一点,F 是AB 延长线上一点,且CE =BF .图1C AEG BFD图2DA BCE思考验证:⑴求证:DE =DF ;典题精练48 初二秋季·第13讲·提高班·学生版⑵在图1中,若G 在AB 上且∠EDG =60°,试猜想CE 、EG 、BG 之间的数量关系并证明; 探究应用:⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,∠ABC =90°,∠CAB =∠CAD =30°,E 在AB 上,DE ⊥AB ,且∠DCE =60°,若AE =3,求BE 的长.【例7 已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 边的延长线上,且∠DEC =45°,点M 、N 分别是DE 、AE 的中点,连接MN 交直线BE 于点F .当点D 在CB 边的延长线上时,如图1所示易证:MF +FN =12BE .⑴当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.⑵当点D 在BC 边的延长线上时,如图3所示,请写出你的结论,并说明理由.49初二秋季·第13讲·提高班·学生版M 图3图2图1NEDEMBFC AF N D CBAEF NMDBC A50 初二秋季·第13讲·提高班·学生版NMDC BA训练1. ⑴如图所示,EFGH 是一个台球桌面,有黑白两球分别置于A B 、两点的位置上,试问怎样撞击黑球A ,经桌面HE EF 、连续反弹后,准确击中白球B ?(写出作法并画图)HGF EAB⑵如图,在锐角△ABC 中,4245AB BAC =∠=,°,BAC ∠的平分线交BC于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是___________.训练2. 如图,在△ABC 中,AC =BC ,∠ACB =90°. 将△ABC 绕点C 逆时针旋转α角,得到△A 1B 1C ,连结BB 1,设B 1C 交AB 于D ,A 1B 1分别交AB 、AC 于E 、F .⑴ 当090︒<α<︒时,如图1,请在不添加任何线段的情况下,找出一对全等三角形,并加以证明(△ABC ≌△A 1B 1C 除外);⑵ 在⑴的条件下,当△BB 1D 是等腰三角形时,求α; ⑶ 当90180︒<α<︒时,如图2,求证:△A 1CF ≌△BCD .图2图1ABCA 1B 1E F DDFEB 1A 1CBA训练3. 已知如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、思维拓展训练(选讲)PEDC B A51初二秋季·第13讲·提高班·学生版E .⑴ 求证:PD=PE ;⑵ 若BP AB =,o 45=∠DBP ,2=AP ,求四边形ADPE 的面积.训练4. ⑴如图,等腰直角三角形ABC 分别沿着某条直线对称得到图形b 、c 、d .若上述对称关系保持不变.平移ABC ∆,使得四个图形能够拼成一个重叠且无缝隙的正方形,此时点C 的坐标和正方形的边长为( )A .11222⎛⎫- ⎪⎝⎭,, B .(11)2-,,C .(11)2-,,D .11222⎛⎫- ⎪⎝⎭,,⑵如图,△ABC 中,AB =BC ,∠B =120°,AB 的垂直平分线交AC 于D . 试猜想AD 与DC 间的数量关系,并证明.DECAB 图 311-1-1OABC d c ba y x52 初二秋季·第13讲·提高班·学生版【练习1】 ⑴如图,正方形纸片ABCD 的边长为1,M ,N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E .若M 、N 分别是AD 、BC 边的中点, 则A N '=_________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等 分点(2n ≥,且n 为整数),则A N '=_________(用含有n 的式子表示)⑵如图,D 为ABC △内一点,CD 平分ACB ∠, BD CD ⊥,A ABD ∠=∠, 若5AC =,3BC =,则BD 的长为( ) A .1 B .1.5 C .2 D .2.5【练习2】 如图,ABC △是等腰三角形,AB AC =,AD 是角平分线,以AC 为边向外作等边三角形ACE ,BE 分别与AD 、AC 交于点F 、点G ,连接CF .⑴ 求证:FBD FCD ∠=∠;⑵ 若1FD =,求线段BF 的长.复习巩固DCB AGFEDCBA第十五种品格:创新创新的力量20世纪40年代,美国有许多制糖公司向南美洲出口方糖,因方糖在海运中会有受潮现象,这给公司带来巨大损失。
初中数学几何综合教案
初中数学几何综合教案【教学内容】本节课主要讲解初中数学几何综合题,综合题主要涉及几何图形的性质、几何图形的变换、几何图形的计算等方面。
通过综合题的讲解,使学生掌握解题思路和方法,提高解决问题的能力。
【教学重点、难点】1. 重点:掌握几何综合题的解题思路和方法。
2. 难点:解决几何综合题中的关键步骤和技巧。
【教学过程】第一讲:几何综合题概述1. 引入:让学生回顾之前学过的几何知识,如线段、三角形、四边形、圆等基本图形的性质和计算。
2. 讲解:讲解几何综合题的定义和特点,举例说明几何综合题的类型和难度。
3. 互动:让学生举例说说自己遇到过的几何综合题,共同讨论解决方法。
第二讲:解题思路与方法1. 引入:讲解解题思路的重要性,让学生明白解题的关键在于找到合适的解题思路。
2. 讲解:介绍几种常见的解题思路和方法,如画图法、列举法、转化法、方程法等。
3. 互动:让学生尝试解决一些简单的几何综合题,引导他们运用所学的解题方法。
第三讲:典型题解析1. 引入:选取一些典型的几何综合题,让学生观察题目的特点和需求。
2. 讲解:分析典型题的解题步骤和关键点,引导学生思考如何解决类似的问题。
3. 互动:让学生分组讨论和解答典型的几何综合题,交流解题心得和经验。
第四讲:实战演练与总结1. 引入:让学生运用所学的解题方法和技巧,解决一些实际的 geometric problems。
2. 讲解:分析解题过程中的常见错误和困惑,引导学生总结经验教训。
3. 互动:让学生分享自己解决的geometric problems,讨论解题过程中的心得和体会。
【教学评价】通过本节课的学习,学生能理解几何综合题的定义和特点,掌握解题思路和方法,提高解决问题的能力。
同时,培养学生的逻辑思维、创新能力和团队协作能力。
【教学反思】在教学过程中,要注意关注学生的学习情况,针对不同学生的需求进行指导和帮助。
同时,通过典型题解析和实战演练,让学生更好地理解和运用所学的解题方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1初二秋季·第13讲·提高班·教师版全等三角形是初中几何学习中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS 、ASA 、AAS 、SSS 和HL (直角三角形),如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件,引出相应的辅助线然后再证明。
一、常见辅助线的作法有以下几种:1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对称”;2. 若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”;3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对称”,所考知识点常常是角平分线的性质定理或逆定理;4. 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;5. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
二、常见模型1.最值问题:“将军饮马”模型;2. 全等三角形经典模型:三垂直模型、手拉手模型、半角模型以及双垂模型等。
三、尺规作图部分地区会考察尺规作图,难点在于构造轴对称图形解决几何问题。
思路导航13名校期末试题点拨——几何部分题型一:全等三角形与轴对称2初二秋季·第13讲·提高班·教师版【例1】 ⑴如下左图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=95°,则∠2的度数为( )典题精练3初二秋季·第13讲·提高班·教师版则20-a =(2a -20)-(20-a ),解得a =15. ∴当n =3时,a 的值为12或15. 故答案为:12或15.【例2】 ⑴如图所示,在长方形ABCD 称轴l 上找点P ,使得△P AB 、△PBC 均为等腰三角形,则满足条件的点P 有( ).A .1个B .3个C .5个D .6个【解析】C⑵已知,横线和竖线相交的点叫做格点,P 、A 、B 为格点上的点,A 、B 的位置如图所示,若此三点能够构成等腰三角形,P 点有 种不同的位置? 【解析】12种,如下图所示:【例3】 ⑴ 如图1,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小;⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小;⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.图4图3图2图1CABP E D CB AP E D CBA【解析】 ⑴作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所lD CBA4初二秋季·第13讲·提高班·教师版B'DA'图4图3图2图1P DCB AO P C B AP E D CB AP E D CBA【例4】 如图1,在ABC △中,2ACBB ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB AC BC 、、于点NE M 、、. ⑴当直线l 经过点C 时(如图2),证明:BN CD =; ⑵当M 是BC 的中点时,写出CE 和CD 之间的等量关 系,并加以证明;⑶请直接写出BN CE CD 、、之间的等量关系.(海淀期末考试)【解析】 ⑴证明:连接ND .∵AO 平分BAC ∠, ∴12∠=∠.∵直线l AO ⊥于H , ∴4590∠=∠=︒. ∴67∠=∠. ∴AN AC =. ∴NH CH =.∴AH 是线段NC 的中垂线.5初二秋季·第13讲·提高班·教师版∴DN DC =. ∴89∠=∠.∴AND ACB ∠=∠.∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠. ∴BN DN =. ∴BN DC =.⑵如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE =. 证明:过点C 作'CN AO ⊥交AB 于'N .由(1)可得'BN CD =,'AN AC =,AN AE =. ∴43,'NN CE ∠=∠=.过点C 作CG AB ∥交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠. ∴CG CE =.∵M 是BC 中点, ∴BM CM =.在BNM △和CGM △中, 1,,,B BM CM NMB GMC ∠=⎧⎪=⎨⎪∠=∠⎩∴BNM CGM △≌△. ∴BN CG =. ∴BN CE =.∴''2CD BN NN BN CE ==+=.⑶BN CE CD 、、之间的等量关系:当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.一、直角三角形的性质 1. 直角三角形的两个锐角互余;2. 直角三角形斜边上的中线等于斜边的一半;3. 直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab =c h ; 思路导航题型二:直角三角形与勾股定理6初二秋季·第13讲·提高班·教师版4. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,即222c b a =+;5. 在直角三角形中,30°角所对的直角边等于斜边的一半(或含30°的直角三角形三边之比为12);6. 含45°角的直角三角形三边之比为1:1二、直角三角形的判定 1. 有一个角为90°的三角形是直角三角形; 2. 两个锐角互余的三角形是直角三角形;3. 勾股定理的逆定理:在以a 、b 、c 为边的三角形中,若222c b a =+,则这个三角形是以c 为斜边的直角三角形;4. 一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.【例5】 在给定的图形内作一条折线AB 1C 1D 1E ,使AB 1⊥AB ,B 1C 1⊥BC ,C 1D 1⊥CD ,D 1E ⊥DE ,且A ,B ,C ,D ,E ,B 1,C 1,D 1都是格点.EDCBA【解析】D 1C 1B 1EDCBA典题精练7初二秋季·第13讲·提高班·教师版CE BF C DBF CD BD =⎧⎪∠=∠⎨⎪=⎩∴△DEC ≌△DFB , ∴DE =DF . ⑵CE +BG =EG ,证明:连接DA , 在△ACD 和△ABD 中AC AB AD AD CD DB =⎧⎪=⎨⎪=⎩∴△ACD ≌△ABD , ∴∠CDA =∠BDA =60°,∵∠EDG =∠EDA +∠ADG =∠ADG +∠GDB =60°,图1C AEG BFD8初二秋季·第13讲·提高班·教师版∴∠CDE =∠ADG ,∠EDA =∠GDB , ∵∠BDF =∠CDE , ∴∠GDB +∠BDF =60°,即∠GDF =60° 在△DGF 和△DGE 中 DE DF EDG GDF DG DG =⎧⎪∠=∠⎨⎪=⎩∴△DGF ≌△DEG , ∴FG =EG , ∵CE =BF ,∴CE +BG =EG .⑶过C 作CM ⊥AD 交AD 的延长线于M , 在△AMC 和△ABC 中 AMC ABC DAC BAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMC ≌△ABC , ∴AM =AB .CM =CB ,由⑴⑵可知:DM +BE =DE , ∵AE =3,∠AED =90°,∠DAB =60°, ∴AD =6,∴DM =AB -6=BE +3-6=BE -3,【例7M 图2DABCE9初二秋季·第13讲·提高班·教师版AC BC ACB BCE DC CE =⎧⎪∠=∠⎨⎪=⎩AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS ), ∴AD =BE ,AC F BMEDN图310 初二秋季·第13讲·提高班·教师版11初二秋季·第13讲·提高班·教师版NMDC BA训练1. ⑴如图所示,EFGH 是一个台球桌面,有黑白两球分别置于A B 、两点的位置上,试问怎样撞击黑球A ,经桌面HE EF 、连续反弹后,准确击中白球B ?(写出作法并画图)HGFE⑵如图,在锐角△ABC中,45AB BAC =∠=°,BAC ∠的平分线交BC于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是___________.【解析】 ⑴ 如图所示:分别作点A B ,关于HE EF ,的对称点''A B ,,连结''A B 与HE EF ,交于M N ,两点.折线AM MN NB --就是白球的运动路径.(可由对称证明角度相等,类似于物理中的镜面反射问题) ⑵ 过B 作BE AC ⊥,与AD 交点即为M ,过M 作MN AB ⊥,垂足即为N ,BM MN BE +=,又∵垂线段最短,∴BE 为最短距离,长为4.训练2. 如图,在△ABC 中,AC =BC ,∠ACB =90°. 将△ABC 绕点C 逆时针旋转α角,得到△A 1B 1C ,连结BB 1,设B 1C 交AB 于D ,A 1B 1分别交AB 、AC 于E 、F .⑴ 当090︒<α<︒时,如图1,请在不添加任何线段的情况下,找出一对全等三角形,并加以证明(△ABC ≌△A 1B 1C 除外);⑵ 在⑴的条件下,当△BB 1D 是等腰三角形时,求α;⑶ 当90180︒<α<︒时,如图2,求证:△A 1CF ≌△BCD . (三帆期中)图2图1ABCA 1B 1E F DDFEB 1A 1CBA【解析】 ⑴ 答案不唯一,例如:1ACF BCD △≌△,1B CF ACD △≌△ ⑵ 由题意得111902CB B CBB ∠=∠=︒-α思维拓展训练(选讲)FGA'12 初二秋季·第13讲·提高班·教师版∴11452DBB ∠=︒-α,又145BDB ∠=︒+α在1BDB △中,只能有11BDB BB D ∠=∠,即190452︒-α=︒+α解得30α=︒⑶ 111CB CA BCD ACF B A =∠=∠∠=∠,,, ∴△A 1CF ≌△BCD .训练3. 已知如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .PEDC B AAB C DEP⑴ 求证:PD=PE ;⑵ 若BP AB =,o 45=∠DBP ,2=AP ,求四边形ADPE 的面积. 【解析】 ⑴ 证明:连接AP ,在ABP △和ACP △中,∵AB =AC ,PB =PC ,AP =AP , ∴ABP △≌ACP △(SSS )∴CAP BAP ∠=∠,AP 是A ∠的平分线; 又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ∴PD =PE (角平分线上点到角的两边距离相等)⑵ 解:∵PD ⊥AB ,o 45=∠DBP , ∴BDP △是等腰直角三角形.设x DP =,则x BP ⋅=2,在直角ADP △中,由勾股定理()[]42122=++x x ,整理得:()42242=+x ,2222+=x .∴四边形ADPE 的面积=2⨯ADP △的面积 =()()22222121=+⋅+=+x x训练4. ⑴如图,等腰直角三角形ABC 分别沿着某条直线对称得到图形b 、c 、d .若上述对称关系保持不变.平移ABC ∆,使得四个图形能够拼成一个重叠且无缝隙的正方形,此时点C的坐标和正方形13初二秋季·第13讲·提高班·教师版的边长为( )(海淀期末)A .11222⎛⎫- ⎪⎝⎭,, B .(11)2-,,C.(11)-, D.1122⎛⎫- ⎪⎝⎭,⑵如图,△ABC 中,AB =BC ,∠B =120°,AB 的垂直平分线交DC 间的数量关系,并证明. 【解析】 ⑴ D ⑵ 连结BD ,证90DBC ∠=︒,可得12AD DC =14 初二秋季·第13讲·提高班·教师版【练习1】 ⑴如图,正方形纸片ABCD 的边长为1,M ,N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E .若M 、N 分别是AD 、BC 边的中点, 则A N '=_________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等 分点(2n ≥,且n 为整数),则A N '=_________(用含有n 的式子表示)(北京中考)⑵如图,D 为ABC △内一点,CD 平分ACB ∠, BD CD ⊥,A ABD ∠=∠, 若5AC =,3BC =,则BD 的长为( ) A .1 B .1.5 C .2 D .2.5【解析】(2n ≥,且n 为整数)⑵ A (提示:延长BD )【练习2】 如图,ABC △是等腰三角形,AB AC =,AD 是角平分线,以AC 为边向外作等边三角形ACE ,BE 分别与AD 、AC 交于点F 、点G ,连接CF .⑴ 求证:FBD FCD ∠=∠;⑵ 若1FD =,求线段BF 的长. (实验期末) 【解析】 ⑴ ∵AB AC =,AD 是角平分线∴AD BC ⊥,D 是BC 中点 ∴BF CF =∴FBC FCB ∠=∠⑵ ∵AB AC =,∴ABC ACB ∠=∠∵FBC FCB ∠=∠,∴ABE ACF ∠=∠ 由题意AB AE AC CE === ∴ABE AEB ACF ∠=∠=∠ ∴60EFC CAE ∠=∠=° ∴60BFD CFD ∠=∠=° ∴22BF FD ==复习巩固DCB AG FEDCB A第十五种品格:创新创新的力量20世纪40年代,美国有许多制糖公司向南美洲出口方糖,因方糖在海运中会有受潮现象,这给公司带来巨大损失。