20170613修订版人大附中数学三模试题1
2017年人大附中初三中考数学三模试题
C. D.
9.如图,直线m⊥n.在平面直角坐标系 中,x轴∥n,y轴∥m.如果以O1为原点,点A的坐标为(1,-1).将点O1平移 个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是
A.(-3,-1)B.(-1,-3)
C.(-2,-1)D.( +1, -1)
10.如图是北京2017年3月1日-7日的 浓度(单位: )和空气质量指数
二、填空题(本题共18分,每小题3分)
11.分解因式: _________
12.函数 中, 的取值范围是:______________
13.如图,在平面直角坐标系xOy中,A(3,4)为⊙O上一点,B为⊙O上一点,请写出一个符合要求的点B的坐标.
14.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,将小正方形的面积用不同方法表示可以得到的等式为__________________.
人大附中中考数学模拟练习2017.6
命题人:薛坤王鼎
学校班级姓名准考证号
考生须知
1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
16.阅读下面材料:
如图,已知△ABC中AB AC,O为AB中点,能否仅使用圆规作出BC的中点?
小明认为可以,作法如下:
2024年北京市人大附中朝阳学校中考数学三模试卷(含答案)
2024年北京市人大附中朝阳学校中考数学三模试卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下面几何体中,是三棱锥的是( )A. B. C. D.2.2024年5月3日,我国嫦娥六号顺利发射飞向太空,随后历时五天抵达第四阶段,进行环月飞行任务.6月2号早上嫦娥六号在月球背面的南极−艾特肯盆地成功落月,月球距离地球约384000000千米,将384000000用科学记数法表示为( )A. 38.4×107B. 3.84×108C. 3.84×109D. 0.384×1093.如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为 ( )A. 30°B. 40°C. 50°D. 60°4.已知x−1>0,则下列结论正确的是( )A. −x<−1<1<xB. x<−1<−x<1C. −x<−1<x<1D. −1<−x<1<x5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次摸球摸到一个红球一个绿球的概率是( )A. 34B. 13C. 12D. 146.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A. −4B. −14C. 14D. 47.已知432=1849,442=1936,452=2025,462=2116.若n为整数,且n<2024<n+1,则n的值为( )A. 43B. 44C. 45D. 468.下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共8小题,每小题2分,共16分。
吉林省长春市2017届高三数学三模试卷(文科) Word版含解析
2017年吉林省长春市高考数学三模试卷(文科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.设a,b均为实数,则“a>|b|”是“a3>b3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.直线x﹣3y+3=0与圆(x﹣1)2+(y﹣3)2=10相交所得弦长为()A.B.C.4D.35.下列命题中错误的是()A.如果平面α外的直线a不平行于平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交6.在平面内的动点(x,y)满足不等式,则z=2x+y的最大值是()A.﹣4 B.4 C.﹣2 D.27.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.8.某高中体育小组共有男生24人,其50m跑成绩记作a i(i=1,2,…,24),若成绩小于6.8s为达标,则如图所示的程序框图的功能是()A.求24名男生的达标率B.求24名男生的不达标率C.求24名男生的达标人数D.求24名男生的不达标人数9.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=()A.9 B.15 C.18 D.3010.函数y=的大致图象是()A.B.C.D.11.若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]12.对,23x≤log a x+1恒成立,则实数a的取值范围是()A.B.C.D.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.某班级有50名同学,一次数学测试平均成绩是92,其中学号为前30名的同学平均成绩为90,则后20名同学的平均成绩为.14.若函数f(x)=e x•sinx,则f'(0)=.15.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是.16.F为双曲线(a>b>0)的左焦点,过点F且斜率为1的直线与两条渐近线分别交于A,B两点,若=,则双曲线的离心率为.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知点,Q(cosx,sinx),O为坐标原点,函数.(1)求函数f(x)的解析式及最小正周期;(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为,求△ABC的周长.18.某手机厂商推出一款6吋大屏手机,现对500名该手机用户进行调查,对手机进行评分,评分的频数分布表如下:计算具体值,给出结论即可);(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求两名用户中评分都小于90分的概率.19.如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥底面ABCD,AD=AP=2,AB=2,E为棱PD的中点.(Ⅰ)证明:PD⊥平面ABE;(Ⅱ)求三棱锥C﹣PBD外接球的体积.20.已知函数f(x)=ax﹣lnx.(1)过原点O作曲线y=f(x)的切线,求切点的横坐标;(2)对∀x∈[1,+∞),不等式f(x)≥a(2x﹣x2),求实数a的取值范围.21.已知椭圆C:,F1,F2分别是其左、右焦点,以F1F2为直径的圆与椭圆C有且仅有两个交点.(1)求椭圆C的方程;(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点P,点P横坐标的取值范围是,求线段AB长的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲](共1小题,满分10分)22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.[选修4-5:不等式选讲](共1小题,满分0分)23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.2017年吉林省长春市高考数学三模试卷(文科)参考答案与试题解析一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2}【考点】交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.3.设a,b均为实数,则“a>|b|”是“a3>b3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由a>|b|”能推出“a3>b3”,是充分条件,反之,不成立,比如a=1,b=﹣2,不是必要条件,故选:A.4.直线x﹣3y+3=0与圆(x﹣1)2+(y﹣3)2=10相交所得弦长为()A.B.C.4D.3【考点】直线与圆相交的性质.【分析】根据已知中圆的标准方程和直线的一般方程,代入圆的弦长公式,可得答案.【解答】解:圆(x﹣1)2+(y﹣3)2=10的圆心坐标为(1,3),半径r=,圆心到直线x﹣3y+3=0的距离d==,故弦AB=2=,故选A.5.下列命题中错误的是()A.如果平面α外的直线a不平行于平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交【考点】命题的真假判断与应用.【分析】由空间中直线与平面的位置关系逐一核对四个选项得答案.【解答】解:如果平面α外的直线a不平行于平面α,则a与α相交,则α内不存在与a平行的直线,故A正确;如图:α⊥γ,α∩γ=a,β⊥γ,β∩γ=b,α∩β=l,在γ内取一点P,过P作PA⊥a于A,作PB⊥b于B,由面面垂直的性质可得PA⊥l,PB⊥l,则l⊥γ,故B正确;如果平面α⊥平面β,那么平面α内的直线与平面β有三种位置关系:平行、相交、异面,故C错误;一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交,故D正确.故选:C.6.在平面内的动点(x,y)满足不等式,则z=2x+y的最大值是()A.﹣4 B.4 C.﹣2 D.2【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【解答】解:不等式组所表示的平面区域位于直线x+y﹣3=0的下方区域和直线x﹣y+1=0的上方区域,根据目标函数的几何意义,可知目标函数经过A时,z取得最大值.由可得A(1,2),所以目标函数z的最大值为4.故选B.7.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体是正四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是正四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以四棱锥的体积.故选D.8.某高中体育小组共有男生24人,其50m跑成绩记作a i(i=1,2,…,24),若成绩小于6.8s为达标,则如图所示的程序框图的功能是()A.求24名男生的达标率B.求24名男生的不达标率C.求24名男生的达标人数D.求24名男生的不达标人数【考点】程序框图.【分析】由题意,从成绩中搜索出大于6.8s的成绩,计算24名中不达标率.【解答】解:由题意可知,k记录的是时间超过6.8s的人数,而i记录是的参与测试的人数,因此表示不达标率;故选B.9.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=()A.9 B.15 C.18 D.30【考点】等比数列的前n项和.【分析】设等比数列{a n}的公比为q>0,由2S3=8a1+3a2,可得2(a1+a2+a3)=8a1+3a2,化为:2q2﹣q﹣6=0,解得q,进而得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,∴2(a1+a2+a3)=8a1+3a2,化为:2a3=6a1+a2,可得=6a1+a1q,化为:2q2﹣q ﹣6=0,解得q=2.又a4=16,可得a1×23=16,解得a1=2.则S4==30.故选:D.10.函数y=的大致图象是()A.B.C.D.【考点】函数的图象.【分析】利用函数的定义域排除选项,值域排除选项即可得到结果.【解答】解:由函数定义域排除A,函数的值域.可知x>0时,y>0,当x<0时,y<0,排除C,D.故选:B.11.若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]【考点】正弦函数的图象.【分析】把方程2sin(2x+)=m化为sin(2x+)=,画出函数f(x)=sin(2x+)在x∈[0,]上的图象,结合图象求出方程有两个不等实根时m的取值范围.【解答】解:方程2sin(2x+)=m可化为sin(2x+)=,当x∈[0,]时,2x+∈[,],画出函数y=f(x)=sin(2x+)在x∈[0,]上的图象如图所示;根据方程2sin(2x+)=m在[0,]上有两个不等实根,得≤<11≤m<2∴m的取值范围是[1,2).故选:C.12.对,23x≤log a x+1恒成立,则实数a的取值范围是()A.B.C.D.【考点】函数恒成立问题;全称命题.【分析】先构造函数f(x)=x2+x,g(x)=﹣log a x.h(x)=f(x)+g(x),将问题等价转化为函数h(x)在区间(0,)上恒有h(x)≤0,又函数为增函数,故可求答案.【解答】解:构造函数f(x)=23x,g(x)=﹣log a x﹣1.h(x)=f(x)+g(x).(0<x<)易知,在区间(0,)上,函数f(x),g(x)均是递增函数,∴函数h(x)=f(x)+g(x)在区间(0,)上是递增函数.由题设可知,函数h(x)在区间(0,)上恒有h(x)≤0.∴必有h()≤0.即有2﹣log a()﹣1≤0.整理就是log a a=1≤log a(),∴实数a的取值范围是≤a<1.故选C.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.某班级有50名同学,一次数学测试平均成绩是92,其中学号为前30名的同学平均成绩为90,则后20名同学的平均成绩为95.【考点】众数、中位数、平均数.【分析】设学号为31号到50号同学的平均成绩为x,得到关于x的方程,解出即可.【解答】解:设学号为31号到50号同学的平均成绩为x,则92×50=90×30+20x,解得:x=95,故答案为:95.14.若函数f(x)=e x•sinx,则f'(0)=1.【考点】导数的运算.【分析】先求f(x)的导数,再求导数值.【解答】解:f(x)=e x•sinx,f′(x)=(e x)′sinx+e x.(sinx)′=e x•sinx+e x•cosx,∴f'(0)=0+1=1故答案为:115.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是15斤.【考点】等差数列的通项公式.【分析】由题意可知等差数列的首项和第5项,由等差数列的前n项和得答案.【解答】解:由题意可知等差数列中a1=4,a5=2,则S5=,∴金杖重15斤.故答案为:15斤.16.F为双曲线(a>b>0)的左焦点,过点F且斜率为1的直线与两条渐近线分别交于A,B两点,若=,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】设出过焦点的直线方程,与双曲线的渐近线方程联立把A,B表示出来,再由条件可得A为FB的中点,运用中点坐标公式,可得a,b,c的关系,然后求双曲线的离心率.【解答】解:设F(﹣c,0),则过F作斜率为1的直线为:y=x+c,而渐近线的方程是:y=±x,由得:A(﹣,),由得,B(﹣,﹣),若=,可得A为FB的中点,可得﹣c﹣=﹣2•,化为b=3a,c==a,e==.故答案为:.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知点,Q(cosx,sinx),O为坐标原点,函数.(1)求函数f(x)的解析式及最小正周期;(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为,求△ABC的周长.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;正弦定理.【分析】(1)利用向量数量积运算,即可求函数f(x)的解析式及最小正周期;(2)利用,△ABC的面积为,求出bc,利用余弦定理,求出,即可求△ABC的周长.【解答】解:(1),∴==4﹣2sin(x+),f(x)的最小正周期为2π;(2)因为f(A)=4,所,因为0<A<π,所以,因为,所以bc=3,根据余弦定理,所以,即三角形的周长为.18.某手机厂商推出一款6吋大屏手机,现对500名该手机用户进行调查,对手机进行评分,评分的频数分布表如下:计算具体值,给出结论即可);(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求两名用户中评分都小于90分的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)作出女性用户和男性用户的频率分布表,由图可得女性用户更稳定.(2)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,记为A,B,C,D,评分不小于90分的人数为2,记为a,b,设事件M为“两名用户评分都小于90分”从6人人任取2人,利用列举法能求出两名用户中评分都小于90分的概率.【解答】(本小题满分12分)解:(1)女性用户和男性用户的频率分布表分别如下左、右图:由图可得女性用户更稳定.(2)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,记为A,B,C,D,评分不小于90分的人数为2,记为a,b,设事件M为“两名用户评分都小于90分”从6人人任取2人,基本事件空间为Ω={(AB),(AC),(AD),(Aa),(Ab),(BC),(BD),(Ba),(Bb),(CD),(Ca),(Cb),(Da),(Db),(ab)},共有15个元素.M={(AB),(AC),(AD),(BC),(BD),(CD)},共有6个元素.P(M)=.19.如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥底面ABCD,AD=AP=2,AB=2,E为棱PD的中点.(Ⅰ)证明:PD⊥平面ABE;(Ⅱ)求三棱锥C﹣PBD外接球的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(Ⅰ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明PD⊥平面ABE.(Ⅱ)三棱锥C﹣PBD外接球即以AB,AD,AP为棱的长方体的外接球,由此能求出三棱锥C﹣PBD外接球的体积.【解答】证明:(Ⅰ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,P(0,0,2),D(0,2,0),A(0,0,0),B(2,0,0),E(0,1,1),=(0,2,﹣2),=(2,0,0),=(0,1,1),=0,=0,∴PD⊥AB,PD⊥AE,∵AB∩AE=A,∴PD⊥平面ABE.解:(Ⅱ)∵AD,AP,AB两垂直,底面ABCD为矩形,∴三棱锥C﹣PBD外接球即以AB,AD,AP为棱的长方体的外接球,∴三棱锥C﹣PBD外接球的半径R==3,∴三棱锥C﹣PBD外接球的体积V===36π.20.已知函数f(x)=ax﹣lnx.(1)过原点O作曲线y=f(x)的切线,求切点的横坐标;(2)对∀x∈[1,+∞),不等式f(x)≥a(2x﹣x2),求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【分析】(1)过原点O作曲线y=f(x)的切线,求出切线方程,即可求切点的横坐标;(2)对∀x∈[1,+∞),不等式f(x)≥a(2x﹣x2),化为ax2﹣ax﹣lnx≥0对∀x∈[1,+∞)恒成立,分类讨论,即可求实数a的取值范围.【解答】解:(1)设切点为(x0,ax0﹣lnx0),∴,直线的切线方程为y﹣(ax0﹣lnx0)=(a﹣)(x﹣x0),又切线过原点﹣ax0+lnx0=﹣ax0+1,所以lnx0=1,解得x0=e,所以切点的横坐标为e.(2)因为不等式ax﹣lnx≥a(2x﹣x2)对∀x∈[1,+∞)恒成立,所以ax2﹣ax﹣lnx≥0对∀x∈[1,+∞)恒成立.设g(x)=ax2﹣ax﹣lnx,g′(x)=2ax﹣a﹣.①当a≤0时,∵,∴g(x)在[1,+∞)上单调递减,即g(x)≤g(1)=0,∴a≤0不符合题意.②当a>0时,.设,在[1,+∞)上单调递增,即a≥1.(i)当a≥1时,由h(x)≥0,得g'(x)≥0,∴g(x)在[1,+∞)上单调递增,即g(x)≥g(1)=0,∴a≥1符合题意;(ii)当0<a<1时,∵a﹣1<0,∴∃x0∈[1,+∞)使得h(x0)=0,则g(x)在[1,x0)上单调递减,在(x0,+∞)上单调递增,∴g(x0)<g(1)=0,则0<a<1不合题意.综上所述,a≥1.21.已知椭圆C:,F1,F2分别是其左、右焦点,以F1F2为直径的圆与椭圆C有且仅有两个交点.(1)求椭圆C的方程;(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点P,点P横坐标的取值范围是,求线段AB长的取值范围.【考点】椭圆的简单性质;直线与椭圆的位置关系.【分析】(1)根据题意,分析可得b=c=1,计算可得a的值,代入椭圆的方程即可得答案;(2)根据题意,设直线AB的方程为y=k(x+1),与联立可得(1+2k2)x2+4k2x+2k2﹣2=0,设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),由根与系数的关系分析可得直线AB的垂直平分线方程,由弦长公式可以表示|AB|,计算可得答案.【解答】解:(1)根据题意,因为以F1F2为直径的圆与椭圆C有且仅有两个交点,所以b=c=1,即a==,即椭圆C的方程为,(2)根据题意,过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,即直线AB的斜率存在,设直线AB的方程为y=k(x+1),与联立,得(1+2k2)x2+4k2x+2k2﹣2=0,设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),,,,即,设直线AB的垂直平分线方程为,令y=0,得,因为,所以=;即线段AB长的范围是(,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲](共1小题,满分10分)22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.[选修4-5:不等式选讲](共1小题,满分0分)23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)法一:根据绝对值的性质求出f(x)的最小值,得到x=时取等号,证明结论即可;法二:根据f(x)的分段函数的形式,求出f(x)的最小值,证明即可;(2)法一,二:问题转化为≥t恒成立,根据基本不等式的性质求出的最小值,从而求出t的范围即可;法三:根据二次函数的性质判断即可.【解答】解:(1)法一:f(x)=|x+a|+|2x﹣b|=|x+a|+|x﹣|+|x﹣|,∵|x+a|+|x﹣|≥|(x+a)﹣(x﹣)|=a+且|x﹣|≥0,∴f(x)≥a+,当x=时取等号,即f(x)的最小值为a+,∴a+=1,2a+b=2;法二:∵﹣a<,∴f(x)=|x+a|+|2x﹣b|=,显然f(x)在(﹣∞,]上单调递减,f(x)在[,+∞)上单调递增,∴f (x )的最小值为f ()=a +,∴a +=1,2a +b=2.(2)方法一:∵a +2b ≥tab 恒成立,∴≥t 恒成立,=+=(+)(2a +b )•=(1+4++),当a=b=时,取得最小值,∴≥t ,即实数t 的最大值为; 方法二:∵a +2b ≥tab 恒成立,∴≥t 恒成立,t ≤=+恒成立,+=+≥=,∴≥t ,即实数t 的最大值为; 方法三:∵a +2b ≥tab 恒成立, ∴a +2(2﹣a )≥ta (2﹣a )恒成立, ∴2ta 2﹣(3+2t )a +4≥0恒成立, ∴(3+2t )2﹣326≤0,∴≤t ≤,实数t 的最大值为.2017年4月18日。
【人大附中】2017届高三三模数学(理)试题
:..第 2 页 共 4 页..:
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.
15. (本题满分 13 分) 已知函数 f ( x ) 4 cos x sin( x
(Ⅰ)求函数 f ( x ) 的单调递增区间;
) 4 3 cos 2 x 3 . 3
(Ⅱ)在 ABC 中,角 A,B,C 所对的边分别为 a,b,c,若 f ( A) 3 , a 7 , b 2 ,求 c.
16. (本题满分 13 分) 某同学在做研究性学习课题时,欲调查全校高中生拥有微信群的数量.已知高一、高二、高三的学生 数分别为 400,300,300.用分层抽样方法,随机从全校高中生中抽取 100 名学生进行调查.调查结果如 下表: 微信群数量(单位:个) 0-5 6-10 11-15 大于 15 (Ⅰ)求 a , b , c 的值; (Ⅱ)若从这 100 名学生中随机抽取 2 人,求这 2 人中恰有 1 人微信群数量超过 10 的概率; (Ⅲ)以样本数据估计总体数据,以频率估计概率,若从全校高中学生中随机抽取 3 人,用 X 表示抽 到的微信群数量在“11-15”之间的人数,求 X 的分布列和方差 DX . 高一 20 10 高二 0 10 15 高三 0
)
6.已知正数 a,b 满足 a b ab ,则 4a+b 的取值范围是(
7.已知非负实数 x , y 满足 1≤x+y≤2,则 A. 1 C. 5 B. 3 D. 7
x 2y 3 的取值不可能 是( ... x 1
)
高考数学满分得主&清华北大自主招生教练 13611189981 王老师助您高效学习、如愿升学!
c
15 10
a
人大附中届高三数学摸底考试数学试卷及答案
人大附中届摸底考试数学试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 第I 卷1至2页.第II 卷3至9页.共150分. 考试时间120分钟.第I 卷(选择题 共40分)参考公式: 如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么事件A 在n 次重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k .一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合,},3|||{},02|{2R B A a x x B x x x A =⋃<-=>--=若集合,则实数a 的取值范围是(A )[1,2] (B )(-1,2) (C )[-1,2] (D )(-2,1) 2. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①m l ⊥⇒βα//;②m l //⇒⊥βα;③βα⊥⇒m l //;④βα//⇒⊥m l其中正确的两个命题的序号是 (A )①与② (B )③与④ (C )②与④ (D )①与③3. 下列函数的图象中,经过平移或翻折后不能与函数x y 2log =的图象重合的函数是(A )x y 2= (B )x y 21log =(C )xy 421⋅=(D )21log 1y x =+4. 如右图所示,在正方体ABCD —A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线A 1B 1与直线BC 的距离相等,则动点P 所在曲线的形状为5. 函数sin y x x =+,[],x ππ∈-的大致图象是( )(A ) (B ) (C ) (D ) 6. 设,0,0>>b a 则以下不等式中不恒成立....的是 (A )4)11)((≥++ba b a (B )2332ab b a ≥+(C )b a b a 22222+≥++ (D )b a b a -≥-||7. 设a 、b 是方程0cos cot 2=-+θθx x 的两个不相等的实数根,那么过点A(a ,a 2)和B (b ,b 2)的直线与圆122=+y x 的位置关系是 (A )相交 (B )相切 (C )相离 (D )随θ的值变化而变化8. 函数()()()sin 0f x M x ωϕω=+>,在区间[],a b 上是增函数,且()(),f a M f b M =-=,则函数()()cos g x M x ωϕ=+在区间[],a b 上 (A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值-MxyOxyOxyOxyO人大附中高三数学月考试卷班级____________姓名____________学号_____________第Ⅱ卷(非选择题 共110分)二、 填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 若实数x 、y 满足y x z y x y x y x 2,009382+=⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+则的最大值为 . 10. 等差数列{a n }的前n 项和为S n ,且a 1>0,若存在自然数3≥m ,使得a m =S m ,当n >m 时,S n 与a n 的大小关系为:n S _______n a .(填“>”;“<”或“=”)11. 年10月15日,我国自行研制的首个载人宇宙飞船“神州五号”在酒泉卫星发射中心胜利升空,实现了中华民族千年的飞天梦,飞船进入的是椭圆轨道,已知该椭圆轨道与地球表面的最近距离约为200公里,最远距离约350公里(地球半径约为6370公里),则轨道椭圆的标准方程为(精确到公里) .(注:地球球心位于椭圆轨道的一个焦点,写出一个方程即可) 12. 某民航站共有1到4四个入口,每个入口处每次只能进一个人,一小组4个人进站的方案数为______________.13. 设,,a b c 是任意非零的平面向量,且互不共线,给出下面的五个命题:(1)=a b a b ; (2)()()b c a c a b -不与向量c 垂直.;(3)a b a b -<-; (4)若0a b =,则0a =,或者0b =; (5)()()a b c b c a =; (6)()()22323294a b a b a b +-=-其中真命题的序号为_____________________________.14. 某纺织厂的一个车间有n (n>7,n ∈N )台织布机,编号分别为1,2,3,……,n ,该车间有技术工人n 名,编号分别为1,2,3,……,n .现定义记号ij a 如下:如果第i 名工人操作了第j 号织布机,此时规定ij a =1,否则ij a =0.若第7号织布机有且仅有一人操作,则=+++++747372717n a a a a a ;若2334333231=+++++n a a a a a ,说明: ______ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在ΔABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且31cos =A .(1)求A CB 2cos 2sin 2++的值;(2)若3=a ,求bc 的最大值.16.(本小题满分14分)如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(1)试确定点F的位置,使得D1E⊥平面AB1F;(2)当D1E⊥平面AB1F时,求二面角C1—E F—A的大小(结果用反三角函数值表示).17.(本小题满分14分)某校有教职员工150人,为了丰富教工的课余生活,每天下午4:00~5:00同时开放健身房和娱乐室,要求所有教工每天必须参加一个活动.据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?18.(本小题满分14分)某人居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D 算作两个路段:路段AC发生堵车事件的概率为1 5,路段CD发生堵车事件的概率为18.(1)请你为其选择一条由A到B的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量ξ,求ξ的数学期望.ξE北西19.(本小题满分12分)已知函数223)(x ax x f -=的最大值不大于61,又当.81)(,]21,41[≥∈x f x 时(1)求a 的值; (2)设.11.),(,21011+<∈=<<++n a N n a f a a n n n 证明20.(本小题满分13分)已知抛物线x y 42 的焦点为F ,过F 作两条互相垂直的弦AB 、CD ,设AB 、CD 的中点分别为N M ,(1)求证:直线MN 必过定点,并求出定点坐标.(2)分别以AB 和CD 为直径作圆,求两圆相交弦中点H 的轨迹方程.人大附中届摸底考试数学试卷答案一、选择题:本大题共8小题,每小题5分,共40分。
最新人大附中初三数学模拟试卷三模资料
综合练习一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.的平方根是()AB.3±C.D.-32. 长城总长约为6700000米,用科学记数法表示是( )A.6.7×105米B.6.7×106米C.6.7×107米D.3.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32那么∠2的度数是()A.32oB.58oC.68oD.60o4.下列计算正确的是()A=B.632x x x÷=C.33-=±D.422aaa=⋅5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是()A.121B.61C.41D.316.把方程2630x x-+=化成()2x n m+=的形式,正确的结果为()A.()236x+=B.()236x-=C.()2312x+=D.()2633x+=7.某校春季运动会上,小刚和其他16名同学参加了百米预赛,成绩各不相同,小刚已经知道了自己的成绩,如果只取前8名参加决赛,他想知道自己能否进入决赛,还需要知道所有参加预赛同学成绩的A. 平均数B. 众数C. 中位数D. 方差8.已知:如图,正方形ABCD的边长为2,E、F分别为AB、AD的中点,G为线段CE上的一个动点,设xCECG=,ySGDF=∆,则y与x的函数关系图象大致是二、填空题(本题共16分,每小题4分)9.在函数2yx=-中,自变量x的取值范围是.10.分解因式:32363a ab ab-+=.11.如图,AB为⊙O的弦,半径OC⊥AB于点D,AB=32,A B C D∠B =30°,则△AOC 的面积为 .12..如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .三、解答题(本题共30分,每小题5分)13.计算:计算:()()021π201060---+-°+-2.14.解分式方程:22125=---xx15.已知22690x xy y -+=,求代数式 2235(2)4x yx y x y+⋅+-的值.16.如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.17.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x 的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长;(2)点B 的坐标为________________.18.如图,在四边形ABCD 中,AC 平分∠BAD ,CE AB ⊥于E .设CD =CBAD =9,AB =15. 求B ∠的余弦值及AC 的长. ABCDE111210987654321第12题图四、解答题(本题共20分,每小题5分)19.解应用题:某商场用2500(1)(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?20.如图1,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)连接AE,AE的延长线与BC的延长线交于点G(如图2所示),若AD=2,求线段BC和EG的长.21.初中生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该区近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?22.问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点D 作DF ∥AC 交BC 于点F . 请按图示数据填空:四边形DFCE 的面积S = , △DBF 的面积1S = , △ADE 的面积2S = .探究发现(2)在(1)中,若BF a =,FC b =,D G与BC 间的距离为h .直接写出2S = (用含S 、1S 的代数式表示). 拓展迁移(3)如图2,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为4、8、1,试利用..(2.)中的结论....求平行四边形DEFG 的面积,直接写出结果.23.已知关于x 的方程2(32)30mx m x m +-+-=,其中0m >.(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为12,x x ,其中12x x >. 若2113x y x -=,求y 关于m 的函数关系式; (3)在(2)的条件下,请根据函数图象,直接写出使不等式y m -≤成立的m 的取值范围.24. 在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F 。
2017届高三下学期第三次摸底考试数学(理科)试卷(附答案与解析)
可取平面 BDA 的一个法向量为 0,1,0,
所以 cos u,
uu
41 5 82
82 10 ,
所以二面角 B AD O 的正弦值为 3 2 . 10
19.解:(1)易知对于每次划拳比赛基本事件共有 3 3 9个,其中小华赢(或输)包含三个基本事件上,他
们平局也为三个基本事件,不妨设事件“第i i N * 次划拳小华赢”为 A ;事件“第i 次划拳小华平”为 B ;
B. 1,+
2.
zC
,若
z
z
1
2i ,则
z 1
i
等于(
A.
7 4
1i 4
B.
7 4
14i1
11
C.
1, 2
23
)
1 C. 4 4i4
D.
23,1
D. i 4
3.数列a 为正项等比数列,若 a 3,且 a 2a 3a n N ,n 2,则此数列的前 5 项和 S 等于
n
3
n1
n
所以 cosBAC cosBAC B
sin BsinBAC cosBcosBAC
25 2 5
2 25 2 5
10 . 10
18.解:(1)依题易知,圆锥的高为h 5 2 2 52 5 ,又圆柱的高为 AB 6.4 , AO AD ,
所以 OD2 OA2 AD2 ,
因为 AB BD ,所以 AD2 AB2 BD2 ,
B. 2 2
C. 6
D.2
5.在 ABC 中,“ sin A sin B cosB cosA”是“ A B ”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
高三数学第三次模拟考试试题理(1)word版本
2017年高三年级第三次模拟考试数学(理科)本试卷分试题卷和答题卡两部分。
试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页;答题卡共6页。
满分为150分,考试时间为120分钟。
考生作答时,请按要求把答案涂、写在答题卡规定的范围内,超出答题框或答在试题卷上的答案无效。
考试结束只收答题卡。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={ x|<1},B={ x|-4x-12>0},则(C R A)∩B=A.[-3,-2) B.(-∞,-3]C.[-3,-2)∪(6,+∞) D.(-3,-2)∪(6,+∞)2.已知复数z满足i·z=,则复数z在复平面内对应的点在A.第四象限 B.第三象限 C.第二象限 D.第一象限3.已知随机变量X+Y=10,若X~B(10,0.6),则E(Y),D(Y)分别是A. 6和2.4 B.4和5.6 C.4和2.4 D.6和5.64.已知椭圆C:(a>b>0)的离心率为,双曲线的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为A. B.C. D.5.在如图的程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为A.B.C.D.6.若sin(-α)=,则cos(+2α)=A. B.-C. D.-7.中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x值为A. 1.2 B.2.4 C.1.8 D.1.68.已知实数x,y满足且ax-y+1-a=0,则实数a的取值范围是A.[-,1) B.[-1,] C.(-1,] D.[-,]9.已知函数f(x)=Asin(ωx+)+B(A>0,ω>0,||<)的部分图象如图所示,将函数f(x)的图象向左平移m(m>0)个单位后,得到的图象关于点(,-1)对称,则m的最小值是A.B.C.D.10.已知函数y=f(x+1)的图象关于直线x=-1对称,且当x∈(0,+∞)时,f(x)=||,若a=f(),b=f(-4),c=f(2),则a,b,c之间的大小关系是A.c<b<a B.c<a<b C.b<a<c D.a<c<b11.已知向量=(3,1),=(-1,3),=m-n(m>0,n>0),若m+n ∈[1,2],则||的取值范围是A.[,2)B.[,2] C.(,) D.(,2]12.已知函数f(x)=lnx+,则下列结论正确的是A.若x1,x2(x1<x2)是f(x)的极值点,则f(x)在区间(x1,x2)内是增函数B.若x1,x2(x1<x2)是f(x)的极值点,则f(x)在区间(x1,x2)内是减函数C.>0,且x≠1,f(x)≥2D.>0,f(x)在(,+∞)上是增函数第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
辽宁省沈阳市2017届高三第三次模拟考试-数学(理).doc
辽宁省沈阳市 2017 届高三第三次模拟考试 - 数学 ( 理).doc2017 年沈阳市高中三年级教课质量监测(三)数学(理科 )第Ⅰ卷 (共 60 分)选择题:(本大题共12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)若会合A x | x 0,且 A B B ,则会合B可能是()A. D.1,2B.x | x 1C.1,0,1 R设 i 为虚数单位,则知足z i|12i |的复数z在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限x2y21 ,则其焦距为(已知双曲线 94)A.5 B. 25 C.13 D. 2 13已知向量 a 与 b 不共线, AB a mb ,AC na b(m, n R) ,则 AB 与AC共线的充要条件是()A. D.m n0B. m n 0C. mn 1 0 mn 10若sin3sin() 0,则 cos2的值为开2()输入 aS0 334i 1A. 5B. 5C. 54S S i D. 5i i1按右图所示的程序框图,若输入 a 81 ,S a ? 否则输出的i =()输是A.14B.17C.19结i D.21《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图):面 ABCD 为矩形,棱EF AB.若此几何体中,AB4, EF2 ,ADE和BCF都是边长为2的等边三角形,则此几何体的表面积为()A.83B.883C.62 23D.862 23在如下图的矩形中随机扔掷30000 个点,则落在曲线 C 下方(曲线 C 为正态散布N(1,1)的正态曲线)的点的个数的预计值为()A.4985B. 8185C. 9970D.24555附:正态变量在区间( , ),( 2,2),(3, 3 )内取值的概率分别是 0.683,0.954,0.997 .已知直线3x y30 与抛物线 y24x交于 A,B 两点( A 在 x 轴上方),与 x 轴交于 F 点,OF OA OB ,则()1111 A.2 B. 2 C. 3 D.3已知某三棱锥的三视图如下图,图中的 3 个直角三角形的直角边长度已经标出,则在该三棱锥中,最短的棱和最长的棱所在直线的成角余弦值为()1512A. 3B. 5C. 2D. 3数列{ a n }的前n项和为S n ,a11,a n a n 1 3 2n 1,则 S2017=()A.22018 1B. 220181C. 22017 1D. 220171已知函数 f ( x) ln(1 x) ln(1x) ,给出以下四个命题:①x1,1 ,有 f ( x) f (x) ;x 1, x 21,1f ( x 1 ) f ( x 2 )x 1 x 2x 1 x 2②且,有;③x 1, x20,1,有f ( x 12x2 )f ( x 1 ) 2f ( x 2 );④ x1,1 , | f (x) | 2 | x |.此中全部真命题的序号是()A. ①②B .③④C .①②③D .①②③④第Ⅱ卷 (共 90 分)本卷包含必考题和选考题两部分,第13 题~第21 题为必考题,每个试题考生都一定做答.第22 题~第 23 题为选考题,考生依据要求做答.填空题: (本大题共 4 小题,每题 5 分,共 20分.把答案填在答题纸上 )log 2 x, xf ( x)1) x, x 0f [ f ( 1)]( ,则已知函数3 4 =___________.(12x)3 (1x)4睁开式中 x 2 的系数为 ___________.某班共 46 人,从 A ,B ,C ,D ,E 五位候选人中选班长,全班每人只投一票, 且每票只选一人。
北京人大附中2017届高三上学期开学数学试卷(理科)Word版含解析
2016-2017学年北京人大附中高三(上)开学数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或33.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣B.C.﹣D.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣15.函数y=log2的大致图象是()A. B.C.D.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD的长为()A.B.C.D.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)二、填空题9.抛物线x2=ay的准线方程是y=2,则a=.10.极坐标系中,直线ρsin(﹣θ)+1=0与极轴所在直线的交点的极坐标为(只需写出一个即可)11.点P是直线l:x﹣y+4=0上一动点,PA与PB是圆C:(x﹣1)2+(y﹣1)2=4的两条切线,则四边形PACB的最小面积为.12.已知双曲线C的渐进线方程为y=±x,则双曲线C的离心率为.13.集合U={1,2,3}的所有子集共有个,从中任意选出2个不同的子集A和B,若A?B且B?A,则不同的选法共有种.14.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为;(2)若a1=2m(m∈N*),则d的所有可能取值的和为.三、解答题(共6小题,满分80分)15.已知函数f(x)=sin2x+2sinxcosx+3cos2x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[0,],求函数f(x)的最值及相应x的取值.16.已知递减等差数列{a n}满足:a1=2,a2?a3=40.(Ⅰ)求数列{a n}的通项公式及前n项和S n;(Ⅱ)若递减等比数列{b n}满足:b2=a2,b4=a4,求数列{b n}的通项公式.17.某公司每月最多生产100台警报系统装置,生产x台(x∈N*)的总收入为30x﹣0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)﹣P(x).(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?18.已知函数f(x)=axe x,其中常数a≠0,e为自然对数的底数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若直线y=e(x﹣)是曲线y=f(x)的切线,求实数a的值.19.已知椭圆C: +=1(a>b>0),离心率e=,已知点P(0,)到椭圆C的右焦点F的距离是.设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求点Q的横坐标x0的取值范围.20.对于序列A0:a0,a1,a2,…,a n(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,a n﹣1+a n,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;A n﹣1=T n﹣1(A0).最后得到的序列A n﹣1只有一个数,记作S(A0).(Ⅰ)若序列A0为1,2,3,求S(A0);(Ⅱ)若序列A0为1,2,…,n,求S(A0);(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.2016-2017学年北京人大附中高三(上)开学数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母根据平方差公式得到一个实数,分子进行复数的乘法运算,得到最简结果,写出对应的点的坐标,得到位置.【解答】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或3【考点】交集及其运算.【分析】根据A,B,以及两集合的交集为B,得到B为A的子集,确定出实数m的值即可.【解答】解:∵A={1,2,3},B={1,m},且A∩B=B,∴B?A,则实数m的值为2或3,故选:D.3.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣B.C.﹣D.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】直接利用诱导公式化简求解函数值即可.【解答】解:sin(π﹣A)=,可得sinA=,cos(﹣A)=sinA=,故选:B.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣1【考点】数量积判断两个平面向量的垂直关系.【分析】由⊥,可得=0,解出即可得出.【解答】解:∵⊥,∴=3+x(2﹣x)=0,化为x2﹣2x﹣3=0,解得x=3或﹣1.故选:D.5.函数y=log2的大致图象是()A. B.C.D.【考点】函数的图象.【分析】分析出函数的定义域和单调性,利用排除法,可得答案.【解答】解:函数y=log2的定义域为(1,+∞),故排除C,D;函数y=log2为增函数,故排除B,故选:A.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.【考点】简单线性规划.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD的长为()A.B.C.D.【考点】与圆有关的比例线段.【分析】在△OAC中,运用余弦定理可得AC,cos∠ACO,延长CO交圆于E,再由圆的相交弦定理,可得AC?CD=BC?CE,求得CD,再在△BCD中,运用余弦定理可得BD的长.【解答】解:在△OAC中,OA=2,OC=1,∠AOC=120°,可得AC2=OA2+OC2﹣2OA?OC?cos∠AOC=4+1﹣2?2?1?cos120°=5+2=7,即AC=,cos∠ACO===,延长CO交圆于E,由圆的相交弦定理,可得AC?CD=BC?CE,即CD===,在△BCD中,BD2=BC2+DC2﹣2BC?DC?cos∠BCD=1+﹣2?1??=.可得BD=.故选:C.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)【考点】利用导数研究函数的单调性.【分析】求出函数的定义域和导数,判断函数的单调性和极值,即可得到结论.【解答】解:函数的定义域为(0,+∞),∴函数的f′(x)=x﹣=,由f′(x)>0解得x>1,此时函数单调递增,由f′(x)<0解得0<x<1,此时函数单调递减,故x=1时,函数取得极小值.①当k=1时,(k﹣1,k+1)为(0,2),函数在(0,1)上单调减,在(1,2)上单调增,此时函数在(0,2)上不是单调函数,满足题意;②当k>1时,∵函数f(x)在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,∴x=1在(k﹣1,k+1)内,即,即,即0<k<2,此时1<k<2,综上1≤k<2,故选:B.二、填空题9.抛物线x2=ay的准线方程是y=2,则a=‐8.【考点】抛物线的简单性质.【分析】依题意可求得抛物线x2=ay的准线方程是y=﹣,而抛物线x2=ay的准线方程是y=2,从而可求a.【解答】解:∵抛物线x2=ay的准线方程是y=﹣,又抛物线x2=ay的准线方程是y=2,∴﹣=2,∴a=﹣8.故答案为:﹣8.10.极坐标系中,直线ρsin(﹣θ)+1=0与极轴所在直线的交点的极坐标为(2,π)(只需写出一个即可)【考点】简单曲线的极坐标方程.【分析】令θ=π,可得: +1=0,解得ρ即可得出.【解答】解:令θ=π,可得: +1=0,解得ρ=2,可得交点(2,π).故答案为:(2,π).11.点P是直线l:x﹣y+4=0上一动点,PA与PB是圆C:(x﹣1)2+(y﹣1)2=4的两条切线,则四边形PACB的最小面积为4.【考点】圆的切线方程.【分析】利用切线与圆心的连线垂直,可得S PACB=2S ACP.,要求四边形PACB的最小面积,即直线上的动点到圆心的距离最短,利用二次函数的配方求解最小值,得到三角形的边长最小值,可以求四边形PACB的最小面积.【解答】解:根据题意:圆C:(x﹣1)2+(y﹣1)2=4,圆心为(1,1),半径r=2,∵点P在直线x﹣y+4=0上,设P(t,t+4),切线与圆心的连线垂直,直线上的动点到圆心的距离d2=(t﹣1)2+(t+4﹣1)2,化简:d2=2(t2+2t+5)=2(t+1)2+8,∴,那么:,则|PA|min=2,三角形PAC的最小面积为:=2,可得:S PACB=2S ACP=4,所以:四边形PACB的最小面积S PABC=4,故答案为:4.12.已知双曲线C的渐进线方程为y=±x,则双曲线C的离心率为或.【考点】双曲线的简单性质.【分析】双曲线的渐近线为y=±x,可得=或3,利用e==,可求双曲线的离心率.【解答】解:∵双曲线的渐近线为y=±x,∴=或3,∴e===或.故答案为:或.13.集合U={1,2,3}的所有子集共有8个,从中任意选出2个不同的子集A和B,若A?B且B?A,则不同的选法共有9种.【考点】子集与真子集.【分析】根据含有n个元素的集合,其子集个数为2n个,即可得到子集个数.从中任意选出2,A?B且B?A.先去掉{1,2,3}和?,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A?B且B?A,即可得到答案.【解答】解:集合U={1,2,3}含有3个元素,其子集个数为23=8个.从中任意选出2个不同的子集A和B,A?B且B?A.先去掉{1,2,3}和?,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A?B且B?A,有①{1},{2}、②{1},{3}、③{1},{2,3}、④{2},{3}、⑤{2},{1,3}、⑥{3},{1,2}、⑦{1,2},{1,3}、⑧{1,2},{2,3}、⑨}{1,3},{2,3},则有9种.故答案为:8,9.14.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为{1,2,4} ;(2)若a1=2m(m∈N*),则d的所有可能取值的和为2m+1﹣1.【考点】等差数列的性质;等比数列的前n项和.【分析】由题意可得,a p+a q=a k,其中p、q、k∈N*,利用等差数列的通项公式可得d与a1的关系,然后根据d的取值范围进行求解.【解答】解:由题意可得,a p+a q=a k,其中p、q、k∈N*,由等差数列的通向公式可得a1+(p﹣1)d+a1+(q﹣1)d=a1+(k﹣1),整理得d=,(1)若a1=4,则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,故d的取值集合为{1,2,4};(2)若a1=2m(m∈N*),则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,…,2m,∴d的所有可能取值的和为1+2+4+…+2m==2m+1﹣1,故答案为(1){1,2,4},(2)2m+1﹣1.三、解答题(共6小题,满分80分)15.已知函数f(x)=sin2x+2sinxcosx+3cos2x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[0,],求函数f(x)的最值及相应x的取值.【考点】三角函数中的恒等变换应用;正弦函数的单调性;三角函数的最值.【分析】(Ⅰ)运用二倍角的正弦和余弦公式,及两角和的正弦公式,化简函数f(x),再由正弦函数的周期和单调增区间,解不等式即可得到.(Ⅱ)由x的范围,可得2x﹣2x+的范围,再由正弦函数的图象和性质,即可得到最值.【解答】解:(Ⅰ)f(x)=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1=sin2x+cos2x+2=sin(2x+)+2,令2kπ﹣≤2x+≤2kπ+,k∈Z,则kπ﹣≤x≤kπ+,k∈Z,则有函数的单调递增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)当x∈[0,]时,2x+∈[,],则有sin(2x+)∈[﹣1,1],则当x=时,f(x)取得最小值,且为1,当x=时,f(x)取得最大值,且为+2.16.已知递减等差数列{a n}满足:a1=2,a2?a3=40.(Ⅰ)求数列{a n}的通项公式及前n项和S n;(Ⅱ)若递减等比数列{b n}满足:b2=a2,b4=a4,求数列{b n}的通项公式.【考点】数列的求和.【分析】(I)格局等差数列的通项公式列方程组解出公差,得出通项公式,代入求和公式计算S n;(II)根据等比数列的通项公式列方程组解出首项和公比即可得出通项公式.【解答】解:(I)设{a n}的公差为d,则a2=2+d,a3=2+2d,∴(2+d)(2+2d)=40,解得:d=3或d=﹣6.∵{a n}为递减数列,∴d=﹣6.∴a n=2﹣6(n﹣1)=8﹣6n,S n=?n=﹣3n2+5n.(II)由(I)可知a2=﹣4,a4=﹣16.设等比数列{b n}的公比为q,则,解得或.∵{b n}为递减数列,∴.∴b n=﹣2?2n﹣1=﹣2n.17.某公司每月最多生产100台警报系统装置,生产x台(x∈N *)的总收入为30x﹣0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)﹣P(x).(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?【考点】函数模型的选择与应用.【分析】(Ⅰ)利用利润是收入与成本之差,求利润函数P(x),利用MP(x)=P(x+1)﹣P(x),求其边际利润函数MP(x);(Ⅱ)利用MP(x)=24.8﹣0.4x是减函数,即可得出结论.【解答】解:(Ⅰ)由题意知,x∈[1,100],且x∈N*P(x)=R(x)﹣C(x)=30x﹣0.2x 2﹣(5x+40)=﹣0.2x2+25x﹣40,MP(x)=P(x+1)﹣P(x)=﹣0.2(x+1)2+25(x+1)﹣40﹣[﹣0.2x2+25x﹣40]=24.8﹣0.4x,(Ⅱ)∵MP(x)=24.8﹣0.4x是减函数,∴当x=1时,MP(x)的最大值为24.40(万元)18.已知函数f(x)=axe x,其中常数a≠0,e为自然对数的底数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若直线y=e(x﹣)是曲线y=f(x)的切线,求实数a的值.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求函数的导数,根据函数单调性和导数之间的关系即可求函数f(x)的单调区间;(Ⅱ)当a=1时,根据函数极值和导数之间的关系即可求函数f(x)的极值;(Ⅲ)设出切点坐标为(m,ame m),求出切线斜率和方程,根据导数的几何意义建立方程关系即可求实数a的值.【解答】解:(Ⅰ)函数的导数f′(x)=a(e x+xe x)=a(1+x)e x,若a>0,由f′(x)>0得x>﹣1,即函数的单调递增区间为(﹣1,+∞),由f′(x)<0,得x<﹣1,即函数的单调递减区间为(﹣∞,﹣1),若a<0,由f′(x)>0得x<﹣1,即函数的单调递增区间为(﹣∞,﹣1),由f′(x)<0,得x>﹣1,即函数的单调递减区间为(﹣1,+∞);(Ⅱ)当a=1时,由(1)得函数的单调递增区间为(﹣1,+∞),函数的单调递减区间为(﹣∞,﹣1),即当x=﹣1时,函数f(x)取得极大值为f(﹣1)=﹣,无极小值;(Ⅲ)设切点为(m,ame m),则对应的切线斜率k=f′(m)=a(1+m)e m,则切线方程为y﹣ame m=a(1+m)e m(x﹣m),即y=a(1+m)e m(x﹣m)+ame m=a(1+m)e m x﹣ma(1+m)e m+ame m=a(1+m)e m x﹣m2ae m,∵y=e(x﹣)=y=ex﹣e,∴∴,即若直线y=e(x﹣)是曲线y=f(x)的切线,则实数a的值是.19.已知椭圆C: +=1(a>b>0),离心率e=,已知点P(0,)到椭圆C的右焦点F的距离是.设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求点Q的横坐标x0的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)由题意可得:e==,=,又a2+b2=c2.联立解出即可得出.(II)设直线AB的方程为:y=kx+,(k≠0),A(x1,y1),B(x2,y2),线段AB的中点M(x3,y3),直线AB的方程与题意方程联立化为:(1+4k2)x2+12kx﹣7=0,利用中点坐标公式与根与系数的关系可得可得中点M的坐标,可得线段AB的中垂线方程,令y=0,可得x0,通过对k分类讨论,利用基本不等式的性质即可得出.【解答】解:(I)由题意可得:e==,=,又a2+b2=c2.联立解得:c2=12,a=4,b=2.∴椭圆C的标准方程为:=1.(II)设直线AB的方程为:y=kx+,(k≠0),A(x1,y1),B(x2,y2),线段AB的中点M(x3,y3),线段AB的中垂线方程为:y﹣y3=﹣(x﹣x3).联立,化为:(1+4k2)x2+12kx﹣7=0,△>0,∴x1+x2=﹣,∴x3==﹣.y3=kx3+=.∴线段AB的中垂线方程为:y﹣=﹣(x+).令y=0,可得x0==,k>0时,0>x0≥.k<0时,0<x0≤.k=0时,x0=0也满足条件.综上可得:点Q的横坐标x0的取值范围是.20.对于序列A0:a0,a1,a2,…,a n(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,a n﹣1+a n,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;A n﹣1=T n﹣1(A0).最后得到的序列A n﹣1只有一个数,记作S(A0).(Ⅰ)若序列A0为1,2,3,求S(A0);(Ⅱ)若序列A0为1,2,…,n,求S(A0);(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.【考点】数列与函数的综合.【分析】(I)序列A0为1,2,3,A1:1+2,2+3,A2:1+2+2+3,即可得出S(A0).(II)n=1时,S(A0)=1+2=3;n=2时,S(A0)=1+2+2+3=1+2×2+3;n=3时,S(A0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,…;取n时,S(A0)=?1+?2+?3+…+?n+?(n+1);利用倒序相加法和二项式定理的性质,即可求得结果.(III)序列B为序列A0:1,2,…,n的一个排列,B=A0?S(B)=S(A0).而反之不成立.例如取序列B为:n,n﹣1,…,2,1.满足S(B)=S(A0).即可得出.【解答】解:(I)序列A0为1,2,3,A1:1+2,2+3,A2:1+2+2+3,即8,∴S(A0)=8.(II)n=1时,S(A0)=1+2=3.n=2时,S(A0)=1+2+2+3=1+2×2+3=8,n=3时,S(A0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,…,取n﹣1时,S(A0)=?1+?2+?3+…+(n﹣1)+?n,取n时,S(A0)=?1+?2+?3+…+?n+?(n+1),利用倒序相加可得:S(A0)=×2n=(n+2)?2n﹣1.由序列A0为1,2,…,n,可得S(A0)=(n+2)?2n﹣1.(III)序列B为序列A0:1,2,…,n的一个排列,B=A0?S(B)=S(A0).而反之不成立.例如取序列B为:n,n﹣1,…,2,1.满足S(B)=S(A0).因此B=A0是S(B)=S(A0)的充分不必要条件.2016年11月6日。
【北师大版】高中数学必修三期末第一次模拟试题附答案(1)
一、选择题1.在OMN 中,1OM =,3ON =,2MN =,在OMN 内任取一点,该点到点M 的距离大于1的概率为( )A .39π B .319π-C .318π D .3118π-2.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19363.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .14B .8π C .34D .4π 4.在编号分别为(0,1,2,,1)i i n =⋅⋅⋅-的n 名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n 所得的余数如果恰好为i ,则选编号为i 的同学.下列哪种情况是不公平的挑选方法( ) A .2n =B .3n =C .4n =D .6n =5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .84B .56C .35D .286.阅读算法框图,如果输出的函数值在区间[]1,8上,则输入的实数x 的取值范围是( )A .[)0,2B .[]2,7C .[]2,4D .[]0,77.如图给出的是计算1232018⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的是( )A .2018i <B .2018i =C .2018i ≤D .2018i >8.执行如图所示程序框图,当输入的x 为2019时,输出的y (= )A .28B .10C .4D .29.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元10.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =11.如果在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是 ( ) A .y =x +1.9 B .y =1.04x +1.9 C .y =1.9x +1.04D .y =1.05x -0.912.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P CE =;⑤()()P B P C =.14.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示).15.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.16.某程序框图如图所示,则该程序运行后输出的S 值是_____________.17.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____18.运行下边的流程图,输出的结果是__________.19.数据1x ,2x ,…,n x 的平均数是3,方差是1,则数据15x -,25x -,…,5n x -的平均数和方差之和是__________.20.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
【北师大版】高中数学必修三期末第一次模拟试卷及答案(3)
一、选择题1.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .152.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31453.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1104.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( ) A .19B .164C .18D .1165.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .66.执行如图所示的程序框图,若输人的n 值为2019,则S =A .B .C .D .7.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S8.执行如图所示程序框图,当输入的x 为2019时,输出的y ( )A .28B .10C .4D .29.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A.这10天中有3天空气质量为一级B.从6日到9日 2.5PM日均值逐渐降低C.这10天中 2.5PM日均值的中位数是55D.这10天中 2.5PM日均值最高的是12月6日11.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.1512.已知x,y的取值如表:x 2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.二、填空题13.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为____14.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.15.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.16.若下面程序中输入的n值为2017,则输出的值为__________.17.执行如下图所示的程序框图,则输出的结果n __________.18.执行如图所示的程序框图,输出的S值为__________.19.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:x1 2 3 4 5 y 7.06.5m3.82.2已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为__________.20.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.三、解答题21.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A 组,使用手机且成绩优秀的同学记为B 组,计划从A 组推选的4人和B 组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A 组、另一人来自B 组的概率.22.为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了n 人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的34,男生喜欢看该节目的占男生总人数的13.随后,该小组采用分层抽样的方法从这n 份问卷中继续抽取了5份进行重点分析,知道其中喜欢看该节目的有3人.(1) 现从重点分析的5人中随机抽取了2人进行现场调查,求这两人都喜欢看该节目的概率;(2) 若有99%的把握认为“爱看该节目与性别有关”,则参与调查的总人数n 至少为多少? 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.23.用二分法设计一个求方程230x -=在[]1,2上的近似根的算法.(近似根与精确解的差的绝对值不超过0.0005)24.某林业部门为了保证植树造林的树苗质量,对甲、乙两家供应的树苗进行根部直径检测,现从两家供应的树苗中各随机抽取10株树苗检测,测得根部直径如下(单位:mm ):(1)画出甲、乙两家抽取的10株树苗根部直径的茎叶图,并根据茎叶图对甲、乙两家树苗进行比较,写出两个统计结论;(2)设抽测的10株乙家树苗根部直径的平均值为x,将这10株树苗直径依次输入程序框图中,求输出的S的值,并说明其统计学的意义.25.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm到195cm之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.26.2020年新冠肺炎疫情肆虐全球,各地医疗部门迅速进行防控意识宣传和流行病学调查.某疫区随机抽取100人调查其外出时佩戴口罩的情况,结果如下表.(1)是否有99.5%的把握认为“是否佩戴口罩与年龄有关”;(2)该疫区某新冠肺炎定点治疗医院统计了确诊患者中年龄x (单位:岁)的重症患者比例(单位:%),得到下表:若y 与x 之间具有线性相关关系,请用最小二乘法求出y 关于x 的线性回归方程y bx a =+,并预测该医院76岁确诊患者中的重症比例.参考公式和数据:用最小二乘法求线性回归方程系数公式:1221ni ii nii x y nx yb xn x=-=-=-∑∑,a y bx =-.817010.5657.5637.553 5.552 4.545 3.540 1.5320.52454i ii x y==⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=∑.82222222217065635345403223256i i x==++++++=∑.()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题. 【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.2.A解析:A 【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13925P =⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23759P =⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率. 【详解】盒中有形状、大小都相同的2个红色球和3个黄色球, 从中取出一个球,观察颜色后放回并往盒中加入同色球4个, 若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13295152P =⨯=, 若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23775915P =⨯=, ∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P =+=+=, 故选:A . 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.3.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.4.C解析:C 【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可. 【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1, 所以向下数字为1和2的概率21168P ==, 故选:C 【点睛】本题主要考查随机事件概率的计算,难度较低.5.C解析:C 【分析】根据框图模拟程序运算即可. 【详解】第一次执行程序,2111S =⨯-=,25S >-,继续循环,第二次执行程序,2k =,2121S =⨯-=-,25S >-,继续循环,第三次执行程序,3k =,2(1)35S =⨯--=-,25S >-,继续循环, 第四次执行程序,4k =,2(5)414S =⨯--=-,25S >-,继续循环,第五次执行程序,5k =,2(14)532S =⨯--=-,25S <-,跳出循环,输出5k =,结束.故选C. 【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.6.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6 n 2019k 1 2 (2018)2019S…k<n 是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.7.C解析:C 【分析】根据程序框图列出所有的循环步骤,最后一次循环中的S 满足条件,以及倒数第二次循环中S 不满足条件来选择四个选项中的判断条件. 【详解】第一次循环:1S =,不满足条件,2i =; 第二次循环:3S =,不满足条件,3i =; 第三次循环:6S =,不满足条件,4i =; 第四次循环:10S =,不满足条件,5i =; 第五次循环:15S =,不满足条件,6i =; 第六次循环:21S =,不满足条件,7i =; 第七次循环:28S =,满足条件,输出的值为7. 所以判断框中的条件可填写“28S ”. 故选C . 【点睛】本题考查程序框图中判断条件的选择,这种类型的问题一般要列举出所有的循环步骤,利用最后一次和倒数第二次循环中变量满足与不满足来筛选判断条件,考查逻辑推理能力,属于中等题.8.C解析:C 【分析】x 的变化遵循以2-为公差递减的等差数列的变化规律,到0x <时结束,得到1x =-,然后代入解析式,输出结果. 【详解】0x ≥时,每次赋值均为2x -x 可看作是以2019为首项,2-为公差的等差数列{}n x()()20191220212n x n n ⇒=+-⨯-=-当0x <时输出,所以0n x <,即202120n -< 20212n ⇒>即:10100x >,10110x < 10112021210111x ⇒=-⨯=-1314y ∴=+=本题正确选项:C 【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.9.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 10.C解析:C 【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果. 【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确; 从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确; 从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确; 由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C. 【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键.11.C解析:C 【详解】 抽取比例为150130000200=, 1400020200∴⨯=, 抽取数量为20,故选C.12.B解析:B 【解析】 【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】根据题意可得,,由线性回归方程一定过样本中心点,.故选:B.【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.二、填空题13.【分析】先求对立事件概率:三门科目考试成绩都不是A再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A的概率为所以这位考生至少得1个A的概率为故答案为:【点睛】本题考查利用对立事件求解析:191 192【分析】先求对立事件概率:三门科目考试成绩都不是A,再根据对立事件概率关系求结果.【详解】这位考生三门科目考试成绩都不是A的概率为5731 (1)(1)(1)684192 ---=,所以这位考生至少得1个A的概率为1191 1192192 -=故答案为:191 192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.14.【分析】通过分析先计算甲在第一次取得编号为1的概率再计算甲在第二次取得编号为1的概率两者相加即为所求【详解】甲在第一次取得编号为1的概率为;甲在第二次取得编号为1的概率为于是所求概率为故答案为【点睛解析:9 25【分析】通过分析,先计算甲在第一次取得编号为1的概率,再计算甲在第二次取得编号为1的概率,两者相加即为所求.【详解】甲在第一次取得编号为1的概率为15;甲在第二次取得编号为1的概率为24254145325C C ⨯⨯=,于是所求概率为149+52525=,故答案为925. 【点睛】本题主要考查概率的相关计算,意在考查学生的分析能力,计算能力,难度中等.15.【解析】【分析】以正方体的中心为球心1为半径做球若点在球上或球内时符合要求求其体积根据几何概型求概率即可【详解】当正方体内的点落在以正方体中心为球心1为半径的球上或球内时此点到正方体中心的距离不大于解析:6π【解析】 【分析】以正方体的中心为球心,1为半径做球,若点在球上或球内时,符合要求,求其体积,根据几何概型求概率即可. 【详解】当正方体内的点落在以正方体中心为球心,1为半径的球上或球内时,此点到正方体中心的距离不大于1, 因为344133V ππ=⨯⨯=球,2228V =⨯⨯=正方体 因此正方体内点到正方体中心的距离不大于1的概率24132226V P V 球正方体ππ⨯⨯===⨯⨯, 故填6π. 【点睛】本题主要考查了几何概型,球的体积,正方体的体积,属于中档题.16.【分析】根据程序框图的算法功能可知该程序是计算的值再根据裂项相消法即可求出【详解】根据程序框图的算法功能可知该程序是计算的值所以故答案为:【点睛】本题主要考查程序框图的算法功能的理解以及数列求和属于 解析:20172018【分析】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值,再根据裂项相消法即可求出. 【详解】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值.所以111112233420172018++++⨯⨯⨯⨯111111112017122334201720182018⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20172018. 【点睛】本题主要考查程序框图的算法功能的理解以及数列求和,属于基础题.常见的数列求和方法有:公式法,裂项相消法,分组求和法,倒序相加求和法,并项求和法,错位相减法等,根据数列的特征选择对应的方法是解题的关键.17.9【解析】模拟程序的运行可得第一次执行循环不满足则返回继续循环;不满足则返回继续循环;不满足则返回继续循环;当时则最小值为此时故答案为点睛:识别运行程序框图和完善程序框图的思路:(1)要明确程序框图解析:9 【解析】模拟程序的运行,可得0S =,1n =,第一次执行循环,20log 21S =+=,12n n =+=,不满足3S >,则返回继续循环;231log 2S =+,13n n =+=,不满足3S >,则返回继续循环;22341log log 11223S =++=+=,14n n =+=,不满足3S >,则返回继续循环;⋅⋅⋅当n k =时,222234111log log log 1log 232k k S k ++=+++⋅⋅⋅+=+,1n k =+则211log 32k S +=+>,8k ≥,k 最小值为8,此时19n k =+=.故答案为9.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构; (2)要识别、运行程序框图,理解框图所解决的实际问题; (3)按照题目的要求完成解答并验证.18.37【解析】根据图得到:n=18S=19n=12S=31n=6S=37n=0判断得到n>0不成立此时退出循环输出结果37故答案为:37解析:37 【解析】根据图得到:n=18,S=19,n=12 S=31,n=6,S=37,n=0,判断得到n>0不成立,此时退出循环,输出结果37. 故答案为:37.19.5【解析】将样本中心代入回归方程得到m=55故答案为:55解析:5 【解析】19.5,15,5my x +== 将样本中心代入回归方程得到m=5.5. 故答案为:5.5. 20.【解析】 三、解答题21.(1)99.5%;(2)815. 【分析】(1)根据22⨯列联表中的数据,代入卡方计算,即可求解; (2)根据古典概型,列出基本时间,根据概率公式,即可求解. 【详解】 (1)根据公式得2280(28261412)9.8257.87942384040K ⨯⨯-⨯==≥⨯⨯⨯.所以有99.5%的把握认为中学生使用手机对学习有影响.(2)记A 组推选的4人为a ,b ,c ,d ,B 组推选的2人为e ,f , 则从这6人中任取两人有15种取法:()()()()(),,,,,a b a c a d a e a f ()()()(),,,,b c b d b e b f()()()c,,,d c e c f ()(),,d e d f(),e f其中一人来自A 组、另一人来自B 组有8种取法, 故概率为815p =. 【点睛】本题考查(1)独立性检验(2)古典概型概率计算,考查计算能力,属于中等题型. 22.(1)310;(2)50n =. 【解析】分析:(1)记重点分析的5人中喜爱看该节目的为,,a b c ,不爱看的为,d e ,通过穷举法得到所有基本事件,利用古典概型公式求解即可;(2)由题意可得22⨯列联表,进而计算2256K k =,由题意得256.6356k ≥,从而得解. 详解:(1) 记重点分析的5人中喜爱看该节目的为,,a b c ,不爱看的为,d e ,从5人中随机抽取2人,所有可能的结果有()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a c a d a e b c b d b e c d c e d e ,共10种,则这两人都喜欢看该节目的有3种, ∴310P =,即这两人都喜欢看该节目的概率为310; (2)∵进行重点分析的5份中,喜欢看该节目的有3人,故喜爱看该节目的总人数为35n ,不喜爱看该节目的总人数为25n ;设这次调查问卷中女生总人数为a ,男生总人数为b ,,*a b N ∈,则由题意可得22⨯列联表如下:解得:,2525a nb n ==, ∴正整数n 是25的倍数,设25n k =,*k N ∈,则3112,444a k a k ==, 123,633b k b k ==,则()2225126342516915106k k k k k K k k k k k ⋅-⋅==⋅⋅⋅;由题意得256.635 1.596k k ≥⇒≥,∵*k N ∈,∴2k =,故50n =. 点睛:独立性检验的一般步骤:(I )根据样本数据制成22⨯列联表;(II )根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(III )查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.) 23.见解析【分析】计算(1)0,(2)0f f <>,设121,2x x ==,122x x m +=,判断()f m 的符号,根据零点存在定理得到算法. 【详解】第一步:令2()3f x x =-,(1)20,(2)10f f =-<=>,∴设121,2x x ==;第二步:令122x x m +=,判断()f m 是否为0,若是,则m 为所求;若不是,则继续判断()1()f x f m ⋅大于0还是小于0;第三步:若()1()0f x f m ⋅>,则令1x m =;否则,令2x m =;第四步:判断120.0005x x -≤是否成立?若是,则12,x x 之间的任意值均为满足条件的近似根;若不是,则返回第二步. 【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用. 24.(1)见解析(2)15,见解析 【分析】(1)由题意画出茎叶图,根据茎叶图写出两条合理结论即可;(2)计算出x ,根据程序框图的功能是计算出数据方差,计算方差,说出方差的统计学意义即可得解. 【详解】(1)茎叶图如图所示:结论有:①甲家树苗的平均直径小于乙家树苗的平均直径; ②乙家树苗比甲家树苗长的更均匀;③甲家树苗的中位数是17,乙家树苗的中位数是18.(答案合理即可给分,写出两条即可).(2)由题意()1151714161818202721241910x =+++++++++=, 因为该程序框图的算法功能是求数据方差,所以2221[(1519)(1719)(2419)]1510S =-+-++-=,S 是10株树苗根部直径的方差,是描述离散程度的量,S 越小,长得越整齐,S 越大,长得越粗细不均. 【点睛】本题考查了茎叶图和程序框图的应用,考查了数据方差的概念和计算,属于中档题. 25.(1)见解析;(2)174.5cm;(3)0.3.【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种,因此所求事件的概率为.26.(1)有把握;(2)1ˆ84y x=-,11%.【分析】(1)根据列联表,利用公式计算2K,对照附表得出结论;(2)计算x、y,求出回归系数,写出线性回归方程,利用方程计算76x=时ˆy的值.【详解】(1)根据题意,计算22100(45201025)8.1297.89770305545K ⨯⨯-⨯=≈>⨯⨯⨯; 所以有99.5%的把握认为“是否佩戴口罩与年龄有关”;(2)计算1105(7065635352454032)82x =⨯+++++++=, 141(10.57.57.5 5.5 4.5 3.5 1.50.5)88y =⨯+++++++=; 所以122211054124548128ˆ1054232568()2n ii i n i i x y nxyb xnx ==--⨯⨯===-⨯-∑∑; 411105ˆˆ8842a y bx =-=-⨯=-; 所以y 关于x 的线性回归方程是1ˆ84y x =-, 计算76x =时,1ˆ768114y =⨯-=, 可以预测该医院76岁确诊患者中的重症比例为11%.【点睛】本题考查了列联表与独立性检验的应用问题,也考查了线性回归方程的应用问题,是中档题.。
【北师大版】高中数学必修三期末第一次模拟试题(附答案)(1)
一、选择题1.已知点A是圆M的圆周上一定点,若在圆M的圆周上的其他位置任取一点B,连接AB,则“线段AB的长度大于圆M的半径”的概率约为()A.12B.16C.13D.232.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为()A.15B.25C.35D.453.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n个人说“能”,而有m个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为()A.mm n+B.nm n+C.4mm n+D.4nm n+4.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为()A.13B.12C.33D.225.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N =,则图中①②应分别填入( )A .1T k=,k N > B .1T k=,k N ≥ C .TT k=,k N > D .TT k=,k N ≥ 6.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <7.执行如图所示的程序框图,输出s 的值为( )A .1B .20181-C .20191-D .20201-8.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为10,14,则输出的a =( )A .6B .4C .2D .09.某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12B .14C .16D .1810.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆221 43x y+=的左焦点,设动点P在椭圆上,若直线FP的斜率大于3,则直线OP(O为原点)的斜率的取值范围是3333(,)(,)22-∞-.A.①②③B.①③④C.①②④D.②③④11.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元)6.27.58.08.59.8根据上表可得回归直线方程ˆˆˆy bx a=+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元12.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是()A.4 B.5 C.6 D.7二、填空题13.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.14.在正方体的12条面对角线和4条体对角线中随机地选取两条对角线,则这两条对角线所在的直线为异面直线的概率等于________.15.已知集合{1,U=2,3,⋯,}n,集合A、B是集合U的子集,若A B⊆,则称“集合A紧跟集合B”,那么任取集合U的两个子集A、B,“集合A紧跟集合B”的概率为______.16.下图所示的算法流程图中,输出的S表达式为__________.17.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=_____18.执行如图所示的程序框图,若1 ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.19.数列{}n a是公差不为零的等差数列,其前n项和为n S,若记数据1a,2a,3a,⋅⋅⋅,2019a的标准差为1σ,数据11S,22S,33S,⋅⋅⋅,20192019S的标准差为2σ,则12σσ=________ 20.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.三、解答题21.某校从参加某次知识竞赛的1000同学中,随机抽取60名同学将其成绩(百分制,均为整数)分成[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题: (1)补全频率分布直方图,并估计本次知识竞赛的均分;(2)如果确定不低于85分的同学进入复赛,问这1000名参赛同学中估计有多少人进人复赛;(3)若从第一组,第二组和第六组三组学生中分层抽取6人,再从这6人中随机抽取2人,求所抽取的2人成绩之差的绝对值大于20的概率.22.在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.(1)求跳绳次数落在区间[150,160)内的频率;(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率. 23.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:()()()0.5350=500.53+-500.8550f ωωωω⎧≤⎪⎨⨯⨯>⎪⎩.其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f 的算法,并画出相应的程序框图. 24.由键盘输入三个整数a ,b ,c ,输出其中最大的数,画出其算法的程序框图,并写出程序. 25.二手车经销商小王对其所经营的某一型号二手汽车的使用年数()010x x <≤与销售价格y (单位:万元/辆)进行整理,得到如表的对应数据:使用年限 24 6 810 售价16139.574.5(1)试求y 关于x 的回归直线方程;(2)已知每辆该型号汽车的收购价格为20.05 1.7517.2=-+w x x 万元,根据(1)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大. 26.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x 的值;并估计出月平均用水量的众数. (2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出B 点位置所有基本事件的弧长,再求出满足条件AB 长度大于圆半径的基本事件对应的弧长,根据几何概型概率的计算公式,即可得到答案. 【详解】设圆M 的半径为R ,B 为圆上的任意一点, 则B 点位置所有情况对应的弧长为圆的圆周长2R π, 其中满足条件AB 长度大于圆半径长对应的弧长为223R π⋅, 则“线段AB 的长度大于圆M 的半径”的概率约为222323RR ππ⋅=. 故选:D 【点睛】本题考查几何概型概率的求法,其中根据条件计算出所有基本事件的几何量和满足条件的基本事件对应的几何量是解题的关键,属于中档题.2.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.3.C解析:C 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。
【北师大版】高中数学必修三期末第一次模拟试卷附答案(2)
一、选择题1.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4132.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4133.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.514.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .255.若执行如图所示的程序框图,输出S 的值为( )A.2log23 B.log27 C.3 D.2 6.执行如图所示的程序框图,则输出S的值为()A.-1010 B.-1009 C.1009 D.1010 7.若执行如图所示的程序框图,则输出S的值为()A .9-B .16-C .25-D .36-8.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,249.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元10.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A.95 B.96 C.97 D.9811.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,812.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.160二、填空题13.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________小方阵开展14.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成33游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.15.已知某运动队有男运动员4名,女运动员3名,若现在选派3人外出参加比赛,则选出的3人中男运动员比女运动员人数多的概率是_________.16.根据如图所示算法流程图,则输出S的值是__.17.执行如图所示的流程图,则输出的的值为___________.18.一个算法的程序框图如图所示,则该程序运行后输出的结果是 .19.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位: cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有_______株树木的底部周长大于110cm .20.已知由样本数据集合(){}11,1,2,3,...,x y i n =,求得的回归直线方程为1.2308ˆ.0y x =+,且ˆ4x =,若去掉两个数据点 (4.1,5.7)和(3.9,4.3)后重新求得的回归直线方程l 的斜率估计值为1.2,则此回归直线l 的方程为_______.三、解答题21.某单位响应党中央“精准扶贫”号召,对某村6户贫困户中的甲户进行定点帮扶,每年跟踪调查统计一次,从2015年1月1日至2018年12月底统计数据如下(人均年纯收入):(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+,并估计甲户在2019年能否脱贫;(国家规定2019年脱贫标准:人均年纯收入为3747元) (2)2019年初,根据扶贫办的统计知,该村剩余5户贫困户中还有2户没有脱贫,现从这5户中抽取2户,求至少有一户没有脱贫的概率.参考公式:1221ˆni ii nii x y nx ybxnx =-=-⋅=-∑∑,ˆˆay bx=-,其中x ,y 为数x ,y 的平均数. 22.一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据: (1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;(2)若加工时间y 与零件数x 具有相关关系,求y 关于x 的回归直线方程;若需加工80个零件,根据回归直线预测其需要多长时间.(121()()()ˆniii ni i x x y y bx x ==--=-∑∑,^^a yb x =-)23.给出求满足不等式122010n ++⋅⋅⋅+>的最小正整数n 的一种算法,并作出程序框图. 24.下面程序的功能是输出1~100之间的所有偶数.程序:i=1 DO m=iMOD2 IF ①THEN PRINTi ENDIF ②LOOPUNTILi>100 END(1)试将上面的程序补充完整; (2)改写为WHILE 型循环结构程序.25.潜叶蝇是南方地区水稻容易遭受的虫害之一,成虫将虫卵产在叶片里,待虫卵孵化之后幼虫会在叶片中啃叶肉,使得秧苗的叶片呈现白色的状态,进而降低水稻产量.经研究,每只潜叶蝇的平均产卵数y 和夏季平均温度x 有关,现收集了某地区以往6年的数据,得到下面数据统计表格.(Ⅰ)根据相关系数r 判断,潜叶蝇的平均产卵数y 与平均温度x 是否具有较强的线性相关关系,若有较强的线性相关关系,求出线性回归方程y bxa =+,若没有较强的线性相关关系,请说明理由(一般情况下,当0.75r >时,可认为变量有较强的线性相关关系);(Ⅱ)根据以往的统计,该地区夏季平均气温为()C ξ︒近似地服从正太分布()226.5,N σ,且()125282P ξ<≤=.当该地区某年平均温度达到28C ︒以上时,潜叶蝇快速繁殖引发虫害,需要进行一次人工治理,每次的人工治理成本为200元/公顷(其他情况均不需要人工治理),且虫害一定会导致水稻减产,对过往10次爆发虫害时的减产损失进行统计,结果如下:用样本的频率估计概率,预测未来2年,每公顷水稻可能因潜叶蝇虫害造成的经济损失Y (元)的数学期望.(经济损失=减产损失+治理成本) 参考公式和数据:()()nii x x yyr --=∑()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-()()61700iii x x y y =--=∑,6214126ii x==∑,61240i i y ==∑,()6218816i i y y=-=∑,708.4≈,617180786≈.26.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式。
【人教版】高中数学必修三期末一模试卷(及答案)
一、选择题1.继刘徽之后,祖冲之为求得更精确的圆周率而作了艰苦卓绝的努力.据《惰书》记载,他已算得3.1415926 3.1415927π<<.他还得到圆周率的两个近似分数值355113和227,并称355113为密率,227为约率,他的圆周率小数值则被后世称为祖率.现用随机模拟的方法得到圆周率,从区间[0,1]随机抽取2000个数,构成1000个数对(,)x y ,其中两数的平方和小于1的数对(,)x y 共有785个,则用随机模拟的方法得到的π的近似值为( ) A .31411000B .355113C .15750D .2272.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( ) A .19B .164C .18D .1163.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .14.在编号分别为(0,1,2,,1)i i n =⋅⋅⋅-的n 名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n 所得的余数如果恰好为i ,则选编号为i 的同学.下列哪种情况是不公平的挑选方法( ) A .2n =B .3n =C .4n =D .6n =5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.若执行如图所示的程序框图,则输出S的值是()A.63 B.15 C.31 D.32 7.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A .1次B .2次C .3次D .4次8.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是( )A .102i >B .102i ≤C .100i >D .100i ≤9.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .8010.小明同学在做市场调查时得到如下样本数据x1 3 6 10 y 8a42他由此得到回归直线的方程为ˆ 2.115.5yx =-+,则下列说法正确的是( ) ①变量x 与y 线性负相关 ②当2x =时可以估计11.3y = ③6a = ④变量x 与y 之间是函数关系 A .①B .①②C .①②③D .①②③④11.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③ B .①③④C .①②④D .②③④12.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .91二、填空题13.过点(0,0)O 作直线与圆22(45)(8)169x y -+-=相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________. 14.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 .15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.某程序框图如图所示,则该程序运行后输出的S 的值为________.17.已知某程序框图如图所示,则执行该程序后输出的结果是_____18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________20.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______.三、解答题21.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下: 甲种生产方式: 指标区间 [65,70)[70,75)[75,80)[80,85)[85,90)[90,95]频数51520301515乙种生产方式: 指标区间 [70,75)[75,80)[80,85)[85,90)[90,95)[95,100]频数51520302010(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?22.某市工会组织了一次工人综合技能比赛,一共有1000名工人参加,他们的成绩都分布在[]52,100内,数据经过汇总整理得到如下的频率分布直方图,规定成绩在76分及76分以上的为优秀.(1)求图中t 的值;(2)估计这次比赛成绩的平均数(同一组中的数据以这组数据所在区间中点的值作代表);(3)某工厂车间有25名工人参加这次比赛,他们的成绩分布和整体的成绩分布情况完全一致,若从该车间参赛的且成绩为优秀的工人中任选两人,求这两人成绩均低于92分的概率.23.如图,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,APB △的面积为y ,求y 与x 之间的函数关系式,并画出程序框图.24.编写程序计算98246++⋅⋅⋅++的值.25.“湖广熟,天下足”,鱼米之乡的湖北是全国重要的农产品生产地.而受疫情影响,像莲藕、小龙虾等湖北很多优质农副产品近期都面临销售难题.为了让淜北尽快恢复正常,央视主持人朱广权化身直播带货官,和网红们一起为湖北产品做公益直播.在为湖北某地区的小龙虾进行带货时,需大致了解该地区小龙虾的产量,通过调查发现湖北某地区近几年的小龙虾产量统计如下表: 年份 2014 2015 2016 2017 2018 2019 年份代码t 1 2 3 4 5 6 年产量y (万吨)6.66.97.47.788.4(1)根据表中数据,建立关于t 的线性回归方程y bt a =+; (2)请你根据线性回归方程预测今年(2020年)该地区小龙虾的年产量.附:对于一组数据()11,t y ,()22,t y ,…,(),n n t y ,其回归直线y bt a =+的斜率和截距的最小二乘估计分别为:()()()121ˆniii ni i t t y y bt t ==--=-∑∑,a y bt =-.(参考数据:()()616.3ii i tty y =--=∑)26.某市举办了一次“诗词大赛”,分预赛和复赛两个环节,已知共有20000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下的统计数据. 得分(百分制) [0,20) [20,40) [40,60) [60,80) [80,100] 人数1020302515(1)规定预赛成绩不低于80分为优良,若从样本中预赛成绩不低于60分的学生中随机地抽取2人,求恰有1人预赛成绩优良的概率;(2)由样本数据分析可知,该市全体参加预赛学生的预赛成绩Z 服从正态分布()2,N μσ,其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组数据的中间值代替),且2361σ=.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于72分的人数;(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下: ①参加复赛的学生的初始分都设置为100分;②参加复赛的学生可在答题前自己决定答题数量n ,每一题都需要“花”掉一定分数来获取答题资格(即用分数来买答题资格),规定答第k 题时“花”掉的分数为()0.21,2,k k n =; ③每答对一题得2分,答错得0分;④答完n 题后参加复赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.75,且每题答对与否都相互独立,则当他的答题数量n 为多少时,他的复赛成绩的期望值最大?参考数据:若()2~,Z Nμσ,则() 6.827P Z μσμσ-<<+≈,()220.9545P Z μσμσ-<<+≈,()330.9973P Z μσμσ-<<+≈【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先作出事件对应的平面区域,再利用几何概型和随机模拟求解. 【详解】由题得0101x y ≤≤⎧⎨≤≤⎩,对应的区域为图中的正方形OABC 区域,事件A :2201011x y x y ≤≤⎧⎪≤≤⎨⎪+<⎩对应的区域为图中的扇形OAC 区域,由题得2117851574==10001150ππ⋅∴⨯,. 用随机模拟的方法得到的π的近似值为15750. 故选:C 【点睛】方法点睛:几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代几何概型的概率公式;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.2.C解析:C 【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可. 【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1, 所以向下数字为1和2的概率21168P ==, 故选:C 【点睛】本题主要考查随机事件概率的计算,难度较低.3.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根,故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.4.C解析:C 【分析】首先求出两枚骰子的点数之和可能的取值对应的概率,再分别讨论四个选项中n 的取值对应的余数的概率,若每一个余数的概率都相等则是公平的,若不相等则不公平,即可得正确选项. 【详解】由题意知两枚骰子的点数之和为X ,则X 可能为2,3,4,5,6,7,8,9,10,11,12,()1236P X ==, ()2336P X ==,()3436P X ==,()4536P X ==,()5636P X ==()6736P X ==,()5836P X ==,()4936P X ==,()31036P X ==,()21136P X ==,()11236P X ==, 对于选项A :2n =时,0,1,i = ()1351023636362P i ⎛⎫==++⨯= ⎪⎝⎭,()246421136363636362P i ==++++=,所以2n =是公平的,故选项A 不正确; 对于选项B :3n =时,0,1,2i =,()254110363636363P i ==+++=,()363113636363P i ==++=, ()145212363636363P i ==+++=,所以3n =是公平的,故选项B 不正确; 对于选项C :4n =时,0,1,2,3i = ()351103636364P i ==++=,()442136369P i ==+=,()153123636364P i ==++=,()2625336363618P i ==++= 因为概率不相等,所以4n =不公平,故选项C 正确; 对于选项D :6n =时,0,1,2,3,4,5i = ()511036366P i ==+=,()611366P i ===,()151236366P i ==+=, ()241336366P i ==+=,()331436366P i ==+=,()421536366P i ==+=, 所以6n =是公平的,故选项D 不正确, 故选:C 【点睛】关键点点睛:本题解题的关键点是理解题意,对于所给n 的值的每一个余数出现的概率相等即为公平,不相等即为不公平.5.B解析:B 【分析】根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,可得答案. 【详解】根据题意,模拟程序框图的运行过程,如下:17,0n k ==17不是偶数,3171=52n =⨯+,011k =+=,521≠; 52是偶数,52262n ==,112k =+=,261≠; 26是偶数,26132n ==,213k =+=,131≠; 13不是偶数,3131=40n =⨯+,314k =+=,401≠; 40是偶数,40202n ==,415k =+=,201≠; 20是偶数,20102n ==,516k =+=,101≠; 10是偶数,1052n ==,617k =+=,51≠; 5不是偶数,351=16n =⨯+,718k =+=,161≠;16是偶数,1682n ==,819k =+=,81≠; 8是偶数,842n ==,9110k =+=,41≠;4是偶数,422n ==,10111k =+=,21≠; 2是偶数,212n ==,11112k =+=,11=; 故选:B 【点睛】 关键点睛:解题的关键是要读懂程序框图,模拟程序框图的运行过程,即突破难点.6.C解析:C 【分析】根据程序框图模拟程序计算即可求解. 【详解】模拟程序的运行,可得1S =,1i =; 满足条件5i <,执行循环体,3S =,2i =; 满足条件5i <,执行循环体,7=S ,3i =; 满足条件5i <,执行循环体,15S =,4i =; 满足条件5i <,执行循环体,31S =,5i =; 此时,不满足条件5i <,退出循环,输出S 的值为31. 故选:C 【点睛】本题主要考查了程序框图,循环结构,属于中档题.7.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.8.B解析:B 【解析】 【分析】根据题目所求表达式1111246102+++⋅⋅⋅+中最后一个数字1102,确定填写的语句.【详解】由于题目所求是1111246102+++⋅⋅⋅+,最后一个数字为1102,即当102i =时,判断是,继续循环,2104i i =+=,判断否,退出程序输出S 的值,由此可知应填102i ≤.故选B. 【点睛】本小题主要考查填写程序框图循环条件,属于基础题.9.C解析:C 【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人. 故选C .10.C解析:C 【解析】 【分析】根据数据和回归方程对每一个选项逐一判断得到答案. 【详解】① 2.1b =-⇒变量x 与y 线性负相关,正确 ②将2x =代入回归方程,得到11.3y =,正确 ③将(,)x y 代入回归方程,解得6a =,正确 ④变量x 与y 之间是相关关系,不是函数关系,错误 答案为C 【点睛】本题考查了回归方程的相关知识,其中中心点(,)x y 一定在回归方程上是同学容易遗忘的知识点.11.C解析:C 【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可. 【详解】①设某大学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ∧=0.85x ﹣85.71,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ,正确;②关于x 的方程x 2﹣mx +1=0(m >2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FP时,直线OP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FP时,直线OP的斜率的取值范围是(8,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.12.A解析:A【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可.【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95,所以中位数为90+91=90.52,故选A.【点睛】本题主要考查了中位数,茎叶图,属于中档题.二、填空题13.【分析】根据圆的性质可求得最长弦和最短弦的长度从而得到所有弦长为整数的直线条数从中找到长度不超过的直线条数根据古典概型求得结果【详解】由题意可知最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为: 解析:932【分析】根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过14的直线条数,根据古典概型求得结果. 【详解】由题意可知,最长弦为圆的直径:221326r =⨯=()0,0O 在圆内部且圆心到O 12=∴最短弦长为:210=∴弦长为整数的直线的条数有:()22510232⨯-+=条其中长度不超过14的条数有:()2141019⨯-+=条∴所求概率:932p =本题正确结果:932【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.14.【分析】直接利用长度型几何概型求解即可【详解】因为区间总长度为符合条件的区间长度为所以由几何概型概率公式可得在区间-12上随机取一个数x 则x ∈01的概率为故答案为:【点睛】解决几何概型问题常见类型有解析:13【分析】直接利用长度型几何概型求解即可. 【详解】因为区间总长度为()213--=, 符合条件的区间长度为101-=, 所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为13, 故答案为:13. 【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38 【解析】 【分析】根据几何槪型的概率意义,即可得到结论. 【详解】正方形的面积S =1,设阴影部分的面积为S , ∵随机撒1000粒豆子,有380粒落到阴影部分, ∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38, 故答案为:0.38. 【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.16.【分析】根据程序框图依次计算运行结果发现输出的S 值周期变化利用终止运行的条件判断即可求解【详解】由程序框图得:;第一次运行第二次运行第三次运行故周期为4当程序运行了2019次故的值为故答案为【点睛】 解析:12【分析】根据程序框图,依次计算运行结果,发现输出的S 值周期变化,利用终止运行的条件判断即可求解 【详解】由程序框图得:1,1S k ==; 第一次运行1,2;8S k == 第二次运行1212,3;842S k =⨯=== 第三次运行121,4;2S k =⨯==故周期为4, 当2020k =,程序运行了2019次,201945043=⨯+,故S 的值为12故答案为12本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题17.-1【分析】计算的值找出周期根据余数得到答案【详解】依次计算得:…周期为32019除以3余数为0故答案为-1【点睛】本题考查了程序框图的相关知识计算数据找到周期规律是解题的关键解析:-1 【分析】计算a 的值,找出周期,根据余数得到答案. 【详解】 依次计算得:2,1a i ==1,22a i ==1,3a i =-= 2,4a i == ….周期为32019除以3余数为0,1a =- 故答案为-1 【点睛】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4 【分析】执行程序,当4K =时循环结束,即可得出 【详解】因为第一次进入循环后1,1S K ==; 第二次进入循环后3,2S K ==; 第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4 【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得. 【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.20.2【解析】分析:直接利用回归方程将代入即可求得的估计值详解:∵回归方程为∴当时的估计值为故答案为82点睛:本题考查回归方程的运用考查学生的计算能力属于基础题解析:2 【解析】分析:直接利用回归方程,将25x =代入,即可求得y 的估计值. 详解:∵回归方程为0.4 1.8y x =-,∴当25x =时,y 的估计值为 0.425 1.88.2y =⨯-=.故答案为8.2.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.三、解答题21.(1)①优等品3件,合格品2件;②35;(2)选择乙生产方式. 【分析】(1)①根据频数分布表知:甲的优等品率为0.6,合格品率为0.4,即可得到抽去的件数;②记3件优等品为A ,B ,C ,2件合格品分别为a ,b ,从中随机抽2件,列举出基本事件的总数,利用古典概型及其概率的计算公式,即可求解;(2)分别计算出甲、乙种生产方式每生产100件所获得的利润为1T 元2T 元,比较即可得到结论. 【详解】(1)①由频数分布表知:甲的优等品率为0.6,合格品率为0.4,所以抽出的5件产品中,优等品3件,合格品2件.②记3件优等品为A ,B ,C ,2件合格品分别为a ,b ,从中随机抽2件,抽取方式有AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10种,设“这2件中恰有1件是优等品的事件”为M ,则事件M 发生的情况有6种,所以()63105P M ==.(2)根据样本知甲种生产方式生产100件农产品有60件优等品,40件合格品;乙种生产方式生产100件农产品有80件优等品,20件合格品. 设甲种生产方式每生产100件所获得的利润为1T 元, 乙种生产方式每生产100件所获得的利润为2T 元, 可得()()16055154025152800T =-+-=(元),()()28055202025202900T =-+-=(元),由于12T T <,所以用样本估计总体知乙种生产方式生产的农产品所获得的利润较高,该扶贫单位要选择乙生产方式来帮助该扶贫村来脱贫较好. 【点睛】本题主要考查了频率分布直方表与频率分布直方图的应用,其中解答中熟记在频率分布直方图中,各小长方形的面积表示相应各组的频率,且所有小长方形的面积的和等于1,合理利用古典概型及其概率的计算公式求解概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 22.(1)0.01;(2)69.44;(2)12. 【分析】(1)由纵坐标⨯组距=频率,以及所有组频率之和为1,即可列式求出t ; (2)根据频率分布直方图平均数公式,即可求得结果;(3)先求出25人中优秀人数为5人,再根据列举法,运用古典概型求出概率; 【详解】(1)由频率分布直方图可知:()0.250.0350.04.00581t t o +++++⨯=,解得:0.01t =(2)设这次比赛的平均数为x ,则0.0258560.0358640.04872x =⨯⨯+⨯⨯+⨯⨯0.018880.005896+⨯⨯+⨯⨯11.217.9223.04 6.47.04 3.8=+++++69.44=(3)25名工人参加比赛,优秀人数为:()250.010.010.00585⨯++⨯=人,5名优秀工人中[)76,92内有4人设为1234A A A A ,[]92,100有一人设为B ,则5人中选2人有以下情况:12A A ,13A A ,41A A ,1A B ,23A A ,24A A ,2A B ,34A A ,3A B ,4A B 共有10种情况,2人成绩均低于92分有12A A ,13A A ,41A A ,23A A ,24A A ,34A A ,共6种情况.则5人任选2人,两人成绩均低于92分的概率无63=105P =. 【点睛】本题主要考查频率分布直方图的应用,涉及到频率频数、平均数等以及古典概型求概率,同时考查对数据的处理能力.23.()()()()204848212812x xy xx x⎧≤≤⎪=≤≤⎨⎪-≤≤⎩;程序框图见解析;【解析】试题分析:根据题意可得到面积函数是一个分段函数,写出函数后,利用条件分支结构写出程序框图即可.试题由题意可得y =.程序框图如图:点睛:本题考查分段函数的算法写法,属于中档题,注意当分段函数为两段时,需要一个分支结构,如果分段函数三段时,需要两个分支结构才能完成,特别在写算法程序时,注意分支结构的连接,是与否的处理一定要细心.24.答案详见解析.【解析】【分析】根据题干要求写出循环结构的程序即可.【详解】程序如下:i=2sum=0DOsum=sum+ii=i+2LOOP UNTIL i>98PRINT sumEND【点睛】应用循环语句编写程序时需注意:①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”.25.(1)0.36 6.24y x =+;(2)8.76万吨.【分析】(1)由题意求得知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,运用公式求得b ,代入可求得y 关于t 的线性回归方程.(2)由(1)得的线性回归方程,代入年份代码7t =计算,可预测2020年该地区小龙虾的年产量.【详解】(1)由题知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,()()()61621 6.30.3617.5ˆi ii i i t t y y b t t ==--===-∑∑, 又 6.24=-=a y bt .所以,y 关于t 的线性回归方程为0.36 6.24y x =+.(2)由(1)得,当年份为2020年时,年份代码7t =,此时0.367 6.248.76=⨯+=y .所以,可预测,2020年该地区小龙虾的年产量为8.76万吨.【点睛】本题考查线性回归方程的求解,利用线性回归方程对总体进行估计,属于中档题. 26.(1)2552;(2)3173;(3)当他的答题数量7n =时,他的复赛成绩的期望值最大. 【分析】(1)由表可知,样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,再结合排列组合与古典概型即可得解;(2)先求出样本中的100名学生预赛成绩的平均值,即为μ,从而推出~(53Z N ,219),再根据正态分布的性质即可得解;(3)以随机变量ξ表示甲答对的题数,则~B ξ(,0.75)n ,记甲答完n 题所得的分数为随机变量X ,则2X ξ=,为了获取答n 道题的资格,甲需要“花”掉的分数为20.1()n n +,设甲答完n 题后的复赛成绩的期望值为()f n ,则2()1000.1()()f n n n E X =-++,最后利用配方法即可得解.【详解】解:(1)由题意得样本中成绩不低于60分的学生共有40分,其中成绩优良的人数为15人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件A ,则()1125152402552C C P A C == 答:“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”的概率为2552(2)由题意知样本中的100名学生预赛成绩的平均值为:100.1300.2500.3700.25900.1533x =⨯+⨯+⨯+⨯+⨯=,则53μ=,由2361σ=得19σ=,所以()()()()17210.158652P Z P Z P Z μσμσμσ≥=≥+=--<≤+≈, 所以,估计全市参加参赛的全体学生中,成绩不低于72分的人数为20000×0.15865=3173,即全市参赛学生中预赛成绩不低于72分的人数为3173.(3)以随机变量ξ表示甲答对的题数,则()~,0.75B n ξ,且()0.75E n ξ=,记甲答完n 题所加的分数为随机变量X ,则2X ξ=,∴()()2 1.5E X E n ξ==, 依题意为了获取答n 道题的资格,甲需要“花”掉的分数为:()()20.2123...0.1n n n ⨯++++=+,设甲答完n 题后的复赛成绩的期望值为()f n ,则()()()221000.1 1.50.17104.9f n n n n n =-++=--+, 由于*n N ∈,所以当7n =时,()f n 取最大值104.9.即当他的答题数量7n =时,他的复赛成绩的期望值最大.【点睛】本题考查古典概型、正态分布的性质、二项分布的性质及数学期望的实际应用,考查学生对数据的分析与处理能力,属于中档题.。
【人教版】高中数学必修三期末一模试题含答案
一、选择题1.在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数x ,则cos x π的值介于22与32之间的概率为( ) A .13B .14C .15 D .162.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17 D .413 3.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率为( ) A .334πB .2πC .4πD .334π4.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()3323π- B ()323π-C ()323π+ D ()23323ππ-+5.阅读下面的框图,运行相应的程序,输出S 的值为________.A.2 B.4 C.-4 D.-86.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.3n ,则输出的结果是()7.执行如图所示的程序框图,如果输入4A .32B .116C .2512D .137608.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A .17B .34C .36D .689.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元11.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 17612.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.在区间[]0,2上分别任取两个数m ,n ,若向量(),a m n =,()1,1b =,则满足1a b -≤的概率是______ .14.在区间[0,2]上随机取两个数,a b ,则事件“函数()1f x bx a =+-在[0,1]内有零点”的概率为_______.15.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______. 16.执行如图所示的程序框图,若输入的1,7S K ==则输出的k 的值为_______.17.下图是某算法的程序框图,则程序运行后输出的结果是 .18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.20.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.三、解答题21.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)22.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],其中第1组[20,30)有6人,得到的频率分布直方图如图所示.(1)求m,n的值,并估计抽取的n名群众中年龄在[40,60)的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.23.函数y=x1,x0,0,x0,x1,x0,-+>⎧⎪=⎨⎪+<⎩试写出给定自变量x,求函数值y的算法.24.电脑游戏中,“主角”的生存机会往往被预先设定,如某枪战游戏中,“主角”被设定生存机会5次,每次生存承受射击8枪(被击中8枪则失去一次生命机会).假设射击过程均为单子弹发射,试为“主角”耗用生存机会的过程设计一个算法,并画出程序框图.25.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x(单位:亿元)与该地区粮食产量y(单位:万亿吨)之间存在着线性相关关系,统计数据如下表:年份20142015201620172018(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 26.随着各国经贸关系的进一步加深,许多国外的热带水果进入国内市场,牛油果作为一种热带水果,越来越多的中国消费者对这种水果有了一种全新的认识,它富含多种维生素、丰富的脂肪和蛋白质,钠、钾、镁、钙等含量也高,除作生果食用外也可作菜肴和罐头.牛油果原产于墨西哥和中美洲,后在加利福尼亚州被普遍种植.因此加利福尼亚州成为世界上最大的牛油果生产地,在全世界热带和亚热带地区均有种植,但以美国南部、危地马拉、墨西哥及古巴栽培最多,并形成了墨西哥系、危地马拉系、西印度系三大种群,我国的广东、海南、福建、广西、台湾、云南及四川等地都有少量栽培.市场上的牛油果大部分都是进口的.为了调查市场上牛油果的等级代码数值x 与销售单价y 之间的关系,经统计得到如下数据:(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,利用前5组数据求出y 关于x 的线性回归方程;(2)若由(1)中线性回归方程得到的估计值与最后一组数据的实际值之间的误差不超过1,则认为所求回归方程是有效可靠的,请判断所求回归直线方程是否有效可靠? (3)若一果园估计可以收获等级代码数值为85的牛油果980kg ,求该果园估计收入为多少元.参考公式:对一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,b y bx =-.参考数据:516169.6i ii x y==∑,52117820i i x ==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据余弦函数的图象和性质,求出cos x π之间时,自变量x 的取值范围,代入几何概型概率计算公式,可得答案. 【详解】cos 2x π≤≤,11,22x ⎡⎤∈-⎢⎥⎣⎦ 则:1164x ≤≤或1146x -≤≤- 在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数,cos x π的值介于2与2之间的概率:11214611622P ⎛⎫⨯- ⎪⎝⎭==+ 故选:D. 【点睛】本题主要考查了余弦函数的图象与性质,几何概型,考查了分析问题的能力,属于中档题.2.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭.故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.3.A解析:A 【分析】设圆的半径为R,且由题意可得是与面积有关的几何概率构成试验的全部区域的面积及正三角形的面积代入几何概率的计算公式可求. 【详解】解:设圆的半径为R构成试验的全部区域的面积:2S R π=记“向圆O 内随机投一点,则该点落在正三角形内”为事件A , 则构成A22) 由几何概率的计算公式可得, ()224P A R π==故选:A . 【点睛】本题主要考查了与面积有关的几何概型概率的计算公式的简单运用,关键是明确满足条件的区域面积,属于基础试题.4.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 23π⨯⨯=23π- 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222233πππ⎛+⨯-=- ⎝ ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.5.C解析:C 【解析】执行程序一次,8,2s n =-=,执行第二次,4,1s n =-=,满足判断框条件,跳出循环,输出4s =-,故选C.6.C解析:C 【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.7.B解析:B 【分析】根据题意,运行程序可实现111112341S n =++++⋯+-运算求值,从而得答案. 【详解】第一次执行程序,1,2S i ==,第二次执行程序,11,32S i =+=, 第三次执行程序,111,423S i =++=, 因为44=,满足条件,跳出循环,输出结果116S =. 故选:B . 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于容易题.8.B解析:B 【分析】根据程序框图进行模拟运算即可得出. 【详解】根据程序框图,输入的102a =,238b =,因为ab ,且a b <,所以238102136b =-=;第二次循环,13610234b =-=;第三次循环,1023468a =-=;第四次循环,683434a =-= ,此时34a b ==,输出34a =,故选B . 【点睛】本题主要考查更相减损术的理解以及程序框图的理解、识别和应用. 9.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 10.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.11.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 12.C解析:C 【解析】 【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数. 【详解】根据题意得,用分层抽样在各层中的抽样比为421105020=,则在高三年级抽取的人数是14001625⨯=人, 故选C. 【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题.二、填空题13.【分析】由已知向量的坐标求出满足的所满足的条件结合数形结合得出答案【详解】由得由得即满足作出图像如图:圆的面积为正方形的面积为则的概率是故答案为:【点睛】本题考查了几何概型的概率求法解题的关键是变量解析:4π【分析】由已知向量的坐标求出满足1a b -≤的,m n 所满足的条件,结合[],0,2m n ∈,数形结合得出答案. 【详解】由(),a m n =,()1,1b =,得()1,1a b m n -=-- 由1a b -≤,得()()22111m n -+-≤,即()()22111m n -+-≤,,m n 满足0202m n ≤≤⎧⎨≤≤⎩,作出图像如图:圆()()22111m n -+-=的面积为π,正方形OABC 的面积为4. 则1a b -≤的概率是4π . 故答案为:4π 【点睛】本题考查了几何概型的概率求法,解题的关键是变量满足的条件,属于基础题.14.【解析】【分析】在上任取两个数在以2为棱长的正方形内在内有零点等价于即求出可行域的面积利用几何概型概率公式求解即可【详解】在上任取两个数则在以2为棱长的正方形内因为在内有零点所以即表示如图所示的梯形解析:38【解析】【分析】在[]0,2上任取两个数,a b,(),a b在以2为棱长的正方形内,()f x在[]0,1内有零点,等价于()()010f f≤,即()()110a b a-+-≤,求出可行域的面积,利用几何概型概率公式求解即可.【详解】在[]0,2上任取两个数,a b,则(),a b在以2为棱长的正方形内,因为()f x在[]0,1内有零点,所以()()010f f≤,即()()110a b a-+-≤,(),a b表示如图所示的梯形区域,由几何概型概率公式可得“函数()1f x bx a=+-在[]0,1内有零点”的概率为()112132228⨯+⨯=⨯,故答案为38.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.15.【解析】【分析】由题意可知集合U 的子集有个然后求出任取集合U 的两个子集AB 的个数m 及时AB 的所有个数n 根据可求结果【详解】解:集合23的子集有个集合AB 是集合U 的子集任取集合U 的两个子集AB 的所有个解析:3()4n【解析】 【分析】由题意可知集合U 的子集有2n 个,然后求出任取集合U 的两个子集A 、B 的个数m ,及A B ⊆时A 、B 的所有个数n ,根据nP m=可求结果. 【详解】 解:集合{1,U =2,3,⋯,}n 的子集有2n 个,集合A 、B 是集合U 的子集,∴任取集合U 的两个子集A 、B 的所有个数共有22n n ⨯个,A B ⊆,①若A =∅,则B 有2n 个,②若A 为单元数集,则B 的个数为112n nC -⨯个, ⋯同理可得,若{1,A =2,3}n ⋯,则B =只要1个即012n n C =⨯,则A 、B 的所有个数为112202222(12)3n n n n n nn n n C C C --+⨯+⨯+⋯+⨯=+=个,集合A 紧跟集合B ”的概率为33()224n nn nP ==⨯. 故答案为3()4n【点睛】本题考查古典概率公式的简单应用,解题的关键是基本事件个数的确定.16.5【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到的知识点解析:5 【分析】模拟执行程序框图,依次写出每次循环得到的,S K 的值,当5,58S K ==时,根据题意,退出循环,输出结果. 【详解】模拟执行程序框图,可得1,7S K ==;771,688S K =⋅==;763,5874S K =⋅==;355,5468S K =⋅==; 此时,57810<,退出循环,输出结果, 故答案为5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.17.10【解析】当时则;当时则;当时则;当时此时运算程序结束输出应填答案解析:10 【解析】当0,1s n ==时,0(1)109s =+-+=<,则112n =+=;当0,2s n ==时,20(1)239s =+-+=<,则213n =+=;当3,3s n ==时,33(1)359s =+-+=<,则314n =+=;当5,4s n ==时,45(1)4109s =+-+=>,此时运算程序结束,输出10s =,应填答案10.18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4 【分析】执行程序,当4K =时循环结束,即可得出 【详解】因为第一次进入循环后1,1S K ==; 第二次进入循环后3,2S K ==; 第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4 【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.【解析】分析:先由茎叶图得数据再根据平均数公式求平均数详解:由茎叶图可知5位裁判打出的分数分别为故平均数为点睛:的平均数为解析:【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5位裁判打出的分数分别为8989909191,,,,,故平均数为89+89+90+91+91905=.点睛:12,,,n x x x 的平均数为12nx x x n+++.20.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.三、解答题21.(1)30,10x y ==;2.3分钟;(2)1720. 【分析】(1)已知得25540,3060y x ++=+=,可求得,x y ,再运用1230325455100x y ⨯+⨯+⨯+⨯+⨯可估计顾客一次购物的结算时间的平均值;(2)利用古典概率公式可求得所求和概率. 【详解】(1)由已知得25540,3060y x ++=+=,解得30,10x y ==.该超市所以顾客一次购物的结算时间可视为一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为130230325410552.3100⨯+⨯+⨯+⨯+⨯=分钟.(2)记A 为事件“一位顾客一次购买的结算时间不超过3分钟”,12,A A 分别表示事件“该顾客一次购物的结算时间为4分钟”,“该顾客一次购物的结算时间为5分钟”,将频率视为概率得1210151(),()1001010020P A P A ====, 12()1()()P A P A P A =--11171102020=--=, 故一位顾客一次购物的结算时间不超过3分钟的概率为1720. 【点睛】本题考查数据的分析和处理,平均数的求得,以及古典概率的求法,属于中档题. 22.(1)120n =,0.035m =,年龄在[40,60)的人数为60(2)45【分析】(1)根据第一组的频数和频率可得n ,由所有频率和为1可得m ,再求得[40,60)间的频率后可得人数;(2)把第一组人数编号,如男性为1,x 2x ,女性为1,y 2,y 3,y 4y ,然后用列举法写出任取3人的所有基本事件及至少有两名女生的基本事件,计数后可得所求概率. 【详解】 (1)61200.00510n ==⨯,设第2组[30,40)的频率为f ,1(0.0050.010.020.03)100.35f =-+++⨯=, 所以0.350.03510m ==, 第3组和第4组的频率为0.03100.02100.5⨯+⨯=, 年龄在[40,60)的人数为1200.560⨯=;(2)记第1组中的男性为1,x 2x ,女性为1,y 2,y 3,y 4y ,随机抽取3名群众的基本事件是:()121,,,x x y ()122,,,x x y ()123,,,x x y ()124,,x x y ,()121,,,x y y ()132,,,x y y ()113,,,x y y ()141,,,x y y ()124,,,x y y ()134,,,x y y ()221,,,x y y ()232,,x y y ,()213,,,x y y ()241,,,x y y ()224,,,x y y ()234,,,x y y ()123,,,y y y ()124,,,y y y ()234,,,y y y ()134,,y y y 共20种;其中至少有两名女性的基本事件是:()121,,,x y y ()132,,,x y y ()113,,,x y y ()141,,,x y y ()124,,,x y y ()134,,,x y y ()221,,,x y y ()232,,,x y y ()213,,,x y y ()241,,,x x y ()244,,,x y y ()234,,,x y y ()123,,,y y y ()124,,,y y y ()234,,,y y y ()134,,y y y 共16种.所以至少有两名女性的概率为2164205P ==. 【点睛】本题考查频率分布直方图,考查古典概型.解题关键是掌握性质:频率分布直方图中所有频率(小矩形面积)之和为1. 23.见解析 【解析】试题分析:本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中分段函数的解析式y=1,0,0,0,1,0,x x x x x -+>⎧⎪=⎨⎪+<⎩ ,然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可写出算法. 试题因为函数是分段函数,故要先输入变量值,再进行判断,分别进行不同的计算. 算法如下: 第一步,输入x.第二步,若x>0,则令y=-x+1后执行第五步;否则执行第三步. 第三步,若x=0,则令y=0后执行第五步;否则执行第四步. 第四步,令y=x+1. 第五步,输出y 的值.点睛:分析题意,解答此类问题,可以依据已知的分段函数,将x 的取值范围作为条件设计算法;联系题设,依据不同x 的取值范围下对应不同的函数式结合算法的概念写出算法过程. 24.见解析 【解析】试题分析:(方法一)“主角”的所有生存机会共能承受8×5=40枪(第40枪被击中,则生命结束).设“主角”被击中枪数为i ,设计程序框图如图甲所示.(方法二)电脑中预设共承受枪数为40,“主角”的生存机会以“减数”计数,设计程序框图如图乙所示. 试题(方法一)“主角”的所有生存机会共能承受8×5=40枪(第40枪被击中,则生命结束).设“主角”被击中枪数为i ,程序框图如图甲所示.(方法二)电脑中预设共承受枪数为40,“主角”的生存机会以“减数”计数,程序框图如图乙所示.25.(1)ˆ 2.24yx =+;(2)19.4万亿吨. 【分析】(1)利用最小二乘法公式求回归直线的系()()()51521ˆiii ii x x y y bx x ==--=-∑∑,即可得答案;(2)将7x =代入回归方程ˆ 2.24yx =+,可得,ˆ19.4y =,即可得答案; 【详解】解:(1)由表中所给数据可得,91012118105x ++++==,2526312721265y ++++==,代入公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,解得ˆ 2.2b=,所以ˆˆ4a y bx =-=. 故所求的y 关于x 的线性回归直线方程为ˆ 2.24yx =+. (2)由题意,将7x =代入回归方程ˆ 2.24yx =+,可得,ˆ19.4y =. 所以预测2019年该地区的粮食产量大约为19.4万亿吨. 【点睛】本题考查利用最小二乘法求回归直线方程、回归方程进行预报,考查数据处理能力. 26.(1)0.1849.968y x =+;(2)所求回归直线方程是有效可靠的;(3)该果园预计收入25095.84元. 【分析】(1)求出x 的平均值x ,y 的平均值y ,再根据公式求出b 和a ,即可得出回归方程; (2)将88x =代入(1)中的回归方程,求出y ,然后用25.8y 和1比较即可判断;(3)将85x =代入回归方程估计出单价,即可计算出收入. 【详解】(1)由题意,得3848586878585x ++++==,16.818.820.822.82420.645y ++++==,则515222156169.655820.641840.1841782055810005i ii ii x y x yb xx ==-⋅-⨯⨯====-⨯-∑∑,20.640.184589.968a y bx =-=-⨯=,故所求回归方程为0.1849.968y x =+;(2)当88x =时,0.184889.96826.16y =⨯+=,所以26.1625.80.361-=<,所以所求回归直线方程是有效可靠的; (3)当85x =,0.184859.96825.608y =⨯+=, 所以25.60898025095.84⨯=(元), 所以该果园预计收入25095.84元.【点睛】本题考查回归方程的求法以及利用回归方程估计值,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)
下面各题四个选项,其中只有一个是符合题意的.请将正确选项填涂在答题卡相应的位置.
1.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,最小的数是
A.aB.b
C.cD.d
2.在我国传统的房屋建筑中,窗棂是重要的组成部分,它不仅具有功能性作用,而且具有高度的艺术价值.下列窗棂的图案中,不是中心对称图形的是
(3)在这1料中的信息,你认为在这10个国家中通信设施现状最好的国家是_________,你的理由是.
23.已知:A(1,1),B(1,3),C(2,1),一次函数 的图像记为l,l经过点C.
(1)若l经过点B,求该一次函数的表达式;
(2)若l与线段AB有交点,直接写出k的取值范围;
17.计算: .
18.解不等式: ,并在数轴上标出不等式的解集.
19.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥BC交AB于点E,EF⊥BD于点F.求证:F是BD的中点.
20.已知关于x的一元二次方程 有两个实数根.
(1)求m的取值范围;
(2)若m为正整数,且该方程的根都是整数,求m的值及方程的解.
人大附中中考数学模拟练习2017.6
命题人:薛坤王鼎
学校班级姓名准考证号
考生须知
1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
22.“一带一路”倡议提出3年多来,交通、通信、能源等各项相关建设取得积极进展,也为增进各国民众福祉提供了新的发展机遇.如图,是“一带一路”沿线部分国家的通信设施现状统计图.观察下图,请回答下列问题:
(1)在这10个国家中,互联网服务器拥有个数最多的国家是;
(2)在这10个国家中,电话普及率最高的国家是;
二、填空题(本题共18分,每小题3分)
11.分解因式: _________
12.函数 中, 的取值范围是:______________
13.如图,在平面直角坐标系xOy中,A(3,4)为⊙O上一点,B为⊙O上一点,请写出一个符合要求的点B的坐标.
14.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,将小正方形的面积用不同方法表示可以得到的等式为__________________.
16.阅读下面材料:
如图,已知△ABC中AB AC,O为AB中点,能否仅使用圆规作出BC的中点?
小明认为可以,作法如下:
如图,以O为圆心OA为半径作圆与BC,CA分别交于D,E.
点D即为BC的中点.
请回答,小明的作图依据是.
三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分)
(简称 )的统计图,当 不大于 时称空气质量为“优”,由统计图得到下列说法中,正确的是
A.3月4日的 浓度为3月1日至3月7日这七天 浓度的中位数
B.这七天的 浓度的平均数是
C.观察统计图可发现 浓度升高时 上升, 浓度降低时 下降,可推测空气质量指数 很可能与 浓度有关
D.这七天中共有4天的空气质量为“优”
A. B.
C. D.
9.如图,直线m⊥n.在平面直角坐标系 中,x轴∥n,y轴∥m.如果以O1为原点,点A的坐标为(1,-1).将点O1平移 个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是
A.(-3,-1)B.(-1,-3)
C.(-2,-1)D.( +1, -1)
10.如图是北京2017年3月1日-7日的 浓度(单位: )和空气质量指数
A. B. C. D.
3.一种细胞的直径约为 米,将 用科学记数法表示为
A. B. C. D.
4.如图,五边形ABCDE的外角和是
A.180°B.360°
C.540°D.600°
5. 下面的四个展开图中,是右图所示的三棱柱纸盒的展开图的是
A. B.C.D.
6.如图, ∥ , , ,则 的度数为
A.22°
B.34°
C.56°
D.78°
7.甲、乙、丙三车从A城出发匀速前往B城.在整个行程中,汽车
离开A城的距离s与时刻t的对应关系如下图所示.那么8:00时,
距A城最近的汽车是
A.甲车B.乙车
C.丙车D.甲车和乙车
8.小宝的妈妈让他从袋子里挑选一颗糖果.小
宝无法看到袋子里的糖果.下图是袋子里各种
颜色糖果的数量,则小宝选到黄色糖果的概率是
15.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如下:
移植的棵数
300
700
1000
5000
15000
成活的棵数
280
622
912
4475
13545
成活的频率
0.933
0.889
0.912
0.895
0.903
(1)根据表中的数据,估计这种树苗移植成活的概率为;
(2)如果该地区移植10万棵这种树苗,那么移植成活的树苗大约为万棵.
(3)已知D是x轴上一点,若△ACD是直角三角形,直接写出点D的坐标.
24.阅读下面材料:
当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2013 2016年互联网教育市场规模的相关数据,绘制的统计图表的一部分.
(1)补全条形统计图;
(2)根据材料中的信息,预估2017年互联网教育市场规模的增长率约为,你的预估理由是;
21.列方程解应用题:
2016年底以来,京城路边排满了各种颜色的共享单车,本着低碳出行与强身健体的理念,赵老师决定改骑共享单车上下班.通过一段时间的体验,赵老师发现每天上班所用时间比自驾车多半小时.已知赵老师家距学校8千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑共享单车每小时行驶多少千米.