九年级下期开学数学测试题
九年级(下)开学数学试卷(含答案解析)
九年级(下)开学数学试卷(典型题)姓名:得分:日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 在如图所示的花坛的图案中,圆形的内部有菊花组成的内接等边三角形,则这个图案()A.是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形又不是中心对称图形2、(3分) 下列事件中发生的可能性为0的是()A.抛一枚均匀硬币,落地后正面朝上B.今天黄冈市最高气温为88℃C.路边抛掷一石头,石头终将落地(空中无任何遮拦)D.不透明袋子中放了大小相同的兵兵球和金属球,从中去摸取出兵兵球3、(3分) 对于抛物线y=(x-1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大4、(3分) OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80°B.40°C.50°D.20°5、(3分) 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)B.50(1+x)C.50+50(1+x)+50(1+x)D.50(1+x)+50(1+x)2=60 2=120 2=120 2=1206、(3分) 已知抛物线y=(m-1)x2+4x-3(m为常数)与x轴有两个交点,则m的取值范围是()A.m>−13B.m<−13C.m≥−13D.m>−13,且m≠17、(3分) 一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8、(3分) 如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a-b=0;②当-2<x<1时,y>0;③四边形ACBD是菱形;④9a-3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共 8 小题,共 24 分)9、(3分) 点(-4,3)关于原点对称的点的坐标是______.10、(3分) 把方程x2+2x-5=0配方后的方程为______.11、(3分) 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.12、(3分) 当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm ),那么该圆的半径为______cm .13、(3分) 如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是______.14、(3分) 如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______.15、(3分) 点A 在双曲线y=3x 上,点B 在双曲线y=k x (k≠0)上,AB∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是6,则k 的值为______.16、(3分) 如图,已知A (2√3,2)、B (2√3,1),将△AOB 绕着点O 逆时针旋转,使点A旋转到点A′(-2,2√3)的位置,则图中阴影部分的面积为______.三、解答题(本大题共 9 小题,共 72 分)17、(8分) 用适当的方法解下列方程(1)x2-4x-5=0;(2)3x2+4x-1=0.18、(6分) 如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.19、(6分) 某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销量,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天可多售出4箱.(1)如果要使每天销售该饮料获利14000元,则每箱应降价多少元.(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应降价多少?若不能,请说明理由.20、(6分) 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.21、(6分) 已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22、(8分) 如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,3),B(n,-2)两x点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)请求出△ABC的面积;图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(-2,y2)是函数y=k2x23、(8分) 如图,AB为⊙O的直径,C为中点,CD⊥BE于D.(1)判断DC与⊙O的位置关系,并说明理由;(2)若DC=3,⊙O半径为5,求DE长.24、(10分) 某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润元,厂家如何生产可使每天获利最大?最大利润是多少?降低x10025、(14分) 如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.九年级(下)开学数学试卷【第 1 题】【答案】A【解析】解:所给图形是轴对称图形,但不是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【第 2 题】【答案】B【解析】解:A、抛一枚均匀硬币,落地后正面朝上,是随机事件;B、今天黄冈市最高气温为88℃是不可能事件,可能性为0;C、路边抛掷一石头,石头终将落地(空中无任何遮拦)是必然事件,可能性为1;D、不透明袋子中放了大小相同的乒乓球和金属球,从中去摸取出乒乓球是随机事件;故选:B.根据事件发生的可能性既不是0,也不是100%的事件就是可能发生也可能不发生的事件,即不确定事件,从而得出答案.此题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.【第 3 题】【答案】D【解析】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=(x-1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.根据二次函数的性质,二次函数的顶点式即可判断;此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 4 题】【答案】A【解析】解:∵∠C=40°,∴∠AOB=2∠C=80°.故选:A.直接根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,求解即可求得答案.此题考查了圆周角定理.注意熟记定理是解此题的关键.【第 5 题】【答案】D【 解析 】解:设二、三月份每月的平均增长率为x ,则二月份生产机器为:50(1+x ),三月份生产机器为:50(1+x )2;又知二、三月份共生产120台;所以,可列方程:50(1+x )+50(1+x )2=120.故选:D .主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x ,根据“计划二、三月份共生产120台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.【 第 6 题 】【 答 案 】D【 解析 】解:∵y=(m-1)x 2+4x-3(m 为常数)与x 轴有两个交点,∴△=16-4(m-1)(-3)>0,且m-1≠0 解得m >−13,且m≠1.故选:D .根据b 2-4ac 与0的关系即可判断出二次函数y=(m+1)x 2+4mx+4m-3的图象与x 轴交点的个数.本题考查了二次函数y=ax 2+bx+c 的图象与x 轴交点的个数的判断:(1)当b 2-4ac >0时,二次函数ax 2+bx+c+2=0的图象与x 轴有两个交点;(2)当b 2-4ac=0时,二次函数ax 2+bx+c+2=0的图象与x 轴有一个交点;(3)当b 2-4ac <时,二次函数ax 2+bx+c+2=0的图象与x 轴没有交点.【 第 7 题 】【 答 案 】B【 解析 】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R×10π,解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选:B .利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.【第 8 题】【答案】D【解析】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),∴该抛物线的对称轴为x=-b2a =-0.5,∴a=b,a-b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(-2,0)、B(1,0),∴当-2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=-3时,y<0,即y=9a-3b+c<0,④错误.综上可知:正确的结论为①②③.故选:D.①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=-b2a =-0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当-2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=-3时,y<0,即可得出9a-3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.【第 9 题】【答案】(4,-3)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-4,3)关于原点对称的点的坐标是(4,-3).故答案为(4,-3).平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.【第 10 题】【答案】(x+1)2=6【解析】解:x2+2x-5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.移项后配方,再变形,即可得出答案.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.【第 11 题】【答案】45【解析】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360-135=225,∵0<n<180,∴此种情形不合题意,故答案为45分两种情形讨论,分别画出图形求解即可.本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【 第 12 题 】 【 答 案 】 25 【 解析 】解:连接OA ,过点O 作OD⊥AB 于点D ,∵OD⊥AB ,∴AD=12AB=12(9-1)=4cm ,设OA=r ,则OD=r-3, 在Rt△OAD 中,OA 2-OD 2=AD 2,即r 2-(r-3)2=42,解得r=256cm . 故答案为:256.连接OA ,过点O 作OD⊥AB 于点D ,由垂径定理可知,AD=12AB=12(9-1)=4,设OA=r ,则OD=r-3,在Rt△OAD 中利用勾股定理求出r 的值即可.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【 第 13 题 】 【 答 案 】16【 解析 】解:如图所示:连接OA ,∵正六边形内接于⊙O ,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠OBC=60°, ∴OC∥AB ,∴S △ABC =S △OBC , ∴S 阴=S 扇形OBC ,则飞镖落在阴影部分的概率是16; 故答案为:16.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S 扇形OBC是解题关键.【 第 14 题 】 【 答 案 】(√6,2)或(-√6,2) 【 解析 】解:依题意,可设P (x ,2)或P (x ,-2).①当P 的坐标是(x ,2)时,将其代入y=12x 2-1,得 2=12x 2-1,解得x=±√6,此时P (√6,2)或(-√6,2);②当P 的坐标是(x ,-2)时,将其代入y=12x 2-1,得 -2=12x 2-1,即-1=12x 2无解.综上所述,符合条件的点P 的坐标是(√6,2)或(-√6,2); 故答案是:(√6,2)或(-√6,2).当⊙P 与x 轴相切时,点P 的纵坐标是2或-2,把点P 的坐标坐标代入函数解析式,即可求得相应的横坐标.本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.【 第 15 题 】 【 答 案 】 9 【 解析 】解:设A (a ,3a ),则B (ak3,3a )∴AB=ak3−a ∵S ABCD =AB×AD∴(ak 3−a )×3a =6 ∴k=9故答案为9设A (a ,3a ),则B (ak 3,3a ),可表示AB 的长.根据矩形ABCD 的面积是6,求得k 的值. 本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征.关键是灵活运用反比例函数系数k 的几何意义解决问题.【 第 16 题 】 【 答 案 】34π【 解析 】解:∵A (2√3,2)、B (2√3,1),∴OA=4,OB=√13,∵由A (2√3,2)使点A 旋转到点A′(-2,2√3), ∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S 【formula error 】=S OBC ,∴阴影部分的面积等于S 扇形A'OA -S 扇形C'OC =14π×42-14π×(√13)2=34π, 故答案为:34π.由A (2√3,2)使点A 旋转到点A′(-2,2√3)的位置易得旋转90°,根据旋转的性质可得,阴影部分的面积等于S 扇形A'OA -S 扇形C'OC ,从而根据A ,B 点坐标知OA=4,OC=OB=√13,可得出阴影部分的面积.此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC ,从而得到阴影部分的表达式.【 第 17 题 】 【 答 案 】解:(1)(x-5)(x+1)=0, x-5=0或x+1=0, ∴x 1=5,x 2=-1;(2)∵a=3,b=4,c=-1, ∴b 2-4ac=28>0, ∴x=−4±√282×3=−2±√73, ∴x 1=−2+√73,x 2=−2−√73.【 解析 】(1)利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.【 第 18 题 】 【 答 案 】(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得, ∴DB=CB ,∠ABD=∠EBC ,∠ABE=60°, ∵AB⊥BC , ∴∠ABC=90°,∴∠DBE=∠CBE=30°, 在△BDE 和△BCE 中,∵{DB =CB∠DBE =∠CBE BE =BE,∴△BDE≌△BCE (SAS ); (2)四边形ABED 为菱形; 由(1)得△BDE≌△BCE , ∵△BAD 是由△BEC 旋转而得, ∴△BAD≌△BEC ,∴BA=BE ,AD=EC=ED , 又∵BE=CE ,∴四边形ABED 为菱形.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.【第 19 题】【答案】解:(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120-x)(100+2x)=14000,整理得x2-70x+1000=0,解得x1=20,x2=50;∵为了扩大销量,尽快减少库存,∴x=50.答:每箱应降价50元,可使每天销售饮料获利14000元.(2)由题意得:(120-x)(100+2x)=14500,整理得x2-70x+1250=0,∵△=702-4×1250<0,∴此方程无实数根,故该超市每天销售这种饮料的获利不可能达14500元.【解析】(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;(2)根据题意列出方程,然后用根的判别式去验证.本题考查了一元二次方程在实际生活中的应用.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,本题也可利用二次函数求最值.【第 20 题】【答案】解:列表得:1 2 3 4yx(x,y)1 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=-x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=-x+5图象上的概率为:P=412=13.【解析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【第 21 题】【答案】解:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴△=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【解析】(1)根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出结论; (2)由根与系数的关系可得x 1+x 2=6①、x 1•x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=-x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20-4m≥0;(2)分x 2≥0和x 2<0两种情况求出x 1、x 2的值.【 第 22 题 】 【 答 案 】解:(1)把A (2,3)代入y=k2x ,得k 2=6, ∴反比例函数的解析式是y=6x ;∵B (n ,-2)在反比例函数y=6x 的图象上,∴n=-3,即B 的坐标为(-3,-2),把A (2,3),B (-3,-2)代入y=k 1x+b ,得 {2k 1+b =3−3k 1+b =−2,解得{k 1=1b =1, 即一次函数的解析式为y=x+1;(2)∵BC⊥x 轴,B (-3,-2),A (2,3) ∴BC=2,∴S △ABC =12•BC•|2-(-3)|=12×2×5=5;(3)∵P (p ,y 1),Q (-2,y 2)是函数y=6x 图象上的两点,且y 1≥y 2, ∴当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2, 当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0, 即p 的取值范围是p≤-2或p >0. 【 解析 】(1)根据一次函数y=k 1x+b 与反比例函数y=k 2x 的图象交于A (2,3),B (n ,-2)两点,可以分别求得一次函数与反比例函数的解析式;(2)根据点A 和点B 的坐标可以求得△ABC 的面积; (3)根据反比例函数的性质可以求得p 的取值范围.本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.【 第 23 题 】 【 答 案 】解:(1)DC与⊙O相切.理由如下:连结AE、OC,它们相交于F点,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵CD⊥BE,∴∠D=90°,∴CD∥AE,又∵C为中点,∴OC⊥AE,AF=EF,∴OC⊥CD,∴CD为⊙O的切线;(2)∵∠D=∠DCF=∠CFE=90°,∴四边形CFED为矩形,∴EF=CD=3,DE=CF,∴AF=3,在Rt△OFA中,OA=5,∴OF=√OA2−AF2=4,∴CF=OC-OF=5-4=1,∴DE=1.【解析】(1)连结AE、OC,它们相交于F点,根据圆周角定理由AB为⊙O的直径得到∠AEB=90°,而CD⊥BE,则CD∥AE,由于C为中点,根据垂径定理的推论得到OC⊥AE,AF=EF,所以OC⊥CD,于是根据切线的判定定理得到CD为⊙O的切线;(2)易得EF=CD=3,DE=DF,则AF=3,再根据勾股定理计算出OF,然后计算出CF,从而可得到DE的长.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理以及垂径定理的推论.【第 24 题】【答案】解:(1)根据题意可得:y=20x+15(600-x)=5x+9000.∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得:50 x+35(600-x)≥26400,解得:x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3)根据题意可得:y=(20-x100)x+15(600-x)=-1100(x-250)2+9625,∵−1100<0,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解析】(1)根据题意,即可得y关于x的函数关系式为:y=20x+15(600-x),然后化简即可求得答案;(2)首先根据题意可得不等式:50x+35(600-x)≥26400,即可求得x的取值范围,又由一次函数的增减性,即可求得该酒厂每天至少获利多少元;(3)首先表示出获利与x之间的关系进而得出函数最值.此题考查了一次函数与不等式的实际应用、二次函数的应用.解题的关键是理解题意,根据题意列得一次函数解析式与不等式.【第 25 题】【答案】解:(1)由抛物线y=-x 2+bx+c 过点A (-1,0)及C (2,3)得,{−1−b +c =0−4+2b +c =3, 解得{b =2c =3, 故抛物线为y=-x 2+2x+3;又设直线为y=kx+n 过点A (-1,0)及C (2,3),得{−k +n =02k +n =3, 解得{k =1n =1, 故直线AC 为y=x+1;(2)∵y=-x 2+2x+3=-(x-1)2+4,∴D (1,4),当x=1时,y=x+1=2,∴B (1,2),∵点E 在直线AC 上,设E (x ,x+1).①如图2,当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3),∵F 在抛物线上,∴x+3=-x 2+2x+3,解得,x=0或x=1(舍去),∴E (0,1);②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),∵F 在抛物线上,∴x -1=-x 2+2x+3, 解得x=1−√172或x=1+√172, ∴E (1−√172,3−√172)或(1+√172,3+√172),综上,满足条件的点E 的坐标为(0,1)或(1−√172,3−√172)或(1+√172,3+√172);(3)方法一:如图3,过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,设Q (x ,x+1),则P (x ,-x 2+2x+3)∴PQ=(-x 2+2x+3)-(x+1)=-x 2+x+2又∵S △APC =S △APQ+S △CPQ=12PQ•AG=12(-x 2+x+2)×3=-32(x-12)2+278, ∴面积的最大值为278;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图3, 设Q (x ,x+1),则P (x ,-x 2+2x+3)又∵S △APC =S △APH +S 直角梯形PHGC -S △AGC=12(x+1)(-x 2+2x+3)+12(-x 2+2x+3+3)(2-x )-12×3×3=-32x 2+32x+3=-32(x-12)2+278,∴△APC 的面积的最大值为278. 【 解析 】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)需要分类讨论:①当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3)和②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),然后利用二次函数图象上点的坐标特征可以求得点E 的坐标;(3)方法一:过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,如图1.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据两点间的距离公式可以求得线段PQ=-x 2+x+2;最后由图示以及三角形的面积公式知S △APC =-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图2.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据图示以及三角形的面积公式知S △APC =S △APH +S 直角梯形PHGC -S △AGC ═-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值. 本题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数解析式,平行四边形的性质,二次函数的性质,三角形的面积,有一定难度.解答(2)题时,要对点E 所在的位置进行分类讨论,以防漏解.。
九年级下开学数学试卷含答案解析
九年级(下)开学数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3 B.x1=4,x2=﹣2 C.x1=﹣1,x2=3 D.x1=﹣4,x2=2 2.点P(﹣1,3)关于x轴对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(﹣3,1)3.在函数中的y=,自变量x的取值范围是()A.x>1 B.x≠2 C.x>1且x≠2 D.x≥1且x≠24.有一斜坡的水平距离为10米,铅直高度为10米,则坡度为()A.30°B.60°C.1:D.:15.下列方程中有两个相等实数根的是()A.2x2+4x+35=0 B.x2+1=2x C.(x﹣1)2=﹣1 D.5x2+4x=16.一次函数y=kx+b(k>0,b>0)的图象可能是下面图象中的()A.B.C.D.7.Rt△ABC中,∠C=90°,如果sinA=,那么cosB的值为()A.B.C.D.不能确定8.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是()A.9cm B.10cm C.10.5cm D.11cm9.已知x1和x2是方程2x2+3x﹣1=0的两个根,则的值是()A.3 B.﹣3 C.D.﹣10.小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回.父亲看了10分报纸后,用了15分返回家.下面的图形中表示父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题(本题共9小题,每小题4分,共36分)11.如果点P1(﹣2,3)和P2(﹣2,b)关于x轴对称,则b=.12.一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是.13.一元二次方程(m+1)x2﹣2mx=1的一个根是3,则m=.14.若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.15.已知方程x2﹣3x﹣2=0的两根为x1、x2,则x1+x2=,x12+x22=.16.已知一次函数y=kx+5过点P(﹣1,2),则k=.17.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号).18.计算:sin245°+cot60°•cos30°=.19.一次函数y=2x﹣3+b中,y随着x的增大而,当b=时,函数图象经过原点.三、解答题(本题共74分)20.解方程(1)x2﹣2x﹣3=0(2)y2+8y﹣1=0(3)=3解方程组:(4).21.计算:+2sin60°﹣3tan30°.22.某工程队修建一条高速公路,在某座山处要打通一条东西走向的隧道AB(如图),为了预算造价,应测出隧道AB的长,为此,在A的正南方向1500米的C处,测得∠ACB=62°,求隧道AB的长.23.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.24.已知直线y=kx+b与y=﹣平行,且和直线y=﹣交于y轴上的同一点,求直线的解析式.25.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?26.如图一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,求直线AB的一次函数解析式及△AOC的面积.2015-2016学年北京市丰台区普通中学九年级(下)开学数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3 B.x1=4,x2=﹣2 C.x1=﹣1,x2=3 D.x1=﹣4,x2=2【考点】解一元二次方程-公式法.【分析】首先把方程化为一般形式,利用公式法即可求解.【解答】解:(x+1)(x﹣3)=5,x2﹣2x﹣3﹣5=0,x2﹣2x﹣8=0,化为(x﹣4)(x+2)=0,∴x1=4,x2=﹣2.故选:B.2.点P(﹣1,3)关于x轴对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(﹣3,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(﹣1,3)关于x轴对称的点的坐标是(﹣1,﹣3),故选:A.3.在函数中的y=,自变量x的取值范围是()A.x>1 B.x≠2 C.x>1且x≠2 D.x≥1且x≠2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:D.4.有一斜坡的水平距离为10米,铅直高度为10米,则坡度为()A.30°B.60°C.1:D.:1【考点】解直角三角形的应用-坡度坡角问题.【分析】坡度tanα=.【解答】解:坡度=10÷(10)=1:.故选C.5.下列方程中有两个相等实数根的是()A.2x2+4x+35=0 B.x2+1=2x C.(x﹣1)2=﹣1 D.5x2+4x=1【考点】根的判别式.【分析】只需将一元二次方程转化为一般形式,然后运用根的判别式就可解决问题.【解答】解:对于一元二次方程2x2+4x+35=0,△=16﹣4×2×35<0,原方程无解,故A错误;对于一元二次方程x2+1=2x即x2﹣2x+1=0,△=4﹣4×1×1=0,原方程有两个相等实数根,故B正确;对于一元二次方程(x﹣1)2=﹣1即x2﹣2x+2=0,△=4﹣4×1×2<0,原方程无解,故C错误;对于一元二次方程5x2+4x=1即5x2+4x﹣1=0,△=16﹣4×5×(﹣1)=36>0,原方程有两个不相等实数根,故D错误.故选B.6.一次函数y=kx+b(k>0,b>0)的图象可能是下面图象中的()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【解答】解:∵k>0,∴一次函数y=kx+b的图象经过第一、三象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一、二、三象限.故选A.7.Rt△ABC中,∠C=90°,如果sinA=,那么cosB的值为()A.B.C.D.不能确定【考点】互余两角三角函数的关系.【分析】一个角的正弦值等于它的余角的余弦值.【解答】解:在直角三角形中,∠C=90°,∴∠A+∠B=90°.∴cosB=sinA=.故选A.8.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是()A.9cm B.10cm C.10.5cm D.11cm【考点】一次函数的应用.【分析】先根据函数图象运用待定系数法求出函数的解析式,当x=0时代入解析式就可与y 的值而得出结论.【解答】解:设函数的解析式为y=kx+b,由函数图象,得,解得:,∴y=x+10.当x=0时,y=10.故选B.9.已知x1和x2是方程2x2+3x﹣1=0的两个根,则的值是()A.3 B.﹣3 C.D.﹣【考点】根与系数的关系.【分析】先把所求的代数式变形为两根之积或两根之和的形式,再代入数值计算即可.【解答】解:由题意,得:x1+x2=﹣,x1x2=﹣;原式===3;故选A.10.小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回.父亲看了10分报纸后,用了15分返回家.下面的图形中表示父亲离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得离家的距离.【解答】解:20分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.故选:D.二、填空题(本题共9小题,每小题4分,共36分)11.如果点P1(﹣2,3)和P2(﹣2,b)关于x轴对称,则b=﹣3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点的横坐标相同,纵坐标互为相反数,可得答案.【解答】解:∵点P1(﹣2,3)和P2(﹣2,b)关于x轴对称,∴b=﹣3;故答案为:﹣3.12.一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是y=﹣2x.【考点】待定系数法求正比例函数解析式.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣4)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣4),∴﹣4=2k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故答案为:y=﹣2x.13.一元二次方程(m+1)x2﹣2mx=1的一个根是3,则.【考点】一元二次方程的解.【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.【解答】解:∵一元二次方程(m+1)x2﹣2mx=1的一个根是3,∴9m+9﹣6m=1,解得m=﹣.14.若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由θ为三角形的一个锐角,且2sinθ﹣=0,得θ=60°.tanθ=tan60°=,故答案为:.15.已知方程x2﹣3x﹣2=0的两根为x1、x2,则x1+x2=3,x12+x22=13.【考点】根与系数的关系.【分析】先利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式变形得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为3,13.16.已知一次函数y=kx+5过点P(﹣1,2),则k=3.【考点】待定系数法求一次函数解析式.【分析】把点的坐标代入一次函数,即可求解.【解答】解:根据题意得:﹣1×k+5=2,解得k=3.故填3.17.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号)①②④.【考点】一次函数的应用.【分析】结合甲、乙的图象位置以及交点(2,4)的意义可以判断①②③结论的成立与否;再由甲图象过(0,2)、(2,4),可知(1,3)在甲的图象上,即买甲家的1件的售价为3元,而不是约为3元,从而得出结论①②③成立.【解答】解:图形中甲乙的交点为(2,4),结合点的意义可知:售2件时甲、乙两家售价一样,即①成立;当x=1时,乙的图象在甲的图象的下方,即买1件时买乙家的合算,②成立;当x=3时,甲的图象在乙的图象的下方,即买3件时买甲家的合算,③成立;甲的图象经过点(0,2)、(2,4),两点的中点坐标为(=1,=3).即买甲家的1件售价为3元,④不成立.故答案为:①②③.18.计算:sin245°+cot60°•cos30°=1.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin245°+cot60°•cos30°=()2+×=+=1.故答案为:1.19.一次函数y=2x﹣3+b中,y随着x的增大而增大,当b=3时,函数图象经过原点.【考点】一次函数的性质.【分析】根据一次函数的性质k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降可直接得到答案.【解答】解:一次函数y=2x﹣3+b中,∵k=2>0,∴y随着x的增大而增大,∵函数的图象过原点,∴﹣3+b=0,解得:b=3,当b=3时,函数图象经过原点.故答案为:增大,b=3;三、解答题(本题共74分)20.解方程(1)x2﹣2x﹣3=0(2)y2+8y﹣1=0(3)=3解方程组:(4).【考点】高次方程;解一元二次方程-配方法;解一元二次方程-因式分解法;换元法解分式方程.【分析】(1)分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)首先进行移项变形为y2+8y=1,方程两边同时加上一次项系数一半的平方,则方程的左边是完全平方式,右边是常数,则利用直接开平方法即可求解;(3)本题考查用换元法解分式方程的能力.因为与互为倒数,所以可设t=,然后对方程进行整理变形;(4)由方程x﹣3y=0得x=3y,将x=3y代入第二个方程,解关于y的方程可得y的值,再将y的值代回x=3y可得x的值.【解答】解:(1)方程左边因式分解,得:(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;(2)由原方程得:y2+8y=1,方程两边同时加上一次项系数一半的平方得:y2+8y+16=1+16,即:(y+4)2=17,直接开平方的:y+4=,解得:y1=﹣4+,y2=﹣4﹣;(3)令t=,则原方程可化为:t+=3,即:t2﹣3t+2=0,因式分解得:(t﹣1)(t﹣2)=0,∴t=1或t=2,当t=1时,=1,即:x2﹣x+1=0,∵△=(﹣1)2﹣4×1×1=﹣3<0,∴此时原分式方程无解;当t=2时,=2,即:x2﹣2x+1=0,解得:x=1,经检验:x=1是原分式方程的解,故缘分是方程的解是:x=1;(4)由方程x﹣3y=0,得:x=3y,将x=3y代入方程x2+y2=20,得:9y2+y2=20,即10y2=20,解得:y=或y=﹣,当y=时,x=3y=3,当y=﹣时,x=3y=﹣3,故方程组的解为:或.21.计算:+2sin60°﹣3tan30°.【考点】二次根式的混合运算;零指数幂;特殊角的三角函数值.【分析】先利用特殊角的三角函数值和零指数幂的意义得到原式=﹣1+2×﹣3×,然后利用二次根式的乘除法则运算即可.【解答】解:原式=﹣1+2×﹣3×=﹣1﹣1+﹣=﹣2.22.某工程队修建一条高速公路,在某座山处要打通一条东西走向的隧道AB(如图),为了预算造价,应测出隧道AB的长,为此,在A的正南方向1500米的C处,测得∠ACB=62°,求隧道AB的长.【考点】解直角三角形的应用-方向角问题.【分析】根据题意直接运用三角函数的定义解题.【解答】解:在Rt△ABC中,∵∠CAB=90°,∠C=62°,AC=1500米,∴∴AB=AC×tan62°≈2821米答:AB的长是2821米.23.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.【考点】根的判别式.【分析】要分类讨论:当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m≥﹣,则m的范围是m≥﹣且m≠0;最后综合两种情况得到m的取值范围.【解答】解:当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m≥﹣,则m的范围是m≥﹣且m≠0;所以,m的取值范围为m≥﹣.24.已知直线y=kx+b与y=﹣平行,且和直线y=﹣交于y轴上的同一点,求直线的解析式.【考点】两条直线相交或平行问题.【分析】根据平行的性质设直线为,根据直线y=﹣求得与y轴的交点坐标,代入即可求得b的值.【解答】解∵直线y=kx+b与平行,∴,则又∵直线与y轴的交点为(0,)∴直线与y轴也交于(0,)则,即∴直线的解析式为25.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】解直角三角形的应用;平行投影.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt△DCE,其中有CE=30米,∠DCE=30°,解三角形可得DE的高度,再由DB=BE+ED可计算出新建楼房的最高高度.【解答】解:过点C作CE⊥BD于E.∵AB=40米,∴CE=40米,∵阳光入射角为30°,∴∠DCE=30°,在Rt△DCE中tan∠DCE=.∴,∴DE=40×=米,∵AC=BE=1米,∴DB=BE+ED=1+=米.答:新建楼房最高为米.26.如图一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,求直线AB的一次函数解析式及△AOC的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据待定系数法即可求得;(2)根据三角形面积公式即可求得.【解答】解:∵一次函数y=kx+b经过点A(2,4)和B(0,2)两点;∴∴∴所求一次函数为y=x+2,∵点C(﹣2,0)∴OC=2;∴.2016年4月13日。
初三下期开学数学测试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. √3 - √22. 已知二次函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1,-4),则下列选项中正确的是()A. a > 0,b < 0,c > 0B. a < 0,b > 0,c < 0C. a > 0,b > 0,c > 0D. a < 0,b < 0,c < 03. 在等腰三角形ABC中,AB=AC,且底边BC=6cm,腰AB的长度为()A. 4cmB. 5cmC. 6cmD. 8cm4. 下列函数中,单调递增的是()A. y = 2x - 3B. y = 2x^2 - 1C. y = -x^2 + 2xD. y = x^3 - 3x5. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 17B. 19C. 21D. 236. 在平面直角坐标系中,点P(2,-3)关于y轴的对称点坐标是()A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)7. 下列各数中,属于无理数的是()A. √4B. √9C. √-16D. √258. 已知等比数列{bn}的首项b1=2,公比q=3,则第5项bn=()A. 18B. 54C. 162D. 4869. 在△ABC中,∠A=45°,∠B=90°,∠C=45°,则BC的长度是AB的()A. √2倍B. √2/2倍C. 2倍D. 1/√2倍10. 下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^2 = a^2 - 2ab + b^2D. (a-b)^2 = a^2 + 2ab - b^2二、填空题(每题5分,共25分)11. 若x^2 - 5x + 6 = 0,则x的值为______。
九年级(下)开学数学试卷(含答案解析)
九年级(下)开学数学试卷姓名:得分:日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 在如图所示的花坛的图案中,圆形的内部有菊花组成的内接等边三角形,则这个图案()A.是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形又不是中心对称图形2、(3分) 下列事件中发生的可能性为0的是()A.抛一枚均匀硬币,落地后正面朝上B.今天黄冈市最高气温为88℃C.路边抛掷一石头,石头终将落地(空中无任何遮拦)D.不透明袋子中放了大小相同的兵兵球和金属球,从中去摸取出兵兵球3、(3分) 对于抛物线y=(x-1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大4、(3分) OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80°B.40°C.50°D.20°5、(3分) 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)B.50(1+x)C.50+50(1+x)+50(1+x)D.50(1+x)+50(1+x)2=60 2=120 2=120 2=1206、(3分) 已知抛物线y=(m-1)x2+4x-3(m为常数)与x轴有两个交点,则m的取值范围是()A.m>−13B.m<−13C.m≥−13D.m>−13,且m≠17、(3分) 一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8、(3分) 如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a-b=0;②当-2<x<1时,y>0;③四边形ACBD是菱形;④9a-3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共 8 小题,共 24 分)9、(3分) 点(-4,3)关于原点对称的点的坐标是______.10、(3分) 把方程x2+2x-5=0配方后的方程为______.11、(3分) 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.12、(3分) 当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm ),那么该圆的半径为______cm .13、(3分) 如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是______.14、(3分) 如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______.15、(3分) 点A 在双曲线y=3x 上,点B 在双曲线y=k x (k≠0)上,AB∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是6,则k 的值为______.16、(3分) 如图,已知A (2√3,2)、B (2√3,1),将△AOB 绕着点O 逆时针旋转,使点A旋转到点A′(-2,2√3)的位置,则图中阴影部分的面积为______.三、解答题(本大题共 9 小题,共 72 分)17、(8分) 用适当的方法解下列方程(1)x2-4x-5=0;(2)3x2+4x-1=0.18、(6分) 如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.19、(6分) 某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销量,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天可多售出4箱.(1)如果要使每天销售该饮料获利14000元,则每箱应降价多少元.(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应降价多少?若不能,请说明理由.20、(6分) 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.21、(6分) 已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22、(8分) 如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,3),B(n,-2)两x点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)请求出△ABC的面积;图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(-2,y2)是函数y=k2x23、(8分) 如图,AB为⊙O的直径,C为中点,CD⊥BE于D.(1)判断DC与⊙O的位置关系,并说明理由;(2)若DC=3,⊙O半径为5,求DE长.24、(10分) 某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润元,厂家如何生产可使每天获利最大?最大利润是多少?降低x10025、(14分) 如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.九年级(下)开学数学试卷【第 1 题】【答案】A【解析】解:所给图形是轴对称图形,但不是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【第 2 题】【答案】B【解析】解:A、抛一枚均匀硬币,落地后正面朝上,是随机事件;B、今天黄冈市最高气温为88℃是不可能事件,可能性为0;C、路边抛掷一石头,石头终将落地(空中无任何遮拦)是必然事件,可能性为1;D、不透明袋子中放了大小相同的乒乓球和金属球,从中去摸取出乒乓球是随机事件;故选:B.根据事件发生的可能性既不是0,也不是100%的事件就是可能发生也可能不发生的事件,即不确定事件,从而得出答案.此题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.【第 3 题】【答案】D【解析】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=(x-1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.根据二次函数的性质,二次函数的顶点式即可判断;此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 4 题】【答案】A【解析】解:∵∠C=40°,∴∠AOB=2∠C=80°.故选:A.直接根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,求解即可求得答案.此题考查了圆周角定理.注意熟记定理是解此题的关键.【第 5 题】【答案】D【 解析 】解:设二、三月份每月的平均增长率为x ,则二月份生产机器为:50(1+x ),三月份生产机器为:50(1+x )2;又知二、三月份共生产120台;所以,可列方程:50(1+x )+50(1+x )2=120.故选:D .主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x ,根据“计划二、三月份共生产120台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.【 第 6 题 】【 答 案 】D【 解析 】解:∵y=(m-1)x 2+4x-3(m 为常数)与x 轴有两个交点,∴△=16-4(m-1)(-3)>0,且m-1≠0 解得m >−13,且m≠1.故选:D .根据b 2-4ac 与0的关系即可判断出二次函数y=(m+1)x 2+4mx+4m-3的图象与x 轴交点的个数.本题考查了二次函数y=ax 2+bx+c 的图象与x 轴交点的个数的判断:(1)当b 2-4ac >0时,二次函数ax 2+bx+c+2=0的图象与x 轴有两个交点;(2)当b 2-4ac=0时,二次函数ax 2+bx+c+2=0的图象与x 轴有一个交点;(3)当b 2-4ac <时,二次函数ax 2+bx+c+2=0的图象与x 轴没有交点.【 第 7 题 】【 答 案 】B【 解析 】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R×10π,解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选:B .利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.【第 8 题】【答案】D【解析】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),∴该抛物线的对称轴为x=-b2a =-0.5,∴a=b,a-b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(-2,0)、B(1,0),∴当-2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=-3时,y<0,即y=9a-3b+c<0,④错误.综上可知:正确的结论为①②③.故选:D.①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=-b2a =-0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当-2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=-3时,y<0,即可得出9a-3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.【第 9 题】【答案】(4,-3)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-4,3)关于原点对称的点的坐标是(4,-3).故答案为(4,-3).平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.【第 10 题】【答案】(x+1)2=6【解析】解:x2+2x-5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.移项后配方,再变形,即可得出答案.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.【第 11 题】【答案】45【解析】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360-135=225,∵0<n<180,∴此种情形不合题意,故答案为45分两种情形讨论,分别画出图形求解即可.本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【 第 12 题 】 【 答 案 】 25 【 解析 】解:连接OA ,过点O 作OD⊥AB 于点D ,∵OD⊥AB ,∴AD=12AB=12(9-1)=4cm ,设OA=r ,则OD=r-3, 在Rt△OAD 中,OA 2-OD 2=AD 2,即r 2-(r-3)2=42,解得r=256cm . 故答案为:256.连接OA ,过点O 作OD⊥AB 于点D ,由垂径定理可知,AD=12AB=12(9-1)=4,设OA=r ,则OD=r-3,在Rt△OAD 中利用勾股定理求出r 的值即可.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【 第 13 题 】 【 答 案 】16【 解析 】解:如图所示:连接OA ,∵正六边形内接于⊙O ,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠OBC=60°, ∴OC∥AB ,∴S △ABC =S △OBC , ∴S 阴=S 扇形OBC ,则飞镖落在阴影部分的概率是16; 故答案为:16.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S 扇形OBC是解题关键.【 第 14 题 】 【 答 案 】(√6,2)或(-√6,2) 【 解析 】解:依题意,可设P (x ,2)或P (x ,-2).①当P 的坐标是(x ,2)时,将其代入y=12x 2-1,得 2=12x 2-1,解得x=±√6,此时P (√6,2)或(-√6,2);②当P 的坐标是(x ,-2)时,将其代入y=12x 2-1,得 -2=12x 2-1,即-1=12x 2无解.综上所述,符合条件的点P 的坐标是(√6,2)或(-√6,2); 故答案是:(√6,2)或(-√6,2).当⊙P 与x 轴相切时,点P 的纵坐标是2或-2,把点P 的坐标坐标代入函数解析式,即可求得相应的横坐标.本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.【 第 15 题 】 【 答 案 】 9 【 解析 】解:设A (a ,3a ),则B (ak3,3a )∴AB=ak3−a ∵S ABCD =AB×AD∴(ak 3−a )×3a =6 ∴k=9故答案为9设A (a ,3a ),则B (ak 3,3a ),可表示AB 的长.根据矩形ABCD 的面积是6,求得k 的值. 本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征.关键是灵活运用反比例函数系数k 的几何意义解决问题.【 第 16 题 】 【 答 案 】34π【 解析 】解:∵A (2√3,2)、B (2√3,1),∴OA=4,OB=√13,∵由A (2√3,2)使点A 旋转到点A′(-2,2√3), ∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S 【formula error 】=S OBC ,∴阴影部分的面积等于S 扇形A'OA -S 扇形C'OC =14π×42-14π×(√13)2=34π, 故答案为:34π.由A (2√3,2)使点A 旋转到点A′(-2,2√3)的位置易得旋转90°,根据旋转的性质可得,阴影部分的面积等于S 扇形A'OA -S 扇形C'OC ,从而根据A ,B 点坐标知OA=4,OC=OB=√13,可得出阴影部分的面积.此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC ,从而得到阴影部分的表达式.【 第 17 题 】 【 答 案 】解:(1)(x-5)(x+1)=0, x-5=0或x+1=0, ∴x 1=5,x 2=-1;(2)∵a=3,b=4,c=-1, ∴b 2-4ac=28>0, ∴x=−4±√282×3=−2±√73, ∴x 1=−2+√73,x 2=−2−√73.【 解析 】(1)利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.【 第 18 题 】 【 答 案 】(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得, ∴DB=CB ,∠ABD=∠EBC ,∠ABE=60°, ∵AB⊥BC , ∴∠ABC=90°,∴∠DBE=∠CBE=30°, 在△BDE 和△BCE 中,∵{DB =CB∠DBE =∠CBE BE =BE,∴△BDE≌△BC E (SAS ); (2)四边形ABED 为菱形; 由(1)得△BDE≌△BCE , ∵△BAD 是由△BEC 旋转而得, ∴△BAD≌△BEC ,∴BA=BE ,AD=EC=ED , 又∵BE=CE ,∴四边形ABED 为菱形.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.【第 19 题】【答案】解:(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120-x)(100+2x)=14000,整理得x2-70x+1000=0,解得x1=20,x2=50;∵为了扩大销量,尽快减少库存,∴x=50.答:每箱应降价50元,可使每天销售饮料获利14000元.(2)由题意得:(120-x)(100+2x)=14500,整理得x2-70x+1250=0,∵△=702-4×1250<0,∴此方程无实数根,故该超市每天销售这种饮料的获利不可能达14500元.【解析】(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;(2)根据题意列出方程,然后用根的判别式去验证.本题考查了一元二次方程在实际生活中的应用.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,本题也可利用二次函数求最值.【第 20 题】【答案】解:列表得:1 2 3 4yx(x,y)1 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=-x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=-x+5图象上的概率为:P=412=13.【解析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【第 21 题】【答案】解:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴△=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【解析】(1)根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出结论; (2)由根与系数的关系可得x 1+x 2=6①、x 1•x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=-x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20-4m≥0;(2)分x 2≥0和x 2<0两种情况求出x 1、x 2的值.【 第 22 题 】 【 答 案 】解:(1)把A (2,3)代入y=k2x ,得k 2=6, ∴反比例函数的解析式是y=6x ;∵B (n ,-2)在反比例函数y=6x 的图象上,∴n=-3,即B 的坐标为(-3,-2),把A (2,3),B (-3,-2)代入y=k 1x+b ,得 {2k 1+b =3−3k 1+b =−2,解得{k 1=1b =1, 即一次函数的解析式为y=x+1;(2)∵BC⊥x 轴,B (-3,-2),A (2,3) ∴BC=2,∴S △ABC =12•BC•|2-(-3)|=12×2×5=5;(3)∵P (p ,y 1),Q (-2,y 2)是函数y=6x 图象上的两点,且y 1≥y 2, ∴当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2, 当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0, 即p 的取值范围是p≤-2或p >0. 【 解析 】(1)根据一次函数y=k 1x+b 与反比例函数y=k 2x 的图象交于A (2,3),B (n ,-2)两点,可以分别求得一次函数与反比例函数的解析式;(2)根据点A 和点B 的坐标可以求得△ABC 的面积; (3)根据反比例函数的性质可以求得p 的取值范围.本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.【 第 23 题 】 【 答 案 】解:(1)DC与⊙O相切.理由如下:连结AE、OC,它们相交于F点,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵CD⊥BE,∴∠D=90°,∴CD∥AE,又∵C为中点,∴OC⊥AE,AF=EF,∴OC⊥CD,∴CD为⊙O的切线;(2)∵∠D=∠DCF=∠CFE=90°,∴四边形CFED为矩形,∴EF=CD=3,DE=CF,∴AF=3,在Rt△OFA中,OA=5,∴OF=√OA2−AF2=4,∴CF=OC-OF=5-4=1,∴DE=1.【解析】(1)连结AE、OC,它们相交于F点,根据圆周角定理由AB为⊙O的直径得到∠AEB=90°,而CD⊥BE,则CD∥AE,由于C为中点,根据垂径定理的推论得到OC⊥AE,AF=EF,所以OC⊥CD,于是根据切线的判定定理得到CD为⊙O的切线;(2)易得EF=CD=3,DE=DF,则AF=3,再根据勾股定理计算出OF,然后计算出CF,从而可得到DE的长.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理以及垂径定理的推论.【第 24 题】【答案】解:(1)根据题意可得:y=20x+15(600-x)=5x+9000.∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得:50 x+35(600-x)≥26400,解得:x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3)根据题意可得:y=(20-x100)x+15(600-x)=-1100(x-250)2+9625,∵−1100<0,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解析】(1)根据题意,即可得y关于x的函数关系式为:y=20x+15(600-x),然后化简即可求得答案;(2)首先根据题意可得不等式:50x+35(600-x)≥26400,即可求得x的取值范围,又由一次函数的增减性,即可求得该酒厂每天至少获利多少元;(3)首先表示出获利与x之间的关系进而得出函数最值.此题考查了一次函数与不等式的实际应用、二次函数的应用.解题的关键是理解题意,根据题意列得一次函数解析式与不等式.【第 25 题】【答案】解:(1)由抛物线y=-x 2+bx+c 过点A (-1,0)及C (2,3)得,{−1−b +c =0−4+2b +c =3, 解得{b =2c =3, 故抛物线为y=-x 2+2x+3;又设直线为y=kx+n 过点A (-1,0)及C (2,3),得{−k +n =02k +n =3, 解得{k =1n =1, 故直线AC 为y=x+1;(2)∵y=-x 2+2x+3=-(x-1)2+4,∴D (1,4),当x=1时,y=x+1=2,∴B (1,2),∵点E 在直线AC 上,设E (x ,x+1).①如图2,当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3),∵F 在抛物线上,∴x+3=-x 2+2x+3,解得,x=0或x=1(舍去),∴E (0,1);②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),∵F 在抛物线上,∴x -1=-x 2+2x+3, 解得x=1−√172或x=1+√172, ∴E (1−√172,3−√172)或(1+√172,3+√172),综上,满足条件的点E 的坐标为(0,1)或(1−√172,3−√172)或(1+√172,3+√172);(3)方法一:如图3,过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,设Q (x ,x+1),则P (x ,-x 2+2x+3)∴PQ=(-x 2+2x+3)-(x+1)=-x 2+x+2又∵S △APC =S △APQ+S △CPQ=12PQ•AG=12(-x 2+x+2)×3=-32(x-12)2+278, ∴面积的最大值为278;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图3, 设Q (x ,x+1),则P (x ,-x 2+2x+3)又∵S △APC =S △APH +S 直角梯形PHGC -S △AGC=12(x+1)(-x 2+2x+3)+12(-x 2+2x+3+3)(2-x )-12×3×3=-32x 2+32x+3=-32(x-12)2+278,∴△APC 的面积的最大值为278. 【 解析 】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)需要分类讨论:①当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3)和②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),然后利用二次函数图象上点的坐标特征可以求得点E 的坐标;(3)方法一:过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,如图1.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据两点间的距离公式可以求得线段PQ=-x 2+x+2;最后由图示以及三角形的面积公式知S △APC =-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图2.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据图示以及三角形的面积公式知S △APC =S △APH +S 直角梯形PHGC -S △AGC ═-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值. 本题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数解析式,平行四边形的性质,二次函数的性质,三角形的面积,有一定难度.解答(2)题时,要对点E 所在的位置进行分类讨论,以防漏解.。
初三数学下期入学测试卷
考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √9B. √-4C. πD. 0.1010010001……2. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 73. 下列关于一元二次方程x^2-5x+6=0的解法,正确的是()A. 分解因式法B. 完全平方公式法C. 求根公式法D. 提公因式法4. 在平面直角坐标系中,点A(-2,3)关于x轴的对称点B的坐标为()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,3)5. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形6. 若等差数列{an}中,a1=2,d=3,则第10项an的值为()A. 29B. 30C. 31D. 327. 下列函数中,是反比例函数的是()A. y=x^2B. y=2xC. y=2/xD. y=x+28. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则斜边AB的长度为()A. 5cmB. 6cmC. 7cmD. 8cm9. 若直角三角形ABC中,∠A=30°,∠B=60°,则∠C的度数为()A. 30°B. 45°C. 60°D. 90°10. 下列关于圆的性质,正确的是()A. 圆的直径是圆中最长的弦B. 圆的半径相等C. 圆心到圆上任意一点的距离相等D. 以上都是二、填空题(每题4分,共20分)11. 已知函数y=3x-2,当x=1时,y的值为______。
12. 下列数中,绝对值最小的是______。
13. 若等差数列{an}中,a1=5,d=-2,则第4项an的值为______。
14. 在平面直角坐标系中,点P(3,-4)关于原点的对称点Q的坐标为______。
15. 若函数y=kx+b(k≠0)的图像经过点(2,3),则k的值为______。
2023-2024学年九年级下学期数学开学摸底考试卷(北师大版)及答案
2023-2024学年下学期开学摸底考01九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:九年级上下册(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
1.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.广东省2021年高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.若小红在“1”中选择了历史,则她在“2”中选地理、生物的概率是( )A .16B .13C .14D .123.已知关于x 的一元二次方程2(1)210m x x -+-=有实数根,则m 的取值范围是( )A .2m ≤且1m ≠B .0m ≥C .0m ≥且1m ≠D .0m <且1m ≠4.如图,将AOB 以O 为位似中心,扩大到COD △,各点坐标分别为(1,2),(2,0),(4,0)A B D ,则点C 的坐标为( )⊙A .()3,4B .()3,6C .()2,4D .()2,65.在Rt ABC △中,90C = ∠,若2AC BC =,则tan A 的值是( )A .12B .2CD 6.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)A .B .C .D . 7.如图,设O 是四边形ABCD 的对角线AC ,BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4=AD ,5AC =,6AB =,则DO OB=( )A .43B .65C .87D .1098.如图,点P 为O 外一点,PA 为O 的切线,A 为切点,PO 交O 于点B .30P ∠=︒,3BP =,则线段AP 的长为( )A .3B .C .6D .99.如图,E 是菱形ABCD 的边BC 上的点,连接AE .将菱形ABCD 沿AE 翻折,点B 恰好落在CD 的中点F 处,则tan ∠ABE 的值是( )A .4B .5CD 10.已知:如图,O 是ABC 的外接圆,O 的直径为10,过点C 作O 的切线交AB 延长线于点P ,6BC =,9CP =,则B 到CP 的距离为( )A .125B .3C .185D .24511.如图所示是抛物线()2<0y ax bx c a =++的部分图像,其顶点坐标为()1,n ,且与x 轴的一个交点在点()30,和()40,之间,则下列结论:①0a b c -+>;②30a c +>;③()24b a c n =-;④一元二次方程22ax bx c n ++=-没有实数根.其中正确的结论个数是( )A .1个B .2个C .3个D .4个12.如图,,90CB CA ACB =∠=︒,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC FG =;②:1:2FAB CBFG S S =四边形△;③EDB EFB ∠=∠;④2AD FQ AC =⋅.其中正确的有( )A .1B .2C .3D .4第Ⅱ卷二、填空题:本题共6小题,共18分。
2023-2024学年九年级下学期数学开学摸底考试卷(人教版)及答案
2023-2024学年下学期开学摸底考01九年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.测试范围:初中全部知识。
6.考试结束后,将本试卷和答题卡一并交回。
参考公式:抛物线()20y ax bx c a =++≠的顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a=-一、选择题:本题共10小题,每小题4分,共40分。
1.下列实数中,是无理数的是( )A .0B .3.14C .87-D 2.以下四家银行的标志图中,不是轴对称图形的是( )A .B .C .D .3.下列正确的是( )A .22263236a b a b a b⋅=B .40.000767.610=⨯C .()2222a a b a ab -+=-+D .()()2212232x x x x +-=--4.如图,已知ABC 与DEF 位似,位似中心为O ,且ABC 与DEF 的周长之比是4:3,则:AO DO的值为( )A .4:7B .4:3C .3:4D .16:952的值应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间6.如图,有一面积为600m 2的长方形鸡场,鸡场的一边靠墙(墙长35m ),另三边用竹篱笆围成,其中一边开有1m 的门,竹篱笆的总长为69m .设鸡场垂直于墙的一边为x m ,则列方程正确的是( )A .()6912600x x +-=B .()6912600x x --=C .()692600x x -=D .()3512600x x +-=7.如所示图形都是由同样大小的棋子按一定的规律组成,其中第1个图形有6颗棋子,第2个图形一共有10颗棋子,第3个图形一共有16颗棋子,第4个图形一共有24颗棋子,…,则第7个图形中棋子的颗数为( )A .41B .45C .50D .608.如图,AB 是O 的直径,点C 、D 是O 上的点,OD AC ⊥,连接DC ,若30COB ∠=︒,则ACD∠的度数为( )A .30︒B .37.5︒C .45︒D .60︒9.如图,在边长为ABCD 中,点M 为线段CD 上一点,且23CM DM =,点P 是对角线AC 上一动点,过点P 作PE AD ⊥于点E ,PF CD ⊥于点F ,则PM EF +的最小值为( )AB.C.+D .1010.已知()1n nxf x x=+,()()()()()123n n T x f x f x f x f x =++++…(n 为正整数),下列说法:①()120232023n n f f n ⎛⎫+=⎪⎝⎭;②()()()()12321231231111123n n f f f f n n n f f f f n ++++=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…;③()()11n n T x nT x n -+>;④若()()13t t ty f t T t t+=-+,则y 的最小值为3.其中正确选项的个数是( )A .0B .1C .2D .3二、填空题:本题共8小题,共32分。
人教版九年级下学期开学考试数学试卷(含答案)
九年级下学期开学考试数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.抛物线y=﹣(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC3.在4×4网格中,∠α的位置如图所示,则tanα的值为()A.B.C.2D.4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2B.y=C.y=kx2D.y=k2x6.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.8.点P是线段AB的黄金分割点(AP>BP),则=.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=.10.如果α是锐角,且tanα=cot20°,那么α=度.11.计算:2sin60°+tan45°=.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是.(请写成1:m的形式)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:(填“是”或“否”).16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=.17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有对相似三角形.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).三、解答题(本大题共7题,满分78分)19.解方程:﹣=2.20.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21.已知抛物线y=﹣x2+bx+c的对称轴是直线x=﹣1,且经过点(2,﹣3),求这个二次函数的表达式.22.如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23.如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D 的坐标.25.如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.九年级下学期开学考试数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.抛物线y=﹣(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】直接根据二次函数的顶点式进行解答即可.【解答】解:∵抛物线的解析式为:y=﹣(x﹣2)2+3,∴其顶点坐标为(2,3).故选B.【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC【考点】平行线分线段成比例.【分析】根据已知选项只要能推出=或=,再根据相似三角形的判定推出△ADE∽△ABC,推出∠ADE=∠B,根据平行线的判定推出DE∥BC,即可得出选项.【解答】解:A、∵BD:AB=CE:AC,∴=,∴=,∴1﹣=1﹣,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;B、∵根据DE:BC=AB:AD不能推出△ADE∽△ABC,∴不能推出∠ADE=∠B,∴不能推出DE∥BC,错误,故本选项正确;C、∵AB:AC=AD:AE,∴=,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;D、∵AD:DB=AE:EC,∴=,∴=,∴=,∴﹣1=﹣1,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;故选B.【点评】本题考查了平行线分线段成比例定理和相似三角形的性质和判定,平行线的判定的应用,解此题的关键是能推出△ADE≌△ABC,题目比较好,难度适中.3.在4×4网格中,∠α的位置如图所示,则tanα的值为()A.B.C.2D.【考点】锐角三角函数的定义.【专题】网格型.【分析】根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选C.【点评】本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=【考点】锐角三角函数的定义.【分析】根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.【解答】解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2B.y=C.y=kx2D.y=k2x【考点】二次函数的定义.【分析】根据二次函数的定义形如y=ax2+bx+c(a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是分式方程,故B错误;C、k=0时,不是函数,故C错误;D、k=0是常数函数,故D错误;故选:A.【点评】本题考查二次函数的定义,形如y=ax2+bx+c(a≠0)是二次函数.6.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用;中心投影.【专题】计算题.【分析】由MC∥AB可判断△DCM∽△DAB,根据相似三角形的性质得=,同理可得=,然后解关于AB和BC的方程组即可得到AB的长.【解答】解:∵MC∥AB,∴△DCM∽△DAB,∴=,即=①,∵NE∥AB,∴△FNE∽△FAB,∴=,即=②,∴=,解得BC=3,∴=,解得AB=6,即路灯A的高度AB为6m.故选B.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用了分比性质:=⇒=.8.点P是线段AB的黄金分割点(AP>BP),则=.【考点】黄金分割.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.【解答】解:∵点P是线段AB的黄金分割点(AP>BP),∴==.故答案为.【点评】本题考查了黄金分割的定义,牢记黄金分割比是解题的关键.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=4.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】推理填空题.【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=4.故答案为:4.【点评】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.10.如果α是锐角,且tanα=cot20°,那么α=70度.【考点】互余两角三角函数的关系.【分析】根据一个角的正切值等于它的余角的余切值即可求解.【解答】解:∵tanα=cot20°,∴∠α+20°=90°,即∠α=90°﹣20°=70°.故答案为70.【点评】本题考查了互为余角的锐角三角函数关系:一个角的正切值等于它的余角的余切值.11.计算:2sin60°+tan45°=+1.【考点】特殊角的三角函数值.【分析】根据特殊三角函数值,可得答案.【解答】解:原式=2×+1=+1,故答案为:+1.【点评】本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是1:.(请写成1:m的形式)【考点】解直角三角形的应用-坡度坡角问题.【分析】坡比等于坡角的正切值,据此即可求解.【解答】解:i=tanα=tan30°==1:,故答案是:1:.【点评】本题主要考查了坡比与坡角的关系,注意坡比一般表示成1:a的形式.13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.【点评】解答此题要掌握二次函数图象的特点.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为(3,﹣1).【考点】二次函数图象与几何变换.【专题】计算题.【分析】根据二次函数的性质得抛物线y=﹣(x﹣3)2+5的顶点坐标为(3,5),然后根据点平移的规律,点(3,5)经过平移后得到对应点的坐标为(3,﹣1),从而得到新抛物线的顶点坐标.【解答】解:抛物线y=﹣(x﹣3)2+5的顶点坐标为(3,5),点(3,5)向下平移6个单位得到对应点的坐标为(3,﹣1),所以新抛物线的顶点坐标为(3,﹣1).故答案为(3,﹣1).【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:是(填“是”或“否”).【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】利用点A与点B的坐标特征得到抛物线的对称轴为直线x=1,然后根据抛物线的对称性可判断点C(4,5与点D(﹣2,5)是抛物线上的对称点.【解答】解:∵抛物线经过A(0,﹣3)、B(2,﹣3),而点A与点B关于直线x=1对称,∴抛物线的对称轴为直线x=1,∴点C(4,5)关于直线x=1的对称点D(﹣2,5)在抛物线上.故答案为:是.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=.【考点】相似三角形的判定与性质;锐角三角函数的定义.【分析】根据条件可证明△ADE∽△GFB,利用相似三角形的性质可求得DE,在Rt△ADE中,由正切函数的定义可求得tanA.【解答】解:∵四边形DEFG为正方形,∴∠DEA=∠GFB=90°,DE=GF,∵∠C=90°,∴∠A+∠B=∠A+∠ADE=90°,∴∠ADE=∠B,∴△ADE∽△GFB,∴=,即=,解得DE=6,∴tanA===,故答案为:.【点评】本题主要考查相似三角形的判定和性质,由条件证明三角形相似求得DE的长是解题的关键.17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有3对相似三角形.【考点】相似三角形的判定.【分析】由AD∥BC,AB=DC可判断梯形ABCD为等腰梯形,则∠A=∠D,由AB2=AP•PD得AB•CD=AP•PD,于是根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABP∽△DPC,由相似的性质得∠ABP=∠DPC,接着利用AD∥BC得到∠DPC=∠PCB,∠APB=∠PBC,则∠PCB=∠ABP,于是根据有两组角对应相等的两个三角形相似得到△ABP∽△PCB,所以△DPC∽△DPC.【解答】解:∵AD∥BC,AB=DC,∴梯形ABCD为等腰梯形,∴∠A=∠D,∵AB2=AP•PD,∴AB•CD=AP•PD,即=,∴△ABP∽△DPC,∴∠ABP=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∠APB=∠PBC,∴∠PCB=∠ABP,∴△ABP∽△PCB,∴△DPC∽△DPC.故答案为3.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=2n+1(用含n的代数式表示m).【考点】平行线分线段成比例;旋转的性质.【专题】计算题.【分析】作DH⊥AC于H,如图,根据旋转的性质得DE=DC,则利用等腰三角形的性质得EH=CH,由=n可得AE=2nEH=2nCH,再根据平行线分线段成比例,由DH∥BC得到=,所以m=,然后用等线段代换后约分即可.【解答】解:作DH⊥AC于H,如图,∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,∴DE=DC,∴EH=CH,∵=n,即AE=nEC,∴AE=2nEH=2nCH,∵∠C=90°,∴DH∥BC,∴=,即m===2n+1.故答案为:2n+1.【点评】本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式,注意:一组平行线截两条直线,所截得的线段对应成比例.也考查了旋转的性质和等腰三角形的性质.三、解答题(本大题共7题,满分78分)19.解方程:﹣=2.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x+x+2=2x2﹣8,整理得:x2+x﹣6=0,即(x﹣2)(x+3)=0,解得:x=2或x=﹣3,经检验x=2是增根,分式方程的解为x=﹣3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.【考点】二次函数的三种形式.【分析】(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c求得b,c的值,得到此函数的解析式;再利用配方法先提出二次项系数,然后加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)由顶点式可得顶点C的坐标,再根据三角形的面积公式即可求出△CAO的面积.【解答】解:(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得,解得,所以此函数的解析式为y=﹣2x2﹣4x+4;y=﹣2x2﹣4x+4=﹣2(x2+2x+1)+2+4=﹣2(x+1)2+6;(2)∵y=﹣2(x+1)2+6,∴C(﹣1,6),∴△CAO的面积=×4×1=2.【点评】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.21.已知抛物线y=﹣x2+bx+c的对称轴是直线x=﹣1,且经过点(2,﹣3),求这个二次函数的表达式.【考点】待定系数法求二次函数解析式.【分析】由抛物线的一般形式可知:a=﹣1,由对称轴方程x=﹣,可得一个等式﹣①,然后将点(2,﹣3)代入y=﹣x2+bx+c即可得到等式﹣4+2b+c=﹣3②,然后将①②联立方程组解答即可.【解答】解:根据题意,得:,解得,所求函数表达式为y=﹣x2﹣2x+5.【点评】此题考查了用待定系数法求二次函数的解析式,解题的关键是:熟练掌握待定系数法及对称轴表达式x=﹣.22.如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C⊥AB于点D,在Rt△ACD中,求出AD、CD的值,然后在Rt△BCD中求出BD的长度,继而可求得AB的长度.【解答】解:过点C⊥AB于点D,在Rt△ACD中,∵∠ACD=35°,AC=100m,∴AD=100•sin∠ACD=100×0.574=57.4(m),CD=100•cos∠ACD=100×0.819=81.9(m),在Rt△BCD中,∵∠BCD=45°,∴BD=CD=81.9m,则AB=AD+BD=57.4+81.9≈139(m).答:A、B之间的距离约为139米.【点评】本题考查了直角三角形的应用,解答本题的关键是根据方向角构造直角三角形,利用三角函数解直角三角形.23.如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.【考点】相似三角形的判定与性质;等腰梯形的性质.【分析】(1)根据等腰梯形可得到∠ABE=∠C,结合条件可证得结论;(2)过D作DG⊥BC,则可求得BG、CG,在Rt△DCG中可求得DG,在Rt△BGD中由正切函数的定义可求得tan∠DBC;(3)由(2)可求得BD,结合(1)中的相似可求得BE,再利用平行线分线段成比例得到=,代入可求得BF.【解答】(1)证明:∵四边形ABCD为等腰梯形,∴∠ABE=∠C,且∠BAE=∠DBC,∴△ABE∽△BCD;(2)解:过D作DG⊥BC于点G,∵AD=1,BC=3,∴CG=(BC﹣AD)=1,BG=2,又∵在Rt△DGC中,CD=2,CG=1,∴DG=,在Rt△BDG中,tan∠DBC==;(3)解:由(2)在Rt△BGD中,由勾股定理可求得BD=,由(1)△ABE∽△BCD可得=,即==,解得BE=,又∵AD∥BC,∴=,且DF=BD﹣BF,∴=,解得BF=.【点评】本题主要考查相似三角形的判定和性质及三角函数的定义,在(2)中构造直角三角形,求得DG是解题的关键,在(3)中求得BE、BD的长是解题的关键.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D 的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)先求出A、C两点的坐标,再代入抛物线的解析式,就可求出该抛物线的解析式,然后根据抛物线的对称轴方程x=﹣求出抛物线的对称轴,根据抛物线上点的坐标特征求出点B的坐标;(2)易得∠OAC=∠OCA,∠ABC>∠ADC,由此根据条件即可得到△CAD∽△ABC,然后运用相似三角形的性质可求出CD的长,由此可得到OD的长,就可解决问题.【解答】解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).【点评】本题主要考查了用待定系数法求二次函数的解析式、解一元二次方程、相似三角形的性质、勾股定理、等腰三角形的性质等知识,弄清两相似三角形的对应关系是解决第(2)小题的关键.25.如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.【考点】相似形综合题;等腰三角形的判定与性质;等边三角形的判定与性质;直角三角形斜边上的中线;轴对称的性质;锐角三角函数的定义;特殊角的三角函数值.【专题】综合题;分类讨论.【分析】(1)要证△DEK∽△DFB,只需证到∠EKD=∠FBD,∠EDK=∠FDB即可;(2)易得DK=DA=x,DB=2﹣x,由△DFB∽△DEK可得到=,从而可得y=cot∠CFE=cot∠DFE===;然后只需先求出在两个临界位置(点F在点B处、点E在点A处)下的x值,就可得到该函数的定义域;(3)取线段EF的中点O,连接OC、OD,根据直角三角形斜边上的中线等于斜边的一半可得OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.由=可得tan∠HOC==,从而得到∠HOC=60°.①若点K在线段AC上,如图2,由∠HOC=60°可求得∠OFC=30°,由此可得到y的值,再把y的值代入函数解析式就可求出x的值;②若点K在线段AC的延长线上,如图3,由∠HOC=60°可求得∠OFC=60°,由此可得到y的值,再把y的值代入函数解析式就可求出x的值.【解答】(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F在点B处时,DB=BC=AB•sinA=2×=,AD=AB﹣AD=2﹣;当点E在点A处时,AD=AC=AB•cosA=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴sin∠HOC==,∴∠HOC=60°①若点K在线段AC上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K在线段AC的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x的值为﹣1或3﹣.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质、锐角三角函数的定义、特殊角的三角函数值、直角三角形斜边上的中线等于斜边的一半等知识,在解决本题的过程中还用到了临界值法、分类讨论的思想,而运用(1)中的结论则是解决第(2)小题的关键,取EF的中点O,将转化为则是解决第(3)小题的关键.。
浙江省宁波市镇海区蛟川书院2023-2024学年九年级下学期开学考试数学试题
浙江省宁波市镇海区蛟川书院2023-2024学年九年级下学期开学考试数学试题一、单选题 1.若2x =5y ,则xy的值是( ) A .25B .52C .45D .542.如图,一块矩形ABCD 绸布的长AB =a ,宽AD =1,按照图中的方式将它裁成相同的三面矩形彩旗,如果裁出的每面彩旗与矩形ABCD 绸布相似,则a 的值等于( )AB C .2 D3.如图,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于( )A .6π B .4π C .3π D .2π 4.为测量操场上篮筐的高AB ,小明站在点Q 处的眼睛P 与地面的距离PQ 为1.7米,与AB 的距离PC 为2.5米,若仰角∠APC 为θ,则篮筐的高AB 可表示为( )A.(1.7+2.5tanθ)米B.(1.7+2.5tanθ)米C.(1.7+2.5sinθ)米D.(1.7+2.5sinα)米5.如图,在⊙O中,AB是弦,C是弧AB上一点.若∠OAB=25°,∠OCA=40°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°6.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4 B.6 C.D.87.如图,正六边形ABCDEF外作正方形DEGH,连接AH交DE于点O,则OAOH等于()A.3 BC.2 D8.如图(1),一只圆形平盘被同心圆划成M,N,S三个区域,随机向平盘中撒一把豆子,计算落在M,N,S三个区域的豆子数的比.多次重复这个试验,发现落入三个区域的豆子数的比显示出一定的稳定性,总在三个区域的面积之比附近摆动.如图(2)将一根筷子放在该盘中AB位置,发现三个圆弧刚好将AB五等分.我们把豆子落入三个区域的概率分别记作()P M ,()P N ,()P S ,已知()15P S =,则()P M 等于( )A .815 B .25C .415 D .159.如果一个圆的内接三角形有一边的长度等于半径,那么称其为该圆的“半径三角形”.给出下面四个结论:①一个圆的“半径三角形”有无数个;②一个圆的“半径三角形”可能是锐角三角形、直角三角形或钝角三角形; ③当一个圆的“半径三角形”为等腰三角形时,它的顶角可能是30°,120︒或150︒;④若一个圆的半径为2,则它的“半径三角形”面积最大值为 上述结论中,所有正确结论的序号是( ) A .①②B .②③C .①②③D .①②④10.当a b ≠时,将()()a b b a ,,,两个点称为一对“关联的对称点”.若抛物线2y x x c =-++(c是常数)总存在一对“关联的对称点”,则c 的取值范围是( )A .2c <B .1c <C .2>cD .1c >二、填空题11.二次函数2245y x x =++的顶点坐标为12.如图,、AB CD 为O e 的两条弦,若2290,100B C AB CD ∠+∠=︒+=,则O e 的半径为 .13.如图,D E 、分别是ABC V 的边AB BC 、上的点,//DE AC ,若:1:25D O E CO A S S =△△,则:BDE CDE S S =△△.14.如图,四边形ABCD 内接于半径为120A ∠=︒,45B ∠=︒,AB AD =,则四边形ABCD 的周长为 .15.贴春联是中国传统习俗,晓红老家有个圆形拱门,每年都会贴上长长的春联,看上去非常喜庆.晓红用圆弧近似模拟拱门,经测量发现、¼ADB 的拱高CD 和其所对的弦AB 都是2m ,»EB所对的圆心角是150︒,弦AB 与春联的底端平齐,E 点正好是春联外侧最高点,则春联的外侧长度大约是m . 1.732;结果按四舍五入法精确到0.1)16.已知拋物线22321(0)y x mx m m =-+->与直线1y =-相交于点,A B (点B 在点A 右侧),且2AB =. (1)m 的值是.(2)直线()24x n n =≤≤与抛物线22213y x mx m -+-=相交于点P ,与直线2(0)y kx k =->相交于点Q ,l PQ =.若l 随n 的增大而增大,则k 的取值范围是.三、解答题17.求下列各式的值:(1)sin45cos454tan30sin60︒︒+︒︒;(2)222cos602sin 45tan 60sin 303︒-︒+︒-︒.18.如图1,已知二次函数图象与y 轴交点为(0,3)C ,其顶点为(1,2)D .(1)求二次函数的表达式;(2)将二次函数图象平移,使其顶点与原点重合,然后将其图象绕O 点顺时针旋转90︒得到抛物线G ,如图2所示,直线2y x =-+与G 交于A ,B 两点,P 为G 上位于直线AB 左侧一点,求ABP V 面积最大值,及此时点P 的坐标.19.已知锐角ABC V 内接于O e ,AD BC ⊥于点D ,BE AC ⊥于点E ,交AD 于点G ,交O e 于点F ,连结AF .连结CF ,AD BD =.(1)直接写出CF 与GD 的数量关系;(2)如图,连结OD OG ,,在BG 上取点M ,使得BDM ACF ∠=∠,DM =5BG =,V的面积.求ODG。
人教版数学九年级(下)开学试卷1(附答案)
九年级(下)开学数学试卷一.选择题。
(每小题3分.共30分。
)1.对式子2a2﹣4a﹣1进行配方变形.正确的是()。
A.2(a+1)2﹣3B.(a﹣1)2﹣C.2(a﹣1)2﹣1D.2(a﹣1)2﹣32.若顺次连接四边形ABCD四边的中点.得到的图形是一个矩形.则四边形ABCD一定是()。
A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形3.不透明的袋子里装有2个红球和1个白球.这些球除了颜色外都相同.从中任意摸一个.放回摇匀.再从中摸一个.则两次摸到球的颜色相同的概率是()。
A.B.C.D.4.如图.正方形OABC的两边OA、OC分别在x轴、y轴上.点D(5.3)在边AB上.以C为中心.把△CDB旋转90°.则旋转后点D的对应点D′的坐标是()。
A.(2.10)B.(﹣2.0)C.(2.10)或(﹣2.0)D.(10.2)或(﹣2.0)5.已知反比例函数的图象经过点(﹣2.4).当x>2时.所对应的函数值y的取值范围是()。
A.﹣2<y<0B.﹣3<y<﹣1C.﹣4<y<0D.0<y<16.将抛物线y=x2﹣4x﹣4向左平移3个单位.再向上平移5个单位.得到抛物线的函数表达式为()。
A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣37.如图.把一张矩形纸片ABCD按所示方法进行两次折叠.得到等腰直角三角形BEF.若BC=1.则AB的长度为()。
A.B.C.D.8.若锐角α满足cosα<且tanα<.则α的范围是()。
A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°9.如图.BD、CE是△ABC的中线.P、Q分别是BD、CE的中点.则PQ:BC等于()。
A.1:4B.1:5C.1:6D.1:710.已知二次函数y=x2+(m﹣1)x+1.当x>1时.y随x的增大而增大.而m的取值范围是()。
九年级数学下学期开学试卷(含解析)
2015-2016学年云南省昆明市官渡区冠益中学九年级(下)开学数学试卷一、选择题1.昆明小学1月份某天的最高气温为5℃,最低气温为﹣1℃,则昆明这天的气温差为()A.4℃B.6℃C.﹣4℃D.﹣6℃2.如图是一个由相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.据2010年全国第六次人口普查数据公布,云南省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为()A.4.6×107B.4.6×106C.4.5×108D.4.5×1074.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A.91,88 B.85,88 C.85,85 D.85,84.55.若x1,x2是一元二次方程2x2﹣7x+4=0的两根,则x1+x2与x1•x2的值分别是()A.﹣,﹣2 B.﹣,2 C.,2 D.,﹣26.下列各式运算中,正确的是()A.3a•2a=6a B.=2﹣C.D.(2a+b)(2a﹣b)=2a2﹣b27.如图,在▱ABCD中,添加下列条件不能判定▱ABCD是菱形的是()A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD8.抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A.b2﹣4ac<0 B.abc<0 C.D.a﹣b+c<09.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=,AB的垂直平分线ED交BC的延长线于D点,垂足为E,则sin∠CAD=()A.B.C.D.二、填空题10.当x___________时,二次根式有意义.11.如图,点D是△ABC的边BC延长线上的一点,∠A=70°,∠ACD=105°,则∠B=___________.12.若点P(﹣2,2)是反比例函数y=的图象上的一点,则此反比例函数的解析式为___________.13.计算:=___________.14.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面之和为___________cm2.(结果保留π).15.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为___________.三、解答题(共10题,满分75分)16.计算:+()﹣1﹣(﹣1)0+(﹣1)2001.17.解方程:.18.在▱ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.19.某校在八年级信息技术模拟测试后,八年级(1)班的最高分为99分,最低分为40分,课代表将全班同学的成绩(得分取整数)进行整理后分为6个小组,制成如下不完整的频数分布直方图,其中39.5~59.5的频率为0.08,结合直方图提供的信息,解答下列问题:(1)八年级(1)班共有___________名学生;(2)补全69.5~79.5的直方图;(3)若80分及80分以上为优秀,优秀人数占全班人数的百分比是多少?(4)若该校八年级共有450人参加测试,请你估计这次模拟测试中,该校成绩优秀的人数大约有多少人?20.在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.21.如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:,≈1.732)22.小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?23.A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?24.如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.(1)求证:CF是⊙O的切线;(2)∠F=30°时,求的值.25.如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.2015-2016学年云南省昆明市官渡区冠益中学九年级(下)开学数学试卷参考答案与试题解析一、选择题1.昆明小学1月份某天的最高气温为5℃,最低气温为﹣1℃,则昆明这天的气温差为()A.4℃B.6℃C.﹣4℃D.﹣6℃【考点】有理数的减法.【专题】应用题.【分析】依题意,这天的温差就是最高气温与最低气温的差,列式计算.【解答】解:这天的温差就是最高气温与最低气温的差,即5﹣(﹣1)=5+1=6℃.故选B.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.如图是一个由相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形问题.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层和第三层左上都有1个正方形.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.据2010年全国第六次人口普查数据公布,云南省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为()A.4.6×107B.4.6×106C.4.5×108D.4.5×107【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:45 966 239=4.5966239×107≈4.6×107.故选A.【点评】本题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A.91,88 B.85,88 C.85,85 D.85,84.5【考点】众数;中位数.【分析】根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.【解答】解:众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选:D.【点评】此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题.5.若x1,x2是一元二次方程2x2﹣7x+4=0的两根,则x1+x2与x1•x2的值分别是()A.﹣,﹣2 B.﹣,2 C.,2 D.,﹣2【考点】根与系数的关系.【专题】推理填空题.【分析】根据根与系数的关系得出x1+x2=﹣,x1•x2=,代入即可求出答案.【解答】解:2x2﹣7x+4=0,x1+x2=﹣=,x1•x2==2.故选C.【点评】本题主要考查对根与系数的关系的理解和掌握,能熟练地运用根与系数的关系进行计算是解此题的关键.6.下列各式运算中,正确的是()A.3a•2a=6a B.=2﹣C.D.(2a+b)(2a﹣b)=2a2﹣b2【考点】实数的性质;单项式乘单项式;多项式乘多项式;二次根式的加减法.【分析】根据单项式乘单项式法则、绝对值的性质、二次根式的减法法则、平方差公式进行计算排除.【解答】解:A、3a•2a=6a2,故本选项错误;B、根据负数的绝对值是它的相反数,故本选项正确;C、原式=4﹣=2,故本选项错误;D、根据平方差公式,得原式=4a2﹣b2,故本选项错误.故选B.【点评】此题综合考查了单项式的乘法法则、多项式的乘法公式、二次根式的加减法则以及绝对值的化简计算.7.如图,在▱ABCD中,添加下列条件不能判定▱ABCD是菱形的是()A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD【考点】菱形的判定;平行四边形的性质.【分析】根据菱形的判定定理,即可求得答案.注意排除法的应用.【解答】解:∵四边形ABCD是平行四边形,∴A、当AB=BC时,根据有一组邻边相等的平行四边形是菱形,可得▱ABCD是菱形,故本选项正确;B、当AC⊥BD时,根据对角线互相垂直的平行四边形是菱形,可得▱ABCD是菱形,故本选项正确;C、当BD平分∠ABC时,易证得AB=AD,根据有一组邻边相等的平行四边形是菱形,可得▱ABCD是菱形,故本选项正确;由排除法可得D选项错误.故选D.【点评】此题考查了菱形的判定.熟记判定定理是解此题的关键.8.抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A.b2﹣4ac<0 B.abc<0 C.D.a﹣b+c<0【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为y轴,即<﹣1,A、应为b2﹣4ac>0,故本选项错误;B、abc>0,故本选项错误;C、即<﹣1,故本选项正确;D、x=﹣1时函数图象上的点在第二象限,所以a﹣b+c>0,故本选项错误.故选C.【点评】本题主要考查了二次函数y=ax2+bx+c系数符号的确定交点,难度适中.9.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=,AB的垂直平分线ED交BC的延长线于D点,垂足为E,则sin∠CAD=()A.B.C.D.【考点】锐角三角函数的定义;线段垂直平分线的性质;勾股定理.【专题】计算题;压轴题.【分析】设AD=x,则CD=x﹣3,在直角△ACD中,运用勾股定理可求出AD、CD的值,即可解答出;【解答】解:设AD=x,则CD=x﹣3,在直角△ACD中,(x﹣3)2+=x2,解得,x=4,∴CD=4﹣3=1,∴sin∠CAD==;故选A.【点评】本题考查了线段垂直平分线的性质定理及勾股定理的运用,求一个角的正弦值,可将其转化到直角三角形中解答.二、填空题10.当x≥5时,二次根式有意义.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的性质意义,被开方数大于等于0,就可以求解.【解答】解:根据题意知:x﹣5≥0,解得,x≥5.故答案是:x≥5.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.如图,点D是△ABC的边BC延长线上的一点,∠A=70°,∠ACD=105°,则∠B=35°.【考点】三角形的外角性质.【专题】计算题.【分析】由∠A=70°,∠ACD=105°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,则∠B=∠ACD﹣∠A,然后代值计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=70°,∠ACD=105°,∴∠B=105°﹣70°=35°.故答案为35°.【点评】本题考查了三角形的外角定理:三角形任意一个外角等于与之不相邻的两内角的和.12.若点P(﹣2,2)是反比例函数y=的图象上的一点,则此反比例函数的解析式为y=﹣.【考点】待定系数法求反比例函数解析式.【专题】函数思想.【分析】将点P(﹣2,2)代入反比例函数y=,求得k值,即利用待定系数法求反比例函数的解析式.【解答】解:根据题意,得2=,解得,k=﹣4.故答案是:y=﹣.【点评】本题考查了待定系数法求反比例函数的解析式.解答该题时,借用了反比例函数图象上点的坐标特征.13.计算:=a.【考点】分式的混合运算.【分析】首先对括号内的式子通分相减,然后把除法转化为乘法,约分计算即可.【解答】解:原式=(+)•=•===a.故答案是:a【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.14.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面之和为cm2.(结果保留π).【考点】扇形面积的计算;三角形内角和定理;等腰三角形的判定与性质;相切两圆的性质.【专题】计算题.【分析】根据等圆的性质得出AD=BD,根据CD⊥AB求出∠A、∠B的度数,根据扇形的面积公式求出即可.【解答】解:∵两等圆⊙A与⊙B外切,∴AD=BD=AB=2,∵∠C=120°∴∠CAB+∠CBA=60°设∠CAB=x°,∠CBA=y°则x+y=60∴图中两个扇形(即阴影部分)的面积之和为+===π,故答案为:π.【点评】本题主要考查对三角形的内角和定理,等腰三角形的性质和判定,扇形的面积公式,相切两圆的性质等知识点的理解和掌握,正确利用扇形的面积公式是解此题的关键.15.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为90%.【考点】一元一次方程的应用.【专题】压轴题.【分析】这是一道关于和差倍分问题的应用题,设今年新能源汽车的产量应增加的百分数为x%,解这道的关键是根据“为保持总产量与去年相等”,而去年的总量未知,可以设为参数a,就可以表示出去年普通汽车和新能源汽车的产量分别为90%a和10%a,而几年的普通汽车和新能源汽车的产量分别为90%a(1﹣10%)和10%a(1+x%).就可以根据等量关系列出方程.【解答】解:设今年新能源汽车的产量应增加的百分数为x%,去年的总产量为a,由题意,得90%a(1﹣10%)+10%a(1+x%)=a,解得:x=90.故答案为:90%.【点评】本题考查了一元一次方程的运用.要求学生能熟练地掌握例一元一次方程解应用题的步骤.解一元一次方程的关键是找到等量关系.三、解答题(共10题,满分75分)16.计算:+()﹣1﹣(﹣1)0+(﹣1)2001.【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据开平方、负整数指数幂、零指数幂等知识化简各式,再利用加减混合运算法则求出答案即可.【解答】解:原式=2+2﹣1﹣1=2.【点评】本题主要考查了实数的运算以及指数幂的知识,解答本题的关键是熟练掌握零指数幂以及负指数幂的定义,此题比较简单.17.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣2),得3﹣1=x﹣2,解得x=4.检验:把x=4代入(x﹣2)=2≠0.∴原方程的解为:x=4.【点评】本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.在▱ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.【点评】本题主要考查对平行四边形的性质,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出△ABE≌△CDF是证此题的关键.19.某校在八年级信息技术模拟测试后,八年级(1)班的最高分为99分,最低分为40分,课代表将全班同学的成绩(得分取整数)进行整理后分为6个小组,制成如下不完整的频数分布直方图,其中39.5~59.5的频率为0.08,结合直方图提供的信息,解答下列问题:(1)八年级(1)班共有50名学生;(2)补全69.5~79.5的直方图;(3)若80分及80分以上为优秀,优秀人数占全班人数的百分比是多少?(4)若该校八年级共有450人参加测试,请你估计这次模拟测试中,该校成绩优秀的人数大约有多少人?【考点】频数(率)分布直方图;用样本估计总体.【分析】(1)由图知:39.5~59.5的学生共有4人,根据频率=可得到答案;(2)首先求出)69.5~79.5的频数,再画图.(3)80分及80分以上的人数为:18+8=26,再用×100%=百分比可得答案.(4)利用样本估计总体即可解决问题.【解答】解:(1)4÷0.08=50,(2)69.5~79.5的频数为:50﹣2﹣2﹣8﹣18﹣8=12,如图:(3)×100%=52%,(4)450×52%=234(人),答:优秀人数大约有234人.【点评】此题主要考查了看频数分布直方图,用样本估计总体,中考中经常出现,读频数分布直方图的能力和利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)将三角形的各点分别向下平移3个单位,然后顺次连接即可得出平移后的△A1B1C1;(2)根据题意所述的旋转角度、旋转中心及旋转方向依次找到各点旋转后的对应点,然后顺次连接即可得出旋转后的△A2B2C2,结合直角坐标系可写出A2点的坐标.【解答】解:(1)所画图形如下:(2)所画图形如下:∴A2点的坐标为(2,﹣3).【点评】本题考查了平移作图及旋转作图的知识,难度一般,解答此类题目的关键是掌握旋转及平移的特点,然后根据题意找到各点的对应点,然后顺次连接即可.21.如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:,≈1.732)【考点】解直角三角形的应用-方向角问题.【专题】几何综合题.【分析】过点C作CD⊥AB于D,则由已知求出CD和BD,也能求出AD,从而求出这段地铁AB的长度.【解答】解:过点C作CD⊥AB于D,由题意知:∠CAB=45°,∠CBA=30°,∴CD=BC=200(m),BD=CB•cos(90°﹣60°)=400×=200(m),AD=CD=200(m),∴AB=AD+BD=200+200≈546(m),答:这段地铁AB的长度为546m.【点评】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,有公共直角边的可利用这条边进行求解.22.小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?【考点】游戏公平性;列表法与树状图法.【分析】(1)根据题意直接列出树形图或列表即可;(2)游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两纸牌上的数字之和为偶数或奇数时的概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)列表法如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)树形图如下:(2)不公平.理由:因为两纸牌上的数字之和有以下几种情况:1+1=2;2+1=3;3+1=4;1+2=3;2+2=4;3+2=5;1+3=4;2+3=5;3+3=6共9种情况,其中5个偶数,4个奇数.即小昆获胜的概率为,而小明的概率为,∴>,∴此游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?【考点】一次函数的应用.【专题】函数思想.【分析】(1)由已知用x表示出各种情况的费用,列出函数关系式,化简即得.根据已知列出不等式组求解.(2)根据(1)得出的函数关系,由此次调运的总费用不超过16000元,计算讨论得出答案.【解答】解:(1)从A市运往C县的农用车为x辆,此次调运总费为y元,根据题意得:y=300x+200(42﹣x)+150(50﹣x)+250(x﹣2),即y=200x+15400,所以y与x的函数关系式为:y=200x+15400.又∵,解得:2≤x≤42,且x为整数,所以自变量x的取值范围为:2≤x≤42,且x为整数.(2)∵此次调运的总费用不超过16000元,∴200x+15400≤16000解得:x≤3,∴x可以取:2或3,方案一:从A市运往C县的农用车为2辆,从B市运往C县的农用车为40辆,从A市运往D县的农用车为48辆,从B市运往D县的农用车为0辆,方案二:从A市运往C县的农用车为3辆,从B市运往C县的农用车为39辆,从A市运往D县的农用车为47辆,从B市运往D县的农用车为1辆,∵y=200x+15400是一次函数,且k=200>0,y随x的增大而增大,∴当x=2时,y最小,即方案一费用最小,此时,y=200×2+15400=15800,所以最小费用为:15800元.【点评】此题考查的知识点是一次函数的应用,关键是使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.24.如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.(1)求证:CF是⊙O的切线;(2)∠F=30°时,求的值.【考点】切线的判定与性质;圆周角定理;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】(1)连接OE,根据角平分线的性质和等边对等角可得出OE∥AC,则∠OEF=∠ACF,由AC ⊥EF,则∠OEF=∠ACF=90°,从而得出OE⊥CF,即CF是⊙O的切线;(2)由OE∥AC,则△OFE∽△AFC,根据相似三角形的面积之比等于相似比的平方,从而得出的值.【解答】(1)证明:连接OE,∵AE平分∠FAC,∴∠CAE=∠OAE,又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,∴OE∥AC,∴∠OEF=∠ACF,又∵AC⊥EF,∴∠OEF=∠ACF=90°,∴OE⊥CF,又∵点E在⊙O上,∴CF是⊙O的切线;(2)解:∵∠OEF=90°,∠F=30°,∴OF=2OE又OA=OE,∴AF=3OE,又∵OE∥AC,∴△OFE∽△AFC,∴==,∴=,∴=.【点评】本题考查了切线的判定和性质、相似三角形的判定与性质以及圆周角定理,是基础知识要熟练掌握.25.如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.【考点】二次函数综合题.【分析】(1)首先解方程得出A,B两点的坐标,利用待定系数法确定直线AB和直线OB的解析式即可;(2)利用待定系数法求出二次函数解析式即可;(3)利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,进而得出最值即可.【解答】解(1)解方程x2﹣2x﹣3=0,得x1=3,x2=﹣1.∵m<n,∴m=﹣1,n=3∴A(﹣1,﹣1),B(3,﹣3).设直线AB的解析式为y=kx+b∴,解得:,所以直线AB的解析式为y=﹣x﹣;设直线OB的解析式为y=kx,∴3k=﹣3,解得:k=﹣1,∴直线OB的解析式为y=﹣x;(2)∵抛物线过原点,设抛物线的解析式为y=ax2+bx(a≠0).∴,解得:,∴抛物线的解析式为y=﹣x2+x.(3)△BOD的面积是存在最大值;过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,﹣x2+x).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),= [x+(﹣x2+x)]×3,=﹣(x﹣)2+,∵0<x<3,∴当x=时,S取得最大值为,此时D(,﹣).【点评】此题主要考查了二次函数的综合应用以及等腰三角形的性质和三角形面积求法等知识,求面积最值经常利用二次函数的最值求法得出.文本仅供参考,感谢下载!。
最新初三数学第二学期开学测试卷(含答案解析)
初三数学第二学期开学测试卷一、选择题(本题共10个小题,每小题4分,满分40分)1.(4分)下列图案既是轴对称图形又是旋转对称图形的是()A.B.C.D.【分析】根据轴对称图形与旋转对称图形的概念结合几何图形的特点进行判断.【解答】解:A、本选项不是轴对称图形,也不是旋转对称图形,不符合题意;B、本选项是轴对称图形,不是旋转对称图形,不符合题意;C、本选项是轴对称图形,不是旋转对称图形,不符合题意.D、本选项是轴对称图形,也是旋转对称图形,符合题意;故选:D.【点评】本题考查了旋转对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.(4分)如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是()A.30°B.60°C.1:D.:1【分析】根据坡度和坡比的关系解答即可.【解答】解:∵斜坡的坡比i=h:l=1:,∴斜坡的坡度为1:,故选:C.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比是解题的关键.3.(4分)二次函数y=(x﹣2)2向右平移1个单位后的解析式是()A.y=(x﹣3)2B.y=(x﹣1)2C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1【分析】直接运用平移规律“左加右减,上加下减”解答.【解答】解:将二次函数y=(x﹣2)2向右平移1个单位后的解析式是y=(x﹣2﹣1)2,即y=(x﹣3)2.故选:A.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.(4分)一次函数y=k(x+1)和反比例函数的图象在同一坐标系内大致是()A.B.C.D.【分析】根据反比例函数y=的性质和次函数y=kx+b的性质分别进行判断:先确定一个函数图象的位置,得到k的取值范围,然后去判断另一个图象是否正确.【解答】解:A、对于一次函数过第一、三象限,则k>0,而它与y轴的交点在x轴的下方,所以A选项不正确;B、对于反比例图象得到k<0,而一次函数过原点,所以B选项不正确;C、对于反比例图象得到k<0,一次函数过第二、四象限,并且它与y轴的交点在x轴的下方,所以C选项正确;D、对于反比例图象得到k<0,而一次函数过第一、三象限,所以D选项不正确;故选:C.【点评】本题考查了反比例函数y=的性质:当k>0,图象过第一、三象限;当k<0,图象过第二、四象限.也考查了一次函数y=kx+b的性质:当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;当b>0,图象与y轴的交点在x轴的上方;当b<0,图象与y轴的交点在x轴的下方;当b<0,图象过原点.5.(4分)如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【分析】本题主要应用两三角形相似的判定定理,三边对应成比例的两个三角形相似,即可完成题目.【解答】解:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;由勾股定理求出③的各边长分别为2、2、2,∴=,=,即==,∴两三角形的三边对应成比例,∴①③相似.故选:C.【点评】此题主要考查三组对应边的比相等的两个三角形相似的运用.6.(4分)线段AB的长为2,点C是线段AB的黄金分割点,则线段AC的长可能是()A.+1B.2﹣C.3﹣D.﹣2【分析】根据黄金分割点的定义,知AC可能是较长线段,也可能是较短线段,分别求出即可.【解答】解:∵点C是线段AB的黄金分割点,AB=2,∴AC=AB=×2=﹣1,或AC=2﹣(﹣1)=3﹣,故选:C.【点评】本题主要考查了黄金分割的定义,熟记黄金分割的比值是解题的关键.7.(4分)如图,点E是正方形ABCD中CD边上的中点,对角线交点为O,连接BE交AC于F点,则OF:CF的值为()A.2B.C.3D.【分析】根据正方形的性质得到AB=CD,AB∥CD,OA=OC=OF+CF,由AB∥CD,推出△CEF∽△ABF,根据相似三角形的性质即可得解.【解答】解:∵四边形ABCD是正方形,∵AB=CD,AB∥CD,∵E是CD的中点,∴CE=CD=AB,∵正方形ABCD的对角线交点为O,∴OA=OC=OF+CF,∴AF=CF+2OF,∵AB∥CD,∴△CEF∽△ABF,∴==,∴=,∴2CF=CF+2OF,∴CF=2OF,∴=,故选:B.【点评】此题考查了相似三角形的判定与性质,利用正方形的性质判定△CEF∽△ABF是解题的关键.8.(4分)如图,△ABC的边BC经过圆心O,AC与圆相切于点A,若∠B=25°,则∠C等于()A.25°B.50°C.40°D.65°【分析】连接OA,根据圆周角定理求出∠AOC,根据切线的性质得到∠OAC=90°,根据直角三角形的性质计算,得到答案.【解答】解:连接OA,∵∠B=25°,∴∠AOC=2∠B=40°,∵AC与圆相切于点A,∴∠OAC=90°,∴∠C=90°﹣50°=40°,故选:C.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.(4分)在同一个平面直角坐标系中一次函数y=x+b图象与反比例函数y=的图象相交于A、B两点,若原点为O点,连接过OA、OB、AB.若△AOB面积为4,则b的值为()A.﹣1或2B.1或﹣2C.±1D.±2【分析】设点A的坐标为(x1,y1),B(x2,y2).x1和x2是方程x2+bx﹣3=0的两个解.由韦达定理可得x1+x2=﹣b,x1•x2=﹣3,|x1﹣x2|==.由一次函数得出点C的坐标,利用三角形的面积公式可求出b的值.【解答】解:设点A的坐标为(x1,y1),B(x2,y2).令x+b=,得x2+bx﹣3=0,则x1和x2是方程x2+bx﹣3=0的两个解,∴x1+x2=﹣b,x1•x2=﹣3,∴|x1﹣x2|==.∵y=x+b与y轴交于点C,∴C(0,b),∴OC=|b|.∵△AOB面积为4,∴|b|•|x1﹣x2|=4,即|b|•=4,解得b2=4或b2=﹣16(舍去),∴b=±2.故选:D.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,数形结合是解题的关键.10.(4分)如图,半圆O的弧上有定长弦CD,若CD<OA,且CE⊥CD交AB于E点,DF⊥CD交AB于E点,当CD在弧AB上由A点向B点移动时(C点不与A点重合,D不与B重合),若设四边形CDFE 面积为y,运动时间为x,则y关于x的图象大概是()A.B.C.D.【分析】求出y关于x的表达式,或者找出y关于x的变化规律,再判断选项.【解答】解:如图,设CE、DF交圆O于G、H两点.∵CD⊥DH,∴CH为直径,经过圆心O.∵CD为定长,圆是定圆,CD2+DH2=CH2,∴DH为定长.∴CDHG的面积为定值.又∵EF为经过矩形CDHG的中心O,∴四边形CDFE的面积等于四边形CDHG的面积的一半,也是定值.故选:A.【点评】本题考查动点问题的函数图象.解题的关键是画出辅助线,发现四边形CDEF的面积不变.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x2﹣2x﹣1的图象的顶点坐标是(1,﹣2).【分析】利用配方法将一般式转化为顶点式,可求顶点坐标.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2).故答案为:(1,﹣2).【点评】本题考查了抛物线的顶点式性质.抛物线的顶点式y=a(x﹣h)2+k,顶点坐标为(h,k).12.(5分)如图,P是反比例函数y=在第二象限的图象上的一点,过P点向两轴作垂线段,若形成的矩形PEOF面积为8,则k=﹣8.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【解答】解:根据题意,知S=|k|=8,k=±8,又∵反比例函数位于第二象限,k<0,∴k=﹣8,故答案为:﹣8.【点评】本题主要考查了反比例函数y=(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.(5分)如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点,若CD=10,AB=18,小圆半径为13,则大圆半径OA=15.【分析】过O点作OH⊥AB于H,连接OC,如图,先根据圆周角定理得到CH=5,AH=9,再利用勾股定理先计算出OH,然后可计算出OA的长.【解答】解:过O点作OH⊥AB于H,连接OC,如图,则CH=DH=CD=5,AH=BH=AB=9,在Rt△OCH中,OH===12,在Rt△OAH中,OA===15.故答案为:15.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.14.(5分)如图,矩形ABCD中,AD=5,AB=12,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在矩形ABCD对角线上时,则DE的长为或.【分析】分两种情形:当点D′落在线段AC上.当点D′落在线段BD上,分别求解即可.【解答】解:当点D′落在线段AC上,如图所示;连接AC.∵由翻折的性质可知;DE=ED′,AD=AD′=5,∠D=∠ED′A=90°,∴∠ED′C=90°.∵在△ABC中,由勾股定理得:AC==13,∴CD′=AC﹣AD′=8.∵∠ECD′=∠DCA,∠ED′C=∠CDA=90°,∴△ECD′∽△ADC.∴=,即=,解得;ED′=,∴DE=.当点D′落在线段BD上,如图所示:∵∠ADO+∠DAO=90°,∠ADB+∠ABD=90°,∴∠DAO=∠DBA.∴OD=AD×=.∴DE=OD÷=故答案为:或.【点评】本题主要考查的是翻折的性质、勾股定理、相似三角形的性质和判定,依据相似三角形的性质求得ED′的长是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)2sin45°+tan245°﹣(﹣1)0.【分析】首先计算零指数幂、特殊角的三角函数值、乘方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:2sin45°+tan245°﹣(—1)0=2×+12﹣1=+1﹣1=.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.(8分)如图,在单位长度为1的正方形组成的网格中,有格点△ABC(顶点为网格线的交点)和格点O,请按要求作图.(1)将△ABC水平向右平移5个单位得到△A1B1C1,并画出△A1B1C1;(2)以点O为位似中心画△ABC的位似图形△A2B2C2,且位似比为2:1.【分析】(1)根据平移的性质找出对应点连接即可;(2)根据位似图形的性质找出对应点连接即可;【解答】解:(1)如图所示,△A1B1C1即是所求作的三角形;(2)如上图所示,△A2B2C2即是所求作的三角形.【点评】本题考查了平移的性质,位似图形的性质,正确找出对应点作出图形是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)若二次函数y=3x2﹣6x+k的图象与x轴只有一个交点,求出k的值并将解析式配方成顶点式.【分析】根据判别式的意义得到Δ=(﹣6)2﹣4×3k=0,然后解方程求出m即可得到抛物线解析式,然后利用配方法将解析式转化为顶点式.【解答】解:根据题意,得Δ=(﹣6)2﹣4×3k=0.解得k=3.将k=3代入解析式,得y=3x2﹣6x+3=3(x﹣1)2.即y=3(x﹣1)2.故k的值为3,解析式为y=3(x﹣1)2.【点评】本题主要考查了抛物线与x轴的交点,待定系数法确定函数关系式以及二次函数的三种形式.把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标转化为解关于x的一元二次方程.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),Δ=b2﹣4ac决定抛物线与x轴的交点个数:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac <0时,抛物线与x轴没有交点.18.(8分)已知===x,求x的值.【分析】分a+b+c=0和a+b+c≠0两种情况,利用等比性质求解即可.【解答】解:若a+b+c=0,则a+b=﹣c,b+c=﹣a,c+a=﹣b,此时,x=﹣1,若a+b+c≠0,则x=====2,综上所述,x的值为﹣1或2.【点评】本题考查了比例的性质,主要利用了等比性质,难点在于分情况讨论.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图所示,已知A(﹣2,3),B(n,﹣2)是一次函数y=ax+b的图象与反比例函数y=(m ≠0)的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出不等式ax+b<的解集.【分析】(1)利用待定系数法即可求得函数的解析式;(2)一次函数的值小于反比例函数的值的x的取值范围,就是对应的一次函数的图象在反比例函数的图象的下边的自变量的取值范围.【解答】解:(1)将A(﹣2,3)点坐标代入反比例函数解析式y=中,得3=,∴m=﹣6,∴反比例函数的表达式,将B(n,﹣2)点代入得﹣2=﹣,∴n=3,将A(﹣2,3)、B(3,﹣2)点代入y=ax+b中,得,解得,∴一次函数的表达式y=﹣x+1;(2)不等式ax+b<的解集是﹣2<x<0或x>3.【点评】本题是反比例函数与一次函数的交点问题,考查了用待定系数法求函数解析式,函数图象上点的坐标特征,数形结合是解题的关键.20.(10分)已知:如图,AB,CD是⊙O的两条平行切线,A,C是切点,⊙O的另一条切线BD与AB,CD分别相交于B,D两点.(1)求证:OB⊥OD;(2)若OB=6,OD=8,求AB+CD的值.【分析】(1)根据切线的性质得到∠ABO=∠DBO,同理∠CDO=∠BDO,根据平行线的性质得到∠ABD+∠BDC=180°,求得∠BOD=90°,根据垂直的定义得到OB⊥OD;(2)根据勾股定理得到BD==10,设切线BD与圆的切点为E,根据切线的性质得到AB =BE,同理CD=DE,于是得到结论.【解答】(1)证明:∵AB,BD是⊙O的两条切线,∴∠ABO=∠DBO,同理∠CDO=∠BDO,∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠OBD+∠BDO=90°,∴∠BOD=90°,∴OB⊥OD;(2)解:在Rt△BOD中,由勾股定理可得,BD==10,设切线BD与圆的切点为E,∵AB,BD是⊙O的两条切线,∴AB=BE,同理CD=DE,∴AB+CD=BE+DE=BD=10.【点评】本题考查了切线的性质、平行线的性质、切线长定理等知识;熟练掌握切线的性质是解题的关键.六、(本题满分12分)21.(12分)小龙同学在学习三角函数知识时,老师告诉他求一个角的三角函数值,这个角应该在直角三角形环境里才好求,但是小龙在解题过程中遇到了这样一个难题,题目:在Rt△ABC中,∠C=90°,若∠BDC=60°,AD=2BD,求sin∠ABD的值.你能运用所学知识帮他解决吗?【分析】过A点作AE⊥BD交BD的延长线于E点.设CD=a,则BD=2a,求出AB,AE,可得结论.【解答】解:过A点作AE⊥BD交BD的延长线于E点.∴∠AED=∠C=90°,在Rt△BDC中,∠BDC=60°,∴cos∠BDC==,设CD=a,则BD=2a,在Rt△BDC中有勾股定理可得:BC=a,∵AD=2BD,∴AD=4a,∴AC=5a,在Rt△ACD中有勾股定理可得:AB=a,在Rt△ADE中,sin∠ADE==,∴AE=2a,在Rt△ABE中,sin∠ABD==.【点评】此题考查了解直角三角形,涉及的知识有:勾股定理,锐角三角函数定义,以及直角三角形的性质,熟练掌握勾股定理及锐角三角函数定义是解本题的关键.七、(本题满分12分)22.(12分)如图,关于x的二次函数y=ax2+bx+3的图象与x轴交于点A(1,0)和点B(3,0),与y轴交于点C,作直线BC.(1)求直线BC的函数表达式;(2)求二次函数的函数表达式;(3)在直线BC的下方,抛物线上是否存在一点P,使△PBC面积最大?若存在.请求出点P的坐标.【分析】(1)利用二次函数图象上点的坐标特征求得点C的坐标;利用点B、C的坐标可以求得直线BC 的函数表达式;(2)把点A、B分别代入抛物线解析式,列出方程组,通过解方程组求得a、b的值即可;(3)要使△PBC面积最大,则经过P点的直线与直线BC平行,与抛物线只有一个交点,由抛物线与直线交点的个数求得答案.【解答】解:(1)设直线BC的函数表达式为y=mx+n,则把x=0代入y=ax2+bx+3,得y=3.∴点C坐标是(0,3)把C(0,3)和B(3,0)代入y=mx+n中,得到.解得.∴y=﹣x+3;(2)把A(1,0)和B(3,0)代入y=ax2+bx+3,得到,解得.∴二次函数的表达式为:y=x2﹣4x+3;(3)存在,理由如下:要使△PBC面积最大,则经过P点的直线与直线BC平行,与抛物线只有一个交点,故设这条直线的解析式为y=﹣x+k,则﹣x+k=x2﹣4x+3的△=0,得k=,方程的解为x1=x2=.把x=代入一次函数y=﹣x+,得y=﹣.则P点坐标为(,﹣).【点评】本题主要考查了抛物线与x轴的交点,一次函数和二次函数图象上点的坐标特征以及待定系数法求函数解析式.解题时,注意抛物线解析式与一元二次方程间的关系.八、(本题满分14分)23.(14分)如图,四边形ABCD为正方形,且E是边BC延长线上一点,过点B作BF⊥DE于F点,交AC于H点,交CD于G点.(1)求证:GD•AB=DF•BG;(2)若点G是DC中点,求的值.(3)连接CF,求∠CFB的度数.【分析】(1)利用△BGC∽△DGF,得,而AB=BC,即可证明;(2)首先利用AAS证明△BGC≌△DEC,得CG=EC,由△BGC∽△DGF,得GF:DG=CG:BG,在Rt△BGC中,设CG=x,则BC=2x,BG=x,从而得出答案;(3)连接BD、CF,利用两边成比例且夹角相等,可证△BGD∽△CGF,得∠BDG=∠CFG,从而解决问题.【解答】证明:(1)∵四边形ABCD是正方形,∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)解:∵△BGC∽△DGF,∴∠FDG=∠CBG,在△BGC与△DEC中,,∴△BGC≌△DEC(AAS),∴CG=EC,∵G是CD中点,∴CG=DG,∴GF:CE=GF:DG,∵△BGC∽△DGF,∴GF:DG=CG:BG,在Rt△BGC中,设CG=x,则BC=2x,BG=x,∴CG:BG=,∴GF:CE=;(3)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°,∴∠CFB=45°.【点评】本题主要考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,证明△BGD∽△CGF是解题的关键.。
2023-2024学年人教版九年级下册数学开学测试试题
2023-2024学年人教版九年级下册数学开学测试试题一、单选题1.下面四个实数,你认为是无理数的是( )A .13 B C .3 D .0.32.甲、乙两位学生各进行5次一分钟跳绳训练,经统计两人的平均成绩相同,方差分别为223.2 1. 8S S ==甲乙,,则成绩更为稳定的是( )A .甲B .乙C .甲、乙成绩一样稳定D .无法确定 3.()1,2-关于原点对称的点的坐标为( )A .()1,2--B .()1,2C .()1,2-D .()1,2- 4.下列计算正确的是( )A .2a •a 2=2a 3B .3a 3÷2a =a 2C .(2a 2)3=6a 5D .5a 2﹣2a =3a 5.如图,A ,B ,C 是O e 上的三点,20OAB ∠=︒,则C ∠的度数是( )A .40︒B .70︒C .110︒D .140︒6.甲、乙两位同学去图书馆参加整理书籍的志愿活动,已知甲每小时比乙多整理5本,甲整理80本书所用的时间与乙整理70本书所用的时间相同,设乙每小时整理x 本书,根据题意列方程得( )A .80705x x =+B .80705x x =-C .80705x x =-D .80705x x =+二、填空题7x 的取值范围是.8.计算:32-=.9.因式分解:39mx my -=.10.一次函数2(1)1y k x k =-+-的图象经过原点,则y 随x 的增大而 .(填“增大”或“减小”)三、解答题11.已知()2211202a ab b H a b b a ab -+⎛⎫=-÷≠≠ ⎪⎝⎭. (1)化简H ;(2)若点(),P a b 在直线2y x =-上,求H 的值.12.已知二次函数的图象的顶点是()1,2--,且经过点30,2⎛⎫- ⎪⎝⎭ (1)求二次函数的解析式;(2)直接写出图象位于x 轴下方时,自变量x 的取值范围.13.如图,在ABCD Y 中,对角线AC ,BD 交于点O ,AB AC ⊥,AH BD ⊥于点H ,若2AB =,BC =AO 与AH 的长.14.如图已知AB 是O e 的直径,ACD ∠是»AD 所对的圆周角,30ACD ∠=︒.(1)求DAB ∠的度数;(2)过点D 作DE AB ⊥,垂足位E ,DE 的延长线交O e 于点F ,若4AB =,求AD ,DF 的长.15.如图,在ABC V 中,90ABC ∠=︒,12cm AB =,2BC AB =,动点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以4cm/s 的速度移动,如果P ,Q 两点分别从A ,B 两点同时出发,那么BPQ V 的面积S 随出发时间t 而变化.(1)求出S关于t的函数解析式,写出t的取值范围;(2)当t取何值时,S最大?最大值是多少?。
北师大版九年级初三数学下册开学检测试题卷含答案解析
九年级 数学一、用心选一选(每小题4,共40)1、sin60°的相反数( )A . B. C. D.2、下列图形分别是桂林、湖南‘甘肃’佛山电视台的台徽,其中为中心对称图形的是( )A .B .C .D .3、下列说法正确的是( )A 、对角线相等且互相垂直的四边形是菱形B 、有一个角是直角的四边形是矩形C 、对角线互相垂直的四边形是平行四边形D 、对角线相等且互相平分的四边形是矩形4、从一个装有5个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则( ) A .P1=1,P2=1 B .P1=0,P2=1 C .P1=1,P2=0.5 D .P1=0,P2=05、已知整式x 2-2.5x=6,则2x 2-5x+6的值为( ) A .9 B .12 C .18 D .24 6、若点(2,y1)(3,y2)在反比例函数在反比例函数y=的图象上,则y1与y2的大小关系( ) A .y1>y2 B .y1<y2C .y1=y2D .不能确定7、把抛物线 y=-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )A 、y=﹣2(x+1)2+2B 、y=﹣2(x+1)2﹣28、 C 、y=﹣2(x ﹣1)2+2 D 、y=﹣2()成反比例,已知400度近视眼镜镜片的焦距为0.25m ,则y 与x 的函数关系式为( )A .B .C . D.y=9、如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ’处,折痕为EF ,若AB=1,BC=2,则△ABE 和△BC ’F 的周长之和为( )A .3B .4C .6D .8 10、请你计算:(1-x )(1+x ),(1-x )(1+x+x 2),…,猜想(1-x )(1+x+x 2+…+x n )的结果是( )A .1-x n +1B .1+x n +1C .1-x nD .1+到点的坐标为 . 12、△ABC 中,∠A, ∠B 都是锐角,若sinA=√3/2,cosB=1/2,则∠C= . . 14、对于实数x,我们规定[x]表示不大于x 的最大整数,例如【1.2】=1,【3】=3,【-2.5】=-3, .15、如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 16、已知:x 23+ 2x 17BC 为AC 上一点,若∠APD=60°,则CD 的长为 .18、如图,菱形ABCD 的边长为4,∠BAD=120°,点E 是AB 的中点,点F 是AC 上的一动点,则EF+BF 的最小值是 . 三、耐心做一做(每题5分,共10分) 19、(1)解方程:x 2-2x -1=0 (2)m 2+1x(9图)(15图)(18图)(17图)20、(6分)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D,现要修建一个货站P 到两条公路OA,OB 的距离相等,且到两工厂C,D 的距离相等,用尺规作出货站P 的位置。
九年级下期开学检测试卷
九年级数学(下)第二学期开学检测试卷班级 学号 姓名 得分一、选择题(每小题4分,共40分) 1.下列运算正确的是( )A. (a 3)4=a 12B. a 3·a 4=a 12C. a 2·a 2=a 4D. (ab )2=ab 22.某学校九年级1班九名同学参加定点投篮测试.每人投篮六次,投中的次数统计如下: 4,3,5,5,3,2,5,4,1.这组数据的中位数、众数分别为( )A. 4,5B. 5,4C. 4,4D. 5,5 3.如图,正六边形ABCDEF 内接于于⊙O,连接BD,则∠CBD 的度数是( )A. 300B. 450C. 600D. 900 4.圆锥的底面半径是5cm,侧面展开图的圆心角是1800 ,圆锥的高是( )A. 5√3cmB. 10cmC. 6cmD. 5cm 5.若点A(-4,y 1),B(-2,y 2),C(2,y 3)都在反比例函数y =−1x 的图像上,则y 1, y 2, y 3的大小关系是( ) A. y 1> y 2> y 3 B. y 3> y 2> y 1 C. y 2> y 1> y 3 D. y 1> y 3> y 26.如图,半径为3的⊙A 经过原点O 和点C(0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( ) A. 13 B. 2√3 C.2√33D.√247.如图,小颖在围棋盘两个格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是( )A. 112 B. 110 C. 16 D. 258.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC,分别交AB,CD 于E,F.连接PB,PD,若AE=2,PF=8.则图中阴影部分的面积为( )A. 10B. 12C. 16D. 189.已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图像沿x 轴翻折到x 轴的下方,图像的其余部分不变,得到一个新图像(如图所示).当直线y =-x +m 与新图像有4个交点时,m 的取值范围是( ) A. −254<m <3 B. −254<m <−2 C. −2<m <3 D. −6<m <−210. 已知二次函数y =ax 2+b x +c 的图像与x 轴分别交于A 、B 两点,与y 轴交于C 点,OA=OC,则由抛物线的特征写出如下结论:①abc >0 ② 4ac -b 2>0 ③ a -b +c >0 ④ac +b +1=0.其中正确的个数是( ) A. 4个 B. 3个 C. 2个 D. 1个(第3题图)E F A B CD(第7题图)F EA P y C A -1x y 1二、填空题(每小题4分,共32分)11.计算√9−1的结果是 .12.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数 y =3x (x >0) ,y =−6x (x >0) 的图像交于A 点和B 点,若C 为y 轴上任意一点,连接AB,BC 则△ABC 的面积为 .13.某商品按进价提高40﹪后标价,在某次电商购物节中,为促销该商品,按标价 8折销售售价为2240元,则这种商品的进价是 元.14.在平面直角坐标系内,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2 的图像如图所示,则关 于x 、y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是 .15.如果不等式组{x <3a +2x <a −4的解集是x <a -4 .则a 的取值范围是 .16.如图,对折矩形ABCD,使AB 与DC 重合,得到折痕EF,将纸片展平再一次折叠, 使点D 落到G,并使折痕经过点A,已知BC=2.则线段EG 的长度为 . 17. 如图,正方形ABCD 的边长为10,点A 的坐标为(-8,0),点B 在y 轴上,若 反比例函数y =kx (k ≠0)的图象过点C,则反比例函数的解析式为 .18. 如图AB 是半圆O 的直径,AC=AD,0C=2, ∠CBD=300.则点O 到CD 的距离OE 为 .三、解答题(19—22题每题15分,23题18分)19.计算:(−2)−1−√9+cos600+(√2019−√2018)0+82019×(−0.125)2019(第12题图)12(第14题图)x(第16题图)E F A(第17题图)(第18题图)20.先化简(1+2x−3)÷(x 2−1x 2−6x+9) ,再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.21. 如图,有一铁塔A 、B,为了测量其高度,在水平面选取C 、D 两点,在C 处测得A 的仰角为45度,距C 点10米D 处测得A 的仰角为60度,且C 、D 、B 在同一水平直线上.求铁塔AB 的高(结果精确到0.1米,√3≈1.732).C22.如图,已知AB 是⊙O 的直径,点P 是⊙O 上一点,连接OP,点A 关于OP 的对称点C 恰好落在⊙O 上. (1)求证:OP ∥BC;(2)过C 点作⊙O 的切线,交AP 的延长线于点D,∠P=900,DP=1,求⊙O 的直径.23. 如图,抛物线y =12x 2+bx +c 与直线y =12x +3分别交于A 、B 两点,且此抛物线与x 轴的一个交点为C,连接AC,BC.已知A(0,3),C(-3,0) (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点,使|MB-MC|的值最大,并求出这个最大值;(3)点P 为y 轴右侧抛物线上一动点,连接PA,过点P 作PQ ⊥PA,交y 轴于点Q,问是否存在点P 使得以A,P,Q 为顶点的三角形与△ABC 相似.若存在,求出所有符合条件的点P;若不存在,请说明理由。
福州市中学九年级(下)开学数学试卷含答案
开学试卷一、选择题(本大题共10小题,共40.0分)1. PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ) A. 0.25×10-5 B. 2.5×10-5 C. 2.5×10-6 D. 2.5×10-72. 下列调查中,适宜采用普查方式的是( )A. 了解一批圆珠笔的寿命B. 了解全国九年级学生身高的现状C. 考察人们保护海洋的意识D. 检查一枚用于发射卫星的运载火箭的各零部件3. 将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是( )A. 45°B. 60°C. 90°D. 180°4. 如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( ) A. M B. N C. P D. Q5. 反比例函数的图象如图所示,则k 的值可能是( ) A. -1B. C. 1D. 26. 命题“关于x 的一元二次方程x 2+bx +1=0,必有实数解.”是假命题.则在下列选项中,可以作为反例的是( ) A. b =-3 B. b =-2 C. b =-1 D. b =27. “五•一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x 元,男装部购买了原价为y 元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( )A.B.C.D.8. 如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )A. ①B. ②C. ③D. ④9.已知甲、乙两个函数图象上部分点的横坐标x与对应的纵坐标y分别如表所示,两个函数图象仅有一个交点,则交点的纵坐标y是()乙012310.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B. 2C.D. 10-5二、填空题(本大题共6小题,共24.0分)11.因式分解:6x2-3x=______.12.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是______.13.圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是______°.14.为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有______人.15.计算:3×()2-2016×=______.16.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a+b)n(n=1,2,34…)的展开式的系数规律(按a的次数由大到小的顺序);请依据上述规律,写出展开式中含x2015项的系数是______.三、计算题(本大题共3小题,共26.0分)17.解方程:=.18.如图,△ABC中,AB=BC.(1)用直尺和圆规作△ABC的中线BD;(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若BC=6,BD=4,求cos A的值.19.学生李杨从家里到学校只能乘106路或108路公共汽车,他对这两路车途中所需时间分别做了14次统计,并列成下表:(1)若李杨每天早上6点25分上车,学校7点10分上课,则请你根据统计知识为李杨选择合理的一路车;(2)若李杨每天早上6点25分上车,学校7点上课,则乘哪路车合适并说明理由;(3)若在(2)中选择了A路车,已知A路车仅有车况等级为上、中、下的3辆车,李杨采取的策略是:放过第一辆,若第二辆比第一辆好,则乘第二辆,否则乘第三辆.在不考虑时间的情况下,李杨乘上等车的频率有多大?四、解答题(本大题共6小题,共60.0分)20.计算:2×(sin60°)0+|-|-8×4-121.如图,在▱ABCD中,E是BC边上一点,且AB=AE.求证:DE=AC.22.已知一次函数y1=x+b(b为常数)的图象与反比例函数(k为常数,且k≠0)的图象相交于点P(3,1).(I)求这两个函数的解析式:(II)当x>3时,试判断y1与y2的大小,并说明理由.23.如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=2,BP=4,求⊙O的半径;(2)求证:直线BF是⊙O的切线;(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.24.在△ABC中,∠ABC=90°、(1) 如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2) 如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tan C的值;(3) 如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.25.已知抛物线y=ax2+x+2.(1)当a=-1时,求此抛物线的顶点坐标和对称轴;(2)若代数式-x2+x+2的值为正整数,求x的值;(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0).若点M在点N的左边,试比较a1与a2的大小.答案和解析1.【答案】C【解析】解:0.000 0025=2.5×10-6;故选:C.小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】D【解析】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.【答案】C【解析】解:如图,∵a∥b,∴∠1=∠3,∠2=∠4.又∵∠3=∠5,∠4=∠6,∠5+∠6=90°,∴∠1+∠2=90°.故选:C.利用平行线的性质和对顶角的性质进行解答.本题考查了平行线的性质.正确观察图形,熟练掌握平行线的性质和对顶角相等.4.【答案】A【解析】【分析】本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.根据数轴可知-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.5.【答案】B【解析】解:∵反比例函数在第一象限,∴k>0,∵当图象上的点的横坐标为1时,纵坐标小于1,∴k<1,故选:B.根据函数所在象限和反比例函数上的点的横纵坐标的积小于1判断.用到的知识点为:反比例函数图象在第一象限,比例系数大于0;比例系数等于在它上面的点的横纵坐标的积.6.【答案】C【解析】解:∵方程x2+bx+1=0,必有实数解,∴△=b2-4≥0,解得:b≤-2或b≥2,则命题“关于x的一元二次方程x2+bx+1=0,必有实数解.”是假命题.则在下列选项中,可以作为反例的是b=-1,故选:C.由方程有实数根,得到根的判别式大于等于0,求出b的范围即可做出判断.此题考查了命题与定理,以及根的判别式,熟练掌握举反例说明命题为假命题的方法是解本题的关键.7.【答案】D【解析】解:根据优惠前需付700元,得x+y=700;打折后需付580元,得0.8x+0.85y=500.列方程组为.故选:D.关键描述语是:优惠前需付700元,而他实际付款580元.等量关系为:①优惠前:男装原价+女装原价=700;②打折后:0.8×女装原价+0.85×男装原价=580.找到两个等量关系是解决本题的关键,还需注意相对应的原价与折数.全部服装八折即女装原价的80%,全装八五折即男装原价的85%.8.【答案】A【解析】解:原几何体的主视图是:.故取走的正方体是①.故选:A.根据题意得到原几何体的主视图,结合主视图选择.本题考查了简单组合体的三视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.9.【答案】D【解析】解:由表格中数据可得:甲、乙有公共点(4,3),则交点的纵坐标y是:3.故选:D.根据题意结合表格中数据得出两图象交点进而得出答案.此题主要考查了函数图象,正确得出交点坐标是解题关键.10.【答案】B【解析】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.11.【答案】3x(2x-1)【解析】解:6x2-3x=3x(2x-1),故答案为:3x(2x-1).根据提公因式法因式分解的步骤解答即可.本题考查的是提公因式法因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式.12.【答案】【解析】解:∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为:.先求出球的总数,再根据概率公式求解即可.本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.【答案】90【解析】解:设圆锥侧面展开图的圆心角为n.根据题意得2π×1=解得n=90°.故答案为:90°根据圆锥的底面周长等于圆锥的侧面展开图的弧长可得圆锥侧面展开图的圆心角,把相关数值代入即可.此题主要考查了圆锥的计算;关键是掌握计算公式:圆锥的底面周长=圆锥的侧面展开图的弧长.14.【答案】360【解析】解:喜爱科普常识的学生所占的百分比为:1-40%-20%-10%=30%,1200×30%=360,故答案为:360.根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.15.【答案】-2017【解析】解:3×()2-2016×,=×(-2016),=×(-),=×,=-,=-,=-2017.故答案为:-2017.先提取公因式,再利用平方差公式计算,最后约分可得结论.本题考查了二次根式的混合运算,结合题目特点,灵活运用二次根式的性质,并利用因式分解,选择恰当的解题途径,也考查了平方差公式的熟练运用.16.【答案】-4034【解析】解:(x-)2017展开式中含x2015项的系数,由(x-)2017=x2017-2017•x2016•()+…可知,展开式中第二项为-2017•x2016•()=-4034x2015,∴(x-)2017展开式中含x2015项的系数是-4034,故答案为:-4034.首先确定x2015是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.17.【答案】解:去分母得:3x+3=4x,解得:x=3,经检验x=3是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:(1)如图,BD为所作;(2)∵AB=AC=6,∴∠A=∠C,BD⊥AC,在Rt△ABD中,AD===2,∴cos A===.【解析】(1)过B点作AC的垂线,垂足为D,则根据等腰三角形的性质得BD为△ABC 的中线;(2)先利用勾股定理得到AD的长,然后根据余弦的定义求解.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了勾股定理和等腰三角形的性质.19.【答案】解:(1)=,=,又乘这两路车均可在7点10分到达学校,因此,应选择108路车;(6分)(2)由表可知,要在7点之前到校,李杨每次乘车时间不能超过35分钟,而106路、108路车途中所需时间不超过35分钟的频数分别为11和10;因此,选择106路合适;(3)1、若第一辆车为上等车,①第二辆为中等车,则乘下等车;②第二辆为下等车,则乘中等车;2、若第一辆车为中等车,①第二辆为上等车,则乘上等车;②第二辆为下等车,则乘上等车;3、若第一辆车为下等车,①第二辆为上等车,则乘上等车;②第二辆为中等车,则乘中等车;因此李杨乘上等车的频率为=.【解析】(1)对表中两路车的时间求平均数,比较可得;(2)借助频数比较,选择频数大的一路车;(3)根据频率的计算方法,结合题意分别进行计算可得答案.本题考查读频数分布表的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.【答案】解:原式=2×1+-8×,=2+-2,=.【解析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21.【答案】证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴DE=AC.【解析】在△ABC和△EAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE即可证明△ABC≌△EAD,进而利用全等三角形的性质解答即可.主要考查了平行四边形的基本性质和全等三角形的判定及性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22.【答案】解:(1)∵点P(3,1)在一次函数y1=x+b(b为常数)的图象上,解得:b=-2,∴一次函数解析式为:y1=x-2.∵点P(3,1)在反比例函数(k为常数,且k≠0 )的图象上,∴k=3×1=3,∴反比例函数解析式为:y2=,(II)y1>y2.理由如下:当x=3时,y1=y2=1,又当x>3时,y1随x的增大而增大,反比例函数y2随x的增大而减小,∴当x>3时,y1>y2.【解析】(I)利用待定系数法,将P(3,1)代入一次函数解析式与反比例函数解析式,即可得到答案;(II)当x=3时,y1=y2=1,再利用函数的性质一次函数y1随x的增大而增大,反比例函数y2随x的增大而减小,可以判断出大小关系.此题主要考查了待定系数法求函数解析式和函数的性质,凡是图象上的点,都能使函数解析式左右相等.23.【答案】(1)解:CD⊥AB,∴PC=PD=CD=,连接OC,设⊙O的半径为r,则PO=PB-r=4-r,在Rt△POC中,OC2=OP2+PC2,即r2=(4-r)2+()2,解得r=.(2)证明:∵∠A=∠BCD,∠F=∠ABC,∴∠ABF=∠CPB,∵CD⊥AB,∴∠ABF=∠CPB=90°,∴直线BF是⊙O的切线;(3)四边形AEBF是平行四边形;理由:解:如图2所示:∵CD⊥AB,垂足为P,∴当点P与点O重合时,CD=AB,∴OC=OD,∵AE是⊙O的切线,∴BA⊥AE,∵CD⊥AB,∴DC∥AE,∵AO=OB,∴OC是△ABE的中位线,∴AE=2OC,∵∠D=∠ABC,∠F=∠ABC.∴∠D=∠F,∴CD∥BF,∴AE∥BF,∴OD是△ABF的中位线,∴BF=2OD,∴AE=BF,∴四边形AEBF是平行四边形.【解析】(1)根据垂径定理求得PC,连接OC,根据勾股定理求得即可;(2)先得到∠ABF=∠CPB,再结合CD⊥AB,知∠ABF=∠CPB=90°,即可证得结论;(3)通过证得AE=BF,AE∥BF,从而证得四边形AEBF是平行四边形.本题考查了切线的判定,勾股定理的应用,三角形相似的判定和性质,三角形的中位线的性质,平行四边形的判定等,熟练掌握性质定理是解题的关键.24.【答案】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∴∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠PAC====设MN=2m,PN=m,根据勾股定理得,PM==3m=CM,∴tan C==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=,同(1)的方法得,△ABG∽△BCH,∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【解析】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出MP=MC,进而得出=,设MN=2m,PN=m,根据勾股定理得,PM==3m=CM,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.25.【答案】解:(1)当a=-1时,y=-x2+x+2=-(x-)2+∴抛物线的顶点坐标为:(,),对称轴为x=;(2)∵代数式-x2+x+2的值为正整数,-x2+x+2=-(x-)2+2≤2,∴-x2+x+2=1,解得x=,或-x2+x+2=2,解得x=0或1.∴x的值为,,0,1;(3)将M代入抛物线的解析式中可得:a1m2+m+2=0;∴a1=;同理可得a2=-;a1-a2=,∵m在n的左边,∴m-n<0,∵0<m<n,∴a1-a2=<0,∴a1<a2.【解析】(1)将a的值代入抛物线中,即可求出抛物线的解析式,用配方法或公式法可求出抛物线的顶点坐标和对称轴解析式.(2)可先得出y的值,然后解方程求解即可.(3)可将M、N的坐标分别代入抛物线中,得出a1、a2的表达式,然后令a1-a2进行判断即可.本题主要考查二次函数的相关知识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下期开学数学测试题
一.选择题(3分×8=24分)
1. 的绝对值是( )
7
2.下列图形,既是轴对称图形又是中心对称图形的有( )
4个 3个 2个 1个 3.2013年入春以来,云南再次遭遇了旱灾,旱灾范围之广、持续时间之长、面积之大、旱情之深,均为历史罕见.截止2013年3月21日,全省受
灾人口876万人,有494万人,244万头大牲畜饮水困难,农作物受灾面
积1251万亩,将1251万用科学记数法表示为( )
4.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,10,5,8,4,8,4,这组数据的中位数和极
差分别是( )
5,7 7,5 4,7 3,7
5.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部面积分
别为
80、100,且甲容器装满水,乙容器是空的.若将甲中的水全部倒
入乙中,则乙中的水位高度比原先甲的水位高度低了8㎝,则甲容器的
容积为( ).
1280 2560 3200 4000
6.如图是某几何体的三视图及相关数据,则这个几何体的侧面积是( )
7.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止.设点P运动的路程为,△ABP的面积为,如果关于的函数图像如图2所示,则△BCD的面积是( )
3 4 5 6
8.如图,在直角三角形纸片中,AB=3,AC=4,D为斜边BC中点.第一次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为
D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1
的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点
P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1
重合,折痕与AD交于点P n(n>2),则AP6的长为( )
二.填空题(3分×7=21分)
9.计算: .
10.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果
∠1=115°,那么∠2是 度.
11.如图所示,将的三边分别扩大一倍得到(顶点
均在格点上),它们是以点P点为位似中心的位似图形,则P点的坐标是.
12.在“学雷锋月”活动中,某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中张明与李强都可以从这三辆车中任选一辆搭乘,则张明与李强同车的概率为 .
13.如图,在矩形ABCD中,AB=15㎝,点E在AD上,且AE=9㎝,连接EC,将矩
形ABCD沿直线BE翻折,点A恰好落在EC上的点处,则.
14.如图,AB是的一条弦,点C是上一动点,且∠ACB=30°.点E、F分别是AC、BC的中点,直线EF与交于点G、H两点.若的半径为7,则GE+FH的最大值为 .
15.如图,点M是直线上的动点,过点M作轴于点N,轴上是否存在点P,使△MNP为等腰直角三角形?小明发现:当动点M运动到时,轴上存在点,此时有,△MNP为等腰直角三角形,请你写出轴上其它M在轴上方点P的坐标 .
三.解答题(本大题共8个小题,满分75分)
16.(8分)先化简,再求值:,并选择一个合适的的值代入求值.
17.(9分)今年是“向雷锋同志学习”
题词50周年,也是党的十八大提出“学
雷锋”活动常态化的第一年.某中学校团
委为此举行了“歌颂雷锋”班级歌咏比
赛,要确定一首喜欢人数最多的歌曲为
每班必唱曲目,为此提供代号为A,B,C,D
四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:
⑴本次抽样调查的学生有______名,其中选择曲目代号为A的学生所对应圆心角的度数为 ;
⑵请将图②补充完整;
⑶若该校共有1800名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?
18.(9分)如图,点A、F、C、D在同一直线上,AB∥DE,AC=DF,
AB=DE.
⑴求证:四边形BCEF是平行四边形;
⑵若∠ABC=90°,AB=8,BC=6,当AF为何值时,四边形BCEF是菱形.
19.(9分)如图,已知一次函数的图像与反比例函数
(为常数,)的图像相交于、两点,其中点的横坐标为.
⑴求反比例函数的解析式;
⑵观察图像,写出使函数值的自变量的取值范围;
⑶如图,若将一次函数的图像向左平移4个单位后与反比例
函数交于点、两点,求四边形的面积.
20.(9分)已知港口位于观测点北偏东53.2°方向,且其到观测点正北方向的距离的长为16㎞,一艘轮船从港口以40㎞/h的速度沿如图所示的方向航行,15min后达到处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,
sin79.8°≈0.98cos79.8°≈0.18,tan26.6°≈0.50,
≈1.41,
≈2.24)
21.(10分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?
(2)若该商店每销售1台甲种空气净化器可获利200元,每销售1台乙种空气净化器可获利300元,该商店准备用不超过13500元购进甲乙两种空气净化器10台,且这两种空气净化器全部售出后总获利不低于2250元,问怎样进货,才能使总获利最大,最大为多少?
22.(10分)如图①,已知△ABC为等腰直角三角形,∠BAC=90°,点D 是BC中点,作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;
(3)若BC=DE=2,在(2)的旋转过程中,当线段AE长为最大时,求AF 的长。
23. (11分)如图,在平面直角坐标系中,已知矩形OABC的三个顶点,,
,过O、C两点的抛物线与线段交于点,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处. ⑴求AD的长及抛物线的解析式;
⑵一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?
⑶点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.。