2018年石家庄质检二:河北省石家庄2018届高三教学质量检测(二)数学(文)试题

合集下载

石家庄市2018届高三毕业班模拟考试数学文科试题(二)含答案

石家庄市2018届高三毕业班模拟考试数学文科试题(二)含答案

的小正方形部分的概率是(

3
3
3
3
1
1
A . 2 B . 4 C. 2 D. 4
7.执行如图所示的程序框图,则输出的 S 值为( )
48
50
49
49
A . 49 B . 51 C. 51 D. 50
8.如图,网格纸上小正方形的边长为 积为( )
1,粗实线画出的是某四面体的三视图,则该四面体的体
8 A. 3
文科数学 第Ⅰ卷(共 60 分) 一、选择题:本大题共 是符合题目要求的 .
石家庄市 2018 届高中毕业班模拟考试(二) 12 个小题 ,每小题 5 分 ,共 60 分 .在每小题给出的四个选项中,只有一项
1.已知集合 A x | y log2 (x 2) , B x | 3 x 3, x R ,则 A B ( )
B.必要不充分条件
C.充要条件 D .既不充分也不必要条件
sin x
f ( x)
4.函数
x 2 1 的部分图像可能是(

x2 y2
x2 y 2
5.已知双曲线 a2
b2
1 ( a 0 , b 0 )与椭圆 12
4
1
有共同焦点,且双曲线的一条
渐近线方程为 y 3x ,则该双曲线的方程为(

x2 A. 4
y2
x2
1
12
B . 12
y2
x2
1
4
C. 6
y2
x2
1
2
D. 2
y2 1
6
6.三国时期吴国的数学家创造了一副“勾股圆方图” ,用数形结合的方法给出了勾股定理的详
细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为

河北省石家庄2018届高三教学质量检测数学(理)试题(二)含答案

河北省石家庄2018届高三教学质量检测数学(理)试题(二)含答案

河北省石家庄2018届高三教学质量检测数学(理)试题(二)含答案河北省石家庄2018届高三教学质量检测(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是( ) A.(){}12R C A B x x =-<≤B.{}10A B x x =-<<C.(){}0R AC B x x =≥D.{}0AB x x =<2.已知复数z 满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{}n a 中,2a =2,516a =,则6a =( ) A.28B.32C.64D.144.设0a >且1a ≠,则“log 1a b >”是“b a >”的( ) A.必要不充分条件 B.充要条件C.既不充分也不必要条件D.充分不必要条件5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值3.14,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的n 值为( )(参考数据:sin150.2588=°,sin7.50.1305=°,sin3.750.0654=°)A.24B.36C.48D.126.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A.3πB.23πC.56πD.6π 7.在()()5121x x -+的展开式中,含4x 项的系数为( ) A.5-B.15-C.25-D.258.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.83B.3C.8D.539.某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差小于A 班成绩的标准差 其中正确结论的编号为( ) A.①④B.②③C.②④D.①③10.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,已知点(3A ,,06B π⎛⎫⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程为( )A.4x π=B.3x π=C.23x π=D.12x π=11.倾斜角为4π的直线经过椭圆()222210x y a b a b +=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =,则该椭圆的离心率为( ) A.23B.2233 12.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A.()()()1f a a f b >+B.()()()1f b a f a >-C.()()af a bf b >D.()()af b bf a >二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用1,2,3,4,5组成无重复数字的五位数,若用1a ,2a ,3a ,4a ,5a 分别表示五位数的万位、千位、百位、十位、个位,则出现12345a a a a a <<>>特征的五位数的概率为_____________. 14.设变量,x y 满足约束条件30320x x y y -≤⎧⎪+≥⎨⎪-≤⎩,则1y x +的最大值为_____________.15.已知数列{}n a 的前n 项和12nn S ⎛⎫=- ⎪⎝⎭,如果存在正整数n ,使得()()10n n m a m a +--<成立,则实数m 的取值范围是_____________.16.在内切圆圆心为M 的ABC △中,3AB =,4BC =,5AC =,在平面ABC 内,过点M 作动直线l ,现将ABC △沿动直线l 翻折,使翻折后的点C 在平面ABM 上的射影E 落在直线AB 上,点C 在直线l 上的射影为F ,则EF CF的最小值为_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC △的内角,,A B C 的对边长分别为,,a b c 3tan tan cA B =+.(1)求角A 的大小;(2)设AD 为BC 边上的高,3a AD 的范围.18.随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据: 月份 1 2 3 4 5 6 7 8 促销费用x 2361013211518产品销量y11233.55 4 4.5(1) 根据数据可知y 与x 具有线性相关关系,请建立y 关于x 的回归方程y bx a =+(系数精确到0.01);(2) 已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以z (单位:件)表示日销量,[)1800,2000z ∈,则每位员工每日奖励100元;[)2000,2100z ∈,则每位员工每日奖励150元;[)2100,z ∈+∞,则每位员工每日奖励200元.现已知该网站6月份日销量z 服从正态分布()0.2,0.0001N ,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).参考数据:81338.5i i i x y ==∑,8211308i i x ==∑,其中i x ,i y 分别为第i 个月的促销费用和产品销量,1,2,3,...8i =.参考公式:(1) 对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x ynx y b xnx==-=-∑∑,a y bx =-.(2) 若随机变量Z 服从正态分布()2,N μσ,则(),0.6827P μσμσ-+=,()2,20.9545P μσμσ-+=. 19.如图,三棱柱111ABC A B C -中,侧面11BB C C 为160CBB =∠°的菱形,1AB AC =.(1)证明:平面1AB C ⊥平面11BB C C .(2)若1AB B C ⊥,直线AB 与平面11BB C C 所成的角为30°,求直线1AB 与平面11A B C 所成角的正弦值. 20.已知圆()()229:4C x a y b -+-=的圆心C 在抛物线()220x py p =>上,圆C 过原点且与抛物线的准线相切. (1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于,A B 两点,分别在点,A B 处作抛物线的两条切线交于P 点,求三角形PAB 面积的最小值及此时直线l 的方程.21.已知函数()ln f x x ax x =+.()a ∈R (1)讨论函数()f x 的单调性;(2)若函数()ln f x x ax x =+存在极大值,且极大值为1,证明:()2x f x e x -≤+.22.在直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(其中ϕ为参数),曲线222:184x y C +=.以原点O为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 、2C 的极坐标方程;(2)射线():0l θαρ=≥与曲线1C 、2C 分别交于点,A B (且,A B 均异于原点O )当02πα<<时,求22OB OA-的最小值.23.已知函数()221f x x a x =-++. (1)当1a =时,求()2f x ≤的解集;(2)若()243g x x ax =+-,当1a >-,且1,22a x ⎡⎤∈-⎢⎥⎣⎦时,()()f x g x ≥,求实数a 的取值范围.石家庄市2017-2018学年高中毕业班第二次质量检测试题理科数学答案一、选择题1-5BABCC 6-10DBAAD 11-12AC 二、填空题13. 120 14. 315. 3(,)24-16. 81025三、解答题17.解:(1)在△ABC 中33sin sin sin tan tan cos cos c C A BA B A B =+=+3sin cos +sin cos sin cos cos cos 31tan =3sin cos 3C A B B AA B A B A A A A π=∴=即:则:=(2)22211sin ,2212123cos =22203=302ABC S AD BC bc A AD bcb c a bc A bc bcbc b c AD ∆=⋅=∴=+--=≥∴<≤∴<≤由余弦定理得:(当且仅当时等号成立) 18(1)由题可知11,3x y ==,将数据代入1221ˆni ii nii x y nx ybxnx ==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯ˆˆ30.219110.59ay bx =-=-⨯≈ 所以y 关于x 的回归方程ˆ0.220.59yx =+(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=,日销量[2100,)+∞的概率为10.68270.158652-=,所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯3919.7253919.73=≈元.19.证明:(1)连接1BC 交1B C 于O ,连接AO 侧面11BB C C 为菱形,∴ 11B C BC ⊥1AB AC =, O 为1BC 的中点,∴1AO BC ⊥又1B C AO O ⋂=,∴1BC ⊥平面1AB C1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .(2)由1AB B C ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO∴1AO B C⊥从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则3BO =,又0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(3,0,0),(0,1,0),(0,1,0)A B B C -,1111(0,1,1),(0,2,0),(3,0,1)AB BC A B AB =-=-==-设(,,)n x y z =是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩即3000200x y z x y z +⋅-=⋅-+⋅=⎪⎩令1x =则(1,0,3)n =设直线1AB 与平面11A B C 所成的角为θ 则1116sin |cos ,|||4||||AB n AB n AB n θ⋅=<>==⋅∴直线1AB 与平面11A B C 所成角的正弦值为64. 20.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(p F ,准线2p y -=因为圆C 与抛物线F 的准线相切,所以223pb -=, 且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上,即4p b =所以4223p p b =-=,即2=p ,抛物线F 的方程为y x 42=(2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x 对42x y =求导得2'xy =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -= 设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++① 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;② 当0a >时,函数()1ln f x a a x '=++单调递增,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增;③ 当0a <时,函数()1ln f x a a x '=++单调递减,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111ae--=,解得1a =-, 故此时()ln f x x x x =-,要证2()xf x e x -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可,设()2ln x h x ex x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增,又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>,故()2ln xh x ex x -'=-++在1,1e⎛⎫ ⎪⎝⎭上存在唯一零点0x ,即0002ln 0xe x x --++=.所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增, 故()()0200000ln x h x h x ex x x x -≥=+-+,所以只须证()0200000ln 0x h x e x x x x -=+-+≥即可,由0002ln 0x ex x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可,当00ln 0x x +<时,000000ln 0x xx x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x ex x --++=矛盾,故00ln 0x x +≥,得证. (另证)当00ln 0x x +<时,000000ln 0x xx x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x ex x --++=矛盾;当00ln 0x x +>时,000000ln 0x xx x x e e x -->-⇒>⇒-+>所以00x ex --++00ln 0x x +>与0002ln 0x ex x --++=矛盾;当00ln 0x x +=时,000000ln 0x xx x x e e x --=-⇒=⇒-+=得0002ln 0x ex x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()xf x e x -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ=2C 的极坐标方程为αρ22sin 18+=(2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA ,联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB ,则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++(.8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号).所以22OA OB -的最小值为.828- 23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f当21-<x 时,2)(≤x f 无解;当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ;当21->x 时,2)(≤x f 无解;综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f所以)()(x g x f ≥可化为)(1x g a ≥+又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一…………………9分即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a 11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1-石家庄市2017-2018学年高中毕业班第二次质量检测试题理科数学答案一、选择题1-5BABCC 6-10DBAAD 11-12AC 二、填空题13. 120 14. 315. 3(,)24-16. 81025三、解答题17.解:(1)在△ABC 中33sin sin sin tan tan 2cos cos c C A BA B A B=+∴=+分……………6分(2)22211sin ,22182123cos =22203=1030122ABC S AD BC bc A AD bc b c a bc A bc bcbc b c AD ∆=⋅=∴=+--=≥∴<≤∴<≤分由余弦定理得:(当且仅当时等号成立)分分3sin cos +sin cos 4sin cos cos cos 31tan =3cos 3C A B B AA B A B A A A π==即:分则:=18(1)由题可知11,3x y ==, ………… 1分将数据代入1221ˆni ii nii x y nx ybxnx ==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯………3分ˆˆ30.219110.59ay bx =-=-⨯≈ …………4分 所以y 关于x 的回归方程ˆ0.220.59y x =+ ……………… 5分 (说明:如果ˆ0.22,b≈ ˆ0.58a≈ ,ˆ0.220.58y x =+,第一问总体得分扣1分)(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=,日销量[2100,)+∞的概率为10.68270.158652-=, ……………… 8分所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯....10分3919.7253919.73=≈元.………………… 12分19.证明:(1)连接1BC 交1B C 于O ,连接AO 侧面11BB C C 为菱形,∴ 11B C BC ⊥1AB AC =, O 为1BC 的中点,∴1AO BC ⊥ …………2分又1B C AO O ⋂=,∴1BC ⊥平面1AB C1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .…………4分(2)由1AB B C ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO∴1AO B C⊥…………………6分从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则3BO =,又0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(3,0,0),(0,1,0),(0,1,0)A B B C -,………………………8分1111(0,1,1),(0,2,0),(3,0,1)AB BC A B AB =-=-==-设(,,)n x y z =是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩即3000200x y z x y z +⋅-=⋅-+⋅=⎪⎩令1x =则(1,0,3)n = …………10分 设直线1AB 与平面11A B C 所成的角为θ 则1116sin |cos ,|||||||AB n AB n AB n θ⋅=<>==⋅∴直线1AB 与平面11A B C 6分 20.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(p F ,准线2p y -=因为圆C 与抛物线F 的准线相切,所以223pb -=,……………………2分 且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上, 即4p b =………………………4分所以4223pp b =-=,即2=p ,抛物线F 的方程为y x 42= …………………5分 (2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x ………… 6分对42x y =求导得2'xy =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -= 设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P ……………… 8分所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=……………………10分所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . ………………12分 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++④ 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;………1分⑤ 当0a >时,函数()1ln f x a a x '=++单调递增,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增; ………3分⑥ 当0a <时,函数()1ln f x a a x '=++单调递减,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,ax e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.………5分 (Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111ae--=,解得1a =-, 故此时()ln f x x x x =-,………6分要证2()xf x e x -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可,设()2ln x h x ex x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增, 又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>,故()2ln xh x ex x -'=-++在1,1e⎛⎫ ⎪⎝⎭上存在唯一零点0x ,即0002ln 0xe x x --++=.………………8分所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增, 故()()0200000ln x h x h x ex x x x -≥=+-+,所以只须证()0200000ln 0x h x e x x x x -=+-+≥即可,由0002ln 0x ex x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, ………10分当00ln 0x x +<时,000000ln 0x xx x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x ex x --++=矛盾,故00ln 0x x +≥,得证.………12分 (另证)当00ln 0x x +<时,000000ln 0x xx x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x ex x --++=矛盾;当00ln 0x x +>时,000000ln 0x xx x x e e x -->-⇒>⇒-+>所以00x ex --++00ln 0x x +>与0002ln 0x ex x --++=矛盾;当00ln 0x x +=时,000000ln 0x xx x x e e x --=-⇒=⇒-+=得0002ln 0x ex x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()xf x e x -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ=….3分 2C 的极坐标方程为αρ22sin 18+=………5分(2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA ,联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB ,……7分则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++( ………………………9分.8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号).所以22OA OB -的最小值为.828-…….10分 23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f ………………………2分当21-<x 时,2)(≤x f 无解;当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ; 当21->x 时,2)(≤x f 无解;综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x ………….5分 )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f ,…….6分所以)()(x g x f ≥可化为)(1x g a ≥+………….7分 又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一…………………9分即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1-………10分11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩。

河北省石家庄高三数学教学质量检测(二)试题 理

河北省石家庄高三数学教学质量检测(二)试题 理

河北省石家庄2018届高三数学教学质量检测(二)试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是( ) A.(){}12R C A B x x =-<≤B.{}10A B x x =-<<C.(){}0R AC B x x =≥D.{}0AB x x =<2.已知复数z 满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{}n a 中,2a =2,516a =,则6a =( ) A.28B.32C.64D.144.设0a >且1a ≠,则“log 1a b >”是“b a >”的( ) A.必要不充分条件 B.充要条件C.既不充分也不必要条件D.充分不必要条件5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值3.14,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的n 值为( )(参考数据:sin150.2588=°,sin7.50.1305=°,sin3.750.0654=°)A.24B.36C.48D.126.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A.3πB.23πC.56πD.6π 7.在()()5121x x -+的展开式中,含4x 项的系数为( ) A.5-B.15-C.25-D.258.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.83B.3C.8D.539.某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差小于A 班成绩的标准差 其中正确结论的编号为( ) A.①④B.②③C.②④D.①③10.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,已知点(A ,,06B π⎛⎫⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程为( )A.4x π=B.3x π=C.23x π=D.12x π=11.倾斜角为4π的直线经过椭圆()222210x y a b a b +=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =,则该椭圆的离心率为( )12.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( )A.()()()1f a a f b >+B.()()()1f b a f a >-C.()()af a bf b >D.()()af b bf a >二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用1,2,3,4,5组成无重复数字的五位数,若用1a ,2a ,3a ,4a ,5a 分别表示五位数的万位、千位、百位、十位、个位,则出现12345a a a a a <<>>特征的五位数的概率为_____________.14.设变量,x y 满足约束条件30320x x y y -≤⎧⎪+≥⎨⎪-≤⎩,则1y x +的最大值为_____________.15.已知数列{}n a 的前n 项和12nn S ⎛⎫=- ⎪⎝⎭,如果存在正整数n ,使得()()10n n m a m a +--<成立,则实数m 的取值范围是_____________.16.在内切圆圆心为M 的ABC △中,3AB =,4BC =,5AC =,在平面ABC 内,过点M 作动直线l ,现将ABC △沿动直线l 翻折,使翻折后的点C 在平面ABM 上的射影E 落在直线AB 上,点C 在直线l 上的射影为F ,则EF CF的最小值为_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC △的内角,,A B C 的对边长分别为,,a b ctan tan A B =+.(1)求角A 的大小;(2)设AD 为BC边上的高,a =AD 的范围.18.随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:(1) 根据数据可知y 与x 具有线性相关关系,请建立y 关于x 的回归方程y bx a =+(系数精确到0.01);(2) 已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以z (单位:件)表示日销量,[)1800,2000z ∈,则每位员工每日奖励100元;[)2000,2100z ∈,则每位员工每日奖励150元;[)2100,z ∈+∞,则每位员工每日奖励200元.现已知该网站6月份日销量z 服从正态分布()0.2,0.0001N ,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).参考数据:81338.5i i i x y ==∑,8211308i i x ==∑,其中i x ,i y 分别为第i 个月的促销费用和产品销量,1,2,3,...8i =. 参考公式:(1) 对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x ynx yb xnx==-=-∑∑,a y bx =-. (2) 若随机变量Z 服从正态分布()2,N μσ,则(),0.6827P μσμσ-+=,()2,20.9545P μσμσ-+=.19.如图,三棱柱111ABC A B C -中,侧面11BB C C 为160CBB =∠°的菱形,1AB AC =.(1)证明:平面1AB C ⊥平面11BB C C .(2)若1AB B C ⊥,直线AB 与平面11BB C C 所成的角为30°,求直线1AB 与平面11A B C 所成角的正弦值.20.已知圆()()229:4C x a y b -+-=的圆心C 在抛物线()220x py p =>上,圆C 过原点且与抛物线的准线相切. (1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于,A B 两点,分别在点,A B 处作抛物线的两条切线交于P 点,求三角形PAB 面积的最小值及此时直线l 的方程.21.已知函数()ln f x x ax x =+.()a ∈R (1)讨论函数()f x 的单调性;(2)若函数()ln f x x ax x =+存在极大值,且极大值为1,证明:()2x f x e x -≤+. 22.在直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(其中ϕ为参数),曲线222:184x y C +=.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线1C 、2C 的极坐标方程;(2)射线():0l θαρ=≥与曲线1C 、2C 分别交于点,A B (且,A B 均异于原点O )当02πα<<时,求22OB OA -的最小值.23.已知函数()221f x x a x =-++. (1)当1a =时,求()2f x ≤的解集;(2)若()243g x x ax =+-,当1a >-,且1,22a x ⎡⎤∈-⎢⎥⎣⎦时,()()f x g x ≥,求实数a 的取值范围.答案一、选择题1-5BABCC 6-10DBAAD 11-12AC二、填空题13.14. 315.3(,)24-16. 25三、解答题17.解:(1)在△ABC中3sin sintan tancos coscA BA BA B=+=+sin cos+sin coscos cos1tancos3A B B AA BA AAπ==则:=(2)22211sin,2212123cos=22203=32ABCS AD BC bc AAD bcb c a bcAbc bcbc b cAD∆=⋅=∴=+--=≥∴<≤∴<≤由余弦定理得:(当且仅当时等号成立)18(1)由题可知11,3x y==,将数据代入1221ˆni iiniix y nx ybx nx==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯ˆˆ30.219110.59a y bx=-=-⨯≈所以y关于x的回归方程ˆ0.220.59y x=+(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=,日销量[2100,)+∞的概率为10.68270.158652-=,所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯3919.7253919.73=≈元.19.证明:(1)连接1BC 交1B C 于O ,连接AO 侧面11BB C C 为菱形,∴ 11B C BC ⊥1AB AC =, O 为1BC 的中点,∴1AO BC ⊥又1B C AO O ⋂=,∴1BC ⊥平面1AB C1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .(2)由1AB BC ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO ∴1AO B C⊥从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则BO =0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(0,1,0),(0,1,0)A B B C -,1111(0,1,1),(0,2,0),(3,0,1)AB BC A B AB =-=-==-设(,,)n x y z =是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩即000200y z x y z +⋅-=⋅-+⋅=⎪⎩令1x =则(1,0,3)n =设直线1AB 与平面11A B C 所成的角为θ 则1116sin |cos ,|||4||||AB n AB nAB n θ⋅=<>==⋅∴直线1AB 与平面11A B C 所成角的正弦值为420.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(p F ,准线2py -=因为圆C 与抛物线F 的准线相切,所以223pb -=, 且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上,即4p b =所以4223p p b =-=,即2=p ,抛物线F 的方程为y x 42=(2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y 设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x 对42x y =求导得2'xy =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=,同理直线BP 方程为222412x x x y -= 设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++① 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增; ② 当a >时,函数()1f x a a x '=++单调递增,11()1l n 00af x a a xx e --'=++=⇒=>,故当110,ax e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,ax e --⎛⎫∈+∞ ⎪⎝⎭上单调递增; ③ 当a <时,函数()1ln f x a a x'=++单调递减,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111ae --=,解得1a =-, 故此时()ln f x x x x =-, 要证2()xf x e x -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可,设()2ln x h x ex x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增, 又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>,故()2ln xh x ex x -'=-++在1,1e ⎛⎫⎪⎝⎭上存在唯一零点0x ,即0002ln 0x e x x --++=.所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增, 故()()0200000ln x h x h x ex x x x -≥=+-+,所以只须证()0200000ln 0x h x e x x x x -=+-+≥即可,由0002ln 0x ex x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, 当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x e x x --++=矛盾,故00ln 0x x +≥,得证. (另证)当00ln 0x x +<时,000000ln 0x x x x x ee x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x e x x --++=矛盾;当00ln 0x x +>时,000000ln 0x x x x x e e x -->-⇒>⇒-+>所以00x ex --++00ln 0x x +>与0002ln 0x e x x --++=矛盾;当00ln 0x x +=时,000000ln 0x x x x x e e x --=-⇒=⇒-+=得0002ln 0x ex x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()xf x e x -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ= 2C 的极坐标方程为αρ22sin 18+=(2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA ,联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB ,则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++(.8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号).所以22OA OB -的最小值为.828- 23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f当21-<x 时,2)(≤x f 无解;当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ;当21->x 时,2)(≤x f 无解;综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f所以)()(x g x f ≥可化为)(1x g a ≥+又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一…………………9分即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1-答案一、选择题1-5BABCC 6-10DBAAD 11-12AC 二、填空题13.14. 315. 3(,)24-16. 25三、解答题17.解:(1)在△ABC 中33sin sin sin tan tan 2cos cos c C A BA B A B=+∴=+分11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩sin cos +sin cos 4sin cos cos cos 1tan cos 3C A B B A A B A B A A A π==即:分则:=……………6分(2)22211sin ,22182123cos =22203=1030122ABC S AD BC bc A AD bc b c a bc A bc bcbc b c AD ∆=⋅=∴=+--=≥∴<≤∴<≤分由余弦定理得:(当且仅当时等号成立)分分18(1)由题可知11,3x y ==, ………… 1分将数据代入1221ˆni ii nii x y nx ybxnx ==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯………3分ˆˆ30.219110.59ay bx =-=-⨯≈ …………4分 所以y 关于x 的回归方程ˆ0.220.59y x =+ ……………… 5分 (说明:如果ˆ0.22,b≈ ˆ0.58a≈ ,ˆ0.220.58y x =+,第一问总体得分扣1分)(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=,日销量[2100,)+∞的概率为10.68270.158652-=, ……………… 8分所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯....10分3919.7253919.73=≈元.………………… 12分19.证明:(1)连接1BC 交1B C 于O ,连接AO 侧面11BB C C 为菱形,∴ 11B C BC ⊥1AB AC =, O 为1BC 的中点,∴1AO BC ⊥ …………2分又1B C AO O ⋂=,∴1BC ⊥平面1AB C1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .…………4分(2)由1AB BC ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO ∴1AO B C⊥…………………6分从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则BO =0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(0,1,0),(0,1,0)A B B C -,………………………8分1111(0,1,1),(0,2,0),(3,0,1)AB BC A B AB =-=-==-设(,,)n x y z =是平面11A B C 的法向量,则11100n A B n B C⎧⋅=⎪⎨⋅=⎪⎩即000200y z x y z +⋅-=⋅-+⋅=⎪⎩令1x =则(1,0,3)n = …………10分 设直线1AB 与平面11A B C 所成的角为θ 则1116sin |cos ,|||||||AB n AB n AB n θ⋅=<>==⋅∴直线1AB 与平面11A B C分 20.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(p F ,准线2py -=因为圆C 与抛物线F 的准线相切,所以223pb -=,……………………2分 且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上, 即4p b =………………………4分所以4223pp b =-=,即2=p ,抛物线F 的方程为y x 42= …………………5分 (2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y 设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x ………… 6分 对42x y =求导得2'xy =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -= 设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P ……………… 8分所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=……………………10分所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . ………………12分 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++④ 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;………1分 ⑤ 当a >时,函数()1f x a a x '=++单调递增,11()1l n 00af x a a xx e --'=++=⇒=>,故当110,ax e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,ax e --⎛⎫∈+∞ ⎪⎝⎭上单调递增; ………3分 ⑥ 当a <时,函数()1f x a a x '=++单调递减,11()1l n 00af x a a xx e --'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.………5分(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111ae --=,解得1a =-, 故此时()ln f x x x x =-,………6分 要证2()xf x e x -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可,设()2ln x h x ex x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增,又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>,故()2ln xh x ex x -'=-++在1,1e ⎛⎫⎪⎝⎭上存在唯一零点0x ,即0002ln 0x e x x --++=.………………8分所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增, 故()()0200000ln x h x h x ex x x x -≥=+-+,所以只须证()0200000ln 0x h x e x x x x -=+-+≥即可,由0002ln 0x ex x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, ………10分当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x e x x --++=矛盾,故00ln 0x x +≥,得证.………12分 (另证)当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x e x x --++=矛盾;当00ln 0x x +>时,000000ln 0x x x x x e e x -->-⇒>⇒-+>所以00x ex --++00ln 0x x +>与0002ln 0x e x x --++=矛盾;当00ln 0x x +=时,000000ln 0x x x x x e e x --=-⇒=⇒-+=得0002ln 0x ex x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()xf x ex -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ=….3分 2C 的极坐标方程为αρ22sin 18+=………5分(2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA ,联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB ,……7分则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++( ………………………9分.8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号).所以22OA OB -的最小值为.828-…….10分 23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f ………………………2分当21-<x 时,2)(≤x f 无解; 当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ;当21->x 时,2)(≤x f 无解;综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x ………….5分 )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f ,…….6分所以)()(x g x f ≥可化为)(1x g a ≥+………….7分又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一…………………9分即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a 又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1-………10分。

河北省石家庄2018届高三教学质量检测(二)数学(理)试卷(含答案)

河北省石家庄2018届高三教学质量检测(二)数学(理)试卷(含答案)

河北省石家庄2018届高三教学质量检测(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是( ) A.(){}12R C A B x x =-<≤I B.{}10A B x x =-<<I C.(){}0R A C B x x =≥UD.{}0A B x x =<U2.已知复数满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{}n a 中,2a =2,516a =,则6a =( ) A.28B.32C.64D.144.设0a >且1a ≠,则“log 1a b >”是“b a >”的( ) A.必要不充分条件 B.充要条件C.既不充分也不必要条件D.充分不必要条件5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值3.14,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的n 值为( )(参考数据:sin150.2588=°,sin7.50.1305=°,sin3.750.0654=°)A.24B.36C.48D.126.若两个非零向量a r ,b r 满足2a b a b b +=-=r r r r r ,则向量a b +r r 与a r的夹角为( ) A.3πB.23πC.56πD.6π 7.在()()5121x x -+的展开式中,含4x 项的系数为( ) A.5-B.15-C.25-D.258.如图,格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.83B.3C.8D.539.某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差小于A 班成绩的标准差 其中正确结论的编号为( ) A.①④B.②③C.②④D.①③10.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,已知点()0,3A ,,06B π⎛⎫⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程为( )A.4x π=B.3x π=C.23x π=D.12x π=11.倾斜角为4π的直线经过椭圆()222210x y a b a b +=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =u u u r u u u r,则该椭圆的离心率为( )2233 12.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( )A.()()()1f a a f b >+B.()()()1f b a f a >-C.()()af a bf b >D.()()af b bf a >二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用1,2,3,4,5组成无重复数字的五位数,若用1a ,2a ,3a ,4a ,5a 分别表示五位数的万位、千位、百位、十位、个位,则出现12345a a a a a <<>>特征的五位数的概率为_____________. 14.设变量,x y 满足约束条件30320x x y y -≤⎧⎪+≥⎨⎪-≤⎩,则1y x +的最大值为_____________.15.已知数列{}n a 的前n 项和12nn S ⎛⎫=- ⎪⎝⎭,如果存在正整数n ,使得()()10n n m a m a +--<成立,则实数m 的取值范围是_____________.16.在内切圆圆心为M 的ABC △中,3AB =,4BC =,5AC =,在平面ABC 内,过点M 作动直线l ,现将ABC △沿动直线l 翻折,使翻折后的点C 在平面ABM 上的射影E 落在直线AB 上,点C 在直线l 上的射影为F ,则EF CF的最小值为_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的内角,,A B C 的对边长分别为,,a b ctan tan A B =+.(1)求角A 的大小;(2)设AD 为BC边上的高,a AD 的范围.18.随着络的发展,上购物越来越受到人们的喜爱,各大购物站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:(1) 根据数据可知y 与x 具有线性相关关系,请建立y 关于x 的回归方程$$y bx a =+$(系数精确到0.01);(2) 已知6月份该购物站为庆祝成立1周年,特制定奖励制度:以z (单位:件)表示日销量,[)1800,2000z ∈,则每位员工每日奖励100元;[)2000,2100z ∈,则每位员工每日奖励150元;[)2100,z ∈+∞,则每位员工每日奖励200元.现已知该站6月份日销量z 服从正态分布()0.2,0.0001N ,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).参考数据:81338.5i i i x y ==∑,8211308i i x ==∑,其中i x ,i y 分别为第i 个月的促销费用和产品销量,1,2,3,...8i =.参考公式:(1) 对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程$$y bx a =+$的斜率和截距的最小二乘估计分别为1221ni ii n i i x ynx ybx nx==-=-∑∑$,$ay bx =-$. (2) 若随机变量Z 服从正态分布()2,N μσ,则(),0.6827P μσμσ-+=,()2,20.9545P μσμσ-+=. 19.如图,三棱柱111ABC A B C -中,侧面11BB C C 为160CBB =∠°的菱形,1AB AC =.(1)证明:平面1AB C ⊥平面11BB C C .(2)若1AB B C ⊥,直线AB 与平面11BB C C 所成的角为30°,求直线1AB 与平面11A B C 所成角的正弦值. 20.已知圆()()229:4C x a y b -+-=的圆心C 在抛物线()220x py p =>上,圆C 过原点且与抛物线的准线相切.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于,A B 两点,分别在点,A B 处作抛物线的两条切线交于P 点,求三角形PAB 面积的最小值及此时直线l 的方程. 21.已知函数()ln f x x ax x =+.()a ∈R (1)讨论函数()f x 的单调性;(2)若函数()ln f x x ax x =+存在极大值,且极大值为1,证明:()2x f x e x -≤+.22.在直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(其中ϕ为参数),曲线222:184x y C +=.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 、2C 的极坐标方程;(2)射线():0l θαρ=≥与曲线1C 、2C 分别交于点,A B (且,A B 均异于原点O )当02πα<<时,求22OB OA -的最小值.23.已知函数()221f x x a x =-++. (1)当1a =时,求()2f x ≤的解集;(2)若()243g x x ax =+-,当1a >-,且1,22a x ⎡⎤∈-⎢⎥⎣⎦时,()()f x g x ≥,求实数a 的取值范围.石家庄市2017-2018学年高中毕业班第二次质量检测试题理科数学答案一、选择题1-5BABCC 6-10DBAAD 11-12AC 二、填空题13.14. 315. 3(,)24-16.25三、解答题17.解:(1)在△ABC中sin sin tan tan cos sin cos cos cos C A BA B a B A B A B =+∴=+Qsin cos +sin cos cos cos 1tan sin cos 3A B B AA B A A A A π=∴=则:=(2)22211sin ,2212123cos =22203=302ABC S AD BC bc A AD bcb c a bc A bc bcbc b c AD ∆=⋅=∴=+--=≥∴<≤∴<≤Q 由余弦定理得:(当且仅当时等号成立) 18(1)由题可知11,3x y ==,将数据代入1221ˆni ii ni i x y nx ybx nx ==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯ˆˆ30.219110.59ay bx =-=-⨯≈所以y 关于x 的回归方程ˆ0.220.59yx =+(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=,日销量[2100,)+∞的概率为10.68270.158652-=,所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯3919.7253919.73=≈元.19.证明:(1)连接1BC 交1B C 于O ,连接AOQ 侧面11BB C C 为菱形,∴ 11B C BC ⊥ Q 1AB AC =, O 为1BC 的中点,∴1AO BC ⊥又1B C AO O ⋂=,∴1BC ⊥平面1AB C1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .(2)由1AB B C ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO∴1AO B C⊥从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB uuu r的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -Q 直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则3BO =,又0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(3,0,0),(0,1,0),(0,1,0)A B B C -,1111(0,1,1),(0,2,0),(3,0,1)AB BC A B AB =-=-==-u u u r u u u r u u u u r u u u r设(,,)n x y z =r 是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u r 即3000200x y z x y z ⎧+⋅-=⎪⎨⋅-+⋅=⎪⎩令1x =则3)n =r设直线1AB 与平面11A B C 所成的角为θ则1116sin |cos ,|||||||AB n AB n AB n θ⋅=<>==⋅u u u r ru u u r r u u u u r r∴直线1AB 与平面11A B C 620.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(p F ,准线2p y -=因为圆C 与抛物线F 的准线相切,所以223pb -=,且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上,即4p b =所以4223p p b =-=,即2=p ,抛物线F 的方程为y x 42=(2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y 设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x 对42x y =求导得2'xy =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -= 设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++① 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;② 当0a >时,函数()1ln f x a a x '=++单调递增,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增;③ 当0a <时,函数()1ln f x a a x '=++单调递减,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111a e--=,解得1a =-, 故此时()ln f x x x x =-,要证2()x f x ex -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可, 设()2ln x h x e x x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增, 又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>, 故()2ln x h x e x x -'=-++在1,1e ⎛⎫ ⎪⎝⎭上存在唯一零点0x ,即0002ln 0x e x x --++=. 所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增,故()()0200000ln x h x h x e x x x x -≥=+-+,所以只须证()0200000ln 0x h x ex x x x -=+-+≥即可, 由0002ln 0x e x x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, 当00ln 0x x +<时,000000ln 0x x x x x ee x --<-⇒<⇒-+< 所以00x e x --++00ln 0x x +<与0002ln 0x e x x --++=矛盾,故00ln 0x x +≥,得证.(另证)当00ln 0x x +<时,000000ln 0x x x x x ee x --<-⇒<⇒-+< 所以00x e x --++00ln 0x x +<与0002ln 0x e x x --++=矛盾;当00ln 0x x +>时,000000ln 0x x x x x ee x -->-⇒>⇒-+> 所以00x e x --++00ln 0x x +>与0002ln 0x e x x --++=矛盾;当00ln 0x x +=时,000000ln 0x x x x x ee x --=-⇒=⇒-+= 得0002ln 0x e x x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()x f x ex -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ= 2C 的极坐标方程为αρ22sin 18+= (2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA , 联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB , 则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++( .8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号). 所以22OA OB -的最小值为.828-23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f当21-<x 时,2)(≤x f 无解; 当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ; 当21->x 时,2)(≤x f 无解; 综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f 所以)()(x g x f ≥可化为)(1x g a ≥+又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一 …………………9分 即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a 又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1- 11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩。

2018届河北省石家庄市高三教学质量检测(二)数学(文)试题(解析版)

2018届河北省石家庄市高三教学质量检测(二)数学(文)试题(解析版)

2018届河北省石家庄市高三教学质量检测(二)数学(文)试题一、单选题1.设集合,,则 ( )A. B.C. D.【答案】A【解析】则故选2.2.已知复数满足,若的虚部为1,则在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】,虚部为,即,故对应点在第一象限.3.在等比数列中,2,,则( )A. 28B. 32C. 64D. 14【答案】B【解析】,故选.4.设且,则“”是“”的( )A. 必要不充分条件B. 充要条件C. 既不充分也不必要条件D. 充分不必要条件【答案】C【解析】或;而时,有可能为.所以两者没有包含关系,故选.5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的值为( )(参考数据:,,)A. 24B. 36C. 48D. 12【答案】C【解析】,判断否,,判断否,,判断否,,判断是,输出,故选.6.若两个非零向量,满足,则向量与的夹角为( )A. B. C. D.【答案】D【解析】根据向量运算的几何性质可知,以为邻边的平行四边形对角线相等,所以该四边形为矩形,两个向量相互垂直,且且对角线与的夹角为,与的夹角为,故选.7.已知定义在上的奇函数满足,且当时,,则( )A. B. 18 C. D. 2【答案】C【解析】奇函数满足,是周期为的函数当时,,故选8.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A. B. C. 8 D.【答案】A【解析】由三视图可知,该几何体为下图所示的四棱锥,故体积为.9.某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差①A班数学兴趣小组的平均成绩高于B班的平均成绩②B班数学兴趣小组的平均成绩高于A班的平均成绩③A班数学兴趣小组成绩的标准差大于B班成绩的标准差④B班数学兴趣小组成绩的标准差大于A班成绩的标准差其中正确结论的编号为( )A. ①④B. ②③C. ②④D. ①③【答案】A【解析】班平均值,标准差.班平均值,标准差,故班平均值高,标准差小,故选.10.已知函数的部分图象如图所示,已知点,,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴方程为( )A. B. C. D.【答案】D【解析】,,,所以,右移的到,将选项代入验证可知选项正确.11.已知,是双曲线的两个焦点,点是双曲线的右顶点,是双曲线的渐近线上一点,满足,如果以点为焦点的抛物线经过点,则此双曲线的离心率为( )A. B. 2 C. D.【答案】C【解析】由题意得:,即是双曲线的渐近线上一点,,代入得在抛物线上则,得故选12.已知函数图象上三个不同点的横坐标成公差为1的等差数列,则面积的最大值为 ( )A. B. C. D.【答案】D【解析】不妨设横坐标公差为设的斜率为将代入得:由化简,令原式当时,取得最值代入故面积最大值为故选点睛:本题主要考查的知识点是在曲线上三角形面积问题。

石家庄市2018届高三教学质量检测(二)文数试题附答案

石家庄市2018届高三教学质量检测(二)文数试题附答案

12.已知函数()()ln 1x f x x e =++图象上三个不同点,,A B C 的 横坐标成公差为 1 的等差数列,则 ABC △面积的最大值为 ( ) A.() 2 1ln 4e e + B.()() 2 2 21ln 1e e ++ D.
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13.口袋中有形状和大小完全相同的五个球,编号分别为 1,2, 3,4,5,若从中一次随机摸出两个球,则摸出的两个球的编号 之和大于 6 的概率为_____________. 14.设变量,x y 满足约束条件 30 320 x x y y -≤?? +≥??-≤?
A.必要不充分条件 B.充要条件 C.既不充分也不必要条件 D.充分不必要条件 5.我国魏晋期间的伟大的数学家刘徽,是最 早提出用逻辑推理 的方式来论证数学命题的人,他创立了“割 圆术”,得到了著 名的“徽率”,即圆周率精确到小数点后两 位的近似值 3.14, 如图就是利用“割圆术”的思想设计的一个 程序框图,则输出 的 n 值为( ) ( 参 考 数 据 : sin150.2588= ° , sin7.50.1305= ° , sin3.750.0654=°) B.36 6.若两个非零向量 a ,b 满足 2a b a b b +=-=,则向量 a b + 与 a 的夹角为( ) A. 3 π
14.3 1513 (,)24- 16.
三、解答题(解答题仅提供一种解答,其他解答请参照此评分标 准酌情给分) 17、 解:(1)在△ABC 中 33sin sin sin tan tan 2cos sin cos cos cos c C A B ABaBABAB =+∴=+ 分 sin cos +sin cos cos cos A B B A AB = …………………4 分

2018年河北省石家庄市高考数学二模试卷(文科)(解析版)

2018年河北省石家庄市高考数学二模试卷(文科)(解析版)

2018年河北省石家庄市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|y=log2(x﹣2)},B={x|﹣3<x<3,x∈R},则A∩B=()A.(2,3)B.[2,3)C.(3,+∞)D.(2,+∞)2.(5分)若复数z满足z(1﹣i)=2i,其中i为虚数单位,则共轭复数=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i3.(5分)已知命题p:1<x<3,q:3x>1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)函数f(x)=的图象大致为()A.B.C.D.5.(5分)已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A.B.C.D.6.(5分)三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为)围成的一个大正方形,中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是()A.B.C.D.7.(5分)执行如图所示的程序框图,则输出的S值为()A.B.C.D.8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()A.B.C.D.29.(5分)将函数f(x)=2sin x图象上各点的横坐标缩短到原来的,纵坐标不变,然后向左平移个单位长度,得到y=g(x)图象,若关于x的方程g(x)=a在上有两个不相等的实根,则实数a的取值范围是()A.[﹣2,2]B.[﹣2,2)C.[1,2)D.[﹣1,2)10.(5分)若函数f(x),g(x)分别是定义在R上的偶函数,奇函数,且满足f(x)+2g (x)=e x,则()A.f(﹣2)<f(﹣3)<g(﹣1)B.g(﹣1)<f(﹣3)<f(﹣2)C.f(﹣2)<g(﹣1)<f(﹣3)D.g(﹣1)<f(﹣2)<f(﹣3)11.(5分)已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,点P是椭圆上位于第一象限内的点,延长PF2交椭圆于点Q,若PF1⊥PQ且|PF1|=|PQ|,则椭圆的离心率为()A.2B.C.D.12.(5分)定义在(0,+∞)上的函数f(x)满足xf'(x)lnx+f(x)>0(其中f'(x)为f (x)的导函数),若a>1>b>0,则下列各式成立的是()A.a f(a)>b f(b)>1B.a f(a)<b f(b)<1C.a f(a)<1<b f(b)D.a f(a)>1>b f(b)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量与的夹角是,,,则向量与的夹角为.14.(5分)设等差数列{a n}的前n项和为S n,若a6=6,S15=15,则公差d=.15.(5分)设变量x,y满足约束条件,则(x﹣1)2+y2的取值范围是.16.(5分)三棱锥P﹣ABC中,P A,PB,PC两两成60°,且P A=1,PB=PC=2,则该三棱锥外接球的表面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A、B、C的对边分别为a、b、c,且a cos B+b sin A=c.(1)求角A的大小;(2)若,△ABC的面积为,求b+c的值.18.(12分)2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.(1)完成2×2列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PBC⊥平面ABCD,PB⊥PD.(1)证明:平面P AB⊥平面PCD;(2)若PB=PC,E为棱CD的中点,∠PEA=90°,BC=2,求四面体A﹣PED的体积.20.(12分)已知点,直线l:,P为平面上的动点,过点P作直线l的垂线,垂足为H,且满足.(1)求动点P的轨迹C的方程;(2)过点F作直线l'与轨迹C交于A,B两点,M为直线l上一点,且满足MA⊥MB,若△MAB的面积为,求直线l'的方程.21.(12分)已知函数.(1)求函数f(x)的单调区间;(2)记函数y=f(x)的极值点为x=x0,若f(x1)=f(x2),且x1<x2,求证:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的方程为x2+y2=4,直线l的参数方程(t为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍,得曲线C2.(1)写出曲线C2的参数方程;(2)设点,直线l与曲线C2的两个交点分别为A,B,求的值.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+1|+|3x﹣1|,M为不等式f(x)<6的解集.(1)求集合M;(2)若a,b∈M,求证:|ab+1|>|a+b|.2018年河北省石家庄市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|y=log2(x﹣2)},B={x|﹣3<x<3,x∈R},则A∩B=()A.(2,3)B.[2,3)C.(3,+∞)D.(2,+∞)【解答】解:A={x|x>2},且B={x|﹣3<x<3,x∈R};∴A∩B=(2,3).故选:A.2.(5分)若复数z满足z(1﹣i)=2i,其中i为虚数单位,则共轭复数=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i【解答】解:由z(1﹣i)=2i,得z=,∴,故选:C.3.(5分)已知命题p:1<x<3,q:3x>1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:q:3x>1,可得x>0,又命题p:1<x<3,∴p是q的充分不必要条件.故选:A.4.(5分)函数f(x)=的图象大致为()A.B.C.D.【解答】解:此函数是一个奇函数,故可排除C,D两个选项;又当自变量从原点左侧趋近于原点时,函数值为负,图象在X轴下方,当自变量从原点右侧趋近于原点时,函数值为正,图象在x轴上方,故可排除B,A选项符合,故选:A.5.(5分)已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A.B.C.D.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.6.(5分)三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为)围成的一个大正方形,中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是()A.B.C.D.【解答】解:设每一个直角三角形的较短直角边长为1,则大正方形的边长为2,总面积为4,而阴影区域的边长为﹣1,面积为4﹣2,则在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是P=,故选:C.7.(5分)执行如图所示的程序框图,则输出的S值为()A.B.C.D.【解答】解:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S=++…+=1﹣+﹣+…+﹣=的值,由退出循环的条件为n>50,故最后一次进行循环的循环变量的值:k=n=50,故输出的S值为,故选:B.8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()A.B.C.D.2【解答】解:由已知可得该几何体是一个以俯视图为底面的三棱锥,三棱锥的原题侧棱与底面的一个顶点垂直,其体积V=×(×1×2)×2=,故选:B.9.(5分)将函数f(x)=2sin x图象上各点的横坐标缩短到原来的,纵坐标不变,然后向左平移个单位长度,得到y=g(x)图象,若关于x的方程g(x)=a在上有两个不相等的实根,则实数a的取值范围是()A.[﹣2,2]B.[﹣2,2)C.[1,2)D.[﹣1,2)【解答】解:将函数f(x)=2sin x图象上各点的横坐标缩短到原来的,纵坐标不变,得到y=2sin2x,然后向左平移个单位长度,得到y=g(x)图象,z即g(x)=2sin2(x+)=2sin(2x+),∵﹣≤x≤,∴﹣≤2x≤,∴﹣≤2x+≤,当2x+=时,g(x)=2sin=2×=1,函数的最大值为g(x)=2,要使g(x)=a在上有两个不相等的实根,则1≤a<2,即实数a的取值范围是[1,2),故选:C.10.(5分)若函数f(x),g(x)分别是定义在R上的偶函数,奇函数,且满足f(x)+2g (x)=e x,则()A.f(﹣2)<f(﹣3)<g(﹣1)B.g(﹣1)<f(﹣3)<f(﹣2)C.f(﹣2)<g(﹣1)<f(﹣3)D.g(﹣1)<f(﹣2)<f(﹣3)【解答】解:函数f(x),g(x)分别是定义在R上的偶函数,奇函数,且满足f(x)+2g(x)=e x,可得f(﹣x)+2g(﹣x)=e﹣x,即有f(x)﹣2g(x)=e﹣x,解得f(x)=(e x+e﹣x),g(x)=(e x﹣e﹣x),可得g(﹣1)=(﹣e)<0,f(﹣2)=(e﹣2+e2)>0,f(﹣3)=(e﹣3+e3)>0,f(﹣2)﹣f(﹣3)=(e﹣1)(e﹣3﹣e2)<0,即有g(﹣1)<f(﹣2)<f(﹣3),故选:D.11.(5分)已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,点P是椭圆上位于第一象限内的点,延长PF2交椭圆于点Q,若PF1⊥PQ且|PF1|=|PQ|,则椭圆的离心率为()A.2B.C.D.【解答】解:PF1⊥PQ且|PF1|=|PQ|,可得△PQF1为等腰直角三角形,设|PF1|=t,|QF1|=m,由椭圆的定义可得|PF2|=2a﹣t,|QF2|=2a﹣m,即有t=4a﹣t﹣m,m=t,则t=2(2﹣)a,在直角三角形PF1F2中,可得t2+(2a﹣t)2=4c2,4(6﹣4)a2+(12﹣8)a2=4c2,化为c2=(9﹣6)a2,可得e==﹣.故选:D.12.(5分)定义在(0,+∞)上的函数f(x)满足xf'(x)lnx+f(x)>0(其中f'(x)为f (x)的导函数),若a>1>b>0,则下列各式成立的是()A.a f(a)>b f(b)>1B.a f(a)<b f(b)<1C.a f(a)<1<b f(b)D.a f(a)>1>b f(b)【解答】解:令g(x)=f(x)lnx,x>0,∴g′(x)=f′(x)lnx+=>0恒成立,∴g(x)在(0,+∞)上单调的递增,∵a>1>b>0,∴g(a)>g(1)>g(b),∴f(a)lna>f(1)ln1>f(b)lnb,∴f(a)lna>0>f(b)lnb,∵lna>0,lnb<0,∴f(a)>0,f(b)>0,∴a f(a)>a0=1,b f(b)<b0=1,∴a f(a)>1>b f(b)故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量与的夹角是,,,则向量与的夹角为.【解答】解:;∴×=,=;∴;∴=;∴向量与的夹角为.故答案为:.14.(5分)设等差数列{a n}的前n项和为S n,若a6=6,S15=15,则公差d=.【解答】解:∵a6=6,S15=15,∴a1+5d=6,15a1+d=15,∴d=﹣.故答案为:﹣.15.(5分)设变量x,y满足约束条件,则(x﹣1)2+y2的取值范围是.【解答】解:由变量x,y满足约束条件作出可行域如图,联立,解得A(5,﹣1).z=(x﹣1)2+y2可看作可行域内的点到(1,0)的距离的平方,从而有z min=()2=,z max=52+(﹣1)2=26,∴z∈.故答案为:.16.(5分)三棱锥P﹣ABC中,P A,PB,PC两两成60°,且P A=1,PB=PC=2,则该三棱锥外接球的表面积为.【解答】解:∵三棱锥P﹣ABC中,P A,PB,PC两两成60°,且P A=1,PB=PC=2,∴AB=AC==,BC=2,∴P A2+AB2=PB2,P A2+AC2=PC2,∴P A⊥AB,P A⊥AC,又AB∩AC=A,∴P A⊥平面ABC,取BC中点D,连结AD,则AD==,设该三棱锥外接球的球心为O,连结OP、OA、OB,则OP=OA=OB=R,过O作OE⊥平面ABC,交AD于E,过O作OF⊥AP,交AP于F,设OE=h,AE=x,则OF=x,PF=1﹣h,DE=,∴R2=OP2=OA2=OB2,∴R2=(1﹣h)2+x2=x2+h2=,解得h=,x=,R2=,∴该三棱锥外接球的表面积为S=4πR2=4=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A、B、C的对边分别为a、b、c,且a cos B+b sin A=c.(1)求角A的大小;(2)若,△ABC的面积为,求b+c的值.【解答】解:(1)△ABC中,a cos B+b sin A=c,由正弦定理得:sin A cos B+sin B sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B sin A=cos A sin B,又sin B≠0,∴sin A=cos A,又A∈(0,π),∴tan A=1,A=;(2)由S△ABC=bc sin A=bc=,解得bc=2﹣;又a2=b2+c2﹣2bc cos A,∴2=b2+c2﹣bc=(b+c)2﹣(2+)bc,∴(b+c)2=2+(2+)bc=2+(2+)(2﹣)=4,∴b+c=2.18.(12分)2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.(1)完成2×2列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:【解答】解:(1)根据已知数据得到如下列联表根据列联表中的数据,得到K2==≈3.030∵3.030>2.706所以有90%的把握认为“对冰球是否有兴趣与性别有关”.(2)记5人中对冰球有兴趣的3人为A、B、C,对冰球没有兴趣的2人为m、n,则从这5人中随机抽取3人,共有(A,m,n)(B,m,n)(C,m,n)(A、B、m)(A、B、n)(B、C、m)(B、C、n)(A、C、m)(A、C、n)(A、B、C)10种情况,其中3人都对冰球有兴趣的情况有(A、B、C)1种,2人对冰球有兴趣的情况有(A、B、m)(A、B、n)(B、C、m)(B、C、n)(A、C、m)(A、C、n)6种,所以至少2人对冰球有兴趣的情况有7种,因此,所求事件的概率.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PBC⊥平面ABCD,PB⊥PD.(1)证明:平面P AB⊥平面PCD;(2)若PB=PC,E为棱CD的中点,∠PEA=90°,BC=2,求四面体A﹣PED的体积.【解答】(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD⊂平面ABCD,∴CD⊥平面PBC,则CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD⊂平面PCD,∴PB⊥平面PCD.∵PB⊂平面P AB,∴平面P AB⊥平面PCD;(2)解:取BC的中点O,连接OP、OE.∵PB⊥平面PCD,∴PB⊥PC,∴,∵PB=PC,∴PO⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PO⊂平面PBC,∴PO⊥平面ABCD,∵AE⊂平面ABCD,∴PO⊥AE.∵∠PEA=90°,∴PE⊥AE.∵PO∩PE=P,∴AE⊥平面POE,则AE⊥OE.∵∠C=∠D=90°,∴∠OEC=∠EAD,∴Rt△OCE~Rt△EDA,则.∵OC=1,AD=2,CE=ED,∴,∴=.20.(12分)已知点,直线l:,P为平面上的动点,过点P作直线l的垂线,垂足为H,且满足.(1)求动点P的轨迹C的方程;(2)过点F作直线l'与轨迹C交于A,B两点,M为直线l上一点,且满足MA⊥MB,若△MAB的面积为,求直线l'的方程.【解答】解:(1)设P(x,y),则,∴,(﹣x,﹣y),+=(﹣x,﹣2y),∵,∴x2﹣2y=0,即轨迹C的方程为x2=2y.(II)显然直线l′的斜率存在,设l′的方程为y=kx+,由,消去y可得:x2﹣2kx﹣1=0,设A、B的坐标分别为(x1,y1)、(x2,y2),M(t,﹣),∴x1+x2=2k,x1x2=﹣1,∴=(x1﹣t,y1+),=(x2﹣t,y2+),∵MA⊥MB,∴,即(x1﹣t)(x2﹣t)+(y1+))+(y2+)=0,∴x1x2﹣(x1+x2)t+t2+(kx1+1)(kx2+1)=0,∴﹣1﹣2kt+t2﹣k2+2k2+1=0,即t2﹣2kt+k2=0,∴t=k,即M(k,﹣),∴|AB|==2(1+k2),∴M(k,﹣)到直线l′的距离d==,∴S△MAB=|AB|d=(1+k2)=2,解得k=±1,∴直线l′的方程为x+y+或x﹣y+=0.21.(12分)已知函数.(1)求函数f(x)的单调区间;(2)记函数y=f(x)的极值点为x=x0,若f(x1)=f(x2),且x1<x2,求证:.【解答】解:(1),令f'(x)=0,则x=1,当x∈(﹣∞,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,则函数f(x)的增区间为(﹣∞,1),减区间为(1,+∞).(2)由可得f'(x)=(1﹣x)e﹣x=0,所以y=f(x)的极值点为x0=1.于是,等价于2x1+x2>e,由f(x1)=f(x2)得且0<x1<1<x2.由整理得,lnx1﹣x1=lnx2﹣x2,即lnx1﹣lnx2=x1﹣x2.等价于(2x1+x2)(lnx1﹣lnx2)<e(x1﹣x2),①令,则0<t<1.式①整理得(2t+1)lnt<e(t﹣1),其中0<t<1.设g(t)=(2t+1)lnt﹣e(t﹣1),0<t<1.只需证明当0<t<1时,g(t)max<0.又,设h(t)=,则当时,h'(t)<0,h(t)在上单调递减;当时,h'(t)>0,h(t)在上单调递增.所以,;注意到,,g'(1)=3﹣e>0,所以,存在,使得g'(t1)=g'(t2)=0,注意到,,而,所以.于是,由g'(t)>0可得或t2<t<1;由g'(t)<0可得,g(t)在上单调递增,在上单调递减.于是,,注意到,g(1)=0,,所以,g(t)max<0,也即(2t+1)lnt<e(t﹣1),其中0<t<1.于是,.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的方程为x2+y2=4,直线l的参数方程(t为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍,得曲线C2.(1)写出曲线C2的参数方程;(2)设点,直线l与曲线C2的两个交点分别为A,B,求的值.【解答】解:(1)∵曲线C1的方程为x2+y2=4,直线l的参数方程(t为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍,得曲线C2.∴曲线C2的直角坐标方程为,整理得,∴曲线C2的参数方程(θ为参数).(2)将直线l的参数方程化为标准形式为(t'为参数),将参数方程代入,得,整理得.∴,,∴.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+1|+|3x﹣1|,M为不等式f(x)<6的解集.(1)求集合M;(2)若a,b∈M,求证:|ab+1|>|a+b|.【解答】解:(1)f(x)=|3x+1|+|3x﹣1|<6当时,f(x)=﹣3x﹣1﹣3x+1=﹣6x,由﹣6x<6解得x>﹣1,∴;当时,f(x)=3x+1﹣3x+1=2,2<6恒成立,∴;当时,f(x)=3x+1+3x﹣1=6x由6x<6解得x<1,∴综上,f(x)<6的解集M={x|﹣1<x<1};证明:(2)(ab+1)2﹣(a+b)2=a2b2+2ab+1﹣(a2+b2+2ab)=a2b2﹣a2﹣b2+1=(a2﹣1)(b2﹣1)由a,b∈M得|a|<1,|b|<1,∴a2﹣1<0,b2﹣1<0,∴(a2﹣1)(b2﹣1)>0,∴|ab+1|>|a+b|.。

2018届河北省普通高等学校招生全国统一考试高三第二次调研考试数学(文)试题-含答案

2018届河北省普通高等学校招生全国统一考试高三第二次调研考试数学(文)试题-含答案

2018届河北省普通高等学校招生全国统一考试高三第二次调研考试数学(文)试题本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}212=12A x x B x x A B ⎧⎫=-<<≤⋃=⎨⎬⎩⎭,,则 A. {}12x x -≤< B. 112x x ⎧⎫-<≤⎨⎬⎩⎭C. {}2x x <D. {}12x x ≤<2.已知()12i i a bi +=+(i 是虚数单位,,a b R ∈),则a b += A. 3-B.3C.1D. 1-3.已知,l m 是两条不同的直线,α是一个平面,则下列命题中正确的是 A.若//,,//l m l m αα⊂则 B. 若//,//,//l m l m αα则 C.若,,l m m l αα⊥⊂⊥则D. 若,//,l l m m αα⊥⊥则4.在下列双曲线方程中,表示焦点在y 轴上且渐近线方程为3y x =±的是A. 2219y x -= B. 2219x y -= C. 2219y x -= D. 2219x y -= 5.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:根据表中数据得()22277520450530015.96810.82825750320455K K ⨯⨯-⨯=≈≥⨯⨯⨯,由,断定秃发与患有心脏病有关,那么这种判断出错的可能性为A.0.1B.0.05C.0.01D.0.0016.执行如图所示的程序框图,则输出的S 的值是A. 1-B.23C.32D.47.已知函数()()sin ,336f x A x f x f x f x πππωϕ⎛⎫⎛⎫⎛⎫=++=--+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且 6f x π⎛⎫- ⎪⎝⎭,则实数ω的值可能是 A.2B.3C.4D.58.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是A.9B.272C.18D.279.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个,x y 都小于1的正实数对(),x y ,再统计其中,x y 能与1构成钝角三角形三边的数对(),x y 的个数m ,最后根据统计个数m 估计π的值.如果统计结果是m 34=,那么可以估计π的值为 A.227B.4715C.5116D.531710.已知函数()()20,0f x ax bx a b =+>>的图像在点()()1,1f 处的切线的斜率为2,则8a bab+的最小值是 A.10B.9C.8D. 11.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,椭圆与双曲线的离心率分别为1212,1e e e e +,则的取值范围是A. ()1,+∞B. 4,3⎛⎫+∞⎪⎝⎭C. 6,5⎛⎫+∞⎪⎝⎭D. 10,9⎛⎫+∞⎪⎝⎭12.已知定义在R 上的函数()()()1112f x f f x '=>满足,且恒成立,则不等式()22122x f x <+的解集为 A. (),1-∞-B. ()1,+∞C. ()(),11,-∞-⋃+∞D. ()1,1-二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,a b 满足()2,0,1,a b a b ==+=,则向量,a b 所成的角为__________.14.已知实数,x y 满足约束条件4,2,311,x y x y z x y x +=⎧⎪≤=-+⎨⎪≥⎩若,则实数z 的最大值是_________.15.已知P 是抛物线24y x =上的动点,点Q 在圆()()22:331C x y ++-=上,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是___________. 16.在ABC ∆中,角A,B,C 所对的边分别为21,,sinsin sin ,24B C a b c B C -+=,且 2b c +=,则实数a 的取值范围是____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)已知数列{}n a 的前n 项和为n S ,且对任意正整数n 都有()10,1n n a S λλ-=≠.(1)求证:{}n a 为等比数列. (2)若441112log log n n n b a a λ+==,且,求数列{}n b 的前n 项和n T .18.(12分)炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:(1)据统计表明,y x 与之间具有线性相关关系,请用相关系数r 加以说明(r 若0.75≥,则认为y 与x 有较强的线性相关关系,否则认为没有较强的线性相关关系,r 精确到0.001); (2)建立y 关于x 的回归方程(回归系数的结果精确到0.01); (3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.参考公式:回归方程=y bx a +中斜率和截距的最小二乘估计分别为1221ni ii nii x ynx yb xnx==-=-∑∑,a y bx =-,相关系数ni ix ynx yr -=∑参考数据:10101022111159.8,172,265448,312350,287640ii i i i ii x y xy x y ========∑∑∑,12905=.19.(12分)如图,四边形ABCD 为梯形,AB//CD ,PD ⊥平面ABCD ,90,BAD ADC DC ∠=∠==22,,AB a DA E ==为BC 的中点.(1)求证:平面PBC ⊥平面PDE.(2)在线段PC 上是否存在一点F ,使得PA//平面BDF ?若存在,指出点F 的位置,并证明;若不存在,请说明理由.20.(12分)在平面直角坐标系中,点(),A x y 到点()()121,010F F -与点,的距离之和为4. (1)试求点A 的M 的方程. (2)若斜率为12的直线l 与轨迹M 交于C,D 两点,312P ⎛⎫⎪⎝⎭,为轨迹M 上不同于C ,D 的一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问12k k +是否为定值.若是,求出该定值;若不同,请说出理由.21.(12分)已知函数()()2ln 2a f x x x x a R =-∈. (1)当1a =时,判断函数()f x 的单调性;(2)若函数()()()11g x f x a x x =+-=在处取得极大值,求实数a 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.23. [选修4-5:不等式选讲](10分)若关于x 的不等式32310x x t ++--≥的解集为R ,记实数t 的最大值为a .,(1)求a 的值;(2)若正实数,m n 满足45m n a +=,求14233y m n m n=+++的最小值.参考答案。

2018年石家庄质检二:河北省石家庄2018届高三教学质量检测(二)语文试题-附答案

2018年石家庄质检二:河北省石家庄2018届高三教学质量检测(二)语文试题-附答案
革其苛政”看,羡赋应是吴居厚横征暴敛所得。
12.A(3分)(与苏轼一同提出募役的建言,得到苏轼的称赞不属于有大局意识。)
13.
(1)以后进言的人一定会责备(怪罪)我(失职),我不忍心默默无言而留下以后的后悔。(“异时”“职臣是咎”(宾语前置)“贻”各1分,句意2分。)
(2)做臣子的道理,就是忘掉自己,为国献身,不要认为邻路(管辖的地方)遭受敌人侵略,(去救助)就不是我们的职责。
⑤效果上,设置悬念,吸引读者。
(每点2分,答对三点得满分。共6分。意思对即可。)
(三)实用类文本阅读(本题共3小题,共12分)
7.A(3分)【解析】因果关系不当。错在“促使”。
8.A、C(选对一项给2分,两项全对给5分。)
【解析】B项曲解文义。“并网容量也会超过5GW”只是力争要达到的目标。D项无中生有。错在“相关配套产业也会不断涌现”,原文说的只是“相关配套产业的发展也将日趋完善”。E项未然与已然混淆。“实质性经济支持,及其提供的长期激励机制”尚未出现。
2.A(3分)【解析】文章提到20世纪80年代某些人的观点,是证明质疑汉字的论调在近几十年仍有一定市场。
3.B(3分)【解析】错在“必须摒除拼音教学法”。从原文看,作者虽然强调应遵循汉字自身的规律和特点,但只是讲在对拼音教学法进行反思,并没有说这种教学法就不适于汉字教育。
(二)文学类文本阅读(本题共3小题,共14分)
6.①情节上,“狼叫”是最关键的情节,推动了相关情节发展,与父女二人命运的转折关系紧密。
②人物上,使父女二人的形象更鲜明。学狼叫是表叔应对困难的策略,体现着父爱;是养女行路时壮胆的行为,表现着她的坚强与成长。
③环境上,“狼叫”表现了当地的偏僻与贫穷,为小说的人物活动提供背景。

河北省石家庄市2018届高中毕业班教学质量检测(二)(理数)

河北省石家庄市2018届高中毕业班教学质量检测(二)(理数)

河北省石家庄市2018届高中毕业班教学质量检测(二)数学(理科)本试卷满分150分。

考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题的答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.在答题卡上与题号相对应的答题区域内答题。

写在试卷、草稿纸上或答题卡非题号对应的答题区域的答案一律无效。

不得用规定以外的笔和纸答题,不得在答题卡上做任何标记。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是A .{}0AB x x =<B .}1|{)(-<=x x B AC R C .{}10A B x x =-<<D .(){}0R AC B x x =≥2.已知复数z 满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在A .第一象限B .第二象限C .第三象限D .第四象限3.在等比数列{}n a 中,2a =2,516a =,则6a =A .14B .28C .32D .644.设0a >且1a ≠,则“log 1a b >”是“b a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到 了著名的“徽率”,即圆周率精确到小数点后两位的近似值 3.14,如图就是利用“割圆术”的思想设计的一个程序框图, 则输出的n 值为 (参考数据:sin150.2588=°, sin 7.50.1305=°,sin 3.750.0654=°) A .12 B .24 C .36 D .486.若两个非零向量b a ,满足b b a b a 2=-=+,则向量b a +与a 的夹角为A .6π B .3π C .23π D .56π 7.在()()5121x x -+的展开式中,含4x 项的系数为A .25B .5-C .15-D .25-8. 如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为A .53B .83C .3D .89.某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数 学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差小于A 班成绩的标准差 其中正确结论的编号为 A .①③ B .①④ C .②③ D .②④10.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,已知点(3A ,,06B π⎛⎫⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程为A .12x π=B .4x π=C .3x π=D .23x π=11.倾斜角为4π的直线经过椭圆()222210x y a b a b+=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =,则该椭圆的离心率为 A 3 B 2 C 2 D 312.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是 A .()()()1f a a f b >+ B .()()()1f b a f a >-C .()()af a bf b >D .()()af b bf a >二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用1,2,3,4,5组成无重复数字的五位数,若用1a ,2a ,3a ,4a ,5a 分别表示五位数的万位、千位、百位、十位、个位,则出现12345a a a a a <<>>特征的五位数的概率为_____________.14.设变量,x y 满足约束条件30320x x y y -≤⎧⎪+≥⎨⎪-≤⎩,则1y x +的最大值为_____________.15.已知数列{}n a 的前n 项和12nn S ⎛⎫=- ⎪⎝⎭,如果存在正整数n ,使得()()10n n m a m a +--<成立,则实数m 的取值范围是_____________.16.在内切圆圆心为M 的ABC △中,3AB =,4BC =,5AC =,在平面ABC 内,过点M作动直线l ,现将ABC △沿动直线l 翻折,使翻折后的点C 在平面ABM 上的射影E 落在直线AB 上,点C 在直线l 上的射影为F ,则EFCF的最小值为_____________.三、解答题 :共70分. 解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必考题,每个考生都必须作答。

河北省石家庄市2018届高三毕业班教学质量检测数学(文)(附答案可编辑精品)-物理小金刚系列

河北省石家庄市2018届高三毕业班教学质量检测数学(文)(附答案可编辑精品)-物理小金刚系列

分 设:至少有一名女生参加座谈为事件 A 则 P A 1
4 4 ………12 分 20 5
19. (Ⅰ)证明:由题知四边形 ABCD 为正方形 ∴AB//CD,又 CD 平面 PCD,AB 平面 PCD ∴AB//平面 PCD ………………1 分
又 AB 平面 ABFE,平面 ABFE∩平面 PCD=EF ∴EF // AB,又 AB//CD ∴EF //CD, ………………3 分 由 S△PEF:S 四边形 CDEF=1:3 知 E、F 分别为 PC、PD 的中点 连接 BD 交 AC 与 G,则 G 为 BD 中点, 在△PBD 中 FG 为中位线,∴ EG//PB ………………5 分 ∵ EG//PB,EG 平面 ACE,PB 平面 ACE ∴PB//平面 ACE. ………………6 分 (Ⅱ)∵PA=2,AD=AB=1,∴ AC 2 , AE ∵CD⊥AD,CD⊥PA,AD∩PA=A, ∴CD⊥平面 PAD,∴CD⊥PD
当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即 OM 3 所以 a 3 ,椭圆长轴长为 6. ………………4 分
1 AF1 2
(Ⅱ)由已知 b 1 , c 2 2 , a 3 ,所以椭圆方程为 ………………5 分
x2 y2 1 9
当直线 AB 斜率存在时,设直线 AB 方程为: y k ( x 2 2 ) 设 A( x1 , y1 ), B( x2 , y 2 )
2 2
2 2
2
当 9x0 36 2x0 71 9( x0 9)
①-②
Sn 2 22 23 2n 1 n 1 2n 2 2n n 1 2n 1 2 2n 2 n 2 Sn 2 n 2 2

河北省石家庄市2017-2018学年高三复习教学质量检测(二)文数试题 Word版含解析

河北省石家庄市2017-2018学年高三复习教学质量检测(二)文数试题 Word版含解析

2017-2018学年一、选择题:共12小题,每小题5分,共60分.在每小题给出的两个选项中,只有一项是符合题目要求的.1.设集合{}{}211,|6M N x x x =-=-<,,则下列结论正确的是( )A. N M ⊆B. N M =∅C. M N ⊆D. M N R = 【答案】B. 【解析】试题分析:∵2623x x x -<⇒-<<,∴(2,3)N =-, 又∵{1,1}M =-,∴可知C 正确,A ,B ,D 错误,故选C . 【考点】本题主要考查集合的关系与解不等式.2. 已知i 是虚数单位,则复数()21-1i i+在复平面内对应的点在( )A.第一象限B. 第二象限C.第三象限D.第四象限 【答案】C. 【解析】试题分析:由题意得,2(1)2(1)111i ii i i i i--==--=--++,故对应的点在第三象限,故选C .【考点】本题主要考查复数的计算以及复平面的概念.3. 下列函数中,既是偶函数又在区间()0+∞,上单调递增的是( )A. 1y x =B. lg y x =C. 1y x =-D. ln 12xy ⎛⎫= ⎪⎝⎭【答案】B. 【解析】试题分析:A :偶函数与在(0,)+∞上单调递增均不满足,故A 错误;B :均满足,B 正确;C :不满足偶函数,故C 错误;D :不满足在(0,)+∞上单调递增,故选B . 【考点】本题主要考查函数的性质.4. 已知数列{}n a 的前项和为n S ,若()=2-4n n S a n N*∈,,则=na ( )A. 12n + B. 2n C. -12n D. -22n【答案】A . 【解析】试题分析:111124(24)2n n n n n n n a S S a a a a ++++=-=---⇒=,再令1n =, ∴111244S a a =-⇒=,∴数列{}n a 是以4为首项,2为公比是等比数列, ∴11422n n n a -+=⋅=,故选A. 【考点】本题主要考查数列的通项公式.5. 设,m n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个: ①若,//m n αα⊂,则//m n ; ②若//,//,m αββγα⊥,则m γ⊥; ③若=//n m n αβ ,,则//m α且//m β; ④若αγβγ⊥⊥,,则//αβ; 其中真的个数是( )A. 0B. 1C. 2D. 3 【答案】B. 【解析】试题分析:①://m n 或m ,n 异面,故①错误;②:根据面面平行的性质以及线面垂直的性质可知②正确;③://m β或m β⊂,故③错误;④:根据面面垂直的性质以及面面平行的判定可知④错误,∴真的个数为1,故选B .【考点】本题主要考查空间中线面的位置关系判定及其性质. 6. 执行如图所示的程序框图,则输出的实数m 的值为( ) A. 9 B. 10 C. 11 D. 12【答案】C. 【解析】试题分析:分析框图可知输出的应为满足299m >的最小正整数解的后一个整数,故选C . 【考点】本题主要考查程序框图.7. 已知,x y 满足约束条件1,1,49,3,x y x y x y ≥⎧⎪≥-⎪⎨+≤⎪⎪+≤⎩,若目标函数()0z y mx m ==>的最大值为1,则m的值是( ) A. 20-9B. 1C. 2D. 5 【答案】B. 【解析】试题分析:如下图所示,画出不等式组所表示的区域,作直线l :y mx =,0m >, 则可知当1x =,2y =时,max 211z m m =-=⇒=,故选B .【考点】本题主要考查线性规划.8. 若0,0a b >>,且函数()32=422f x x ax bx --+在1x =处有极值,若t ab =,则t 的最大值为( )A. 2B. 3C. 6D. 9 【答案】D. 【解析】试题分析:∵32()422f x x ax bx =--+,∴2'()1222f x x ax b =--, 又∵()f x 在1x =取得极值,∴'(1)122206f a b a b =--=⇒+=,∴2(6)(3)9t ab a a a ==-=--+,∴当且仅当3a b ==时,max 9t =,故选D. 【考点】本题考查导数的运用与函数最值. 9. 如图,圆C 内切于扇形AOB, 3AOB π∠=,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )A. 100B. 200C. 400D. 450【答案】C. 【解析】试题分析:如下图所示,设扇形半径为R ,圆C 半径为r ,∴23R r r r =+=, ∴落入圆内的点的个数估计值为22600400(3)6r r ππ⋅=,故选C.【考点】本题考查几何概型.10. 一个三棱锥的正视图和俯视图如右图所示,则该三棱锥的侧视图可能为( )【答案】D. 【解析】试题分析:分析三视图可知,该几何体如下图所示三棱锥,期中平面ACD ⊥平面BCD ,故选D .【考点】本题主要考查三视图.11. 设[],0αβπ∈,,且满足sin cos cos sin 1,αβαβ-=,则()()sin 2sin 2αβαβ-+-的取值范围为( )A. []-1,1B. ⎡⎣C. ⎡⎤⎣⎦D. ⎡⎣【答案】C.【解析】试题分析:∵sin cos cos sin 1sin()1αβαβαβ-=⇒-=,α,[0,]βπ∈,∴2παβ-=,∴0202αππαππβαπ≤≤⎧⎪⇒≤≤⎨≤=-≤⎪⎩, ∴sin(2)sin(2)sin(2)sin(2)sin cos 2παβαβααααπαα-+-=-++-+=+)4πα=+,∵2παπ≤≤,∴35444ππαπ≤+≤,∴1)14πα-≤+≤,即取值范围是[1,1]-,故选C . 【考点】本题主要考查三角恒等变形.12. 设抛物线2:4C y x =的焦点为F ,过F 的直线l 与抛物线交于A,B 两点,M 为抛物线C 的准线与x轴的交点,若tan AMB ∠=AB =( )A. 4B. 8C. 【答案】B. 【解析】试题分析:根据对称性,如下图所示,设l :1x my =+,11(,)A x y ,22(,)B x y ,由2244401y x y my x my ⎧=⇒--=⎨=+⎩,∴124y y m +=,124y y =-,221212144y y x x =⋅=,21212()242x x m y y m +=++=+,又∵tan tan()AMB AMF BMF ∠=∠+∠,∴122121221121212121211(2)(2)(1)(1)111y y x x y my y my y y y y x x y y x x -++++-+=⇒=-=-+++-⋅++,∴221m =⇒=,∴212||||||11448AB AF BF x x m =+=+++=+=, 故选B.【考点】本题主要考查抛物线的标准方程及其性质.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 将高三(1)班参加体检的36名学生,编号为:1,2,3, ,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则样本中剩余一名学生的编号是 . 【答案】15. 【解析】试题分析:根据系统抽样的特点可知抽取的4名学生的编号依次成等差数列,故穷举可知剩余一名学生的编号是15,故填:15. 【考点】本题主要考查系统抽样.14. 已知数列{}n a 满足21n n n a a a ++=-,且12=2=3a a ,,则2016a 的值为 . 【答案】0. 【解析】试题分析:由题意得,3211a a a =-=,4322a a a =-=-,5433a a a =-=-,6541a a a =-=-,7652a a a =-=,∴数列{}n a 是周期为6的周期数列,而20166336=⋅,∴201663360S S ==,故填:0. 【考点】本题主要考查数列求和.15. 在球O 的内接四面体A BCD -中,610,2AB AC ABC π==∠=,,且四面体A BCD-体积的最大值为200,则球O 的半径为 .【答案】13. 【解析】试题分析:由题意得,设球O 半径为r ,13A BCD D ABC ABC V V S h --∆==⋅⋅,∴max max 1168200251332h h r r ⋅⋅⋅=⇒=+=⇒=,故填:13. 【考点】本题主要考查球的性质.16. 设()f x '是奇函数()()f x x R ∈的导函数,()-2=0f ,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 的取值范围是 . 【答案】(2,0)(2,)-+∞U . 【解析】试题分析:设2()'()()()'()f x xf x f x g x g x x x-=⇒=,∴当0x >时,'()0g x >, 即()g x 在(0,)+∞上单调递增,又∵(2)(2)02f g ==,∴()0f x >的解为(2,0)(2,)-+∞U , 故填:(2,0)(2,)-+∞U . 【考点】本题主要考查导数的运用.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)ABC ∆中,角A,B,C 的对边分别为,,a b c ,且2cos 2.bc C a =(Ⅰ)求角B 的大小;(Ⅱ)若1cos 7A =,求ca 的值. 【答案】(1)3π=B ;(2)58.【解析】试题分析:本题主要考查正余弦定理解三角形、三角恒等变形、三角函数的性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,利用正弦定理先将边转化为角,再由内角和将A 转化为()B C π-+,解出1cos 2B =,再结合角B 的取值范围,确定角B 的值;第二问,利用平方关系先得到sin A ,再结合第一问中的结论,用两角和的正弦公式以及诱导公式计算sin C ,最后用正弦定理将边转化为角的正弦值求解. 试题解析:(Ⅰ) a c C b 2cos 2=+,由正弦定理,得A C C B sin 2sin cos sin 2=+,------------2分π=++C B AC B C B C B A sin cos cos sin )sin(sin +=+=∴…………………4分 )sin cos cos (sin 2sin cos sin 2C B C B C C B +=+ C B C sin cos 2sin =因为π<<C 0,所以0sin ≠C , 所以21cos =B , 因为π<<B 0,所以3π=B .------------6分 (Ⅱ)三角形ABC 中,3π=B ,1cos 7A =,所以sin A =-------------8分sin sin()sin cos cos sin 14C A B A B A B =+=+=…………………10分 sin 5sin 8c ACB a BAC ∠==∠ .------------12分 考点:本题主要考查:1.正余弦定理解三角形;2.三角恒等变形;3.三角函数的性质 18. (本小题满分12分)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如下表:(Ⅰ)求y 关于x 的线性回归方程y bx a =-)));(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z 取到最大值?(保留两位小数)参考公式:1122211()()()-()n niii ii i nni i i i x x y y x y nx yb a y b x x x x nx====---===--∑∑∑∑))),【答案】(1)ˆ8.69 1.23y x =-;(2) 2.72x =.【解析】试题分析:本题主要考查线性回归分析、函数最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用已知数据结合参考公式计算ˆb和ˆa ,从而得到线性回归方程;第二问,结合第一问,先列出z 的表达式,利用配方法求最值.试题解析:(Ⅰ)3x =,5y = 错误!未找到引用源。

河北省石家庄市2018届高三教学质量检测(二) (解析版)

河北省石家庄市2018届高三教学质量检测(二) (解析版)

文言文阅读
文言文阅读

范纯粹字德孺,凭借父荫升官 到赞善大夫。元丰年间,担任 陕西转运判官。当时五路兵马 出发讨伐西夏,高遵裕从环庆 出兵,刘昌祚从泾原出兵。高 遵裕对刘昌祚未按约定的日期 到达感到愤怒,想要追究责任 处死他。刘昌祚又忧又怒卧病 在床,他的手下都对此感到愤 怒。范纯粹担心两军不和,以 致于生出其它变故,劝高遵裕 前往问候刘昌祚的病,那可能 产生的祸端才会消弭。
文言文阅读
文言文阅读
文言文阅读
11.下列对文中加点词语的相关内容的解说,不正确 的一项是 A.荫,封建时代子孙因先世有功劳而得到封赏或免 罪。范纯粹就是因为父荫而升了官。

B.羡赋,是指赋税收入在收支相抵后所剩余
的部分。“数献羡赋”表明当地非常富裕。【 羡是多余的意思】
C.缗,古代穿铜钱用的绳子,也是古代计量单位, 一缗即一串铜钱,一般每串一千文。 D.军,宋代的地方行政区划名,与府、州、监同属 于路,它有特定的政治、军事功能。
高三下学期二轮复习课件
论述类文本阅读
论述类文本阅读
D.汉字记录着国家和民族的历史发展进程与
经验教训,是中华民族繁衍发展的基础【汉字 是中华民族繁衍的基础,显然不对。原文是“ 才能把中华文化的优秀基因……”基因和基础 不是对等概念,对象和形容词都不对。中华民 族繁衍发展的基因,当然有文化成分。但基础 ,必须是生存条件,是最基本的存活条件,譬 如……经济。】。
文学类文本阅读
文学类文本阅读
文学类文本阅读
文学类文本阅读
文学类文本阅读
5.这篇小说的故事情节是在怎样的社会背景下展开 的?请结合内容简要概括。 ①政府实施精准扶贫政策,如划拨出专款补贴,鼓励 村民自筹资金挪窝。 ②当前部分农村地区仍有贫困人口,国家实施对贫困 人口的生活保障制度。如向光棍表叔提供五保供养金 、农村低保金等。 ③农村生源减少,学校实行合并措施。

最新河北省石家庄市2018届高中毕业班教学质量检测(二)(理数)资料

最新河北省石家庄市2018届高中毕业班教学质量检测(二)(理数)资料

河北省石家庄市2018届高中毕业班教学质量检测(二)数学(理科)本试卷满分150分。

考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题的答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.在答题卡上与题号相对应的答题区域内答题。

写在试卷、草稿纸上或答题卡非题号对应的答题区域的答案一律无效。

不得用规定以外的笔和纸答题,不得在答题卡上做任何标记。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是A .{}0AB x x =<B .}1|{)(-<=x x B AC R C .{}10AB x x =-<<D .(){}0R AC B x x =≥2.已知复数z 满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在A .第一象限B .第二象限C .第三象限D .第四象限3.在等比数列{}n a 中,2a =2,516a =,则6a =A .14B .28C .32D .644.设0a >且1a ≠,则“log 1a b >”是“b a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到 了著名的“徽率”,即圆周率精确到小数点后两位的近似值 3.14,如图就是利用“割圆术”的思想设计的一个程序框图, 则输出的n 值为 (参考数据:sin150.2588=°, sin7.50.1305=°,sin3.750.0654=°) A .12 B .24 C .36 D .486.若两个非零向量b a ,满足b b a b a 2=-=+,则向量b a +与a 的夹角为A .6π B .3π C .23π D .56π 7.在()()5121x x -+的展开式中,含4x 项的系数为 A .25 B .5- C .15-D .25-8. 如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为A .53B .83C .3D .89.某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数 学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差小于A 班成绩的标准差 其中正确结论的编号为 A .①③ B .①④ C .②③ D .②④10.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,已知点(A ,,06B π⎛⎫⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程为A .12x π=B .4x π=C .3x π=D .23x π=11.倾斜角为4π的直线经过椭圆()222210x y a b a b +=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =,则该椭圆的离心率为A B C D12.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是A .()()()1f a a f b >+B .()()()1f b a f a >-C .()()af a bf b >D .()()af b bf a >二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用1,2,3,4,5组成无重复数字的五位数,若用1a ,2a ,3a ,4a ,5a 分别表示五位数的万位、千位、百位、十位、个位,则出现12345a a a a a <<>>特征的五位数的概率为_____________.14.设变量,x y 满足约束条件30320x x y y -≤⎧⎪+≥⎨⎪-≤⎩,则1y x +的最大值为_____________.15.已知数列{}n a 的前n 项和12nn S ⎛⎫=- ⎪⎝⎭,如果存在正整数n ,使得()()10n n m a m a +--<成立,则实数m 的取值范围是_____________.16.在内切圆圆心为M 的ABC △中,3AB =,4BC =,5AC =,在平面ABC 内,过点M作动直线l ,现将ABC △沿动直线l 翻折,使翻折后的点C 在平面ABM 上的射影E 落在直线AB 上,点C 在直线l 上的射影为F ,则EFCF的最小值为_____________.三、解答题 :共70分. 解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必考题,每个考生都必须作答。

石家庄市2018年高三质检二文科数学试卷含答案

石家庄市2018年高三质检二文科数学试卷含答案

直线 AP 的方程为 y y1
同理直线 BP 方程为 y
x2 1 2 x x2 2 4
x x2 x0 1 2k 2 设 P( x0 , y 0 ) ,联立 AP 与 BP 直线方程解得 ,即 P(2k ,1) y x1 x 2 1 0 4
S ABC S A1B1C1
7 , 2
…………9 分
设点 B 到平面 A1 B1C1 的距离为 h 由 VB A1B1C1 VA1 BB1C1 VABB1C1 得
1 7 1 1 3 h 22 1 .…………11 分 3 2 3 2 2
h
20
2 21 2 21 . .…………12 分 点 B 到平面 A1 B1C1 的距离为 7 7
i 1 i i
n
( x x ) ( y y )
2 i 1 i i 1 i
n
n
得r
2
74.5 74.5 0.995 18.44 4.06 74.8664
„„„„„„3 分 因为 y 与 x 的相关系数近似为 0.995,说明 y 与 x 的线性相关性很强,从而可以用回归模型拟合 y 与 x 的 的关系.(需要突出“很强” , “一般”或“较弱”不给分)„„„„„5 分
综上:三角形 PAB 面积最小值为 4,此时直线 L 的方程为 y 1 。 „„„„„ 12 分 21 解: (1) f ' ( x) 2(ln x 1 ) ,令其为 g ( x) ,则 g ' ( x) 2( 递增,„„„„„„„„„2 分 而 f ' (1) 0 , 则在区间 (0,1) 上, f ' ( x) 0 , 函数 f ( x) 单调递减; 在区间 (1,) 上 f ' ( x) 0 , 函数 f ( x) 单调递增 . ………………4 分

石家庄市2018年高三质检二理科数学试卷含答案

石家庄市2018年高三质检二理科数学试卷含答案

石家庄市2017-2018学年高中毕业班第二次质量检测试题理科数学答案一、选择题1-5CACDD 6-10ACBBA 11-12BC二、填空题13.3 15.3(,)24-16.25 三、解答题17.解:(1)在△ABC中sin sin tan tan 2cos sin cos cos cos C A B A B a B A B A B =+∴=+ 分sin cos +sin cos 4cos cos 1tan sin cos 3A B B A A BA A A A π=∴= 分则:=……………6分(2) 22211sin ,22182123cos =22203=1030122ABC S AD BC bc A AD bc b c a bc A bc bcbc b c AD ∆=⋅=∴=+--=≥∴<≤∴<≤ 分由余弦定理得:(当且仅当时等号成立)分分 18(1)由题可知11,3x y ==,………… 1分 将数据代入1221ˆn i i i n i i x y nx y bx nx ==-=-∑∑得338.5811374.5ˆ0.21913088121340b -⨯⨯==≈-⨯………3分ˆˆ30.219110.59ay bx =-=-⨯≈…………4分所以y 关于x 的回归方程ˆ0.220.59yx =+……………… 5分 (说明:如果ˆ0.22,b≈ ˆ0.58a≈ ,ˆ0.220.58y x =+,第一问总体得分扣1分)(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=, 日销量[2100,)+∞的概率为10.68270.158652-=,……………… 8分 所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯....10分 3919.7253919.73=≈元.………………… 12分19.证明:(1)连接1BC 交1B C 于O ,连接AO侧面11BB C C 为菱形,∴11B C BC ⊥1AB AC =,O 为1BC 的中点,∴1AO BC ⊥ …………2分又1B C AO O ⋂=,∴1BC ⊥平面1AB C1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .…………4分(2)由1AB B C ⊥,1BO B C ⊥,AB BO B ⋂=,∴1B C ⊥平面ABO ,AO ⊂平面ABO ∴1AO B C ⊥…………………6分从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则BO =,又0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(0,1,0),(0,1,0)A B B C -,………………………8分1111(0,1,1),(0,2,0),1)AB B C A B AB =-=-==-设(,,)n x y z = 是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩即000200y z x y z +⋅-=⋅-+⋅=⎪⎩令1x =则n = …………10分设直线1AB 与平面11A B C 所成的角为θ则111sin |cos ,|||4||||AB n AB n AB n θ⋅=<>==⋅ ∴直线1AB 与平面11A B C…………12分 20.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(p F ,准线2p y -= 因为圆C 与抛物线F 的准线相切,所以223p b -=,……………………2分 且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上, 即4pb = ………………………4分所以4223p p b =-=,即2=p ,抛物线F 的方程为y x 42=…………………5分 (2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x ………… 6分 对42x y =求导得2'x y =,即21x k AP = 直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -=设),(00y x P , 联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P ……………… 8分所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=……………………10分所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号 综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . ………………12分21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++① 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;………1分② 当0a >时,函数()1ln f x a a x '=++单调递增,11()1ln 00a f x a a x x e --'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增;………3分 ③ 当0a <时,函数()1ln f x a a x '=++单调递减,11()1ln 00a f x a a x x e --'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.………5分(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111a e --=,解得1a =-,故此时()ln f x x x x =-,………6分要证2()x f x ex -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可, 设()2ln x h x e x x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增, 又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>,故()2ln x h x e x x -'=-++在1,1e ⎛⎫ ⎪⎝⎭上存在唯一零点0x ,即0002ln 0x e x x --++=. ………………8分所以当()00,x x ∈,()0h x '<,当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增,故()()0200000ln x h x h x e x x x x -≥=+-+,所以只须证()0200000ln 0x h x ex x x x -=+-+≥即可, 由0002ln 0x e x x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, ………10分当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+<所以00x e x --++00ln 0x x +<与0002ln 0x e x x --++=矛盾, 故00ln 0x x +≥,得证.………12分(另证)当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+<所以00x e x --++00ln 0x x +<与0002ln 0x e x x --++=矛盾;当00ln 0x x +>时,000000ln 0x x x x x e e x -->-⇒>⇒-+>所以00x e x --++00ln 0x x +>与0002ln 0x e x x --++=矛盾;当00ln 0x x +=时,000000ln 0x x x x x e e x --=-⇒=⇒-+=得0002ln 0x e x x --++=,故00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()x f x ex -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ=….3分 2C 的极坐标方程为αρ22sin 18+=………5分(2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA , 联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB ,……7分 则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++(………………………9分 .8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号). 所以22OA OB -的最小值为.828-…….10分23. 解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f ………………………2分当21-<x 时,2)(≤x f 无解; 当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ; 当21->x 时,2)(≤x f 无解; 综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x ………….5分 )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f ,…….6分 所以)()(x g x f ≥可化为)(1x g a ≥+………….7分又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一 …………………9分 11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a 又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1-………10分。

河北省石家庄2018届高三教学质量检测数学(理)试题(二)含答案

河北省石家庄2018届高三教学质量检测数学(理)试题(二)含答案

河北省石家庄2018届高三教学质量检测数学(理)试题(二)含答案河北省石家庄2018届高三教学质量检测(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是( ) A.(){}12R C A B x x =-<≤B.{}10A B x x =-<<C.(){}0R AC B x x =≥D.{}0A B x x =<2.已知复数z 满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{}n a 中,2a =2,516a =,则6a =( ) A.28B.32C.64D.144.设0a >且1a ≠,则“log 1a b >”是“b a >”的( ) A.必要不充分条件 B.充要条件C.既不充分也不必要条件D.充分不必要条件5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值3.14,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的n 值为( )(参考数据:sin150.2588=°,sin 7.50.1305=°,sin 3.750.0654=°)A.24B.36C.48D.126.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A.3πB.23πC.56πD.6π 7.在()()5121x x -+的展开式中,含4x 项的系数为( ) A.5-B.15-C.25-D.258.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.83B.3C.8D.539.某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差小于A 班成绩的标准差 其中正确结论的编号为( ) A.①④B.②③C.②④D.①③10.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,已知点(3A ,,06B π⎛⎫⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程为( )A.4x π=B.3x π=C.23x π=D.12x π=11.倾斜角为4π的直线经过椭圆()222210x y a b a b+=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =,则该椭圆的离心率为( )B.233 12.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A.()()()1f a a f b >+B.()()()1f b a f a >-C.()()af a bf b >D.()()af b bf a >二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用1,2,3,4,5组成无重复数字的五位数,若用1a ,2a ,3a ,4a ,5a 分别表示五位数的万位、千位、百位、十位、个位,则出现12345a a a a a <<>>特征的五位数的概率为_____________. 14.设变量,x y 满足约束条件30320x x y y -≤⎧⎪+≥⎨⎪-≤⎩,则1y x +的最大值为_____________.15.已知数列{}n a 的前n 项和12nn S ⎛⎫=- ⎪⎝⎭,如果存在正整数n ,使得()()10n n m a m a +--<成立,则实数m 的取值范围是_____________.16.在内切圆圆心为M 的ABC △中,3AB =,4BC =,5AC =,在平面ABC 内,过点M 作动直线l ,现将ABC △沿动直线l 翻折,使翻折后的点C 在平面ABM 上的射影E 落在直线AB 上,点C 在直线l 上的射影为F ,则EF CF的最小值为_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC △的内角,,A B C 的对边长分别为,,a b c 3tan tan cA B =+.(1)求角A 的大小;(2)设AD 为BC 边上的高,3a =AD 的范围.18.随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:(1) 根据数据可知y 与x 具有线性相关关系,请建立y 关于x 的回归方程y bx a =+(系数精确到0.01);(2) 已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以z (单位:件)表示日销量,[)1800,2000z ∈,则每位员工每日奖励100元;[)2000,2100z ∈,则每位员工每日奖励150元;[)2100,z ∈+∞,则每位员工每日奖励200元.现已知该网站6月份日销量z 服从正态分布()0.2,0.0001N ,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).参考数据:81338.5i i i x y ==∑,8211308i i x ==∑,其中i x ,i y 分别为第i 个月的促销费用和产品销量,1,2,3,...8i =.参考公式:(1) 对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x ynx y b xnx==-=-∑∑,a y bx =-.(2) 若随机变量Z 服从正态分布()2,N μσ,则(),0.6827P μσμσ-+=,()2,20.9545P μσμσ-+=. 19.如图,三棱柱111ABC A B C -中,侧面11BB C C 为160CBB =∠°的菱形,1AB AC =.(1)证明:平面1AB C ⊥平面11BB C C .(2)若1AB B C ⊥,直线AB 与平面11BB C C 所成的角为30°,求直线1AB 与平面11A B C 所成角的正弦值. 20.已知圆()()229:4C x a y b -+-=的圆心C 在抛物线()220x py p =>上,圆C 过原点且与抛物线的准线相切.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于,A B 两点,分别在点,A B 处作抛物线的两条切线交于P 点,求三角形PAB 面积的最小值及此时直线l 的方程.21.已知函数()ln f x x ax x =+.()a ∈R (1)讨论函数()f x 的单调性;(2)若函数()ln f x x ax x =+存在极大值,且极大值为1,证明:()2x f x e x -≤+.22.在直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(其中ϕ为参数),曲线222:184x y C +=.以原点O为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 、2C 的极坐标方程;(2)射线():0l θαρ=≥与曲线1C 、2C 分别交于点,A B (且,A B 均异于原点O )当02πα<<时,求22OBOA-的最小值.23.已知函数()221f x x a x =-++.(1)当1a=时,求()2f x≤的解集;(2)若()243g x x ax=+-,当1a>-,且1,22ax⎡⎤∈-⎢⎥⎣⎦时,()()f xg x≥,求实数a的取值范围.石家庄市2017-2018学年高中毕业班第二次质量检测试题理科数学答案一、选择题1-5BABCC 6-10DBAAD 11-12AC二、填空题13.14. 315.3(,)24-16. 81025三、解答题17.解:(1)在△ABC中33sin sin sin tan tancos cos c C ABA BA B=+∴=+sin cos+sin cossin cos cos cos1tan=3cos3C A B B AA B A BA AAπ==即:则:=(2)22211sin,2212123cos=22203=32ABCS AD BC bc AAD bcb c a bcAbc bcbc b cAD∆=⋅=∴=+--=≥∴<≤∴<≤由余弦定理得:(当且仅当时等号成立)18(1)由题可知11,3x y==,将数据代入1221ˆni iiniix y nx ybx nx==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯ˆˆ30.219110.59a y bx=-=-⨯≈所以y关于x的回归方程ˆ0.220.59y x=+(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=, 日销量[2100,)+∞的概率为10.68270.158652-=, 所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯3919.7253919.73=≈元.19.证明:(1)连接1BC 交1B C 于O ,连接AO 侧面11BB C C 为菱形,∴ 11B C BC ⊥1AB AC =, O 为1BC 的中点,∴1AO BC ⊥又1BC AO O ⋂=,∴1BC ⊥平面1AB C 1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .(2)由1AB B C ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO∴1AO B C ⊥从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则3BO =,又0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(3,0,0),(0,1,0),(0,1,0)A B B C -,1111(0,1,1),(0,2,0),(3,0,1)AB BC AB AB =-=-==- 设(,,)n x y z =是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩即3000200x y z x y z +⋅-=⋅-+⋅=⎪⎩令1x =则(1,0,3)n =设直线1AB 与平面11A B C 所成的角为θ 则1116sin |cos ,|||||||AB n AB n AB n θ⋅=<>==⋅∴直线1AB 与平面11A B C 620.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(pF ,准线2p y -=因为圆C 与抛物线F 的准线相切,所以223pb -=, 且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上,即4p b =所以4223pp b =-=,即2=p ,抛物线F 的方程为y x 42=(2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y 设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x 对42x y =求导得2'x y =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -=设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++① 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;② 当0a >时,函数()1ln f x a a x '=++单调递增,11()1ln 00af x a a x x e --'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增;③ 当0a <时,函数()1ln f x a a x '=++单调递减,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111ae--=,解得1a =-, 故此时()ln f x x x x =-,要证2()xf x e x -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可,设()2ln x h x ex x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增, 又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>,故()2ln xh x ex x -'=-++在1,1e ⎛⎫⎪⎝⎭上存在唯一零点0x ,即0002ln 0x e x x --++=.所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增, 故()()0200000ln x h x h x ex x x x -≥=+-+,所以只须证()0200000ln 0x h x e x x x x -=+-+≥即可,由0002ln 0x ex x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, 当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+< 所以00x e x --++00ln 0x x +<与0002ln 0x e x x --++=矛盾,故00ln 0x x +≥,得证. (另证)当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+< 所以00x e x --++00ln 0x x +<与0002ln 0x ex x --++=矛盾;当00ln 0x x +>时,000000ln 0x x x x x e e x -->-⇒>⇒-+> 所以00x e x --++00ln 0x x +>与0002ln 0x ex x --++=矛盾;当00ln 0x x +=时,000000ln 0x x x x x e e x --=-⇒=⇒-+=得0002ln 0x ex x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()xf x e x -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ=2C 的极坐标方程为αρ22sin 18+=(2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA,联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB ,则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++(.8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号).所以22OA OB -的最小值为.828- 23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f当21-<x 时,2)(≤x f 无解; 当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ;当21->x 时,2)(≤x f 无解;综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f所以)()(x g x f ≥可化为)(1x g a ≥+又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一…………………9分即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a 11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1-石家庄市2017-2018学年高中毕业班第二次质量检测试题理科数学答案一、选择题1-5BABCC 6-10DBAAD 11-12AC 二、填空题13.14. 315. 3(,)24-16. 81025三、解答题17.解:(1)在△ABC 中33sin sin sin tan tan 2cos cos c C A BA B A B=+∴=+分……………6分(2)22211sin ,22182123cos =22203=1030122ABC S AD BC bc A AD bc b c a bc A bc bcbc b c AD ∆=⋅=∴=+--=≥∴<≤∴<≤分由余弦定理得:(当且仅当时等号成立)分分18(1)由题可知11,3x y ==, ………… 1分3sin sin cos +sin cos 4cos cos 31tan =3cos 3C A B B AA B A A A π==即:分则:=将数据代入1221ˆni ii nii x y nx ybxnx ==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯………3分ˆˆ30.219110.59ay bx =-=-⨯≈ …………4分 所以y 关于x 的回归方程ˆ0.220.59yx =+ ……………… 5分 (说明:如果ˆ0.22,b≈ ˆ0.58a ≈ ,ˆ0.220.58yx =+,第一问总体得分扣1分)(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=, 日销量[2100,)+∞的概率为10.68270.158652-=, ……………… 8分 所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯....10分3919.7253919.73=≈元.………………… 12分19.证明:(1)连接1BC 交1B C 于O ,连接AO 侧面11BB C C 为菱形,∴ 11B C BC ⊥1AB AC =, O 为1BC 的中点,∴1AO BC ⊥ …………2分又1BC AO O ⋂=,∴1BC ⊥平面1AB C 1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .…………4分(2)由1AB B C ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO∴1AO B C ⊥…………………6分从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则3BO =,又0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(3,0,0),(0,1,0),(0,1,0)A B B C -,………………………8分1111(0,1,1),(0,2,0),(3,0,1)AB BC AB AB =-=-==- 设(,,)n x y z =是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩即3000200x y z x y z +⋅-=⋅-+⋅=⎪⎩令1x =则(1,0,3)n = …………10分 设直线1AB 与平面11A B C 所成的角为θ 则1116sin |cos ,|||||||AB n AB n AB n θ⋅=<>==⋅∴直线1AB 与平面11A B C 6分 20.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(pF ,准线2p y -=因为圆C 与抛物线F 的准线相切,所以223pb -=,……………………2分 且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上, 即4p b =………………………4分所以4223pp b =-=,即2=p ,抛物线F 的方程为y x 42= …………………5分 (2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y 设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x ………… 6分 对42x y =求导得2'x y =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -= 设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P ……………… 8分所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=……………………10分所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . ………………12分 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++④ 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;………1分⑤ 当0a >时,函数()1ln f x a a x '=++单调递增,11()1ln 00af x a a x x e --'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增; ………3分⑥ 当0a <时,函数()1ln f x a a x '=++单调递减,11()1ln 00af x a a x x e --'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,ax e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.………5分(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111ae--=,解得1a =-, 故此时()ln f x x x x =-,………6分要证2()x f x e x -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可, 设()2ln xh x ex x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增, 又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>,故()2ln xh x ex x -'=-++在1,1e ⎛⎫⎪⎝⎭上存在唯一零点0x ,即0002ln 0x e x x --++=.………………8分所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增, 故()()0200000ln x h x h x ex x x x -≥=+-+,所以只须证()0200000ln 0x h x e x x x x -=+-+≥即可,由0002ln 0x ex x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, ………10分当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+< 所以00x e x --++00ln 0x x +<与0002ln 0x ex x --++=矛盾,故00ln 0x x +≥,得证.………12分 (另证)当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+<所以00x ex --++00ln 0x x +<与0002ln 0x e x x --++=矛盾;当00ln 0x x +>时,000000ln 0x x x x x ee x -->-⇒>⇒-+>所以00x e x --++00ln 0x x +>与0002ln 0x ex x --++=矛盾;当00ln 0x x +=时,000000ln 0x x x x x e e x --=-⇒=⇒-+= 得0002ln 0x ex x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()x f x e x -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ=….3分2C 的极坐标方程为αρ22sin 18+=………5分(2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA,联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB ,……7分则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++( ………………………9分.8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号).所以22OA OB -的最小值为.828-…….10分 23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f ………………………2分当21-<x 时,2)(≤x f 无解; 当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ;当21->x 时,2)(≤x f 无解;综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x ………….5分)2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f ,…….6分所以)()(x g x f ≥可化为)(1x g a ≥+………….7分 又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一…………………9分即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1-………10分11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩。

河北省2018届高三下学期第二次调研考试数学(文)试卷(含答案)

河北省2018届高三下学期第二次调研考试数学(文)试卷(含答案)

2018届河北省普通高等学校招生全国统一考试高三下学期第二次调研考试数学(文)试题本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}212=12A x x B x x A B ⎧⎫=-<<≤⋃=⎨⎬⎩⎭,,则 A. {}12x x -≤< B. 112x x ⎧⎫-<≤⎨⎬⎩⎭ C. {}2x x < D. {}12x x ≤< 2.已知()12i i a bi +=+(i 是虚数单位,,a b R ∈),则a b +=A. 3-B.3C.1D. 1-3.已知,l m 是两条不同的直线,α是一个平面,则下列命题中正确的是A.若//,,//l m l m αα⊂则B. 若//,//,//l m l m αα则C.若,,l m m l αα⊥⊂⊥则D. 若,//,l l m m αα⊥⊥则4.在下列双曲线方程中,表示焦点在y 轴上且渐近线方程为3y x =±的是A. 2219y x -= B. 2219x y -= C. 2219y x -= D. 2219x y -= 5.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:根据表中数据得()22277520450530015.96810.82825750320455K K ⨯⨯-⨯=≈≥⨯⨯⨯,由,断定秃发与患有心脏病有关,那么这种判断出错的可能性为A.0.1B.0.05C.0.01D.0.0016.执行如图所示的程序框图,则输出的S 的值是A. 1-B. 23C. 32D.47.已知函数()()sin ,336f x A x f x f x f x πππωϕ⎛⎫⎛⎫⎛⎫=++=--+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且 6f x π⎛⎫- ⎪⎝⎭,则实数ω的值可能是 A.2 B.3 C.4 D.58.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是A.9B. 272C.18D.279.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个,x y 都小于1的正实数对(),x y ,再统计其中,x y 能与1构成钝角三角形三边的数对(),x y 的个数m ,最后根据统计个数m 估计π的值.如果统计结果是m 34=,那么可以估计π的值为 A. 227 B. 4715C. 5116D. 5317 10.已知函数()()20,0f x ax bx a b =+>>的图像在点()()1,1f 处的切线的斜率为2,则8a b ab+的最小值是A.10B.9C.8D. 11.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,椭圆与双曲线的离心率分别为1212,1e e e e +,则的取值范围是A. ()1,+∞B. 4,3⎛⎫+∞ ⎪⎝⎭C. 6,5⎛⎫+∞ ⎪⎝⎭D. 10,9⎛⎫+∞ ⎪⎝⎭12.已知定义在R 上的函数()()()1112f x f f x '=>满足,且恒成立,则不等式()22122x f x <+的解集为A. (),1-∞-B. ()1,+∞C. ()(),11,-∞-⋃+∞D. ()1,1- 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 满足()2,0,1,a b a b ==+=,a b 所成的角为__________.14.已知实数,x y 满足约束条件4,2,311,x y x y z x y x +=⎧⎪≤=-+⎨⎪≥⎩若,则实数z 的最大值是_________.15.已知P 是抛物线24y x =上的动点,点Q 在圆()()22:331C x y ++-=上,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是___________.16.在ABC ∆中,角A,B,C 所对的边分别为21,,sin sin sin ,24B C a b c B C -+=,且 2b c +=,则实数a 的取值范围是____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{}n a 的前n 项和为n S ,且对任意正整数n 都有()10,1n n a S λλ-=≠. (1)求证:{}n a 为等比数列.(2)若441112log log n n n b a a λ+==g ,且,求数列{}n b 的前n 项和n T .18.(12分)炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:(1)据统计表明,y x 与之间具有线性相关关系,请用相关系数r 加以说明(r 若0.75≥,则认为y 与x 有较强的线性相关关系,否则认为没有较强的线性相关关系,r 精确到0.001);(2)建立y 关于x 的回归方程(回归系数的结果精确到0.01);(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.参考公式:回归方程=y bx a +中斜率和截距的最小二乘估计分别为1221n i i i n i i x y nx y b xnx ==-=-∑∑$,$a y bx =-$,相关系数1222211.n ii i n n i i i i x y nx y r x nx y n y ===-=⎛⎫-- ⎪⎝⎭∑∑∑参考数据:10101022111159.8,172,265448,312350,287640i i i i i i i x y xy x y ========∑∑∑, 1010222211101012905i i i i x x x y ==⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭∑∑.19.(12分)如图,四边形ABCD 为梯形,AB//CD ,PD ⊥平面ABCD ,90,BAD ADC DC ∠=∠==o22,3,AB a DA a E ==为BC 的中点.(1)求证:平面PBC ⊥平面PDE.(2)在线段PC 上是否存在一点F ,使得PA//平面BDF ?若存在,指出点F 的位置,并证明;若不存在,请说明理由.20.(12分)在平面直角坐标系中,点(),A x y 到点()()121,010F F -与点,的距离之和为4. (1)试求点A 的M 的方程.(2)若斜率为12的直线l 与轨迹M 交于C,D 两点,312P ⎛⎫ ⎪⎝⎭,为轨迹M 上不同于C ,D 的一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问12k k +是否为定值.若是,求出该定值;若不同,请说出理由.21.(12分)已知函数()()2ln 2a f x x x x a R =-∈. (1)当1a =时,判断函数()f x 的单调性;(2)若函数()()()11g x f x a x x =+-=在处取得极大值,求实数a 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系.(1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.23. [选修4-5:不等式选讲](10分)若关于x 的不等式32310x x t ++--≥的解集为R ,记实数t 的最大值为a .(1)求a 的值;(2)若正实数,m n 满足45m n a +=,求14233y m n m n=+++的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档