高考(数学理)题组训练第六章数列题组31 Word版含解析

合集下载

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第六章 数列 Word版含解析.doc

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第六章 数列 Word版含解析.doc

第六章 数列第一节 等差数列与等比数列题型67 等差(等比)数列的公差(公比)1.(2017北京理10)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =_______. 解析由11a =-,48a =,则21132a a d =+=-+=,由11b =-,48b =,则2q =-,则212b b q ==.故22212a b ==. 2.(2017全国1理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ). A .1B .2C .4D .8解析 45113424a a a d a d +=+++=,61656482S a d ⨯=+=,联立112724 61548 a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②,得()211524-=d ,即624d =,所以4d =.故选C.3.(2017全国2理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ). A .1盏 B .3盏 C .5盏 D .9盏 解析 设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.故选B.4.(2017全国3理14)设等比数列{}n a 满足12–1a a +=, 13––3a a =,则4a = ___________.解析 因为{}n a 为等比数列,设公比为q .由题意得121313a a a a +=-⎧⎨-=-⎩,即112111 3 a a q a a q +=-⎧⎪⎨-=-⎪⎩①②显然1q ≠,10a ≠,式式②①,得13q -=,即2q =-,代入①式可得11a =, 所以()3341128a a q ==⨯-=-.题型68 等差、等比数列求和问题的拓展1.(2017全国1理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数100N N >:且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ). A.440B.330C.220D.110解析 设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. 设第n 组的项数为n ,则n 组的项数和为()12n n +,由题意得,100N >,令()11002n n +>,得14n ≥且*n ∈N ,即N 出现在第13组之后,第n 组的和为122112nn -=--,n 组总共的和为()12122212n n n n +--=---,若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数,即()*21214k n k n -=+∈N ,≥,()2log 3k n =+,得n 的最小值为295n k ==,, 则()2912954402N ⨯+=+=.故选A.2.2017山东理19)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=, (1)求数列{}n x 的通项公式;(2)如图所示,在平面直角坐标系xOy 中,依次联结点()111P x ,,()222P x ,,…,()11,1n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T .解析 (1)设数列{}n x 的公比为q ,由已知0q >. 由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=, 因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过1231,,,,n P P P P +向x 轴作垂线,垂足分别为1231,,,,n Q Q Q Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以1n n T b b b b =++++=13n n n n ---⨯+⨯+⨯++-⨯++⨯① 又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯②-①②,得132(n n n T n ----=⨯++++-+⨯=1132(21n n n---+--所以(21)21.2n n n T -⨯+=题型69 等差、等比数列的性质及其应用1.(2017江苏09)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = . 解析 解法一:由题意等比数列公比不为1,由()()313616171416314a q S q a q S q ⎧-==⎪-⎪⎨-⎪==⎪-⎩,因此36319S q S =+=,得2q =. 又3123S a a a =++()2117174a q qa =++==,得114a =,所以78132a a q ==.故填32.解法二(由分段和关系):由题意3363374634S S S q S ⎧=⎪⎪⎨⎪=+=⎪⎩,所以38q =,即2q =.下同解法一.2.(2017全国2理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 解析 设{}n a 首项为1a ,公差为d .由3123a a d =+=,414610S a d =+=,得11a =,1d =,所以n a n=,()12n n n S +=,()()112222122311nk kSn n n n ==++++=⨯⨯-+∑11111112122311n n n n ⎛⎫-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.题型70 判断或证明数列是等差、等比数列1.(2017江苏19)对于给定的正整数k ,若数列{}n a 满足1111+n k n kn nn ka aa a a --+-++-++⋅⋅⋅+++⋅⋅⋅+2n k n a k a +=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“()3P 数列”;(2)若数列{}n a 既是“()2P 数列”,又是“()3P 数列”,证明:{}n a 是等差数列. 解析 (1)因为{}n a 是等差数列,设其公差为d ,则()11n a a n d =+-, 从而当4n …时,()()1111=n k n k a a a n k d a n k d -++=+--+++-()12212n a n d a +-=,1,2,3k =,所以321123+++6n n n n n n n a a a a a a a ---+++++=,因此等差数列{}n a 是“()3P 数列”. (2)由数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n …时,21124n n n n n a a a a a --+++++= ① 当4n …时,3211236n n n n n n n a a a a a a a ---++++++++= ② 由①知,()()321144n n n n n a a a a a n ---++=-+≥ ③()()231142n n n n n a a a a a n +++-+=-+≥ ④将③④代入②,得112n n n a a a -++=,其中4n …, 所以345,,,a a a ⋅⋅⋅是等差数列,设其公差为d '.在①中,取4n =,则235644a a a a a +++=,所以23a a d '=-, 在①中,取3n =,则124534a a a a a +++=,所以312a a d '=-, 从而数列{}n a 是等差数列.评注 这是数列新定义的问题,其实类似的问题此前我们也研究过,给出仅供参考.(2015南通基地密卷7第20题)设数列{}n a 的各项均为正数,若对任意的*n ∈N ,存在*k ∈N ,使得22n k n n k a a a ++=成立,则称数列{}n a 为“k J 型”数列.(1)若数列{}n a 是“2J 型”数列,且28a =,81a =,求2n a ;(2)若数列{}n a 既是“3J 型”数列,又是“4J 型”数列,证明数列{}n a 是等比数列. 解析 (1)由题意得,2468,,,,a a a a ⋅⋅⋅成等比数列,且公比138212a q a ⎛⎫== ⎪⎝⎭,所以412212n n n a a q --⎛⎫== ⎪⎝⎭.(2)由{}n a 是“4J 型”数列得159131721,,,,,,a a a a a a ⋅⋅⋅成等比数列,设公比为t , 由{}n a 是“3J 型”数列得1471013,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为1α;2581114,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为2α; 3691215,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为3α; 则431311a t a α==,431725a t a α==,432139a t a α==, 所以123ααα==,不妨令123αααα===,则43t α=. 所以()3211311k k k a aα----==,()2311223315111k k k k k a a a t a a ααα------====,所以131323339111k k k k kaa a t a a ααα----====,综上11n n a a -=,从而{}n a 是等比数列.2.(2017北京理20)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.解析(1)111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-. 当3n …时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k kb na -关于*k ∈N 单调递减.从而{}112211ma x ,,,1n n n c b a n b a n b an b a n=---=-=-, 将1,2,3n =代入,满足此式,所以对任意1n …,1n c n =-,于是11n n c c +-=-,得{}n c 是等差数 列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则()[]()()121111211(1)1k k b na b k d a k d n b a n d nd k -=+--+-=-+--. 所以()()11212111211,,n b a n n d nd d nd c b a n d nd ⎧-+-->⎪=⎨-⎪⎩当时当时….①当10d >时,取正整数21d m d >,则当n m …时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n …, (){}(){}()11211211max ,01max ,0n c b a n n d b a n d a =-+-=-+--.此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <,所以()()()11211211121n b a n n d nd c b d n d d a d n n n-+---==-+-++…()111212||n d d a d b d -+-+--.对任意正数M ,取正整数12112211||max ,M b d a d d d m d d ⎧⎫+-+-->⎨⎬-⎩⎭,故当n m …时,nc M n>. 题型71 等差数列与等比数列的交汇问题——暂无第二节 数列的通项公式与求和题型72 数列通项公式的求解 题型73 数列的求和1.(2017天津理18)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N .解析 (1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以2nn b =.由3412b a a =-,可得138d a -= ① 由114=11S b ,可得1516a d += ② 联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯=1112(14)4(31)4=(32)4814n n n n n ++⨯----⨯--⨯--,得1328433n n n T +-=⨯+. 所以数列{}221n n a b -的前n 项和为1328433n n +-⨯+. 2.(2017全国3理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则数列{}n a 前6项的和为( ). A .24-B .3-C .3D .8解析 因为{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d ,则2326a a a =,即()()()211125a d a d a d +=++.因为11a =,代入上式可得220d d +=,又0d ≠,则2d =-,所以()61656561622422S a d ⨯⨯=+=⨯+⨯-=-.故选A. 第三节 数列的综合题型74 数列与不等式的综合1.(2017浙江理22)已知数列{}n x 满足:11x =,()()*11ln 1n n n x x x n ++=++∈N .证明:当*n ∈N 时.(1)10n n x x +<<; (2)1122n n n n x x x x ++-…; (3)1-21122n n n x -剟. 解析 (1)用数学归纳法证明:0n x >.当1n =时,110x =>,假设n k =时,0k x >,那么1n k =+时,若10k x +…,则()110ln 10k k k x x x ++<=++…,矛盾,故10k x +>. 因此()*0n x n >∈N ,所以()111ln 1n n n n x x x x +++=++>. 因此()*10n n x x n +<<∈N .(2)由()111l n 1n n n nx x x x +++=++>,得()()21111114222ln1nnn nn n n nx x x x x x x x ++++++-+=-+++. 记函数()()()()222ln 10f x x x x x x =-+++….()()()()()222122222ln 1ln 1ln 10111x x x x xf x x x x x x x x -++++'=-+++=++=+++++…,知函数()f x 在[)0,+∞上单调递增,所以()()00f x f =…, 因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=…,即()*1122n n n n x x x x n ++-∈N …. (3)因为()()*11111ln 12n n n n n n x x x x x x n +++++=+++=∈N …,得112n n x x +…,以此类推,21111,,22n n x x x x -厖,所以112112112n n n n n n x x xx x x x x ----⎛⎫=⋅⋅⋅⋅ ⎪⎝⎭=x ?,故112n n x -…. 由(2)知,()*1122n n n n x x x x n ++-∈N …,即111112022n n x x +⎛⎫--> ⎪⎝⎭…, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎝⎭⎝⎭厖?,故212n n x -….综上,()*121122n n n x n --∈N 剟.。

2018年高三数学(理)专题06数列(第01期)Word版含解析

2018年高三数学(理)专题06数列(第01期)Word版含解析

A .27 【答案】 D 【解析】
B. 36
C
. 45
D . 54
试题分析:由等差数列的性质知 a5 2a6 a7 6 , S9 9a5 54 ,故选 D.
考点:等差数列的性质. 【名师点晴】等差数列问题一般用基本量法解决,即把问题用首项
a1和公差 d 表示出来,从
而求得 a1, d ,然后写出通项公式和前 n 和公式.但有时为了简化计算我们要充分应等差数列
A. 5
B
.7
C
.9
D
. 11
【答案】 A
【解析】
试题分析:因为 a1 a3 a5 3a3 3 ,所以 a3 1 ,所以 S5 5 (a1 a5) 5 2a3 5 ,
2
2
故选 A.
考点: 1、等差数列的性质; 2、等差数列的前 n 项和.
12. 【辽宁省葫芦岛市一高 2016 届上学期期中考试 5】在等差数列 an 中,若
是前 3 项和的 9 倍,则此数列的公比为(

A. 2 B. 3 C.
1
D.
1
2
3
【答案】 A
【解析】 试题分析:记题中的等比数列的公比为
q . 依题意
有 S6=9 S3, ?S6- S3=8S3, S6 S3 8 ,即 q3 8 ,得 q 2 ,故选 A. S3
考点:等比数列的性质 .
9. 【河北衡水中学 2016 届高三上学期三调 5】 在等比数列 an 中,若 a4 , a8 是方程
f (x) 满足 f ( x 1) f ( x 1) , 数列 an 错误!未找到引用源。 的前 n 项和为 Sn 错误!未找
到引用源。 , 且 Sn 2an 2 错误!未找到引用源。 , 则 f (an )= ( )

(天津版)高考数学分项版解析 专题06 数列 理-天津版高三全册数学试题

(天津版)高考数学分项版解析 专题06 数列 理-天津版高三全册数学试题

第六章 数列一.基础题组1.【2005某某,理13】在数列{}n a 中,11a =,22a =且()()*211nn n a a n N +-=+-∈则100S =__________。

【答案】2600【解析】当n 为奇数时,20n n a a +-=;当n 为偶数时,22n n a a +-= 因此,数列{}n a 的奇数各项都是1,偶数项成公差为2的等差数列()()()210010011505021005050260022a a S a a ++=+=+=本题答案填写:26002.【2006某某,理7】已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .100 【答案】C3.【2006某某,理16】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++,n θ是n a 与i 的夹角,(其中()0,1=i),设n n S θθθtan tan tan 21+++= ,则n n S ∞→lim =.【答案】1【解析】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++=0n A A ,n θ是n a 与i 的夹角,111tan (1)n n n n n θ+==+(其中()0,1=i ),设n n S θθθtan tan tan 21+++= 111111223(1)1n n n +++=-⋅⋅++,则nn S ∞→lim =1.4.【2007某某,理8】设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k = ( )A.2B.4C.6D.8【答案】B 【解析】k a 是1a 与2k a 的等比中项可得12k k a a a =⨯(*),由{}n a 为等差数列可得121(1),(21)k k a a k d a a k d =+-=+-及19a d =代入(*)式可得4k =.故选B5.【2007某某,理13】设等差数列{}n a 的公差d 是2,前n 项的和为,n S 则22lim n n na n S →∞-=__________. 【答案】3 【解析】根据题意知11(1)222n a a n n a =+-⨯=+-21,(1)n S n n a =+-代入极限式得22112134(2)(2)lim 3(1)n n a n a n n a →∞+-+-=+- 6.【2008某某,理15】已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→nn a lim .【答案】767.【2009某某,理6】设a >0,b >0.若3是3a与3b的等比中项,则ba 11+的最小值为( ) A.8 B.4 C.1 D.41【答案】B【解析】3是3a 与3b 的等比中项⇒3a·3b=3⇒3a+b =3⇒a+b =1,∵a>0,b >0,∴41212≤⇒=+≤ab b a ab .∴4411111=≥=+=+ab ab b a b a . 8.【2010某某,理6】已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )A.158或5 B.3116或5 C.3116 D.158【答案】C法二:∵S6=S3+a4+a5+a6=S3+S3·q3, ∴9S3=S3+S3·q3得q3=8,解得q =2. ∴{1n a }是首项为1,公比为12的等比数列. ∴其前5项和为511[1()]31211612-=-9.【2011某某,理4】已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .110 【答案】D.【解析】∵2,9327-=•=d a a a ,∴)16)(4()12(1121--=-a a a ,解之得201=a ,∴110)2(2910201010=-⨯+⨯=s . 10.【2014某某,理11】设n a 是首项为1a ,公差为1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.【答案】12-. 【解析】试题分析:依题意得2214S S S ,∴21112146a a a ,解得112a . 考点:1.等差数列、等比数列的通项公式;2.等比数列的前n 项和公式.二.能力题组1.【2005某某,理18】已知:()1221*,0,0n n n n n n u a a b a b ab b n N a b ---=+++++∈>>。

2021年高考试题分项版解析数学(理)专题06数列(Word精析版)

2021年高考试题分项版解析数学(理)专题06数列(Word精析版)

第六章 数列一.基础题组1.【2013年普通高等学校招生全国统一考试(江西卷)理zxxk 】等比数列x ,3x+3,6x+6,…的的第四项等于()A.-24B.0C.12D.242.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理zxxk )卷】等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= ( )(A ) 13(B )- 13(C ) 19(D )- 193.【2013年全国高考新课标(I )理zxxk 科】若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.4.【2013年普通高等学校招生全国统一考试(广东卷)理zxxk 】 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.5.【2013年普通高等学校招生全国统一考试(辽宁卷)理zxxk 科】{}{}13n n n a S a n a a 已知等比数列是递增数列,是的前项和.若,是方程 26540x x S -+==的两个根,则 .二.能力题组6.【2013年普通高等学校招生全国统一考试(辽宁卷)理zxxk 科】下面是关于公差0d >的等差数列{}n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p7.【2013年普通高等学校统一考试试题大纲全国理zxxk 科】已知数列{}n a 满足130n n a a ++=,243a =-,则{}n a 的前10项和等于( ) A .106(13)--- B .101(13)9- C .103(13)-- D .103(13)-+8.【2013年普通高等学校招生全国统一考试福建卷理zxxk 】 已知等比数列{}n a 的公比为q ,记m n m n m n m n a a a b +-+-+-+⋅⋅⋅++=)1(2)1(1)1(,m n m n m n m n a a a b +-+-+-*⋅⋅⋅**=)1(2)1(1)1(,()*,N n m ∈,则以下结论一定正确的是( )A. 数列{}n b 为等差数列,公差为m qB. 数列{}n b 为等比数列,公比为m q 2C. 数列{}n c 为等比数列,公比为2m q D. 数列{}n c 为等比数列,公比为mm q9.【2013年普通高等学校招生全国统一考试(湖南卷)】设n S 为数列{}n a 的前n 项和,1(1),,2nn n n S a n N *=--∈则(1)3a =_____;(2)12100S S S ++⋅⋅⋅+=___________.10.【2013年普通高等学校招生全国统一考试(北京卷)理zxxk 】若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = .12.【2013年普通高等学校统一考试试题大纲全国理zxxk 科】等差数列{}n a 的前n 项和为n S .已知232S a ,且124,,S S S 成等比数列,求{}n a 的通项公式.三.拔高题组13.【2013年全国高考新课标(I )理zxxk 科】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( )A 、{S n }为递减数列B 、{S n }为递增数列C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列14.【2013年普通高等学校统一考试江苏数学试题】在正项等比数列{}n a 中,512a =,673a a +=. 则满足1212n n a a a a a a ++⋅⋅⋅+>⋅⋅⋅的最大正整数n 的值为 .15.【2013年普通高等学校招生全国统一考试(广东卷)理zxxk 】 设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.16.【2013年普通高等学校统一考试江苏数学试题】 设{}n a 是首项为a ,公差为d 的 等差数列(0d ≠),n S 是前n 项和. 记2n n nS b n c=+,n N *∈,其中c 为实数. (1)若0c =,且1b ,2b ,4b 成等比数列,证明:2(,)nk k S n S k n N *=∈; (2)若{}n b 是等差数列,证明0c =.17.【2013年普通高等学校招生全国统一考试(山东卷)】设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n T ,且12n n na T λ++= (λ为常数),令()*2n n cb n N =∈,求数列{}nc 的前n 项和n R .所以11213111121311...4444n n n R --------=+++ 18.【2013年普通高等学校招生全国统一考试(陕西卷)理zxxk 】设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q≠1, 证明数列{1}n a +不是等比数列.19.【2013年普通高等学校招生全国统一考试数学浙江理zxxk 】在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(Ⅰ)求n a d ,;(Ⅱ)若0<d ,求.||||||||321n a a a a ++++20.【2013年普通高等学校招生全国统一考试(江西卷)理zxxk 】正项数列{a n }的前n 项和S n 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{a n }的通项公式a n ;(2)令221(2)n n n b n a +=+,数列{b n }的前n 项和为T n .证明:对于任意n ∈ N*,都有T n <5.6421.【2013年普通高等学校招生全国统一考试湖北卷理zxxk 科】 已知等比数列{}n a 满足:23||10a a -=,123125a a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅰ)是否存在正整数m ,使得121111m a a a +++≥?若存在,求m 的最小值;若不存在,说明理zxxk 由.22.【2013年普通高等学校统一考试天津卷理zxxk 科】 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.23.【2013年普通高等学校招生全国统一考试(北京卷)理zxxk 】 已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +…的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;(II)设d 为非负整数,证明:d n =-d (n =1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3…),则{a n }的项只能是1或2,且有无穷多项为1.假设{}n a (2)n ≥,中存在大于2的项,24.【2013年普通高等学校招生全国统一考试(上海卷)理zxxk 】 给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理zxxk 由.25.【2013年普通高等学校招生全国统一考试(四川卷)理zxxk 科】 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项、公差及前n 项和.。

人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第六章 数列

人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第六章 数列

第六章 数 列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念. (2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用等差数列、等比数列的有关知识解决相应的问题.(4)了解等差数列与一次函数的关系、等比数列与指数函数的关系.§6.1 数列的概念与简单表示法1.数列的概念 (1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项.所以,数列的一般形式可以写成,其中a n 是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n }.(2)通项公式:如果数列{a n }的与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数,当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有__________、__________、__________、__________.2.数列的分类(1)数列按项数是有限还是无限来分,分为、. (2)按项的增减规律分为________、_________、_________和__________.递增数列⇔a n +1______a n ;递减数列⇔a n +1_______a n ;常数列⇔a n +1_______a n .递增数列与递减数列统称为__________.3.数列前n 项和S n 与a n 的关系已知S n ,则a n =⎩⎪⎨⎪⎧__________(n =1),__________(n ≥2).4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n =____________;(2)2,4,6,8,…的一个通项公式为a n =____________;(3)3,5,7,9,…的一个通项公式为a n =____________;(4)2,4,8,16,…的一个通项公式为a n =____________;(5)-1,1,-1,1,…的一个通项公式为a n=_________________________;(6)1,0,1,0,…的一个通项公式为a n =____________;(7)a ,b ,a ,b ,…的一个通项公式为a n =____________;(8)9,99,999,…的一个通项公式为a n =____________.注:据此,很易获得数列1,11,111;…;2,22,222,…;…;8,88,888,…的通项公式分别为19(10n -1),29(10n-1),…,89(10n -1).自查自纠:1.(1)项 首项 a 1,a 2,a 3,…,a n ,… (2)第n 项 n (3)函数值 (4)a n a n -1(5)通项公式(解析法) 列表法 图象法 递推公式2.(1)有穷数列 无穷数列 (2)递增数列 递减数列摆动数列 常数列 > < = 单调数列 3.S 1 S n -S n -14.(1)n (2)2n (3)2n +1 (4)2n(5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n-1数列-1,43,-95,167,…的一个通项公式是( )A.a n =(-1)n n (n +1)2n -1B.a n =(-1)nn 22n -1C.a n =(-1)nn 22n +1D.a n =(-1)n n 3-2n 2n -1解:-1=-11,数列1,4,9,16,…对应通项n 2,数列1,3,5,7,…对应通项2n -1,数列-1,1,-1,1,…对应通项(-1)n.故选B.下列有四个命题:①数列是自变量为正整数的一类函数;②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中正确的个数是( )A.1B.2C.3D.4解:易知①③正确,②④不正确.故选B.若数列a n =1n +1+1n +2+…+12n,则a 5-a 4=( )A.110B.-110C.190D.1990解:a 5-a 4=⎝ ⎛⎭⎪⎫16+17+…+110-(15+16+17+18)=19+110-15=190,故选C.数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为____________.解:当n =1时,a 1=S 1=4;当n ≥2时,a n =S n -S n -1=2n +1,∴a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).故填a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).(2014·全国课标Ⅱ)数列{a n }满足a n +1=11-a n,a 8=2,则a 1=________. 解:由递推公式a n +1=11-a n .∵a 8=2,∴a 7=12,a 6=-1,a 5=2,可得{a n }是以3为周期的数列.∴a 1=a 4=a 7=12.故填12.类型一 数列的通项公式已知数列:45,910,1617,2526,….(1)试写出该数列的一个通项公式;(2)利用你写出的通项公式判断0.98是不是这个数列中的一项.解:(1)各项的分子为22,32,42,52,…,分母比分子大1,因此该数列的一个通项公式为a n =(n +1)2(n +1)2+1. (2)不妨令(n +1)2(n +1)2+1=0.98,得n 2+2n -48=0,解得n =-8(舍)或n =6.故0.98是这个数列中的第6项a 6.点拨:①一个数列只知道前n 项,其通项公式是不能确定的,即使完全知道该数列,其通项公式的形式也不一定是惟一的,如数列1,0,1,0,…的通项公式可写成a n =1+(-1)n +12或a n =⎪⎪⎪⎪⎪⎪sin n π2甚至分段形式a n =⎩⎪⎨⎪⎧1,n 是奇数,0,n 是偶数等.②对于此类归纳猜想求通项的题目,一定要掌握一些常见数列的通项公式,如{n },{2n },{(-1)n },{2n },{n 2},{2n -1}等,在此基础之上还要掌握一定的方法,如将各项分解成若干个数的和、差、积、商,分离分子分母等.③由于数列是特殊的函数,因此判断某数是否为数列中的项,即是知a n 判断方程a n =f (n )是否有正整数解.写出下列数列的一个通项公式: (1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)3,33,333,3333,…; (4)23,-1,107,-179,2611,…. 解:(1)a n =(-1)n·1n;(2)a n =2n+1;(3)a n =13(10n-1);(4)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即{n 2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1.类型二 由前n 项和公式求通项公式(1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n+1,则此数列的通项公式为a n = .解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11.当n =1时,2×1-11=-9=a 1.∴a n =2n -11. 故填2n -11.(2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -2n -1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).点拨:任何一个数列,它的前n 项和S n 与通项a n 都存在关系:a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).若a 1适合S n -S n -1,则应把它们统一起来,否则就用分段函数表示.另外一种快速判断技巧是利用S 0是否为0来判断:若S 0=0,则a 1=S n -S n -1,否则不符合,这在解小题时比较有用.已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n .(1)S n =2n 2+3n ; (2)S n =3n+1.解:(1)当n =1时,a 1=S 1=2×12+3×1=5;当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4;当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,∴a n =⎩⎪⎨⎪⎧4(n =1),2·3n -1(n ≥2).类型三 由递推公式求通项公式写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n +1=2n·a n (n ≥1);(2)a 1=1,a n =a n -1+1n (n -1)(n ≥2).解:(1)解法一:∵a n +1=2n·a n ,∴a n +1a n=2n, ∴a 2a 1=2,a 3a 2=22,a 4a 3=23,…,a n a n -1=2n -1. 将上述n -1个式子累乘,得a na 1=21+2+3+…+(n -1),即a n =2n (n -1)2(n ∈N *). 解法二:a n +1=2n ·a n =2n ·2n -1a n -1=…=2n ·2n -1·…·22·21a 1=21+2+…+n -1+n a 1=2n (n +1)2. ∴a n =2n (n -1)2. (2)由递推关系a n =a n -1+1n (n -1)(n ≥2),有a n -a n -1=1n -1-1n (n ≥2).于是有a 2-a 1=11-12,a 3-a 2=12-13,…,a n -a n -1=1n -1-1n.将上述n -1个式子累加,得a n =2-1n.当n =1时,a 1=1也满足,故a n =2-1n(n ∈N *).点拨:已知a 1和数列递推关系求通项时,可先计算出前若干项,通过分析这些项与序号的关系,归纳猜想出数列的通项公式,但这种不完全归纳得到的结论往往需要进行验证;但对于“a na n -1=f (n )”型递推关系常用“累乘法”求通项;对于“a n -a n -1=f (n )”型递推关系常用累加法求通项;以上两种情形皆可用迭代法求通项.还须注意检验n =1时,是否适合所求.写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n =3n -1+a n -1;(2)a 1=4,a n +1=n +2na n .解:(1)由a 1=1,a n -a n -1=3n -1(n ≥2),得 a 1=1,a 2-a 1=31,a 3-a 2=32,…, a n -1-a n -2=3n -2,a n -a n -1=3n -1,以上等式两边分别相加得a n =1+3+32+…+3n -1=3n-12,n =1时,a 1=1也适合,∴a n =3n-12.也可直接利用递推公式,逐项代替等式右边出现的a n -1,直至a 1:由a n =3n -1+a n -1=3n -1+3n -2+a n -2=…=3n -1+3n -2+…+32+31+a 1=3n-12.当n =1时,a 1=1也适合,∴a n =3n-12.(2)由递推关系a 1=4,a n +1=n +2na n ,有a n +1a n=n +2n ,于是有a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=nn -2,a n a n -1=n +1n -1,将这(n -1)个式子累乘,得a na 1=n (n +1)2,即当n ≥2时,a n =n (n +1)2a 1=2n (n+1),当n =1时,a 1=4也满足.所以a n =2n (n +1).类型四 数列通项的性质在数列{a n }中,a n =(n +1)⎝ ⎛⎭⎪⎫1011n(n ∈N *).(1)求证:数列{a n }先递增,后递减; (2)求数列{a n }的最大项.解:因a n =(n +1)⎝ ⎛⎭⎪⎫1011n是积幂形式的式子且a n >0,所以可用作商法比较a n 与a n -1的大小.(1)证明:令a n a n -1≥1(n ≥2),即(n +1)⎝ ⎛⎭⎪⎫1011n n ·⎝ ⎛⎭⎪⎫1011n -1≥1,整理得n +1n ≥1110,解得n ≤10. 令a na n +1≥1,即(n +1)⎝ ⎛⎭⎪⎫1011n(n +2)⎝ ⎛⎭⎪⎫1011n +1≥1,整理得n +1n +2≥1011,解得n ≥9.∴从第1项到第9项递增,从第10项起递减.(2)解:由(1)知a 9=a 10=1010119最大.点拨:要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.注意数列的单调性是探索数列的最大、最小项及解决其他许多数列问题的重要途径,因此要熟练掌握上述求数列单调性的方法.设函数f (x )=log 2x -log x 2(0<x <1),数列{a n }满足f 2an =2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判断数列{a n }的单调性.解:(1)∵f 2an =log22an -log2an 2=a n -1a n,∴a n -1a n=2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1,∵x ∈(0,1),∴2an ∈(0,1),a n <0.∴a n =n -n 2+1.(2)a n +1-a n =(n +1)-(n +1)2+1-(n -n 2+1)=1-(n +1)2+1-n 2+1=1-2n +1(n +1)2+1+n 2+1>1-2n +1(n +1)+n=0,∴a n +1>a n ,则数列{a n}是递增数列.也可由a n =-1n +n 2+1直接判断.1.已知数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑:(1)如果符号正负相间,则符号可用(-1)n或 (-1)n +1来调节.(2)分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系来解决.(3)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差、等比或其他特殊数列)等方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),注意a n =S n -S n -1的条件是n ≥2,还须验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项掌握先由a 1和递推关系求出前几项,再归纳、猜想a n 的方法,以及“累加法”“累乘法”等.(1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得:a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ).(2)已知a 1且a na n -1=f (n ),可以用“累乘法”得: a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ). 4.数列的简单性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.1.数列0.9,0.99,0.999,…的一个通项公式是( )A.1+⎝ ⎛⎭⎪⎫110nB.-1+⎝ ⎛⎭⎪⎫110nC.1-⎝ ⎛⎭⎪⎫110nD.1-⎝ ⎛⎭⎪⎫110n +1解:原数列前几项可改写为1-110,1-1102,1-1103,…,故通项a n =1-⎝ ⎛⎭⎪⎫110n .故选C.2.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+1a n -2(n ≥3),则a 4等于( )A.5512B.133C.4D.5 解:令n =3,4,即可求得a 4=133.故选B.3.(2014·陕西)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,真,真B.假,假,真C.真,真,假D.假,假,假解:∵a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列(n ∈N *),∴原命题为真,从而其逆否命题为真.逆命题为:若{a n }(n ∈N *)为递减数列,则a n +a n +12<a n ,为真命题,而逆命题与否命题互为逆否命题,从而否命题为真.故选A .4.已知数列{a n }的前n 项和S n =n (n -40),则下列判断中正确的是( )A.a 19>0,a 21<0B.a 20>0,a 21<0C.a 19<0,a 21>0D.a 19<0,a 20>0 解:当n =1时,a 1=S 1=-39; 当n ≥2时,a n =S n -S n -1=n (n -40)-(n -1)(n -41)=2n -41.将n =1代入满足上式. 综上有a n =2n -41.所以a 19=2×19-41=-3<0,a 20=2×20-41=-1<0,a 21=2×21-41=1>0.故选C.5.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝ ⎛⎭⎪⎫1+1n ,则a n 的值为( )A.2+lg nB.2+(n -1)lg nC.2+n lg nD.1+n lg n解法一:∵a n +1-a n =lg n +1n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=lgnn -1+lg n -1n -2+…+lg 21+2 =lg ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·32·21+2 =lg n +2.解法二:a n +1=a n +lg(n +1)-lg n ,a n +1-lg(n +1)=a n -lg n ,所以数列{a n -lg n }是常数列,a n -lg n =a 1-lg1=2,a n =2+lg n.故选A.6.(2013·北京东城区一模)对于函数y =n 1n x n +1)都在函数y =f (x )的图象上,则x 1+x 2+x 3+x 4+…+x 2012+x 2013的值为( )A.9394B.9380C.9396D.9400解:∵x 1=2,x 2=f (x 1)=f (2)=4,x 3=f (x 2)=f (4)=8,同理,x 4=2,x 5=4,x 6=8,因此,x 3k +1=2,x 3k +2=4,x 3k +3=8,k ∈N .∴x 1+x 2+x 3+…+x 2012+x 2013=(x 1+x 2+x 3)+…+(x 2011+x 2012+x 2013) =(2+4+8)×671=9394.故选A.7.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.解:a 8=S 8-S 7=82-72=15.故填15.8.若数列{a n }的通项公式为a n =|3n -19|,数列{a n }的最小项是________.解:a n =⎩⎪⎨⎪⎧19-3n ,(n ≤6),3n -19,(n ≥7). 数列{a n }具有性质a 1>a 2>…>a 6,而a 7<a 8<a 9<…,由于a 6=1,a 7=2,∴数列的第6项最小,其最小值为1.故填1.9.根据数列{a n } 的前几项,分别写出下列数列的一个通项公式.(1)7,77,777,7777,…;(2)4,-52,2,-74,85,…;(3)3,5,3,5,…; (4)1,2,2,4,3,8,4,16,…. 解:(1)将各项改写如下 79(10-1),79(102-1),79(103-1),79(104-1),… 易知a n =79(10n-1).(2)将各项绝对值改写如下41,52,63,74,85,…综合考查分子、分母,以及各项符号可知a n =(-1)n -1n +3n.(3)a n =⎩⎪⎨⎪⎧3(n 为奇数),5(n 为偶数),或a n =(3+5)+(-1)n -1(3-5)2=4+(-1)n.(4)观察数列{a n }可知,奇数项成等差数列,偶数项成等比数列,∴a n =⎩⎪⎨⎪⎧n +12(n 为奇数),2n 2(n 为偶数).10.(2014·四川模拟)观察下列三角形数表,假设第n 行的第二个数为a n (n ≥2,n ∈N *).(1)依次写出第六行的所有6个数; (2)归纳出a n +1与a n 的关系式,并求出{a n }的通项公式.解:(1)第六行的所有6个数分别是6,16,25,25,16,6.(2)依题意a n +1=a n +n (n ≥2),a 2=2,a n =a 2+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+2+3+…+(n -1)=2+(n -2)(n +1)2.所以a n =12n 2-12n +1(n ≥2,n ∈N *).11.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解:(1)由题设,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2,即a 1=-3或2,又a n 为正数,所以a 1=2.(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n = -3,又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1), 所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n.又a 1=2=2×1,所以a n =2n.(n ∈N *)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a2.若对任意的n ∈N *,都有a n ≤a 6成立,结合函数f(x)=1+12x-2-a2的单调性,有5<2-a2<6,∴-10<a<-8.§6.2 等差数列1. 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的________都等于同一个________,那么这个数列就叫做等差数列,这个常数叫做等差数列的________,通常用字母d 表示,即________=d (n ∈N +,且n ≥2)或________=d (n ∈N +).2.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的____________.3.等差数列的通项公式若{a n }是等差数列,则其通项公式a n =_______.①{a n }成等差数列⇔a n =pn +q ,其中p =________,q =________,点(n ,a n )是直线上一群孤立的点.②单调性:d >0时,{a n }为________数列;d <0时,{a n }为________数列;d =0时,{a n }为________.4.等差数列的前n 项和公式(1)等差数列前n 项和公式S n =________=________.其推导方法是________.(2){a n }成等差数列,求S n 的最值:若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ________,a n +1________时,S n最大;若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ________,a n +1________时,S n最小;或利用二次函数求最值;或利用导数求最值. 5.等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列;(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列;(3)通项公式法:a n =kn +b (k ,b 是常数)(n ∈N *)⇔{a n }是等差数列;(4)前n 项和公式法:S n =An 2+Bn (A ,B 是常数)(n ∈N *)⇔{a n }是等差数列.6.等差数列的性质(1)a m -a n =________d ,即d =a m -a nm -n.(2)在等差数列中,若p +q =m +n ,则有a p +a q =a m +________;若2m =p +q ,则有________a m=a p +a q (p ,q ,m ,n ∈N *).(3)若{a n },{b n }均为等差数列,且公差分别为d 1,d 2,则数列{pa n },{a n +q },{a n ±b n }也为________数列,且公差分别为________,________,________.(4)在等差数列中,按序等距离取出若干项也构成一个等差数列,即a n ,a n +m ,a n +2m ,…为等差数列,公差为md.(5)等差数列的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…为等差数列,公差为n 2d.(6)若等差数列的项数为2n ,则有S 偶-S 奇=nd ,S 奇S 偶=a na n +1.(7)等差数列{a n }前m 项与后m 项的和等于m (a 1+a n ).自查自纠:1.差 常数 公差 a n -a n -1 a n +1-a n2.等差中项3.a 1+(n -1)d ①d a 1-d y =dx +(a 1-d ) ②单调递增 单调递减 常数列4.(1)n (a 1+a n )2 na 1+n (n -1)d 2倒序相加法(2)≥0 ≤0 ≤0 ≥0 6.(1)(m -n ) (2)a n 2 (3)等差 pd 1 d 1 d 1±d 2(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A.8B.10C.12D.14解:设公差为d ,由a 1=2,S 3=12得3×2+12×3×2d =12,解得d =2.故a 6=2+(6-1)×2=12.故选C.已知等差数列{a n }中,a 2=7,a 4=15,则其前10项的和为( )A.100B.210C.380D.400解:在等差数列{a n }中,∵a 2=7,a 4=15,∴d =a 4-a 22=4,a 1=a 2-d =3,∴S 10=10×3+10×92×4=210.故选B.等差数列{a n }中,S n 是{a n }前n 项和,已知S 6=2,S 9=5,则S 3=( )A.-1B.-13C.13D.1解:由S 3,S 6-S 3,S 9-S 6成等差数列得:2(2-S 3)=S 3+(5-2).解得S 3=13.故选C.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解:因为a 3+a 7=a 4+a 6=a 2+a 8=37,所以a 2+a 4+a 6+a 8=74,故填74.(2014·江西)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.解:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.故填⎝⎛⎭⎪⎫-1,-78.类型一 等差数列的判定与证明设数列{a n }的前n 项和为S n ,若对于所有的正整数n ,都有S n =n (a 1+a n )2,证明{a n }是等差数列.证明:当n ≥2时,由题设知a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2=12[a 1+na n -(n -1)a n -1], 同理a n +1=12[a 1+(n +1)a n +1-na n ].从而a n +1-a n =12[(n +1)a n +1-2na n +(n -1)a n -1].整理得(n -1)a n +1+(n -1)a n -1=2(n -1)a n , ∵n ≥2,∴a n +1+a n -1=2a n . 所以{a n }是等差数列.点拨:判定数列是等差数列的方法可参看本节“考点梳理”,证明一个数列是等差数列只能用前两种方法,做客观题时可用后两种方法判断数列是否为等差数列.已知数列{a n }的通项公式为a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.解:(1)欲使{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q 应是一个与n 无关的常数,∴只有2p =0,即p =0时,数列{a n }是等差数列.(2)∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q.又(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数,∴数列{a n +1-a n }是等差数列.类型二 等差数列基本量的计算在等差数列{a n }中,(1)已知a 15=33,a 45=153,求a n ; (2)已知a 6=10,S 5=5,求S n ;(3)已知前3项和为12,前3项积为48,且d >0,求a 1.解:(1)解法一:设首项为a 1,公差为d ,依条件得⎩⎪⎨⎪⎧33=a 1+14d ,153=a 1+44d , 解得⎩⎪⎨⎪⎧a 1=-23,d =4. ∴a n =-23+(n -1)×4=4n -27.解法二:由d =a n -a m n -m ,得d =a 45-a 1545-15=153-3330=4,由a n =a 15+(n -15)d ,得a n =4n -27.(2)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解得a 1=-5,d =3.∴S n =-5n +n (n -1)2·3=32n 2-132n.(3)设数列的前三项分别为a 2-d ,a 2,a 2+d ,依题意有:⎩⎪⎨⎪⎧(a 2-d )+a 2+(a 2+d )=12,(a 2-d )·a 2·(a 2+d )=48, 即⎩⎪⎨⎪⎧a 2=4,a 2(a 22-d 2)=48, 解得⎩⎪⎨⎪⎧a 2=4,d =±2.∵d >0,∴d =2,∴a 1=a 2-d =2.点拨:在等差数列五个基本量a 1,d ,n ,a n ,S n 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.(1)(2013·四川)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.解:设该数列公差为d ,前n 项和为S n .由已知可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ). 所以a 1+d =4,d (d -3a 1)=0, 解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以数列{a n }的前n 项和S n =4n 或S n =3n 2-n2.(2)(2014·浙江)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(Ⅰ)求d 及S n ;(Ⅱ)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.解:(Ⅰ)在等差数列{a n }中, S 2·S 3=(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式得d =2或-5. 又∵d >0,∴d =2.从而a n =2n -1,S n =n 2(n ∈N *).(Ⅱ)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),若(2m +k -1)(k +1)=65.则由m ,k ∈N *知2m +k -1≥k +1>1, 故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5, 所以⎩⎪⎨⎪⎧m =5,k =4. 类型三 等差数列的性质(1)已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;(2)设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________;(3)若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,则这个数列的项数为________;(4)已知S n 为等差数列{a n }的前n 项和,S n =m ,S m =n (n ≠m ),则S m +n =________.解:(1)S 11=11(a 1+a 11)2=11a 6=1100.故填1100.(2)因为数列{}a n ,{}b n 都是等差数列,所以数列{}a n +b n 也是等差数列.故由等差中项的性质,得()a 5+b 5+()a 1+b 1=2()a 3+b 3,即a 5+b 5+7=2×21,解得a 5+b 5=35.故填35.(3)设该等差数列的项数为n ,则a 1+a 2+a 3+a 4=36,a n +a n -1+a n -2+a n -3=124,a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3, ∴4(a 1+a n )=160,即a 1+a n =40.∴S n =n (a 1+a n )2=20n =780,解得n =39.故填39.(4)解法一:令S n =An 2+Bn ,则 ⎩⎪⎨⎪⎧An 2+Bn =m ,Am 2+Bm =n⇒A (n 2-m 2)+B (n -m )=m -n. ∵n ≠m ,∴A (n +m )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ). 解法二:不妨设m >n ,S m -S n =a n +1+a n +2+a n +3+…+a m -1+a m =(m -n )(a n +1+a m )2=n -m ,∴a 1+a m +n =a n +1+a m =-2.∴S m +n =(m +n )(a 1+a m +n )2=-(m +n ).解法三:∵{a n }是等差数列,∴⎩⎨⎧⎭⎬⎫S n n 为等差数列,D 为公差. ∴S m +n m +n -S m m =nD ,S n n -S m m =(n -m )D. ∴m n -n m n -m =S m +n m +n -n m n ,解得S m +n =-(m +n ). 故填-(m +n ).点拨:(1)可利用等差数列的性质S 2n +1=(2n +1)a n +1来求解,这一性质表明:若等差数列有奇数项,则正中间一项是该数列的和的平均数;(2)利用等差数列的性质及等差中项来求;(3)可利用“等差数列前m 项与后m 项的和等于m (a 1+a n )”这一性质来求解;(4)可利用等差数列下标和性质:若“p +q =m +n ,则a p +a q =a m +a n ”来求解.等差数列的性质是其定义、通项公式及前n 项和公式等基础知识的推广与变形,解题时灵活应用这些性质常常可化繁为简,起到事半功倍的效果.(1)(2013·贵州六校联考)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则a 9=( )A.8B.12C.16D.24解:在等差数列中,S 3=3a 2=6⇒a 2=2. ∴3d =a 5-a 2=6⇒d =2. 所以a 9=a 5+4d =16.故选C.(2)含2n +1个项的等差数列其奇数项的和与偶数项的和(非零)之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n解:∵S 奇=a 1+a 3+a 5+…+a 2n +1=(n +1)(a 1+a 2n +1)2,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2,a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n.故选B.类型四 等差数列的最值问题在等差数列{a n }中,已知a 1=20,前n项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解法一:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,解得d =-53.∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. ∴a 13=0,而d <0,故当n ≤12时,a n >0,n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.解法二:同解法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三:同解法一求得d =-53.∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+312524.∵n ∈N +,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.点拨:求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值.(1)(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解:在等差数列{a n }中,a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0.∴当n =8时,其前n 项和最大.故填8.(2)(2013·全国新课标Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________.解:设S n =an 2+bn (a ,b ∈R ). 则⎩⎪⎨⎪⎧100a +10b =0,225a +15b =25,解得a =13,b =-103,∴S n =13n (n -10),nS n =13(n 3-10n 2).考查函数f (x )=x 3-10x 2(x ≥1),f ′(x )=3x 2-20x ,∴f (x )的极小值点为203,当n =6时,nS n =-48,n =7时,nS n =-49,∴nS n 的最小值为-49.故填-49.1.等差数列中,已知五个元素a 1,a n ,n ,d ,S n 中的任意三个,便可求出其余两个.2.求等差数列{a n }前n 项的绝对值{|a n |}之和,首先应分清这个数列哪些项是负的,哪些项是非负的,然后再分段求和.3.等差数列前n 项和的最值通常是在正负项分界的位置产生,利用这一性质可求其最值;另一种方法是利用二次函数的性质.4.灵活运用等差数列的性质,如等差中项的性质,可简化运算.5.等差数列{a n }的前n 项和满足:⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且首项与{a n }的首项相同,公差为{a n }公差的一半.6.数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 是常数,n ∈N *).1.(2014·重庆)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A.5B.8C.10D.14解:在等差数列{a n }中,a 1+a 7=a 3+a 5=10,又a 1=2,∴a 7=8.故选B.2.(2013·昆明模拟)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1等于( )A.-65B.-35C.65D.35解:由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9,解得a 1=35.故选D.3.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( )A.-23B.-13C.13D.23解:a 10=a 1+9d =10,S 10=10(a 1+10)2=70,解得d =23.故选D.4.(2013·北京海淀模拟)已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A.16B.8C.2 2D.4解:由2a 2n =a 2n +1+a 2n -1(n ≥2)可知数列{a 2n }是等差数列,且以a 21=1为首项,以a 22-a 21=4-1=3为公差,所以数列{a 2n }的通项公式为a 2n =1+3(n -1)=3n -2,所以a 26=3×6-2=16,即a 6=4.故选D.5.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( )A.94B.32C.53D.4 解:设S 2=x ,则S 4=4x ,因为S 2,S 4-S 2,S 6-S 4成等差数列,所以S 6-S 4=5x ,即S 6=9x ,所以S 6S 4=9x 4x =94.故选A. 6.(2014·辽宁)设等差数列{a n }的公差为d.若数列{2a 1a n }为递减数列,则( )A.d <0B.d >0C.a 1d <0D.a 1d >0解:易知b n =2a 1a n >0,∵数列{2a 1a n }递减,∴b n +1b n =2a 1a n +12a 1a n =2a 1(a n +1-a n )=2a 1d <1,a 1d <0.故选C.7.一个木制梯形架的上、下两底边分别为33 cm ,75 cm ,把梯形的两腰各6等分,用平行木条连接各对应分点,构成梯形架的各级,则梯形架自上而下第4级的宽度是________ cm .解:设梯形架自上而下各级宽度所构成数列为{a n },则由梯形中位线的性质,易知每相邻三项均成等差数列.易得a 1=33 cm ,a 7=75 cm ,则d =a 7-a 17-1=7 cm .故a 4=33+7×3=54 cm(亦可利用等差中项性质求).故填54.8.(2013·全国新课标Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________.解法一:a m =S m -S m -1=2,a m +1=S m +1-S m =3,公差d =a m +1-a m =3-2=1.又S m +1=(m +1)a 1+(m +1)m2=3,①,a m +1=a 1+m =3.将a 1=3-m 代入①得m 2-5m =0,解得m =5或0(舍去).解法二:设S n =an 2+bn ,通过题意建立并解方程组获解.故填5.9.(2014·全国大纲)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n +2=2a n +1-a n +2得a n +2-a n +1=a n+1-a n +2,即b n +1=b n +2,又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.(2)由(1)得b n =a n +1-a n =1+2(n -1)=2n -1.于是∑=+-nk k k a a 11)(=∑=-nk k 1)12(,所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n=n 2-2n +2.10.已知S n 为等差数列{a n }的前n 项和,a 1=25,a 4=16.(1)当n 为何值时,S n 取得最大值; (2)求a 2+a 4+a 6+a 8+…+a 20的值.解:(1)∵等差数列{a n }中,a 1=25,a 4=16,∴ 公差d =a 4-a 14-1=-3.∴a n =-3n +28.令a n =-3n +28>0,则n ≤9.∴当n ≤9时,a n >0;当n >9时,a n <0. ∴当n =9时,S n 取得最大值. (2)∵数列{a n }是等差数列,∴a 2+a 4+a 6+a 8+…+a 20=10(a 2+a 20)2=10a 11=10×(-5)=-50.11.(2013·浙江)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.解:(1)由题意得a 1×5a 3=(2a 2+2)2,即d 2-3d -4=0. 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n ,因为d <0,由(1)得d =-1,a n =-n +11,则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a n =S n =-12n 2+212n.当n ≥12时,S 11=55.|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a 11-a 12-a 13-…-a n =2(a 1+a 2+a 3+…+a 11)-a 1-a 2-…-a n =2S 11-S n =12n 2-212n +110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n+2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1,由于a n +1≠0,所以a n +2-a n =λ.(2)存在λ使得{a n }为等差数列,理由如下: 由题设a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1,由(1)知a 3=λ+1.假设{a n }为等差数列,则a 1,a 2,a 3成等差数列,∴a 1+a 3=2a 2,解得λ=4.以下证明λ=4时,{a n }为等差数列. 由a n +2-a n =4知,数列奇数项构成的数列{a 2m -1}是首项为1,公差为4的等差数列,a 2m -1=4m -3,令n =2m -1,则m =n +12,∴a n =2n -1(n =2m -1).数列偶数项构成的数列{a 2m }是首项为3,公差为4的等差数列,a 2m =4m -1,m ∈N *.令n =2m ,则m =n2,∴a n =2n -1(n =2m ).∴a n =2n -1(n ∈N *),a n +1-a n =2.因此,存在λ=4,使得{a n }为等差数列.§6.3 等比数列1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的________等于同一个________,那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母q 表示(q ≠0).2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b成等比数列,那么G 叫做a 与b 的________,且G 2=________或G =________.3.等比数列的通项公式(1)若{a n }是等比数列,则通项a n =________或a n =________.当n -m 为大于1的奇数时,q 用a n ,a m 表示为q = ;当n -m 为正偶数时,q = .(2)a n =a 1q n -1可变形为a n =Aq n,其中A = ;点(n ,a n )是曲线 上一群孤立的点.4.等比数列的前n 项和公式等比数列{a n }中,S n =⎩⎨⎧ ,q =1,= ,q ≠1. 求和公式的推导方法是:,为解题的方便,有时可将求和公式变形为S n=Bq n-B (q ≠1),其中B = 且q ≠0,q ≠1.5.等比数列的判定方法 (1)定义法:a n +1=a n q 且a 1≠0(q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cq n(c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.(4)前n 项和公式法:S n =a 1q -1q n -a 1q -1=Bq n-B ⎝ ⎛⎭⎪⎫B =a 1q -1是常数,且q ≠0,q ≠1⇔{a n }是等比数列.6.等比数列的性质(1)在等比数列中,若p +q =m +n ,则a p ·a q=a m ·a n ;若2m =p +q ,则a 2m =a p ·a q (p ,q ,m ,n ∈N *). (2)若{a n },{b n }均为等比数列,且公比为q 1,q 2,则数列⎩⎨⎧⎭⎬⎫1a n ,{p ·a n }(p ≠0),{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍为等比数列且公比为 , , , . (3)在等比数列中,按序等距离取出若干项,也构成一个等比数列,即a n ,a n +m ,a n +2m …仍为等比数列,公比为 .(4)等比数列前n 项和为S n (≠0),则S n ,S 2n -S n ,S 3n -S 2n ,…构成等比数列,且公比为 .(5)对于一个确定的等比数列,在通项公式a n =a 1q n -1中,a n 是n 的函数,这个函数由正比例函数a n =a 1q·u 和指数函数u =q n (n ∈N *)复合而成.①当a 1>0, 或a 1<0, 时,等比数列{a n }是递增数列;②当a 1>0, 或a 1<0, 时,等比数列{a n }是递减数列;③当 时,它是一个常数列; ④当 时,无法判断数列的单调性,它是一个摆动数列.自查自纠:1.比 常数 公比2.等比中项 ab ±ab3.(1)a 1q n -1a m q n -mn -m a n a m ±n -m a na m(2)a 1q y =⎝ ⎛⎭⎪⎫a 1q q x4.na 1 a 1(1-q n )1-q a 1-a n q1-q乘公比,错位相减 a 1q -16.(2)1q 1 q 1 q 1q 2 q 1q 2(3)q m (4)q n(5)①q >1 0<q <1 ②0<q <1 q >1 ③q=1 ④q <0公比为2的等比数列{}a n 的各项都是正数,且a 3a 11=16,则a 5=( )A.1B.2C.4D.8解:由等比数列的性质知a 3a 11=a 27=16,又 a n>0,所以解得a 7=4,由a 7=a 5·22=4a 5,得 a5=1.故选A.(2014·重庆)对任意等比数列{a n },下列说法一定正确的是( )A.a 1,a 3,a 9成等比数列B.a 2,a 3,a 6成等比数列C.a 2,a 4,a 8成等比数列D.a 3,a 6,a 9成等比数列解:由等比数列的性质,得a 9a 6=a 6a 3=q 3≠0,因此,a 3,a 6,a 9一定成等比数列.故选D.(2013·大纲)已知数列{a n }满足3a n +1+a n=0,a 2=-43,则{a n }的前10项和等于( )A.-6(1-3-10)B.19(1-3-10)C.3(1-3-10)D.3(1+3-10)解:由3a n +1+a n =0,得a n +1=-13a n ,所以{a n }为等比数列,公比为-13.由a 2=-43得a 1=4,由等比数列前n 项和公式得S 10=3(1-3-10).故选C.(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解:设等比数列{a n }的公比为q (q >0),则由a 8=a 6+2a 4得a 6q 2=a 6+2a 6q2,解得q 2=2(舍去负值).又a 2=1,∴a 6=a 2q 4=4.故填4.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.解:由题意⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40, 解得⎩⎪⎨⎪⎧q =2,a 1=2. 故S n =2(1-2n)1-2=2n +1-2.故填2;2n +1-2.类型一 等比数列的判定与证明已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n(a n -3n +21),其中λ为实数,n ∈N *.(1)对任意实数λ,证明数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列,并证明你的结论.解:(1)证明:假设存在一个实数λ,使{a n }是等比数列 ,则有a 22=a 1·a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾.所以数列{a n }不是等比数列.(2)因为b n =(-1)n(a n -3n +21), b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎣⎢⎡⎦⎥⎤23a n +n -4-3(n +1)+21=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14 =23(-1)n +1(a n -3n +21)=-23b n . 又b 1=-(λ+18),所以当λ=-18,b 1=0,易得b n =0(n ∈N *),此时数列{b n }不是等比数列;当λ≠-18,b 1≠0,由上可知b n ≠0, ∴b n +1b n =-23(n ∈N *),此时数列{b n }是等比数列.点拨:(1)证明数列{a n }不是等比数列,只需举一个反例;(2)证明数列{b n }是等比数列,常用方法:①定义法;②等比中项法.(2013·陕西) 设{}a n 是公比为q 的等比数列.(1)推导{}a n 的前n 项和公式;(2)设q ≠1, 证明数列{a n +1}不是等比数列. 解:(1) 设{}a n 的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n,②①-②得,()1-q S n =a 1-a 1q n.∴S n =a 1()1-q n1-q ,∴S n =⎩⎪⎨⎪⎧na 1, q =1,a 1()1-q n 1-q, q ≠1.(2) 证明:(反证法),假设数列{a n +1}是等比数列,则对任意的k ∈N +,()a k +1+12=()a k +1()a k +2+1,a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1, a 21q 2k +2a 1q k +1=a 1q k -1a 1q k +1+a 1q k -1+a 1q k +1+1,∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0. ∴q =1,与已知矛盾.∴数列{a n +1}不是等比数列.类型二 等比数列基本量的计算设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .解:由⎩⎪⎨⎪⎧a 2=a 1q =6,6a 1+a 3=6a 1+a 1q 2=30, 解得⎩⎪⎨⎪⎧a 1=2,q =3, 或⎩⎪⎨⎪⎧a 1=3,q =2.。

最新高考数学(理)第六章数列 6-1-2习题及答案

最新高考数学(理)第六章数列 6-1-2习题及答案

1.设列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 前10项的和为________.答案 2011解析 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n n +2,则1a n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1,故列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 前10项的和S 10=2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2⎝⎛⎭⎪⎫1-111=2011.2.已知列{a n }满足a 1=1,a n +1=3a n +2,则列{a n }的通项公式为________. 答案 a n =2·3n -1-1解析 ∵a n +1=3a n +2,∴a n +1+1=3(a n +1). ∴a n +1+1a n +1=3,∴列{a n +1}是等比列,公比q =3. 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.3.已知列{a n }的前n 项和S n =2n -3,则列{a n }的通项公式为________.点击观看解答视频答案 a n =⎩⎨⎧-1,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=-1; 当n ≥2时,a n =S n -S n -1=2n -1,∴a n =⎩⎨⎧-1,n =1,2n -1,n ≥2.4.S n 为列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3.点击观看解答视频(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1n +n +=12⎝⎛⎭⎪⎫12n +1-12n +3. 设列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3=nn +.5.正项列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n,列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解 (1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n}是正项列,所以S n>0,S n=n2+n.于是a1=S1=2,当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n. 综上,列{a n}的通项公式为a n=2n.(2)由于a n=2n,故b n=n+1n +2a2n=n+14n2n+2=116⎣⎢⎡⎦⎥⎤1n2-1n+2.T n =116[1-132+122-142+132-152+…+1n-2-1n+2+1n2-1n+2 ]=116[ 1+122-1n+2-1n+2 ]<116×⎝⎛⎭⎪⎫1+122=564.。

2020高考数学大一轮复习2020高考试题汇编 第六章 数列 Word版含解析

2020高考数学大一轮复习2020高考试题汇编 第六章 数列 Word版含解析

第六章 数列第|一节 等差数列与等比数列题型67 等差 (等比 )数列的公差 (公比 )1.(2021北京理10)假设等差数列{}n a 和等比数列{}n b 满足11–1a b == ,448a b == ,那么22a b =_______. 解析由11a =- ,48a = ,那么21132a a d =+=-+= ,由11b =- ,48b = ,那么2q =- ,那么212b b q ==.故22212a b ==. 2. (2021全国1理4 )记n S 为等差数列{}n a 的前n 项和.假设4524a a += ,648S = ,那么{}n a 的公差为 ( ).A .1B .2C .4D .8解析 45113424a a a d a d +=+++= ,61656482S a d ⨯=+= ,联立112724 61548 a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①② ,得()211524-=d ,即624d = ,所以4d =.应选C.3. (2021全国2理3 )我国古代数学名著<算法统宗>中有如下问题: "远望巍巍塔七层 ,红光点点倍加增 ,共灯三百八十一 ,请问尖头几盏灯 ?〞意思是:一座7层塔共挂了381盏灯 ,且相邻两层中的下一层灯数是上一层灯数的2倍 ,那么塔的顶层共有灯 ( ). A .1盏 B .3盏 C .5盏 D .9盏 解析 设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.应选B.4. (2021全国3理14 )设等比数列{}n a 满足12–1a a += , 13––3a a = ,那么4a = ___________.解析 因为{}n a 为等比数列 ,设公比为q .由题意得121313a a a a +=-⎧⎨-=-⎩ ,即112111 3 a a q a a q +=-⎧⎪⎨-=-⎪⎩①②显然1q ≠ ,10a ≠ ,式式②①,得13q -= ,即2q =- ,代入①式可得11a = , 所以()3341128a a q ==⨯-=-.题型68 等差、等比数列求和问题的拓展1. (2021全国1理12 )几位大学生响应国|家的创业号召 ,开发了一款应用软件.为激发大家学习数学的兴趣 ,他们推出了 "解数学题获取软件激活码〞的活动.这款软件的激活码为下面数学问题的答案:数列1 ,1 ,2 ,1 ,2 ,4 ,1 ,2 ,4 ,8 ,1 ,2 ,4 ,8 ,16 ,… ,其中第|一项为哪一项02 ,接下来的两项是02 ,12 ,再接下来的三项是02 ,12 ,22 ,依此类推.求满足如下条件的最|||小整数100N N >:且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 ( ). A.440B.330C.220D.110解析 设首|||项为第1组 ,接下来两项为第2组 ,再接下来三项为第3组 ,以此类推. 设第n 组的项数为n ,那么n 组的项数和为()12n n + ,由题意得 ,100N > ,令()11002n n +> ,得14n ≥且*n ∈N ,即N 出现在第13组之后 ,第n 组的和为122112nn -=-- ,n 组总共的和为()12122212n n n n +--=--- ,假设要使前N 项和为2的整数幂 ,那么()12n n N +-项的和21k -应与2n --互为相反数 ,即()*21214k n k n -=+∈N ,≥ ,()2log 3k n =+ ,得n 的最|||小值为295n k ==, , 那么()2912954402N ⨯+=+=.应选A.2.2021山东理19 ){}n x 是各项均为正数的等比数列 ,且123x x += ,322x x -= , (1 )求数列{}n x 的通项公式;(2 )如以下图 ,在平面直角坐标系xOy 中 ,依次联结点()111P x , ,()222P x , ,… ,()11,1n n P x n +++得到折线121n PP P + ,求由该折线与直线0y = ,1x x = ,1n x x +=所围成的区域的面积n T .解析 (1 )设数列{}n x 的公比为q ,由0q >. 由题意得1121132x x q x q x q +=⎧⎨-=⎩ ,所以23520q q --= , 因为0q > ,所以12,1q x == ,因此数列{}n x 的通项公式为12.n n x -=(2 )过1231,,,,n P P P P +向x 轴作垂线 ,垂足分别为1231,,,,n Q Q Q Q + ,由 (1 )得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯ , 所以123n n T b b b b =++++=10132325272(21)2(21)2n n n n ---⨯+⨯+⨯++-⨯++⨯① 又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯②-①②,得121132(222)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=题型69 等差、等比数列的性质及其应用1. (2021江苏09 )等比数列{}n a 的各项均为实数 ,其前n 项的和为n S ,374S = ,6634S = ,那么8a = .解析 解法一:由题意等比数列公比不为1 ,由()()313616171416314a q S q a q S q ⎧-==⎪-⎪⎨-⎪==⎪-⎩ ,因此36319S q S =+= ,得2q =. 又3123S a a a =++()2117174a q qa =++==,得114a = ,所以78132a a q ==.故填32.解法二 (由分段和关系 ):由题意3363374634S S S q S ⎧=⎪⎪⎨⎪=+=⎪⎩ ,所以38q = ,即2q =.下同解法一.2. (2021全国2理15 )等差数列{}n a 的前n 项和为n S ,33a = ,410S = ,那么11nk kS ==∑ . 解析 设{}n a 首|||项为1a ,公差为d .由3123a a d =+= ,414610S a d =+= ,得11a = ,1d = ,所以n a n= ,()12n n n S += ,()()112222122311nk kS n n n n ==++++=⨯⨯-+∑11111112122311n n n n ⎛⎫-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-= ⎪++⎝⎭.题型70 判断或证明数列是等差、等比数列1. (2021江苏19 )对于给定的正整数k ,假设数列{}n a 满足1111+n k n k n n n k a a a a a --+-++-++⋅⋅⋅+++⋅⋅⋅+2n k n a ka +=对任意正整数n ()n k >总成立 ,那么称数列{}n a 是 "()P k 数列〞. (1 )证明:等差数列{}n a 是 "()3P 数列〞;(2 )假设数列{}n a 既是 "()2P 数列〞 ,又是 "()3P 数列〞 ,证明:{}n a 是等差数列. 解析 (1 )因为{}n a 是等差数列 ,设其公差为d ,那么()11n a a n d =+- , 从而当4n 时 ,()()1111=n k n k a a a n k d a n k d -++=+--+++-()12212n a n d a +-= ,1,2,3k = ,所以321123+++6n n n n n n n a a a a a a a ---+++++= ,因此等差数列{}n a 是 "()3P 数列〞. (2 )由数列{}n a 既是 "()2P 数列〞 ,又是 "()3P 数列〞 ,因此 ,当3n 时 ,21124n n n n n a a a a a --+++++= ① 当4n 时 ,3211236n n n n n n n a a a a a a a ---++++++++= ② 由①知 ,()()321144n n n n n a a a a a n ---++=-+≥ ③()()231142n n n n n a a a a a n +++-+=-+≥ ④将③④代入② ,得112n n n a a a -++= ,其中4n , 所以345,,,a a a ⋅⋅⋅是等差数列 ,设其公差为d '.在①中 ,取4n = ,那么235644a a a a a +++= ,所以23a a d '=- , 在①中 ,取3n = ,那么124534a a a a a +++= ,所以312a a d '=- , 从而数列{}n a 是等差数列.评注 这是数列新定义的问题 ,其实类似的问题此前我们也研究过 ,给出仅供参考.(2021南通基地密卷7第20题 )设数列{}n a 的各项均为正数 ,假设对任意的*n ∈N ,存在*k ∈N ,使得22n k n n k a a a ++=成立 ,那么称数列{}n a 为 "k J 型〞数列.(1 )假设数列{}n a 是 "2J 型〞数列 ,且28a = ,81a = ,求2n a ;(2 )假设数列{}n a 既是 "3J 型〞数列 ,又是 "4J 型〞数列 ,证明数列{}n a 是等比数列.解析 (1 )由题意得 ,2468,,,,a a a a ⋅⋅⋅成等比数列 ,且公比138212a q a ⎛⎫== ⎪⎝⎭,所以412212n n n a a q --⎛⎫== ⎪⎝⎭.(2 )由{}n a 是 "4J 型〞数列得159131721,,,,,,a a a a a a ⋅⋅⋅成等比数列 ,设公比为t , 由{}n a 是 "3J 型〞数列得1471013,,,,,a a a a a ⋅⋅⋅成等比数列 ,设公比为1α;2581114,,,,,a a a a a ⋅⋅⋅成等比数列 ,设公比为2α; 3691215,,,,,a a a a a ⋅⋅⋅成等比数列 ,设公比为3α;那么431311a t a α== ,431725a t a α== ,432139a t a α== , 所以123ααα== ,不妨令123αααα=== ,那么43t α=. 所以()32113211k k k a a a α----==,()2311223315111k k k k k aa a t a a ααα------==== ,所以131323339111k k k k kaa a t a a ααα----==== ,综上11n n a a -= ,从而{}n a 是等比数列.2.(2021北京理20)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅ ,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最|||大的数.(1 )假设n a n = ,21n b n =- ,求123,,c c c 的值 ,并证明{}n c 是等差数列;(2 )证明:或者对任意正数M ,存在正整数m ,当n m ≥时 ,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列. 解析(1 )111110c b a =-=-= ,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=- ,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-.当3n 时 ,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-< , 所以k k b na -关于*k ∈N {}112211max ,,,1n n n c b a n b a n b a n b a n n =---=-=- ,将1,2,3n =代入 ,满足此式 ,所以对任意1n ,1n c n =- ,于是11n n c c +-=- ,得{}n c 是等差数 列.(2 )设数列{}n a 和{}n b 的公差分别为12,d d ,那么()[]()()121111211(1)1k k b na b k d a k d n b a n d nd k -=+--+-=-+--. 所以()()11212111211,,n b a n n d nd d nd c b a n d nd ⎧-+-->⎪=⎨-⎪⎩当时当时.①当10d >时 ,取正整数21d m d > ,那么当n m 时 ,12nd d > ,因此11n c b a n =-. 此时 ,12,,,m m m c c c ++是等差数列.②当10d =时 ,对任意1n ,(){}(){}()11211211max ,01max ,0n c b a n n d b a n d a =-+-=-+--.此时 ,123,,,,,n c c c c 是等差数列.③当10d <时 , 当21d n d >时 ,有12nd d < ,所以()()()11211211121n b a n n d nd c b d n d d a d n n n-+---==-+-++()111212||n d d a d b d -+-+--.对任意正数M ,取正整数12112211||max ,M b d a d d d m d d ⎧⎫+-+-->⎨⎬-⎩⎭ ,故当n m 时 ,nc M n>. 题型71 等差数列与等比数列的交汇问题 - -暂无第二节 数列的通项公式与求和题型72 数列通项公式的求解 题型73 数列的求和1. (2021天津理18 ){}n a 为等差数列 ,前n 项和为()n S n *∈N ,{}n b 是首|||项为2的等比数列 ,且公比大于0 ,2312b b += ,3412b a a =- ,11411S b =. (1 )求{}n a 和{}n b 的通项公式;(2 )求数列{}221n n a b -的前n 项和()n *∈N .解析 (1 )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由2312b b += ,得21()12b q q += ,而12b = ,所以260q q +-=. 又因为0q > ,解得2q =.所以2nn b =.由3412b a a =- ,可得138d a -= ① 由114=11S b ,可得1516a d += ② 联立①② ,解得11a = ,3d = ,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =- ,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =- ,12124n n b --=⨯ ,有221(31)4nn n a b n -=-⨯ ,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯ ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,上述两式相减 ,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯=1112(14)4(31)4=(32)4814n n n n n ++⨯----⨯--⨯-- ,得1328433n n n T +-=⨯+. 所以数列{}221n n a b -的前n 项和为1328433n n +-⨯+. 2. (2021全国3理9 )等差数列{}n a 的首|||项为1 ,公差不为0.假设2a ,3a ,6a 成等比数列 ,那么数列{}n a 前6项的和为 ( ). A .24-B .3-C .3D .8解析 因为{}n a 为等差数列 ,且236,,a a a 成等比数列 ,设公差为d ,那么2326a a a = ,即()()()211125a d a d a d +=++.因为11a = ,代入上式可得220d d += ,又0d ≠ ,那么2d =- ,所以()61656561622422S a d ⨯⨯=+=⨯+⨯-=-.应选A. 第三节 数列的综合题型74 数列与不等式的综合1.(2021浙江理22)数列{}n x 满足:11x = ,()()*11ln 1n n n x x x n ++=++∈N .证明:当*n ∈N 时.(1 )10n n x x +<<; (2 )1122n n n nx x x x ++-; (3 )1-21122n n n x -. 解析 (1 )用数学归纳法证明:0n x >. 当1n =时 ,110x => ,假设n k =时 ,0k x > ,那么1n k =+时 ,假设10k x + ,那么()110ln 10k k k x x x ++<=++ ,矛盾 ,故10k x +>. 因此()*0n x n >∈N ,所以()111ln 1n n n n x x x x +++=++>. 因此()*10n n x x n +<<∈N .(2)由()111ln 1n n n n x x x x +++=++> ,得()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数()()()()222ln 10f x x x x x x =-+++.()()()()()222122222ln 1ln 1ln 10111x x x x xf x x x x x x x x -++++'=-+++=++=+++++ ,知函数()f x 在[)0,+∞上单调递增 ,所以()()00f x f = , 因此()()()21111122ln 10n n n n n x x x x f x +++++-+++= ,即()*1122n n n nx x x x n ++-∈N . (3 )因为()()*11111ln 12n n n n n n x x x x x x n +++++=+++=∈N,得112n nx x + ,以此类推 ,21111,,22nn x x x x - ,所以112112112n n n n n n x x x x x x x x ----⎛⎫=⋅⋅⋅⋅ ⎪⎝⎭,故112nn x -. 由 (2 )知 ,()*1122n n n n x x x x n ++-∈N ,即111112022n n x x +⎛⎫--> ⎪⎝⎭, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎝⎭⎝⎭ ,故212n n x -.综上 ,()*121122n n n x n --∈N .第七章 不等式第|一节 不等式的性质与不等式的解法题型75 不等式的性质 - -暂无 题型76 比拟数 (式 )的大小1.(2021北京理13)能够说明 "设a b c ,,是任意实数.假设a b c >> ,那么a b c +>〞是假命题的一组整数a b c ,,的值依次为__________________.解析 由题知 ,取一组特殊值且,,a b c 为整数 ,如1a =- ,2b =- ,3c =-.2. (2021山东理7 )假设0a b >> ,且1ab = ,那么以下不等式成立的是 ( ). A.()21log 2a b a a b b +<<+ B.()21log 2a b a b a b <+<+ C.()21log 2a ba ab b +<+< D.()21log 2a b a b a b +<+<解析 由题意知1a > ,01b << ,所以12ab< ,()22log log 1a b +>= , 12112log ()a ba ab a a b b b+>+>+⇒+>+.应选B. 评注 此题也可采用特殊值法 ,如13,3a b == ,易得结论.题型77 一元一次不等式与一元二次不等式的解法 题型78 分式不等式的解法 - -暂无第二节 二元一次不等式 (组 )与简单的线性规划问题题型79 二元一次不等式组表示的平面区域 题型80 求解目标函数的取值范围或最|||值1. (2021天津理2 )设变量,x y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩ ,那么目标函数z x y =+的最|||大值为 ( ). A.23 B.1 C.32解析 变量,x y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩的可行域如以下图 ,目标函数z x y =+经过可行域的点A 时 ,目标函数取得最|||大值 ,由03x y =⎧⎨=⎩ ,可得(0,3)A ,目标函数z x y =+的最|||大值为3.应选D.32.(2021北京理4)假设x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩,那么2x y +的最|||大值为 ( ).A.1B. 3 C解析作出不等式组的可行区域 ,如以下图 ,令2z x y =+ ,那么22x zy -=+.当过A 点时z 取最|||大值 ,由()3,3A,故max 369z =+=.应选D.3. (2021全国1理14 )设x ,y 满足约束条件210x y x y ⎪+-⎨⎪-⎩,那么32z x y =-的最|||小值为 .解析不等式组21210x y x y x y +⎧⎪+-⎨⎪-⎩表示的平面区域如以下图 ,由32z x y =- ,得322zy x =- ,求z 的最|||小值,即求直线322z y x =-的纵截距的最|||大值 ,当直线322zy x =-过图中点A 时 ,纵截距最|||大 , 由2121x y x y +=-⎧⎨+=⎩,解得点A 的坐标为(1,1)- ,此时3(1)215z =⨯--⨯=-.4. (2021全国2理5 )设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩,那么2z x y =+的最|||小值是( ).A .15-B .9-C .1D .9解析 目标区域如以下图 ,当直线2y =x+z -过点()63--,时 ,所求z 取到最|||小值为15-. 应选A.(6,35. (2021全国3理12 )假设x ,y 满足约束条件200x y y ⎪+-⎨⎪⎩,那么34z x y =-的最|||小值为__________.解析 34z x y =- ,那么直线344zy x =-的纵截距越大 ,z 值越小.由图可知z 在()1,1A 处取得最|||小值 ,故min 31411z =⨯-⨯=-.6. (2021山东理4 )x ,y 满足3035030x y x y x -+⎧⎪++⎨⎪+⎩,那么2z x y =+的最|||大值是 ( ).A. 0B. 2 C解析 由303+5030x y x y x -+⎧⎪+⎨⎪+⎩,作出可行域及直线20x y += ,如以下图 ,平移20x y +=发现 ,当其经过直线350x y ++=与3x =-的交点(3,4)-时 ,2z x y =+取最|||大值为max 3245z =-+⨯=.应选 C.y=-3x-5y=-x 27.(2021浙江理4)假设x ,y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩,那么2z x y =+的取值范围是( ).A.[]0,6B.[]0,4C.[)6,+∞D.[)4,+∞ 解析 如以下图 ,22x zy =-+在点()2,1取到z 的最|||小值为2214z =+⨯= ,没有最|||大值 ,故[)4,z ∈+∞.应选D .题型81 求解目标函数中参数的取值范围 - -暂无 题型82 简单线性规划问题的实际运用第三节 根本不等式及其应用题型83 利用根本不等式求函数的最|||值1. (2021江苏10 )某公司一年购置某种货物600吨 ,每次购置x 吨 ,运费为6万元/次 ,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最|||小 ,那么x 的值是 . 解析一年的总运费与总存储费用之和为6003600644x x x x⨯+=+23600240⨯= ,当且仅当36004x x= ,即30x =时取等号.故填30. 2.(2021浙江理17)a ∈R ,函数()4f x x a a x=+-+在区间[]14,上的最|||大值是5 ,那么a 的取值范围是 . 解析 设4t x x=+,那么()f t t a a =-+ ,[]4,5t ∈.解法一:可知()f t 的最|||大值为{}max (4),(5)f f ,即(4)45(5)55f a a f a a ⎧=-+=⎪⎨=-+⎪⎩或(4)45(5)55f a a f a a ⎧=-+⎪⎨=-+=⎪⎩, 解得 4.55a a =⎧⎨⎩或 4.55a a ⎧⎨⎩,所以 4.5a .那么a 的取值范围是(],4.5-∞.解法二:如以下图 ,当0a <时 ,()5f t t a a t =-+=成立; 当0a t <时 ,()05f t a t a t =-+-=成立; 当a t >时 ,()5f t t a a a t a =-+=-+成立 ,即 4.5a . 那么a 的取值范围是(],4.5-∞.题型84 利用根本不等式证明不等式 - -暂无a。

高考数学数列复习 题集附答案

高考数学数列复习 题集附答案

高考数学数列复习题集附答案高考数学数列复习题集附答案1. 数列基本概念数列是数学中重要的概念之一,在高考数学中也占有重要的地位。

数列是按照一定的规律排列的一系列数的集合。

在数列中,每个数称为该数列的项,而规律则决定了数列的特征。

在高考中,数列的考查形式多样,掌握数列的基本概念对于解题至关重要。

2. 等差数列等差数列是一种常见的数列形式,在解题中经常出现。

等差数列的特点是每一项与前一项之差都相等。

假设等差数列的首项为a₁,公差为d,第n项为aₙ,则数列的通项公式是aₙ = a₁ + (n-1)d。

在考试中,理解等差数列的通项公式以及应用等差数列的性质解题是必要的。

3. 等比数列等比数列是另一种常见的数列形式,也经常出现在高考数学试题中。

等比数列的特点是每一项与前一项之比都相等。

假设等比数列的首项为a₁,公比为q,第n项为aₙ,则数列的通项公式是aₙ = a₁ * q^(n-1)。

了解等比数列的通项公式、性质以及应用等比数列解题的方法对于解答高考试题非常关键。

4. 递推数列递推数列是数列中常见的一种类型,其中每一项通过前一项计算得出。

递推数列的求解常常需要列出前几项进行观察。

在解题时,可以通过观察数列的规律,推导出数列的通项公式,从而求解特定项。

练习题:1. 给定等差数列的首项a₁ = 3,公差d = 2,求该等差数列的第10项。

答:根据等差数列的通项公式,第10项的计算公式为 a₁₀ = a₁ + (n-1)d = 3 + (10-1)2 = 21。

2. 给定等比数列的首项a₁ = 2,公比q = 3,求该等比数列的第5项。

答:根据等比数列的通项公式,第5项的计算公式为 a₅ = a₁ *q^(n-1) = 2 * 3^(5-1) = 162。

3. 已知递推数列的前两项分别为a₁ = 1,a₂ = 2,且每一项都等于前两项之和,求该递推数列的第6项。

答:观察数列的前几项,发现每一项都等于前两项的和,即aₙ =aₙ₋₁ + aₙ₋₂。

2018高考数学理大一轮复习习题:第六章 数列 含答案 精品

2018高考数学理大一轮复习习题:第六章 数列 含答案 精品

第六章⎪⎪⎪数 列 第一节数列的概念与简单表示突破点(一) 数列的通项公式1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2,这个关系式对任意数列均成立.[例1] 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;本节主要包括2个知识点: 1.数列的通项公式;2.数列的单调性.(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因式(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+(-1)nn.也可写为a n=⎩⎨⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[方法技巧]由数列的前几项求通项公式的思路方法给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n-1来调控.(3)熟悉一些常见数列的通项公式.(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.利用a n 与S n 的关系求通项[例2] n n n (1)S n =2n 2-3n ; (2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2×3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n ,则a n =________;(2)若数列{a n }满足a 1=23,a n +1=n n +1a n ,则通项a n =________;(3)若数列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.[解析] (1)由条件知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+1n -1-1n , 即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n .(2)由a n +1=n n +1a n (a n ≠0),得a n +1a n=nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·…·12·23 =23n. (3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.(4)∵a n +1=2a na n +2,a 1=1, ∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.(5)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通 抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n 2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( ) A .①②③ B .①②④ C .②③④ D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n-12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n-12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设数列{a n }满足a 1=1,且a n +1-a n =n +1,求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).5.[考点三]若数列{a n }满足:a 1=1,a n +1=a n +2n ,求数列{a n }的通项公式.解:由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n-2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n -1.突破点(二) 数列的单调性数列的分类[例1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1, 即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2n λ. 综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)知b n =lg 1002n =2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.(2)作商比较法①当a n >0时,a n +1a n>1⇔数列{a n }是单调递增数列;a n +1a n<1⇔数列{a n }是单调递减数列;a n +1an=1⇔数列{a n }是常数列.②当a n <0时,a n +1a n>1⇔数列{a n }是单调递减数列;a n +1a n<1⇔数列{a n }是单调递增数列;a n +1an=1⇔数列{a n }是常数列.2.求数列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.利用数列的单调性求参数的取值范围[例2] 已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎡⎭⎫83,3 C .(2,3)D .(1,3)[解析] 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2≤a ,解得83≤a <3,所以实数a 的取值范围是⎣⎡⎭⎫83,3.[答案] B [方法技巧]已知数列的单调性求参数取值范围的两种方法(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0解析:选D a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减数列.设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增数列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9. 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a2的单调性,知5<2-a2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1, ∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n .答案:-1n2.(2014·新课标全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________. 解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n=________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝⎛⎭⎫23a n +13-⎝⎛⎭⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因此{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n 2n -1.2.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8 D .10 解析:选C a 4=S 4-S 3=20-12=8.3.已知数列{a n }满足a 1=1,a n +1a n =2n (n ∈N *),则a 10=( ) A .64 B .32 C .16 D .8解析:选B ∵a n +1a n =2n ,∴a n +2a n +1=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,∴a 2=2.则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25=32. 4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________.解析:令5n =t >0,考虑函数y =t +1t ,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x ,当0<x ≤1时,t ∈(1,5],则可知a n =5n +⎝⎛⎭⎫15n 在(0,1]上单调递增,所以当n =110时,a n 取得最小值. 答案:110[练常考题点——检验高考能力]一、选择题1.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516 D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.3.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎫473-23k ·⎝⎛⎭⎫453-23k <0,∴452<k <472,∴k =23,故选C. 5.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A.1210B.129C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n -1=2n ,∴a 5+1=25,即a 5=31.答案:318.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该数列的第10项.答案:109.已知数列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n -p )⎝⎛⎭⎫1a n+1,b 1=-p ,且数列{b n }是单调递增数列,则实数p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n +1,则1a n +1+1=21a n+1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n +1是等比数列,所以1a n +1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由数列{b n }是单调递增数列,得2n (n -p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0,∴(a n +1+a n )[(n +1)a n +1-na n ]=0,又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =nn +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n .答案:1n 三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n+12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②,整理得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 第二节等差数列及其前n 项和突破点(一) 等差数列的性质及基本量的计算1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.[例1] (1)(2016·东北师大附中摸底考试)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )本节主要包括3个知识点:1.等差数列的性质及基本量的计算;2.等差数列前n 项和及性质的应用;3.等差数列的判定与证明.A .1B .2C .3D .4(2)(2016·惠州调研)已知等差数列{a n }的前n 项和为S n ,若S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2D .3[解析] (1)∵a 1+a 5=2a 3=10, ∴a 3=5,则公差d =a 4-a 3=2,故选B. (2)由S 3=3(a 1+a 3)2=6, 且a 1=4,得a 3=0, 则d =a 3-a 13-1=-2,故选C.[答案] (1)B (2)C [方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2] (1)n 396n n 的前n 项和,则S 11=( )A .18B .99C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. [解析] (1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9, 所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)因为{a n },{b n }都是等差数列, 所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)211.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n=( )A .5B .6C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S偶=n ∶(n -1).(4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20[例2] n 1n 512n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9, 又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线, 由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示), 由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p=S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225. ∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n+1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n 为整数,故使得a nb n 为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明等差数列的判定与证明方法[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4. ∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n ,∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2013·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m=3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0, 得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2014·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37. 3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .9B .8C .7D .6解析:选D 设等差数列{a n }的公差为d .因为a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .95B .100C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2017·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎫1+212n -12≤121.即S n +10a 2n的最大值为121.二、填空题7.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是________.解析:由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d 2=1,所以d =2.答案:28.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于________. 解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3.根据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.答案:39.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:13210.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.。

2024年广东省高考数学一轮复习第6章:数列(附答案解析)

2024年广东省高考数学一轮复习第6章:数列(附答案解析)

2024年广东省高考数学一轮复习第6章:数列一、单项选择题1.数列-15,17,-19,111,…的通项公式可能是a n 等于()A.(-1)n -12n +3B.(-1)n3n +2C.(-1)n -13n +2D.(-1)n 2n +3答案D解析由a 1=-15,排除A ,C ;由a 2=17,排除B ;分母为奇数列,分子为(-1)n ,故D 正确.2.已知数列{a n }为等比数列,公比为q ,若a 5=4(a 4-a 3),则q 等于()A .4B .3C .2D .1答案C解析由题意,得a 1q 4=4(a 1q 3-a 1q 2),解得q =2.3.在正项等比数列{a n }中,a 2=4,a 6=64,S n =510,则n 等于()A .6B .7C .8D .9答案C解析由a 2=4,a 6=64,得q 4=a6a 2=16(q >0),所以q =2,a 1=2,所以510=2(1-2n )1-2,解得n =8.4.定义[x ]表示不超过x 的最大整数,若数列{a n }的通项公式为a n =3n -1,则等式a 15+a 25+a 35+…+a 105等于()A .30B .29C .28D .27答案D解析a 15+a 25+a 35+…+a 105=25+55+85+…+295=0+(1×2)+(2×2)+(3×1)+(4×2)+(5×2)=27.5.等比数列{a n }中,a 1+a 2=6,a 3+a 4=12,则{a n }的前8项和为()A .90B .30(2+1)C .45(2+1)D .72答案A解析等比数列{a n}中,a1+a2=6,a3+a4=(a1+a2)q2=12,∴q2=2,a5+a6=(a3+a4)q2=24,同理a7+a8=48,则{a n}的前8项和a1+a2+a3+a4+a5+a6+a7+a8=6+12+24+48=90.6.设数列{a n},{b n}都是正项等比数列,S n,T n分别为数列{lg a n}与{lg b n}的前n项和,且S nT n=n+12n,则33logab等于()A.3 5B.95C.59D.53答案D解析因为数列{a n},{b n}都是正项等比数列,所以数列{lg a n}与{lg b n}为等差数列,因为S nT n=n+12n,所以S5T5=lg(a1.a2 (5)lg(b1·b2·…·b5)=lg a53lg b53=33logb a=610=35.则33loga b=53.7.(2022·新高考全国Ⅱ)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3等于()A.0.75B.0.8 C.0.85D.0.9答案D解析设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且DD 1+CC 1+BB 1+AA 1OD 1+DC 1+CB 1+BA 1=0.725,所以0.5+3k 3-0.34=0.725,故k 3=0.9.8.等差数列{a n }的前n 项和为S n .已知a 1=-5,a 3=-1.记b n =Sn a n (n =1,2,…),则数列{b n }的()A .最小项为b 3B .最大项为b 3C .最小项为b 4D .最大项为b 4答案C解析等差数列{a n }中,a 1=-5,a 3=-1,所以d =2,a n =-5+2(n -1)=2n -7,S n =-5n +n (n -1)2×2=n 2-6n ,则b n =S n a n =n (n -6)2n -7,令f (x )=x 2-6x 2x -7,x >0,则f ′(x )=2(x 2-7x +21)(2x -7)2>0,故f (x )因为b 1=1,b 3=9,b 4=-8,结合数列的函数特性易得,当n =4时,b n 取得最小值.二、多项选择题9.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 3+a 8+a 13是一个定值,则下列各数也为定值的有()A .a 7B .a 8C .S 15D .S 16答案BC解析由等差中项的性质可得a 3+a 8+a 13=3a 8为定值,则a 8为定值,S 15=15(a 1+a 15)2=15a 8为定值,但S 16=16(a 1+a 16)2=8(a 8+a 9)不是定值.10.下列说法正确的是()A .任意等差数列{a n }和{b n },数列{a n +b n }是等差数列B .存在等差数列{a n }和{b n },数列{a n b n }是等差数列C .任意等比数列{a n }和{b n },数列{a n +b n }是等比数列D .存在等比数列{a n }和{b n },数列{a n b n }是等比数列答案ABD解析A 项,若{a n }和{b n }都是等差数列,不妨设a n =k 1n +b 1,b n =k 2n +b 2,故可得a n +b n =(k 1+k 2)n +b 1+b 2,则a n +1+b n +1=(k 1+k 2)(n +1)+b 1+b 2,则a n +1+b n +1-(a n +b n )=k 1+k 2,故数列{a n +b n }是等差数列,故A 正确;B 项,设数列{a n }是数列1,1,1;数列{b n }是数列2,2,2,故可得数列{a n b n }是数列2,2,2,是等差数列,故B 正确;C 项,若{a n }和{b n }是等比数列,设a n =a 1q n 1,b n =b 1q n 2,故可得a n +b n =a 1q n 1+b 1q n2,a n +1+b n +1=a 1q n +11+b 1q n +12,则a n +1+b n +1a n +b n =a 1q n +11+b 1q n +12a 1q n 1+b 1q n2,不是常数,故{a n +b n }不是等比数列,故C 错误;D 项,设数列{a n }是数列1,1,1;数列{b n }是数列2,2,2,故可得数列{a n b n }是数列2,2,2,是等比数列,故D 正确.11.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有()A .S n =3n-1B .{S n }为等比数列C .a n =2·3n -1D .a n ,n =1,n -2,n ≥2答案ABD解析由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *),当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n ,可得a n +1=3a n ,即a n +1a n=3(n ≥2),又a 1=1,则a 2=2S 1=2a 1=2,所以a2a 1=2,所以数列{a n }的通项公式为a n ,n =1,n -2,n ≥2.当n ≥2时,S n =a n +12=2·3n -12=3n -1,又S 1=a 1=1,适合上式,所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n3n -1=3,所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.12.设S n 为等比数列{a n }的前n 项和,若a n >0,a 1=12,S n <2,则{a n }的公比可取的值为()A.14B.15C.45D .2答案AB解析设等比数列{a n }的公比为q ,则q ≠1.∵a n >0,a 1=12,S n <2,∴{a n }是递减数列,12×q n -1>0,12(1-q n )1-q <2,∴1>q >0且1≤4-4q ,解得0<q ≤34.∴{a n },34,故{a n }的公比可取的值为14或15.三、填空题13.已知数列{a n }满足a 1=1,11+a n +1-11+a n =1,则a 5=________.答案-79解析∵11+a n +1-11+a n =1,是以11+a 1=12为首项,1为公差的等差数列,∴11+a n =12+(n -1)×1=n -12∴11+a 5=5-12=92,解得a 5=-79.14.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案2解析奇+S 偶=-240,奇-S 偶=80,奇=-80,偶=-160,所以q =S 偶S 奇=-160-80=2.15.在数列{a n }中,a 1=2,且na n +1=(n +2)a n ,则a n =________.答案n (n +1)解析由已知得,a n +1a n =n +2n ,则有a 2a 1=31,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=n n -2,a n a n -1=n +1n -1,将这(n -1)个等式相乘得,a n a 1=n (n +1)1×2,则a n =n (n +1).16.已知数列{a n }的前n 项和为S n .且a 1=1,{lg S n }是公差为lg 3的等差数列,则a 2+a 4+…+a 2n =________.答案9n -14解析S 1=a 1=1,则lg S 1=lg 1=0,∵{lg S n }是公差为lg 3的等差数列,∴lg S n =(n -1)lg 3=lg 3n -1,则S n =3n -1,当n ≥2时,a n =S n -S n -1=3n -1-3n -2=2×3n -2,a 2=2,当n ≥2时,a n +1a n =2×3n -12×3n -2=3,∴数列{a n }自第二项起构成公比为3的等比数列,可得a 2+a 4+…+a 2n =2(1-9n )1-9=9n -14.。

2018届高考(新课标)数学(理)大一轮复习检测第六章数列6-3Word版含答案

2018届高考(新课标)数学(理)大一轮复习检测第六章数列6-3Word版含答案

A 组 专项基础训练(时间:35分钟)1.(2016·宁夏大学附中上学期月考)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19 【解析】 设等比数列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9,∴⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9, 解得⎩⎪⎨⎪⎧q 2=9,a 1=19.【答案】 C2.(2016·山西四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n(n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2 【解析】 由等比数列的性质, 得a 3·a 2n -3=a 2n =22n,从而得a n =2n.方法一 log 2a 1+log 2a 2+…+log 2a 2n -1=log 2=log 22n (2n -1)=n (2n -1).方法二 取n =1,log 2a 1=log 22=1,而(1+1)2=4,(1-1)2=0,排除B ,D ;取n =2,log 2a 1+log 2a 2+log 2a 3=log 22+log 24+log 28=6,而22=4,排除C ,选A.【答案】 A3.(2016·山东潍坊重点高中联考)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73C.83D .3 【解析】 依题意知等比数列的公比q ≠±1,设S 3=k ,则S 6=3k (k ≠0),结合S 3,S 6-S 3,S 9-S 6成等比数列可知S 9-3k =4k ,故S 9=7k .所以S 9S 6=73.【答案】 B4.(2016·湖南师大附中月考)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2·b 8·b 11=( )A .1B .2C .4D .8【解析】 由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2·b 8·b 11=b 2b 7b 12=b 37=23=8.【答案】 D5.(2016·甘肃河西五市部分普通高中第一次联考)正项等比数列{a n }中的a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2 016=( )A .-1B .1 C. 2 D .2【解析】 ∵f ′(x )=x 2-8x +6,∴a 1·a 4 031=6.又∵{a n }为正项等比数列, ∴a 22 016=a 1·a 4 031=6,∴log 6a 2 016=log66=1.【答案】 B6.(2016·广州综合测试)已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( )A .10B .20C .100D .200【解析】 a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 【答案】 C7.(2016·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.【解析】 设数列{a n }的公比为q , 由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q3n -6=81=34=q 36,所以3n -6=36,即n =14. 【答案】 148.(2016·南宁测试)在各项均为正数的等比数列{a n }中,a 1=2,且2a 1,a 3,3a 2成等差数列.则a n =________.【解析】 设数列{a n }的公比为q ,∵2a 1,a 3,3a 2成等差数列,∴2a 1+3a 2=2a 3, 2a 1+3a 1q =2a 1q 2,2q 2-3q -2=0,解得q =2或q =-12.∵q >0,∴q =2.∵a 1=2,∴数列{a n }的通项公式为a n =a 1q n -1=2n.【答案】 2n9.(2016·河南实验中学期中)数列{b n }满足:b n +1=2b n +2,b n =a n +1-a n ,且a 1=2,a 2=4.(1)求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .【解析】 (1)由b n +1=2b n +2,得b n +1+2=2(b n +2), ∴b n +1+2b n +2=2,又b 1+2=a 2-a 1+2=4, ∴数列{b n +2}是首项为4,公比为2的等比数列. ∴b n +2=4·2n -1=2n +1,∴b n =2n +1-2.(2)由(1)知,a n -a n -1=b n -1=2n-2(n ≥2), ∴a n -1-a n -2=2n -1-2(n >2),…,a 2-a 1=22-2,∴a n -2=(22+23+ (2))-2(n -1), ∴a n =(2+22+23+ (2))-2n +2 =2(2n-1)2-1-2n +2=2n +1-2n .∴S n =4(1-2n)1-2-n (2+2n )2=2n +2-(n 2+n +4).10.已知数列{a n }和{b n }满足a 1=λ,a n +1=23a n +n -4,b n =(-1)n(a n -3n +21),其中λ为实数,n 为正整数.(1)证明:对任意实数λ,数列{a n }不是等比数列; (2)证明:当λ≠-18时,数列{b n }是等比数列. 【证明】 (1)假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4 ⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾.所以{a n }不是等比数列. (2)b n +1=(-1)n +1=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14 =-23(-1)n·(a n -3n +21)=-23b n .又λ≠-18,所以b 1=-(λ+18)≠0. 由上式知b n ≠0,所以b n +1b n =-23(n ∈N *). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.B 组 专项能力提升 (时间:20分钟)11.(2016·河南洛阳期中)下列结论正确的是( )A .若数列{a n }的前n 项和为S n ,S n =n 2+n +1,则{a n }为等差数列 B .若数列{a n }的前n 项和为S n ,S n =2n -2,则{a n }为等比数列C .非零实数a ,b ,c 不全相等,若a ,b ,c 成等差数列,则1a ,1b ,1c 可能构成等差数列D .非零实数a ,b ,c 不全相等,若a ,b ,c 成等比数列,则1a ,1b ,1c一定构成等比数列 【解析】 在A 中,∵数列{a n }的前n 项和为S n ,S n =n 2+n +1,∴a 1=S 1=1+1+1=3,a n =S n -S n -1=(n 2+n +1)-=2n (n ≥2),故{a n }不为等差数列,故A 错误;在B 中,∵数列{a n }的前n 项和为S n ,S n =2n-2,∴a 1=S 1=2-2=0,∴{a n }不为等比数列,故B 错误;在C 中,若1a ,1b ,1c 构成等差数列,则2b =1a +1c =a +c ac =2b ac ,∴b 2=ac ,∴ac =⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2+2ac 4,∴a =c ,从而a =c =b ,与非零实数a ,b ,c 不全相等矛盾,∴1a ,1b ,1c不可能构成等差数列,故C 错误;在D 中,∵非零实数a ,b ,c 不全相等,a ,b ,c 成等比数列,∴b 2=ac ,∴1b 2=1ac =1a ·1c ,∴1a ,1b ,1c一定成等比数列,故D 正确.故选D. 【答案】 D12.(2016·宁夏大学附中上学期月考)在正项等比数列{a n }中,存在两项a m ,a n (m ,n ∈N *)使得a m a n =4a 1,且a 7=a 6+2a 5,则1m +5n的最小值是( )A.74 B .1+53 C.256 D.253【解析】 在正项等比数列{a n }中,设公比为q ,∵a 7=a 6+2a 5,∴a 7a 5=a 6a 5+2,即q 2-q -2=0,解得q =2或q =-1(舍去),∴a m =a 12m -1,a n =a 12n -1.∵a m a n =4a 1,∴a m a n =a 212m +n -2=16a 21,即m +n -2=4,∴m +n =6,列举(m ,n )=(1,5),(2,4),(3,3),(4,2),(5,1),即有1m +5n =2,74,2,114,265.当m =2,n =4时,1m +5n 取得最小值74.【答案】 A13.(2016·兰州诊断)数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n,若b 10b 11=2 017110,则a 21=________.【解析】 由b n =a n +1a n ,且a 1=1,得b 1=a 2a 1=a 2. b 2=a 3a 2,a 3=a 2b 2=b 1b 2.b 3=a 4a 3,a 4=a 3b 3=b 1b 2b 3,…,a n =b 1b 2…b n -1,∴a 21=b 1b 2…b 20. ∵数列{b n }为等比数列,∴a 21=(b 1b 20)(b 2b 19)…(b 10b 11)=(b 10b 11)10=(2 017110)10=2 017. 【答案】 201714.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2; ②f (x )=2x ; ③f (x )=|x |;④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为________. 【解析】 设{a n }的公比为q ,验证①f (a n +1)f (a n )=a 2n +1a 2n =q 2,③f (a n +1)f (a n )=|a n +1||a n |=|q |, 故①③为“保等比数列函数”. 【答案】 ①③15.(2017·兰州模拟)设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =m +1-ma n (m 为常数,且m >0).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比q =f (m ),数列{b n }满足b 1=2a 1,b n =f (b n -1)(n ≥2,n ∈N *),求数列{b n }的通项公式.【解析】 (1)证明 当n =1时,a 1=S 1=m +1-ma 1,解得a 1=1. 当n ≥2时,a n =S n -S n -1=ma n -1-ma n ,即(1+m )a n =ma n -1. 又m 为常数,且m >0,∴a n a n -1=m1+m(n ≥2). ∴数列{a n }是首项为1,公比为m1+m 的等比数列.(2)由(1)得,q =f (m )=m1+m ,b 1=2a 1=2.∵b n =f (b n -1)=b n -11+b n -1,∴1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).∴数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.∴1b n =12+(n -1)·1=2n -12,即b n =22n -1(n ∈N *).。

2024年高考数学总复习第六章《数列》测试卷及答案解析

2024年高考数学总复习第六章《数列》测试卷及答案解析

2024年高考数学总复习第六章《数列》测试卷及答案(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 10=100,则a 7的值为()A .11B .12C .13D .14答案C解析由S 10=100及公差为2,得10a 1+10×(10-1)2×2=100,所以a 1=1.所以a n =2n -1,故a 7=13.故选C.2.若等差数列{a n }的公差d ≠0且a 1,a 3,a 7成等比数列,则a2a 1等于()A.32B.23C.12D .2答案A解析设等差数列的首项为a 1,公差为d ,则a 3=a 1+2d ,a 7=a 1+6d .因为a 1,a 3,a 7成等比数列,所以(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d .所以a 2a 1=2d +d 2d=32.故选A.3.已知等差数列{a n }的前n 项和为S n ,若S 6=30,S 10=10,则S 16等于()A .-160B .-80C .20D .40答案B解析a 1+15d =30,a 1+45d =10,解得a 1=10,d =-2,故S 16=16a 1+120d =16×10+120×(-2)=-80,故选B.4.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33答案D解析由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-qa 1(1-q 3)1-q =1+q 3=9,∴q =2,S 10S 5=a 1(1-q 10)1-qa 1(1-q 5)1-q=1+q 5=1+25=33.5.(2019·湖南五市十校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6等于()A .6B .7C .8D .9答案B解析由数列{a n }满足2a n =a n -1+a n +1(n ≥2)得数列{a n }为等差数列,所以a 2+a 4+a 6=3a 4=12,即a 4=4,同理a 1+a 3+a 5=3a 3=9,即a 3=3,所以a 1+a 6=a 3+a 4=7.6.(2019·新乡模拟)为了参加冬季运动会的5000m 长跑比赛,某同学给自己制定了7天的训练计划:第1天跑5000m ,以后每天比前1天多跑200m ,则这个同学7天一共将跑()A .39200mB .39300mC .39400mD .39500m答案A解析依题意可知,这个同学第1天,第2天,…跑的路程依次成首项为5000,公差为200的等差数列,则这个同学7天一共将跑5000×7+7×62×200=39200(m).故选A.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于()A .38B .20C .10D .9答案C解析因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.8.(2019·青岛调研)已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为数列{a n }的前n 项和,则S 3a 3等于()A.139B.79C .3D .1答案A解析设等比数列{a n }的公比为q ,∵3a 2,2a 3,a 4成等差数列,∴2×2a 3=3a 2+a 4,∴4a 2q =3a 2+a 2q 2,化为q 2-4q +3=0,解得q =1或3.又数列的各项均不相等,∴q ≠1,当q =3时,S 3a 3=a 1(33-1)3-1a 1×9=139.故选A.9.(2019·广东六校联考)将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),…,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2019位于分组序列中的()A .第404组B .第405组C .第808组D .第809组答案A解析正奇数数列1,3,5,7,9,…的通项公式为a n =2n -1,则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中的第404组,故选A.10.(2019·新疆昌吉教育共同体月考)在数列{a n }中,a 1=2,其前n 项和为S n .在直线y =2x -1上,则a 9等于()A .1290B .1280C .1281D .1821答案C解析由已知可得S n +1n +1-1=又S11-1=a 1-1=1,1,公比为2的等比数列,所以Sn n -1=2n -1,得S n =n (1+2n -1),当n ≥2时,a n =S n -S n -1=(n +1)2n -2+1,故a 9=10×128+1=1281.11.(2019·长沙长郡中学调研)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ,若首项为13的数列{b n }满足1b n +1-1b n =a n ,则数列{b n }的前10项和为()A.175264B.3988C.173264D.181264答案A解析由S n =n 2+4n ,可得a n =2n +3,根据1b n +1-1b n=a n =2n +3,结合题设条件,应用累加法可求得1b n n 2+2n ,所以b n =1n 2+2n =1n (n +2)=所以数列{b n }的前n项和为T n -13+12-14+…+1n --1n +1-所以T 10-111-=175264,故选A.12.已知数列{a n }的通项a n =nx(x +1)(2x +1)…(nx +1),n ∈N *,若a 1+a 2+a 3+…+a 2018<1,则实数x 可以等于()A .-23B .-512C .-1348D .-1160答案B 解析∵a n =nx(x +1)(2x +1)…(nx +1)=1(x +1)(2x +1)…[n (x -1)+1]-1(x +1)(2x +1)…(nx +1)(n ≥2),∴a 1+a 2+…+a 2018=x x +1+1x +1-1(x +1)(2x +1)…(2018x +1)=1-1(x +1)(2x +1)…(2018x +1),当x =-23x +1>0,nx +1<0(2≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.当x =-512时,x +1>0,x +2>0,nx +1<0(3≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)<1;当x =-1348时,x +1>0,x +2>0,x +3>0,nx +1<0(4≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1;当x =-1160时,x +1>0,x +2>0,x +3>0,x +4>0,x +5>0,nx +1<0(6≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{a n }的公差为d ,其前n 项和为S n ,若a 4+a 10=0,2S 12=S 2+10,则d 的值为________.答案-10解析由a 4+a 10=0,2S 12=S 2+10,1+3d +a 1+9d =0,a 1+12×112d2a 1+d +10,解得d =-10.14.(2019·沈阳东北育才中学模拟)等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若Sn T n =2n +13n +2,则a 3+a 11+a 19b 7+b 15=________.答案129130解析原式=3a 112b 11=32·2a 112b 11=32·a 1+a 21b 1+b 21=32·S 21T 21=32·2×21+13×21+2=129130.15.(2019·荆州质检)已知数列{a n }的前n 项和为S n ,若a n =(2n -2则S 2019=________.答案2020解析∵a n =(2n -2=(1-2n )sinn π2,∴a 1,a 2,…,a n 分别为-1,0,5,0,-9,0,13,0,-17,0,21,0,…,归纳可得,每相邻四项和为4,∴S 2019=504×4+a 2017+a 2018+a 2019=2016+[(1-2×2017)+0+(2×2019-1)]=2016+4=2020.16.(2019·长沙长郡中学调研)已知点列P 1(1,y 1),P 2(2,y 2),P 3(3,y 3),…,P n +1(n +1,y n +1)在x 轴上的投影为Q 1,Q 2,…,Q n +1,且点P n +1满足y 1=1,直线P n P n +1的斜率1n n P P k +=2n .则多边形P 1Q 1Q n +1P n +1的面积为________.答案3×2n -n -3解析根据题意可得y n +1-y n =2n ,结合y 1=1,应用累加法,可以求得y n +1=2n +1-1,根据题意可以将该多边形分成n 个直角梯形计算,且从左往右,第n 个梯形的面积为S n =y n +y n +12=3×2n -1-1,总的面积应用分组求和法,可求得多边形的面积为S =3(2n -1)-n =3×2n -n -3.三、解答题(本大题共70分)17.(10分)已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.(1)解由已知,得a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1,可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52.(2)证明若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列.若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n .因此a m +k +a l +k =aq k -1(q m +q l )=2aq n+k -1=2a n +k ,所以a m +k ,a n +k ,a l +k 成等差数列.18.(12分)(2019·安徽皖南八校联考)数列{a n }的前n 项和记为S n ,且4S n =5a n -5,数列{b n }满足b n =log 5a n .(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明T n <1.(1)解∵4S n =5a n -5,∴4a 1=5a 1-5,∴a 1=5.当n ≥2时,4S n -1=5a n -1-5,∴4a n =5a n -5a n -1,∴a n =5a n -1,∴{a n }是以5为首项,5为公比的等比数列,∴a n =5·5n -1=5n .∴b n =log 55n =n .(2)证明∵c n =1n (n +1)=1n -1n +1,∴T n…=1-1n +1<1.19.(12分)(2019·安徽皖中名校联考)已知数列{a n }满足:a n +1=2a n -n +1,a 1=3.(1)设数列{b n }满足:b n =a n -n ,求证:数列{b n }是等比数列;(2)求出数列{a n }的通项公式和前n 项和S n .(1)证明b n +1b n =a n +1-(n +1)a n -n =2a n -n +1-(n +1)a n -n=2(a n -n )a n -n =2,又b 1=a 1-1=3-1=2,∴{b n }是以2为首项,2为公比的等比数列.(2)解由(1)得b n =2n ,∴a n =2n +n ,∴S n =(21+1)+(22+2)+…+(2n +n )=(21+22+…+2n )+(1+2+3+…+n )=2(1-2n )1-2+n (n +1)2=2n +1-2+n (n +1)2.20.(12分)(2019·湖南衡阳八中月考)已知数列{a n }的前n 项和为S n ,且S n =2a n -n (n ∈N *).(1)证明:{a n +1}是等比数列;(2)若数列b n =log 2(a n +1)n 项和T n .(1)证明当n =1时,S 1=2a 1-1,∴a 1=1.∵S n =2a n -n ,∴S n +1=2a n +1-(n +1),∴a n +1=2a n +1,∴a n +1+1=2(a n +1),∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.(2)解由(1)得a n +1=2n ,∴b n =log 22n =n ,∴1b 2n -1·b 2n +1=1(2n -1)(2n +1)=∴T n -13+13-15+…+12n -1-=n 2n +1.21.(12分)(2019·青岛调研)已知数列{a n }的各项均为正数,其前n 项和为S n .(1)若对任意n ∈N *,S n =n 2+n +12都成立,求a n ;(2)若a 1=1,a 2=2,b n =a 2n -1+a 2n ,且数列{b n }是公比为3的等比数列,求S 2n .解(1)由S n =n 2+n +12,得S n -1=(n -1)2+n2,n ≥2,两式相减得a n =n ,n ≥2,又a 1=S 1=32,不满足a n =n ,∴a n n =1,n ≥2.(2)S 2n =a 1+a 2+…+a 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n ,∵b 1=a 1+a 2=3,{b n }是公比为3的等比数列,∴S 2n =b 1+b 2+…+b n =3(1-3n )1-3=32(3n-1).22.(12分)(2019·湖南岳阳一中质检)已知数列{a n }的前n 项和为S n ,S n =2a n -2.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若存在n ∈N *,使不等式2b 1a 1+2b 2a 2+…+2b na n≥m 成立,求实数m 的最大值.解(1)∵S n =2a n -2,①∴S n +1=2a n +1-2,②∴②-①得a n +1=2a n +1-2a n (n ≥1),∴a n +1=2a n ,即a n +1a n=2,∴{a n }是首项为2,公比为2的等比数列.∴a n =2n .(2)由题意得,T n +1n +1-T n n =12,成等差数列,公差为12.首项T 11=b11=1,∴T n n =1+12(n -1)=n +12,T n =n (n +1)2,当n ≥2时,b n =T n -T n -1=n (n +1)2-n (n -1)2=n ,当n =1时,b 1=1成立,∴b n =n .∴2b n a n =2n2n =n 2n -1=-1,令M n =2b 1a 1+2b 2a 2+…+2b na n,只需(M n )max ≥m .∴M n =1+2×12+3+…+n -1,③12M n =12+2+3+…+n ,④③-④得,12M n =1+12++…-1-n 1-12n=2-(n +,∴M n =4-(n +-1.∵M n +1-M n =4-(n +-4+(n +-1=n +12n>0.∴{M n }为递增数列,且(n +-1>0,∴M n <4.∴m ≤4,实数m 的最大值为4.。

(新课标Ⅱ)高考数学总复习专题06数列分项练习(含解析)理(2021学年)

(新课标Ⅱ)高考数学总复习专题06数列分项练习(含解析)理(2021学年)

(新课标Ⅱ)2018年高考数学总复习专题06 数列分项练习(含解析)理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标Ⅱ)2018年高考数学总复习专题06数列分项练习(含解析)理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标Ⅱ)2018年高考数学总复习专题06 数列分项练习(含解析)理的全部内容。

专题06 数列一.基础题组1. 【2013课标全国Ⅱ,理3】等比数列{an }的前n项和为S n。

已知S 3=a 2+10a1,a 5=9,则a 1=( ).A.13 B .13- C .19 D .19-【答案】:C2.【2012全国,理5】已知等差数列{an }的前n 项和为Sn ,a5=5,S5=15,则数列{11n n a a +}的前100项和为( )A.100101 B.99101 C.99100 D.101100 【答案】 A【解析】15155()5(5)1522a a a S ++===,∴a 1=1. ∴515115151a a d --===--。

∴a n =1+(n -1)×1=n 。

∴111(1)n n a a n n +=+. 设11n n a a +⎧⎫⎨⎬⎩⎭的前n项和为T n ,则1001111223100101T =+++⨯⨯⨯… =111111223100101-+-++-…=11001101101-=. 3。

【2010全国2,理4】如果等差数列{a n }中,a 3+a4+a 5=12,那么a 1+a 2+…+a 7等于( )A .14 B.21 C.28 D .35 【答案】:C【解析】∵{a n }为等差数列,a 3+a 4+a 5=12, ∴a4=4。

高考求数列真题及解析答案

高考求数列真题及解析答案

高考求数列真题及解析答案数学作为高考中最为重要的科目之一,对于考生来说是一道必考题。

而在数学中,数列是一个相对较难的章节,常常考察学生对数列的理解和应用能力。

本文将为大家提供一些高考中常见的数列真题及解析答案,希望对广大考生有所帮助。

一、等差数列等差数列是指一个数列中的每个数与它前面的数之差都相等的数列。

它是数学中最常见的数列形式之一。

下面是一个关于等差数列的高考题:【例题】已知一个等差数列的首项为 3,公差为 2,前 n 项和为 S_n。

若 S_7 = 84,求 n。

解析:我们首先利用等差数列的通项公式 a_n = a_1 + (n - 1)d,其中 a_n 表示第 n 项,a_1 表示首项,d 表示公差。

根据题目中给出的信息,我们可以得到等差数列的第 7 项为 3 + (7 - 1) × 2 = 17。

根据等差数列的前 n 项和公式 S_n = (n/2)(a_1 + a_n),我们可以得到 S_7 = (7/2)(3 + 17) = 84。

解这个方程可以得到 n = 12。

因此,答案为 n = 12。

二、等比数列等比数列是指一个数列中的每一项与它前面的一项的比值都相等的数列。

等比数列在高考中常常被用来考察考生对等比数列的性质和应用的理解。

下面是一个关于等比数列的高考题:【例题】已知一个等比数列的首项为 2,公比为 3/4,前 n 项和为 S_n。

若 S_4 = 56/3,求 n。

解析:我们首先利用等比数列的通项公式a_n = a_1 × r^(n - 1),其中 a_n 表示第 n 项,a_1 表示首项,r 表示公比。

根据题目中给出的信息,我们可以得到等比数列的第 4 项为2 × (3/4)^(4 - 1) = 27/16。

根据等比数列的前 n 项和公式S_n = a_1 × (1 - r^n) / (1 - r),我们可以得到S_4 = 2 × (1 - (3/4)^4) / (1 - 3/4)= 56/3。

精编2018高考数学(理科)习题第六章数列641和答案

精编2018高考数学(理科)习题第六章数列641和答案

1.数列{a n }的通项公式是a n =1n +n +1,若S n =10,则n 的值是( )点击观看解答视频 A .11 B .99 C .120 D .121答案 C 解析 ∵a n =1n +n +1=n +1-n ,∴S n =(2-1)+(3-2)+(4-3)+…+(n -n -1)+(n +1-n )=n +1-1.令S n =10,解得n =120.故选C.2.在正项等比数列{a n }中,a 1=1,前n 项和为S n ,且-a 3,a 2,a 4成等差数列,则S 7的值为( )A .125B .126C .127D .128 答案 C解析 设数列{a n }的公比为q (q >0), ∵-a 3,a 2,a 4成等差数列, ∴2a 2=a 4-a 3, ∴2a 1q =a 1q 3-a 1q 2, 解得q =2或q =-1(舍去), ∴S 7=a 1-q 71-q =1-271-2=27-1=127.故选C.3.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.点击观看解答视频(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n ,求数列{c n }的前n 项和T n .解 (1)由题意有,⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2, 解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎨⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎨⎧a n =19n +,b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.4.数列{a n }满足:a 1+2a 2+…+na n =4-n +22n -1,n ∈N *.(1)求a 3的值;(2)求数列{a n }的前n 项和T n ;(3)令b 1=a 1,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n (n ≥2),证明:数列{b n }的前n项和S n 满足S n <2+2ln n .解 (1)当n =1时,a 1=4-1+221-1=1; 当n ≥2时,由a 1+2a 2+…+na n =4-n +22n -1知,a 1+2a 2+…+(n -1)a n -1=4-n -1+22n -2,两式相减得na n =⎝ ⎛⎭⎪⎫4-n +22n -1-⎝ ⎛⎭⎪⎫4-n +12n -2=n +12n -2-n +22n -1=n 2n -1,此时a n =12n -1.经检验知,a 1=1也满足a n =12n -1.综上,a n =12n -1,故a 3=123-1=14.(2)由(1)知,a n =12n -1,故数列{a n }是以1为首项,12为公比的等比数列,故T n =1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1.(3)证明:由(1)(2)知,b 1=a 1=1, 当n ≥2时,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n=2-12n -2n +⎝ ⎛⎭⎪⎫1+12+13+…+1n ·12n -1=2n +⎝⎛⎭⎪⎫1+12+13+…+1n -1-1n ·12n -1. 当n =1时,S 1=1<2+2ln 1=2,成立; 当n ≥2时,S n=1+⎣⎢⎡⎦⎥⎤2+⎝ ⎛⎭⎪⎫1-12·1+⎣⎢⎡⎦⎥⎤2+⎝ ⎛⎭⎪⎫1+12-13·1+…+⎣⎢⎡⎦⎥⎤2n +⎝ ⎛⎭⎪⎫1+12+13+…+1n -1-1n ·12n -1 =1+2⎝ ⎛⎭⎪⎫12+13+…+1n +⎝ ⎛⎭⎪⎫12+122+…+12n -1+12⎝ ⎛⎭⎪⎫122+123+…+12n -1-12+13⎝ ⎛123+124+…+12n -1⎭⎪⎫-122+…+1n -1·⎝ ⎛⎭⎪⎫12n -1-12n -2+1n ⎝ ⎛⎭⎪⎫-12n -1 =1+2⎝ ⎛⎭⎪⎫12+13+…+1n +⎝ ⎛⎭⎪⎫1-12n -1+12⎝⎛⎭⎪⎫122·1-12n -21-12-12+13⎝⎛⎭⎪⎫123·1-12n -31-12-122+…+ 1n -1⎝ ⎛⎭⎪⎫1-1+1n ⎝ ⎛⎭⎪⎫-1=1+2⎝ ⎛⎭⎪⎫12+13+…+1n +⎝ ⎛⎭⎪⎫1-12n -1+12⎝ ⎛⎭⎪⎫-12n -1+13⎝ ⎛⎭⎪⎫-12n -1+…+1n -1⎝ ⎛⎭⎪⎫-12n -1+1n ·⎝ ⎛⎭⎪⎫-12n -1 =2+2⎝ ⎛⎭⎪⎫12+13+…+1n -⎝ ⎛ 1+12+⎭⎪⎫13+…+1n ·12n -1<2+2⎝ ⎛⎭⎪⎫12+13+…+1n . 构造函数f (x )=ln (1+x )-x x +1,x ≥0,则f ′(x )=11+x-1x +2=x x +2≥0,故函数f (x )在[0,+∞)上单调递增,所以当x >0时,f (x )>f (0)=0,即xx +1<ln (1+x ).令x =1n -1,n ≥2,则1n <ln ⎝ ⎛⎭⎪⎫1+1n -1,从而可得12<ln ⎝ ⎛⎭⎪⎫1+12-1,13<ln ⎝ ⎛⎭⎪⎫1+13-1,…,1n <ln ⎝ ⎛⎭⎪⎫1+1n -1,将以上n -1个式子同向相加即得12+13+…+1n <ln ⎝ ⎛⎭⎪⎫1+12-1+ln ⎝ ⎛⎭⎪⎫1+13-1+…+ln ⎝ ⎛⎭⎪⎫1+1n -1=ln⎝ ⎛⎭⎪⎫21×32×…×n n -1=ln n ,故S n <2+2⎝ ⎛⎭⎪⎫12+13+…+1n <2+2ln n . 综上可知,S n <2+2ln n .5.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1,所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14nn -n +=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1.当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.所以T n=⎩⎨⎧2n +2n ,n 为奇数,2n2n +1,n 为偶数.。

高考数学(理)大一轮复习习题:第六章 数列 word版含答案

高考数学(理)大一轮复习习题:第六章 数列 word版含答案

第六章⎪⎪⎪数 列第一节数列的概念与简单表示 突破点(一) 数列的通项公式基础联通 抓主干知识的“源”与“流” 1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.考点贯通 抓高考命题的“形”与“神”由数列的前几项求数列的通项公式[例1] 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1. (2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因式(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+(-1)nn .也可写为a n=⎩⎨⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[方法技巧]由数列的前几项求通项公式的思路方法给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n-1来调控.(3)熟悉一些常见数列的通项公式.(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.利用a n 与S n 的关系求通项[例2] n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ; (2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2×3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式.所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2. [方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n ,则a n =________;(2)若数列{a n }满足a 1=23,a n +1=n n +1a n ,则通项a n =________;(3)若数列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.[解析] (1)由条件知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+1n -1-1n , 即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n .(2)由a n +1=n n +1a n (a n ≠0),得a n +1a n =nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·…·12·23=23n. (3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3. (4)∵a n +1=2a na n +2,a 1=1, ∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.(5)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( ) A .①②③ B .①②④ C .②③④ D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n-12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n-12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设数列{a n }满足a 1=1,且a n +1-a n =n +1,求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).5.[考点三]若数列{a n }满足:a 1=1,a n +1=a n +2n ,求数列{a n }的通项公式.解:由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n-2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n -1.突破点(二) 数列的单调性基础联通 抓主干知识的“源”与“流” 数列的分类分类标准 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间的大小关系分类 递增数列 a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他标准分类有界数列 存在正数M ,使|a n |≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项考点贯通 抓高考命题的“形”与“神”利用数列的单调性研究最值问题[例1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1, 即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列,所以a n =a 1·2n -1=2λ·2n -1=2nλ. 综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)知b n =lg 1002n =2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.(2)作商比较法①当a n >0时,a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n <1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列.②当a n <0时,a n +1a n>1⇔数列{a n }是单调递减数列;a n +1a n<1⇔数列{a n }是单调递增数列;a n +1an=1⇔数列{a n }是常数列.2.求数列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.利用数列的单调性求参数的取值范围[例2] 已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎡⎭⎫83,3 C .(2,3)D .(1,3)[解析] 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2≤a ,解得83≤a <3,所以实数a 的取值范围是⎣⎡⎭⎫83,3.[答案] B [方法技巧]已知数列的单调性求参数取值范围的两种方法(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.1.[考点一]设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0解析:选D a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减数列.设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增数列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9. 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a2的单调性,知5<2-a2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律] 1.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. 解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1, ∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.答案:-1n2.数列{a n}满足a n+1=11-a n, a8=2,则a1=________.解析:将a8=2代入a n+1=11-a n,可求得a7=12;再将a7=12代入a n+1=11-a n,可求得a6=-1;再将a6=-1代入a n+1=11-a n,可求得a5=2;由此可以推出数列{a n}是一个周期数列,且周期为3,所以a1=a7=1 2.答案:1 23.若数列{a n}的前n项和S n=23a n+13,则{a n}的通项公式是a n=________.解析:当n=1时,由已知S n=23a n+13,得a1=23a1+13,即a1=1;当n≥2时,由已知得到S n-1=23a n-1+13,所以a n=S n-S n-1=⎝⎛⎭⎫23a n+13-⎝⎛⎭⎫23a n-1+13=23a n-23a n-1,所以a n=-2a n-1,所以数列{a n}为以1为首项,以-2为公比的等比数列,所以a n=(-2)n-1.答案:(-2)n-14.已知各项都为正数的数列{a n}满足a1=1,a2n-(2a n+1-1)a n-2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.解:(1)由题意可得a2=12,a3=14.(2)由a2n-(2a n+1-1)a n-2a n+1=0得2a n+1(a n+1)=a n(a n+1).因此{a n}的各项都为正数,所以a n+1a n=12.故{a n}是首项为1,公比为12的等比数列,因此a n=12n-1.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列1,23,35,47,59,…的一个通项公式a n=()A.n2n+1B.n 2n-1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n 2n -1.2.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8 D .10 解析:选C a 4=S 4-S 3=20-12=8.3.已知数列{a n }满足a 1=1,a n +1a n =2n (n ∈N *),则a 10=( ) A .64 B .32 C .16 D .8解析:选B ∵a n +1a n =2n ,∴a n +2a n +1=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,∴a 2=2.则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25=32. 4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________. 解析:令5n =t >0,考虑函数y =t +1t ,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x ,当0<x ≤1时,t ∈(1,5],则可知a n =5n +⎝⎛⎭⎫15n 在(0,1]上单调递增,所以当n =110时,a n 取得最小值. 答案:110[练常考题点——检验高考能力]一、选择题1.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.3.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎫473-23k ·⎝⎛⎭⎫453-23k <0,∴452<k <472,∴k =23,故选C. 5.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A.1210 B.129 C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.二、填空题7.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n -1=2n ,∴a 5+1=25,即a 5=31.答案:318.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该数列的第10项.答案:109.已知数列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n -p )⎝⎛⎭⎫1a n+1,b 1=-p ,且数列{b n }是单调递增数列,则实数p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n +1,则1a n +1+1=21a n+1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n +1是等比数列,所以1a n +1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由数列{b n }是单调递增数列,得2n (n -p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0,∴(a n +1+a n )[(n +1)a n +1-na n ]=0,又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n=nn +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n . 答案:1n三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②,整理得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 第二节等差数列及其前n 项和突破点(一) 等差数列的性质及基本量的计算1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.考点贯通 抓高考命题的“形”与“神”等差数列的基本运算[例1] (1)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4(2)已知等差数列{a n }的前n 项和为S n ,若S 3=6,a 1=4,则公差d 等于( ) A .1 B.53 C .-2D .3[解析] (1)∵a 1+a 5=2a 3=10, ∴a 3=5,则公差d =a 4-a 3=2,故选B. (2)由S 3=3(a 1+a 3)2=6, 且a 1=4,得a 3=0, 则d =a 3-a 13-1=-2,故选C.[答案] (1)B (2)C [方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2] (1)n 396n n 的前n 项和,则S 11=( )A .18B .99C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. [解析] (1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9, 所以3a 6=27,所以a 6=9, 所以S 11=112(a 1+a 11)=11a 6=99.(2)因为{a n },{b n }都是等差数列, 所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)21能力练通 抓应用体验的“得”与“失” 1.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用基础联通 抓主干知识的“源”与“流” 等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S偶=n ∶(n -1).(4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.考点贯通 抓高考命题的“形”与“神”等差数列前n 项和的性质[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20等差数列前n 项和的最值[例2] n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9, 又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线, 由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示), 由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p=S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225. ∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n+1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n=7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整数,故使得a nb n为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162. 又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明基础联通 抓主干知识的“源”与“流” 等差数列的判定与证明方法 方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{an }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法验证S n =An 2+Bn (A ,B是常数)对任意的正整数n 都成立⇔{a n }是等差数列考点贯通 抓高考命题的“形”与“神”等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22.又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n , ∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192 C .10 D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( ) A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m=3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0, 得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37. 3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .9B .8C .7D .6解析:选D 设等差数列{a n }的公差为d .因为a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考能力]一、选择题1.在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n+n (n -1)2×2=n 2,所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎫1+212n -12≤121.即S n +10a 2n的最大值为121.二、填空题7.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是________.解析:由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d 2=1,所以d =2.答案:28.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于________. 解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3.根据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.答案:39.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:132。

高考数学(北师大理)一轮复习文档:第六章 数列 第2节 Word含答案

高考数学(北师大理)一轮复习文档:第六章 数列 第2节 Word含答案

第2节 等差数列及其前n 项和最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就为等差数列.数学语言表达式:a n +1-a n =d (n ∈N +,d 为常数).(2)如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫作a 与b 的等差中项,即A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N +). (2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N +). 3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和.(1)若m +n =p +q (m ,n ,p ,q ∈N +),则有a m +a n =a p +a q .(2)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (4)数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 4.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.[常用结论与微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N +,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A.-1 B.0 C.1D.6解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0. 答案 B3.(2016·全国Ⅰ卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100 B.99 C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1,所以a 100=a 1+99d =-1+99=98. 答案 C4.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为______.解析 由题意知d <0且⎩⎪⎨⎪⎧a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.答案 ⎝ ⎛⎭⎪⎫-1,-785.(教材习题改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 180考点一 等差数列基本量的运算【例1】 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N +有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A.2B.10C.52D.54(2)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A.1B.2C.4D.8解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52.(2)设{a n }的公差为d ,首项为a 1, 由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧2a 1+7d =24, ①6a 1+15d =48, ②解得d =4. 答案 (1)C (2)C规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)(2015·全国Ⅰ卷)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10等于( ) A.172 B.192 C.10D.12(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)由S 8=4S 4,得8a 1+8×72×1=4×⎝ ⎛⎭⎪⎫4a 1+4×32×1,解得a 1=12,∴a 10=a 1+9d =192.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)B (2)30考点二 等差数列的判定与证明(典例迁移)【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式. 故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2).所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【迁移探究2】 将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”改为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.(1)证明 当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0. ∴S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0.即1S n -1S n -1=12. 又1S 1=1a 1=12. 故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列. (2)解 由(1)知1S n=n 2,∴S n =2n ,当n ≥2时,a n =S n -S n -1=-2n (n -1).当n =1时,a 1=2不适合上式, 故a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. 规律方法 等差数列的证明方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N +)都成立. 考点三 等差数列的性质及应用【例3】 (1)(2018·宝鸡质检)等差数列{a n }的前n 项和为S n ,且a 3+a 9=16,则S 11=( ) A.88B.48C.96D.176(2)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 (1)依题意得S 11=11(a 1+a 11)2=11(a 3+a 9)2=11×162=88.(2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45. 答案 (1)A (2)B规律方法 等差数列的常用性质和结论(1)在等差数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N +),则a m +a n =a p +a q =2a k .(2)在等差数列{a n }中,数列 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.【训练2】 (1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( ) A.13B.12C.11D.10(2)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S nT n=2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析 (1)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146, a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180, 又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60, 所以S n =n (a 1+a n )2=n ×602=390,即n =13.(2)因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.故a 6b 6=2a 62b 6=a 1+a 11b 1+b 11=S 11T 11=2×11-34×11-3=1941. 答案 (1)A (2)1941考点四 等差数列前n 项和及其最值【例4】 (1)(一题多解)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( ) A.5B.6C.7D.8(2)设数列{a n }的通项公式为a n =2n -10(n ∈N +),则|a 1|+|a 2|+…+|a 15|=________.解析 (1)法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大. (2)由a n =2n -10(n ∈N +)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 (1)C (2)130规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【训练3】 (1)设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( ) A.5B.6C.5或6D.11(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(2)因为等差数列{a n }的首项a 1=20,公差d =-2, S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N +,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)C (2)110基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·安徽江南十校联考)已知数列{a n }是等差数列,a 3+a 13=20,a 2=-2,则a 15=( ) A.20B.24C.28D.34解析 由已知,得a 3+a 13=2a 8=20,∴a 8=10,又a 2=-2,∴d =2,∴a 15=a 2+13d =-2+13×2=24. 答案 B2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( ) A.10B.20C.30D.40解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10. 答案 A3.(2018·郑州质检)已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A.-45B.-54C.413D.134解析设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由已知,得14=1+3d ,解得d =-14,所以1a10=1+9×⎝ ⎛⎭⎪⎫-14=-54,即a 10=-45. 答案 A4.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24B.-3C.3D.8解析 根据题意得a 23=a 2·a 6,即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24. 答案 A5.(2018·东北三省三校联考)已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论中错误的是( ) A.S 9=0 B.S 5最小 C.S 3=S 6D.a 5=0解析 由题意知a 1+2(a 1+d )=5a 1+5×42d ,则a 5=0, ∴a 4+a 6=0,∴S 3=S 6,且S 9=9a 5=0,故选B. 答案 B二、填空题6.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.答案 607.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N +,n ≥2),则a 7=________. 解析 由2a 2n =a 2n +1+a 2n -1(n ∈N +,n ≥2),得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19.答案 198.已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 解析 因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+a 6=21. 答案 21三、解答题9.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎨⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25. 所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.(2018·桂林、百色、崇左调研)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解 (1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N +).(2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 能力提升题组(建议用时:20分钟)11.(2017·石家庄模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为( )A.36B.6C.4D.2解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故a 6·a 7的最大值为4. 答案 C12.(2018·河南百校联盟联考)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由细到粗是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2…<a 10,若48a i =5M ,则i =________. 解析 根据题意知,由细到粗每段的重量成等差数列,记为{a n },设公差为d ,则⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4,解得⎩⎪⎨⎪⎧a 1=1516,d =18.所以该金杖的总重量M =10×1516+10×92×18=15,因为48a i =5M ,所以48⎣⎢⎡⎦⎥⎤1516+(i -1)×18=75,即39+6i =75,解得i =6. 答案 613.(2018·九江联考)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N +).(1)求a 2的值并证明:a n +2-a n =2;(2)求数列{a n }的通项公式.解 (1)令n =1得2a 1a 2=4S 1-3,又a 1=1,∴a 2=12. 2a n a n +1=4S n -3, ①2a n +1a n +2=4S n +1-3. ②②-①得,2a n +1(a n +2-a n )=4a n +1.∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,∴a 2k -1=1+2(k -1)=2k -1,当n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,∴a 2k =12+2(k -1)=2k -32,则当n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组层级快练(三十一)1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( )A .3B .4C .5D .6答案 C2.在等比数列{a n }中,若公比q =2,S 4=1,则S 8的值为( ) A .15 B .17 C .19 D .21答案 B3.(2016·安徽芜湖五联考)在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( )A .1B .-12C .1或-12D .-1或12答案 C解析 根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,①a 1+a 1q +a 1q 2=21,②②÷①得1+q +q 2q2=3. 整理得2q 2-q -1=0,解得q =1或q =-12.4.设等比数列{a n }的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8答案 B解析 ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎨⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0,(舍去)故所求的公比q =4.5.在公比为正数的等比数列中,a 1+a 2=2,a 3+a 4=8,则S 8等于( ) A .21 B .42 C .135D .170答案 D解析 方法一:S 8=(a 1+a 2)+(a 3+a 4)+(a 5+a 6)+(a 7+a 8)=2+8+32+128=170. 方法二:q 2=a 3+a 4a 1+a 2=4,又q>0,∴q =2.∴a 1(1+q)=a 1(1+2)=2,∴a 1=23.∴S 8=23·(28-1)2-1=170.6.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数( )A .4B .5C .6D .7答案 B解析 ∵q ≠1(14≠78),∴S n =a 1-a n q 1-q ,∴778=14-78q1-q .解得q =-12,78=14×(-12)n +2-1,∴n=3.故该数列共5项.7.(2016·沧州七校联考)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73 C.83 D .3答案 B解析 由S 6S 3=3知该等比数列的公比q ≠-1,则S 3,S 6-S 3,S 9-S 6仍成等比数列,于是由S 6=3S 3,可推出S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.8.在等比数列{a n }中,a 1=1,公比q ≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12答案 C解析 a m =a 1a 2a 3a 4a 5=q·q 2·q 3·q 4=q 10=a 1q 10,所以m =11.9.(2016·河北唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1答案 D解析 ∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54.②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2.∴a n =2×(12)n -1=42n .∴S n =2×[1-(12)n ]1-12=4(1-12n ).∴S na n =4(1-12n )42n=2n -1,选D. 10.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 52,a 2=1,则a 1=( ) A.12 B.22C. 2 D .2答案 B解析 因为a 3·a 9=2a 52,则由等比数列的性质有:a 3·a 9=a 62=2a 52,所以a 62a 52=2,即(a 6a 5)2=q 2=2.因为公比为正数,故q = 2.又因为a 2=1,所以a 1=a 2q =12=22.11.设S n 是等比数列{a n }的前n 项和,a 3=32,S 3=92,则公比q =( )A.12B .-12C .1或-12D .1或12答案 C解析 当q =1时,a 1=a 2=a 3=32,S 3=a 1+a 2+a 3=92,符合题意;当q ≠1时,由题可得⎩⎪⎨⎪⎧a 3=a 1q 2=32,S 3=a 1(1-q 3)1-q =92,解得q =-12.故q =1或q =-12.12.(2016·浙江湖州一模)设S n 为等比数列{a n }的前n 项和,若8a 2-a 5=0,则S 4S 2=( )A .-8B .5C .8D .15答案 B解析 ∵在等比数列{a n }中,8a 2-a 5=0,∴公比q =2.∴S 4S 2=a 1(1-24)1-2a 1(1-22)1-2=5,故选B.13.(2015·浙江)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________. 答案 23;-1解析 ∵a 2,a 3,a 7成等比数列,∴a 32=a 2a 7,即(a 1+2d)2=(a 1+d)·(a 1+6d),解得d =-32a 1①,∵2a 1+a 2=1,∴3a 1+d =1②,由①②可得a 1=23,d =-1.14.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 由等比数列的性质,得a 3+a 5=(a 2+a 4)q ,解得q =a 3+a 5a 2+a 4=2,又∵a 2+a 4=a 1(q +q 3)=20,∴a 1=2,∴S n =a 1(1-q n )1-q=2n +1-2.15.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. 答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2.16.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________. 答案 -2,2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.17.已知{a n }是等比数列,S n 是其前n 项和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6成等比数列. 答案 略证明 由已知得2a 1q 6=a 1+a 1q 3,即2q 6-q 3-1=0,得q 3=1或q 3=-12.当q 3=1即q =1,{a n }为常数列,S 62S 3=S 12-S 6S 6命题成立.当q 3=-12时,S 62S 3=1-q 62(1-q 3)=14. S 12-S 6S 6=1-q 121-q 6-1=14.∴命题成立. 18.(2016·山西大同质检)成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b5. (1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.答案 (1)b n =5×2n -3 (2)略解析 (1)设成等差数列的三个正数分别为a -d ,a ,a +d. 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d ,10,18+d.依题意,有(7-d)(18+d)=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1×22,解得b 1=54.所以{b n }是以54为首项,以2为公比的等比数列,其通项公式为b n =54×2n -1=5×2n -3.(2)证明:由(1)得数列{b n }的前n 项和S n =54(1-2n )1-2=5×2n -2-54,即S n +54=5×2n -2.所以S 1+54=52,S n +1+54S n +54=5×2n -15×2n -2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.1.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( ) A .2 B .3 C .4 D .8答案 A解析 依题意得a 2 016a 2 013=q 3=8,q =2,选A.2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或3答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1.3.(2015·浙江金丽衢十二校二联)在等比数列{a n }中,a 1=3,a 4=24,则a 3+a 4+a 5=( ) A .33 B .72 C .84 D .189答案 C解析 由题意可得q 3=8,∴q =2. ∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=84.4.(2015·浙江温州十校联考)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m =( )A .3B .4C .5D .6答案 C解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =a m +1a m =-2.又S m =a 1-a m q 1-q=-11,故a 1=-1.又a m =a 1·q m -1=-16,故(-1)×(-2)m -1=-16,求得m =5.5.(2013·新课标全国Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13C.19 D .-19答案 C解析 由已知条件及S 3=a 1+a 2+a 3,得a 3=9a 1,设数列{a n }的公比为q ,则q 2=9. 所以a 5=9=a 1·q 4=81a 1,得a 1=19,故选C 项.6.(2016·武汉调研)在等比数列{a n }中,a n >0,若a 1·a 5=16,a 4=8,则a 5=( ) A .16 B .8 C .4 D .32 答案 A解析 方法一:∵数列{a n }是正项等比数列,∴a 1·a 5=a 1·a 1q 4=16⇒a 1q 2=4①,又a 4=8⇒a 1q 3=8②,由①②得,q =2,∴a 5=a 4q =8×2=16. 方法二:由a 1·a 5=a 32=16 ⇒a 3=4,q =2.7.(2016·上海黄浦模拟)已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1a n }的前4项和为( )A.158或4 B.4027或4 C.4027 D.158 答案 C解析 设数列{a n }的公比为q.当q =1时,由a 1=1,得28S 3=28×3=84.S 6=6,两者不相等,因此不合题意. 当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q ,解得q =3.所以数列{a n }的通项公式为a n =3n -1. 所以数列{1a n }的前4项和为1+13+19+127=4027.8.设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5 D .159.5答案 C解析 因为1+2a n =(1+2a 1)·2n -1,则 a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.9.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 答案 240。

相关文档
最新文档