Ceram.Int.,2014,40,5307–Fe掺杂ZnO粉末的制备、介电性质及红外发射率研究

合集下载

稀土Ce掺杂ZnO光催化剂的制备及研究

稀土Ce掺杂ZnO光催化剂的制备及研究

稀土Ce掺杂ZnO光催化剂的制备及研究
潘荣飞;郑兴芳
【期刊名称】《广东化工》
【年(卷),期】2017(044)007
【摘要】以硝酸锌、柠檬酸、尿素为原料,通过水热法,制得了掺杂了不同含量的稀土Ce的纳米氧化锌的前驱体.通过在不同温度下煅烧纳米氧化锌前驱体,得到目标产物.进而以亚甲基蓝(MB)为目标降解物,对纳米氧化锌的光催化活性进行研究,考察了铈的不同掺杂量和不同的煅烧温度对于ZnO的光催化活性的影响.同时对样品进行了热重、透射电子显微、傅里叶红外的表征.实验结果表明,稀土掺杂量为2%,焙烧温度为400℃的ZnO的光催化活性较好,颗粒接近球形.
【总页数】3页(P35-36,47)
【作者】潘荣飞;郑兴芳
【作者单位】临沂大学化学化工学院,山东临沂276000;临沂大学化学化工学院,山东临沂276000
【正文语种】中文
【中图分类】O643
【相关文献】
1.稀土Ce掺杂六方相WO3光催化剂的制备及性能 [J], 牛微;张忠琪;钟洪禄;张宇;张晨;荆生雨
2.Ce掺杂ZnO光催化剂的制备及性能 [J], 陈红梅;郭红霞;秦振平;
3.稀土元素Ce掺杂TiO2光催化剂制备及微波强化光催化活性 [J], 李曼弯;张美;毕先均
4.基于ZIF的Ce掺杂ZnO光催化剂催化降解亚甲基蓝废水研究 [J], 金伟星;王丛洁;朱璐莎;姜洁;陈英
5.共沉淀法制备稀土Ce掺杂的纳米ZnO及其光催化降解染料的性能 [J], 钟伟; 夏颖帆; 翟杭玲; 高越; 李世慧; 吕春欣
因版权原因,仅展示原文概要,查看原文内容请购买。

Fe掺杂ZnO纳米粒子的制备及表征论文

Fe掺杂ZnO纳米粒子的制备及表征论文

.毕业论文(设计) 论文题目:Fe掺杂ZnO纳米粒子的制备及表征Fe掺杂ZnO纳米粒子的制备及表征摘要:目的开展Fe掺杂ZnO纳米粒子的制备及表征的研究工作。

方法以硝酸锌、硝酸铁、氢氧化钠等为原料,采用沉淀法合成Fe掺杂ZnO纳米粒子,并对样品进行表征。

用WCT-2A型热重分析仪对样品进行TG-DTA测试;用X-射线衍射仪测试样品的晶型结构;用UV-Vis分光光度计记录样品DRS光谱。

结果通过沉淀法成功地合成了纯ZnO、及Fe含量为(0.5%、1%、3%、5%)的Fe-ZnO纳米粒子,并对样品进行表征。

结论掺杂的铁离子进入了ZnO的晶格取代了锌,拓展了样品的光学响应X围;并且,适量的Fe掺杂也丰富了ZnO纳米粒子的表面态(表面缺陷)并改善了与之相关的光生载流子的分离效率。

关键词:ZnO;Fe掺杂;沉淀法;表征Fe Doped ZnO Nanoparticles and Characterization Abstract: Object Fe doped ZnO nanoparticles to carry out the preparation and characterization of the study. Methods zinc nitrate, ferric nitrate, sodium hydroxide as raw materials, synthesis of Fe doped ZnO precipitation of nanoparticles, and the samples were characterized.With a WCT-2A type TGA TG-DTA samples were tested; By X-Ray diffraction crystal structure of the test sample; using UV-Vis DRS spectra recorded sample spectrophotometer.Results Successfully synthesized through the precipitation of pure ZnO, and Fe content (0.5%, 1%, 3%, 5%) of the Fe-ZnO nano-particles, and the samples were characterized.Conclusions Iron doped into the ZnO lattice replaced by zinc, corresponding to expand the scope of the optical sample; and the appropriate amount of Fe doped ZnO nanoparticles are also enriched in the surface states (surface defects) and the associated improved Photogenerated carrier separation efficiency.Keywords:ZnO; Fe doped; precipitation; Characterization目录摘要ⅠAbstractⅡ前言 (1)1 仪器试剂111.1 仪器111.2 试剂112 实验方法112.1Fe-ZnO纳米粒子的制备112.1.1纯ZnO前驱物的制备 (12)2.1.2Fe-ZnO前驱物的制备 (13)2.1.3目标产物Fe-ZnO纳米粒子的制备 (13)2.2 样品表征133 实验结果133.1TG-DTA测试133.2 XRD测试143.3 UV-Vis DRS测试164 讨论 (17)结论18致谢19参考文献20附录 (21)附录Ⅰ(英)21附录Ⅱ(中)24前言氧化锌(ZnO)是一种重要的直接宽带隙半导体材料,其室温禁带宽度为3.37eV。

Fe掺杂ZnO纳米粒子的结构和介电性能

Fe掺杂ZnO纳米粒子的结构和介电性能

Fe掺杂ZnO纳米粒子的结构和介电性能摘要Fe x O(其中x= 0.00,0.005,0.01,0.02,0.03,用溶液燃烧法制备了纳米Zn1-x0.04)粉末。

该粉末样品用X-射线衍射(XRD)、傅里叶变换红外光谱、扫描电子显微镜(SEM)和X射线能量色散分析(EDAX)进行表征。

X射线衍射图形显示组成为单相纤锌矿结构。

平均粒径为19~34 nm。

SEM图像显示了材料的高孔隙率。

介电研究是在室温下1~5 MHz的频率范围内进行的,并使用不同的机制来解释所观察到的行为。

关键词:氧化物材料;溶液燃烧;X-射线衍射;介电质的研究1前言近年来,科学家们高度重视II-VI 族纳米尺度半导体材料的合成与表征,因为其在量子力学[1,2]中巨大的测试基本概念对的潜力,以及它们在各种应用中的关键作用,如固体状态发光器件(LED)、光电[3]、纳米电子学[4]、光电子学和数据存储等。

氧化锌(ZnO)为n 型金属氧化物半导体具有宽直接带隙(3.37 eV)和激子结合能60 meV ,适用于各种应用的性能如紫外线光电器件,透明的高电源和高频电子器件,压电电子传感器和化学气体传感器[5]。

纳米材料的研究很有趣,因为他们有趣的性质和应用[6-13]。

ZnO 的电学性质非常依赖于的组合物和它的结构。

李教授的铁电材料和掺杂ZnO 薄膜的介电性能已经由王教[14]等人研究了。

Oshio [15]等人研究了在ZnO 中掺杂Mn 的作用,决定在其膜的漏电流的上升下降。

他们还研究了ZnO:Mn 膜的介电性能,并展现了大电阻率材料的整体性质。

韩教授等人[16]已经研究了低频介电性能和横向光学声子模式中的ZnO 单晶。

王艳红等人[17]研究了ZnO 纳米棒的表面光电压。

Hsu 和Huang [18]研究了掺杂ZnO(Zr 0.8Sn 0.2)的TiO 4薄膜的介电常数,随频率的增加而减小。

Youn 等人[19]也支持Hsu 和Huang 的研究结果[18]。

ZnO半导体薄膜的制备及其掺杂特性的研究的开题报告

ZnO半导体薄膜的制备及其掺杂特性的研究的开题报告

ZnO半导体薄膜的制备及其掺杂特性的研究的开题报告
题目:ZnO半导体薄膜的制备及其掺杂特性的研究
研究背景:
ZnO半导体材料由于其带隙宽度大、光学性质优良、热稳定性强等优点,在太阳能电池、荧光显示器、光电传感器等领域有着广泛的应用前景。

其中,ZnO薄膜作为一种
新兴的半导体材料,具有体积小、制备工艺简单、成本低等优点,在微电子学器件、
光电器件等领域也有着广泛的应用前景。

研究内容:
本次研究的主要内容是利用射频磁控溅射技术制备ZnO薄膜,并探究掺杂对ZnO薄膜的结构和性质的影响。

具体研究内容包括以下几个方面:
1. 利用射频磁控溅射技术在Si衬底上制备ZnO薄膜,并考察不同制备参数对薄膜结构和光学性质的影响。

2. 采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线谱(EDS)等测试手段分析ZnO薄膜的结构和形貌特征。

3. 通过光致发光(PL)光谱测试探究掺杂对ZnO薄膜光电性质的影响,并分析其机理。

4. 选取几种常见的掺杂元素(Fe、Al、Mn等)掺杂ZnO薄膜,并比较不同掺杂元素
对薄膜光学性质的影响。

研究意义:
通过本次研究,可以为进一步理解ZnO半导体薄膜的物理和化学性质提供新的思路和实验基础,同时也可以为ZnO薄膜在光电器件领域的应用提供参考。

Co、Mn、Cr等掺杂ZnO陶瓷的合成及电磁性能

Co、Mn、Cr等掺杂ZnO陶瓷的合成及电磁性能

Co、Mn、Cr等掺杂ZnO陶瓷的合成及电磁性能采用低温固相化学法合成掺杂ZnO粉体,并用这种粉体在不同温度下烧结制备了ZnO压敏电阻。

借助XRD、SEM、TEM、BET等检测手段对粉体产物的性能进行了表征,采用XRD、SEM等手段对ZnO压敏陶瓷的物相、结构进行了分析,并对这种方法制备的粉体及压敏电阻的性能进行了研究。

而且研究了不同浓度Cr、Co和Mn的掺杂对ZnO-PbO-B2O3陶瓷压敏特性的影响。

实验表明,ZnO平均晶粒尺寸随各元素掺杂量增加而逐渐变大,压敏电压也随之升高,非线性系数随各元素掺杂量增加而先增大后减小,漏电流先减小后增大。

分析认为,过渡族金属元素掺杂对ZnO压敏材料电性能的影响不仅与电子的能级有关,与其自旋特性也紧密相连。

ZnO中掺杂的Cr、Mn、Co元素随机取代其中的部分Zn原子后,Cr2+、Mn2+、C02+在ZnO中产生局域磁矩,会对与其取向不同的自旋电子产生强的散射,这样可增大ZnO陶瓷电阻率和提高其非线性特性。

关键词:压敏材料,电性能,过渡元素,低温固相化学法,压敏电阻AbstractThe powders of doped ZnO were synthesized by the solid-state reaction at a low temperature.Then the ZnO varistors were prepared at different sintering temperatures. The properties of the powders were characterized by means of XRD,SEM,TEM and BET,and the composition, microstructure of ZnO varistors were determined by XRD and SEM.And The effects of amount of Cr,Co and Mn doping on the current-voltage characteristics of ZnO-PbO-B203 varistor are summarized.It was found that the average grain size of ZnO and the breakdown voltage gradient increased with the increase of the concentration of C0203,Mn02 and Cr203,the nonlinearity coefficients will be greatly increased and then decreased,but leakage current density decreased and then increased.The current-voltage characteristics of ZnO decided by the electronic energy level structure,and associated with electronic spin of transition metal elements.Portionof Zn in ZnO crystal randomly substituted by Mn,Cr or Co elements,gave rise to localized magnetic moments and the highly scattering to electronics with different spin orientation,favorable for increasing the resistivity and nonlinear characteristics of ZnO varistor.Key words:vailstor;electrical properties;transition-metal elements;solid-state reaction at a low temperature; doped ZnO powders varistor1、前言ZnO是一种原料丰富,用途极广的材料。

Ce掺杂ZnO螺丝刀状纳米材料的制备及其光学特性研究

Ce掺杂ZnO螺丝刀状纳米材料的制备及其光学特性研究
摘要:采用溶胶 -凝胶和化学气相沉积相结合的方法,制备一种 Ce掺杂 ZnO纳 米材料,对其结构、形貌、能带结构和发光特性等进行分析,结果表明:该纳米材 料形状类似螺丝刀,由六方微米基底和纳米棒顶两部分组成,具有很好的单晶 结构;其制备过程符合 VLS生长机制,且 Zn和 Ce蒸气浓度对各个晶面的生长 速度有非常大的影响;与纯 ZnO纳米材料相比,该纳米材料中的 Zn2p3/2峰向低 能级转移,而 O1s峰向高能级转移,Ce的掺杂影响了 ZnO的电子结构和带隙结 构;其紫外发射峰强度降低并伴有红移,且绿光发射强度得到提高.该方法制备 的纳米材料,在组装纳米器件方面有很好的应用前景.
0 前言
纳米材料由于具有独特的物理化学性能, 被广泛应用于光电器件、传感器、催化剂和复 合材料等方面.Ⅱ—Ⅵ族直接带隙宽禁带半导 体氧化物 ZnO具有较高的化学稳定性,其禁带 宽度为 3.37eV,激子结合能为 0.06eV,可以 用作可见光和紫外光发射材料.因此,ZnO纳米 材料的制备及其物理化学特性的研究,引起了 众多学者的关注.目前,制备 ZnO纳米材料的 方法有很多,常见的方法有化学气相沉积法、金 属有机化学气相沉积法、脉冲激光沉积法、溶 胶 -凝胶模板法和湿化学法等[1],包括纳米线、 纳米棒、纳 米 带、纳 米 管 等 在 内 的 多 种 类 型 的 ZnO纳米材 料 已 被 成 功 地 制 备 出 来[2-4],并 组 装成多种纳米器件[5-7].为了进一步改善 ZnO 纳米材料的光电磁性能,扩大其应用范围,许多 研究者通过元素掺杂的方法对其进行改性,制 备准一维 ZnO纳米材料,如 Co[8],Li[9],Mn[10], Ni[11]等.
收稿日期:2018-09-22 基金项目:国家自然科学基金项目(11405148);河南省质量技术监督局科技项目 (2017ZJ015) 作者简介:巩合春(1979—),男,河南省驻马店市人,国家电光源产品质量监督检验中心高级工程师,硕士,主要研究方向

一种掺杂纳米ZnO粉末涂料[发明专利]

一种掺杂纳米ZnO粉末涂料[发明专利]

专利名称:一种掺杂纳米ZnO粉末涂料专利类型:发明专利
发明人:陈翠莲
申请号:CN201410794395.7
申请日:20141221
公开号:CN104497865A
公开日:
20150408
专利内容由知识产权出版社提供
摘要:本发明涉及一种掺杂纳米ZnO粉末涂料,该涂料的制备方法是:取一定量有机硅树脂,加入硬脂酸锌分散剂混合均匀,再滴入丙烯酸树脂乳液,乳化后加入滑石粉,再加入纳米ZnO粉末,分散搅拌处理,然后加入醋酸纤维素,充分混合即得产品。

申请人:陈翠莲
地址:542899 广西壮族自治区贺州市八步区贺州大道20-1号
国籍:CN
更多信息请下载全文后查看。

zno陶瓷片的生产工艺流程

zno陶瓷片的生产工艺流程

zno陶瓷片的生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!ZnO陶瓷片,即氧化锌陶瓷片,是一种常用于电子元器件、传感器、加热元件等领域的陶瓷材料。

Fe掺杂纳米ZnO光催化降解亚甲基蓝

Fe掺杂纳米ZnO光催化降解亚甲基蓝

Fe掺杂纳米ZnO光催化降解亚甲基蓝∗姚婷;弓莹【摘要】采用NAC-FAS工艺直接制备了不同掺杂比例的纳米Fe掺杂ZnO样品,利用SEM和UV-Vis等方法对样品的结构及光学性质进行了表征。

结果表明:在89℃下,以二水合乙酸锌、氢氧化钠、三氯化铁为出发原料,在醇水溶液体系中直接合成了Fe掺杂纳米ZnO, Fe的掺杂没有引入新的杂相。

随着Fe掺杂比例的增加ZnO的光催化活性增加,当Fe掺杂比例为9%时的Fe-ZnO纳米晶光催化活性最优。

%The samples of nanometer Fe-ZnO with different doping concentration were direct prepared by NAC-FAS method. The structure, morphology and optical properties with Fe-ZnO were examined by X-ray diffraction, scanning electron microscope and UV-Vis spectrophotometer. The results showed that Fe-doped nanometer ZnO with hexagonal wurtzite structure was prepared without any secondary phases below 89 ℃ in ethanol-water solution, Zn(Ac)2 ·2H2O, NaOH and FeCl3 as the starting material. The photocatalytic activity of Fe-ZnO increased with the increase of the proportion of Fe ion. The photocatalytic properties of Fe-doped ZnO was better than others when the proportion of Fe ion was 9%.【期刊名称】《广州化工》【年(卷),期】2016(044)018【总页数】3页(P69-71)【关键词】ZnO;掺杂;光催化;亚甲基蓝【作者】姚婷;弓莹【作者单位】榆林学院化学与化学工程学院,陕西榆林 719000;榆林学院化学与化学工程学院,陕西榆林 719000【正文语种】中文【中图分类】TB383纳米级ZnO(1 ~100 nm),又称为超微细ZnO,由于颗粒尺寸的细微化,使得纳米ZnO表现出了比普通ZnO更多的特殊性,如荧光性、无毒、非迁移性、吸收和散射紫外线能力、压电性[1-2]。

溶胶-凝胶法制备高光催化活性的Fe掺杂纳米ZnO

溶胶-凝胶法制备高光催化活性的Fe掺杂纳米ZnO

溶胶-凝胶法制备高光催化活性的Fe掺杂纳米ZnO王鉴;赵海涛;孟庆明【摘要】采用溶胶-凝胶法制备了Fe掺杂的纳米ZnO光催化剂,利用XRD、SEM 和UV-Vis等分析方法对其结构进行了表征,并考察了其脱除模拟油品中吡啶的光催化活性.结果表明:制得的Fe掺杂纳米ZnO为六方纤锌矿结构的纳米球形颗粒,Fe 掺杂不改变ZnO的晶体结构,但可以使晶粒细化.Fe掺杂纳米ZnO可使其光吸收边发生红移,并在可见光区具有较强吸收,进而提高了光催化活性.n(Fe)∶n(Zn)=0.8%的Fe掺杂纳米ZnO光催化剂对吡啶的降解率最高,为87.68%.【期刊名称】《化工科技》【年(卷),期】2016(024)003【总页数】4页(P46-49)【关键词】溶胶凝胶法;氧化锌;掺杂;光催化降解【作者】王鉴;赵海涛;孟庆明【作者单位】东北石油大学化学化工学院石油与天然气化工省重点实验室,黑龙江大庆163318;东北石油大学化学化工学院石油与天然气化工省重点实验室,黑龙江大庆163318;东北石油大学化学化工学院石油与天然气化工省重点实验室,黑龙江大庆163318【正文语种】中文【中图分类】TB383;TQ132.4+1目前,世界范围内的石油用量在不断增加,所产生的环境问题也越来越得到人们的重视。

石油产品中的碱性氮化物可毒化催化剂,并降低油品安定性。

光催化氧化降解技术可有效脱除石油产品中的氮,且具有高效、节能和无二次污染等特点[1],因此具有重要的研究价值和良好的应用前景。

ZnO室温下禁带宽度为3.37 eV,激子束缚能为60 meV,是一种新型的无机功能半导体光催化材料[2]。

制备氧化锌的方法有很多,如沉淀法[3],水热法[4]和静电纺丝法[5]等。

而在诸多方法中,溶胶凝胶法具有产品纯度高、均匀性好、颗粒细、合成温度低和工艺设备简单等特点,是一种极具发展前景的方法。

ZnO具有无毒、原料易得和生产成本低等优点,使其在传感器、光电器件及光催化等领域得到了广泛的应用。

均匀沉淀法制备ZnO纳米粉末

均匀沉淀法制备ZnO纳米粉末

均匀沉淀法制备ZnO 纳米粉末材料物理 0910278 吴纯治一、实验目的1.掌握均匀沉淀法制备材料的原理、方法和步骤;2.用均匀沉淀法制备出纳米ZnO 粉体;3.熟悉离心搅拌器、电热鼓风干燥箱、离心机等仪器的使用。

二、实验原理(一)ZnO 粉末的制备方法有很多种,大体分为物理法和化学法两类。

(1) 物理法是采用特殊的粉碎技术,将普通级粉体粉碎,是从大颗粒到小颗粒的制备方法;(2) 化学法在控制条件下,从原子或分子的成核生成或凝聚为具有一定尺寸和形状的粒子。

化学法按物态又分为气相法,液相法和固相合成法,其中我们实验所用到的就是液相法中的均匀沉淀法。

(二)液相中析出纳米颗粒(1)核的形成:溶液处于过饱和的亚稳态时,由于分子或离子的运动,某区域分子易凝结成团,该团稳定后即形成晶粒。

由Kelvin 公式及过饱和度条件可知,只有满足以下条件时,晶粒才可能出现。

ln Z Mr RT S σρ=根据化学反应动力学理论,晶粒的生成速率为:3233216exp[]3(ln )MN K R T s πσρ=-(2)核的成长:晶粒在过饱和溶液中形成后,溶质不断沉积于其上,使晶粒不断长大。

晶粒线性生长速率的普遍式为:exp()BR A G T ν=∆-要想获得纳米颗粒。

必须控制好核生成和核成长之间的关系,保证核生成速率大于核成长速率。

(三)均匀沉淀法制备ZnO 粉末利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。

此时,加入的沉淀剂不是立刻与被沉淀组份发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢地生成。

其特点就是构晶离子的过饱和度在整个溶液中比较均匀,所以沉淀物的颗粒均匀而致密,便于过滤洗涤,此外还可以避免杂质的共沉淀。

其化学反应方程式如下:222232()32CO NH H O CO NH H O +→↑+⋅ (1)232242()2Zn NH H O Zn O H NH +++⋅→↓+ (2) 22()()Zn O H ZnO s H O ∆−−→+↑ (3)上式中(1)式为尿素的水解反应。

Fe、Cr掺杂ZnO薄膜的结构和性质研究的开题报告

Fe、Cr掺杂ZnO薄膜的结构和性质研究的开题报告

Fe、Cr掺杂ZnO薄膜的结构和性质研究的开题报告题目:Fe、Cr掺杂ZnO薄膜的结构和性质研究摘要:本研究旨在探究Fe、Cr掺杂ZnO薄膜的结构和性质,并分析其在可见光催化降解有机物方面的应用潜力。

通过溶胶-凝胶法制备Fe、Cr掺杂ZnO薄膜,利用X射线衍射仪、扫描电子显微镜等技术分析其结构和表面形貌;利用紫外-可见分光光度计对其光学性能进行测试;通过甲基橙作为模型有机化合物,考察其在掺杂ZnO薄膜的催化下的光催化降解性能。

关键词:Fe、Cr掺杂ZnO薄膜,溶胶-凝胶法,结构,性质,可见光催化降解。

引言:近年来,由于现代社会的工业和化学污染,人们开始关注可持续发展,环境治理已成为一项紧迫任务。

ZnO是一种广泛应用于催化、制备电池、电子器件和太阳能电池等领域的重要半导体材料,具有优良的光催化性能。

掺杂是提高材料性能的一种有效手段。

过去的研究表明,掺杂Fe、Cr元素可以提高ZnO的光催化降解性能。

目的:本研究旨在通过制备Fe、Cr掺杂ZnO薄膜,研究其结构和性质,探索其在可见光催化降解有机物方面的应用潜力,为促进环境保护与可持续发展做出一定贡献。

方法:通过溶胶-凝胶法制备Fe、Cr掺杂ZnO薄膜,采用SEM、XRD和UV-vis光谱等技术对其进行分析,探究掺杂对ZnO结构和性质的影响;以甲基橙作为模型有机化合物,测试掺杂ZnO薄膜在可见光催化降解方面的性能。

预期结果:通过研究Fe、Cr掺杂ZnO薄膜的结构和性质,预计得到以下结论:1)掺杂元素可以引起ZnO晶格的畸变,有可能改变其结构和形貌;2)掺杂元素可以改善ZnO的光学性质,提高其可见光响应能力;3)掺杂ZnO薄膜具有良好的光催化降解有机物的能力。

结论:本研究将通过制备Fe、Cr掺杂ZnO薄膜,研究其结构和性质,并探究其在可见光催化降解有机物方面的应用潜力。

本研究结果有望为环境保护与可持续发展做出一定贡献,并提供了新的思路和方法,从而推动相关研究的进一步发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CERAMICSINTERNATIONALAvailable online at Ceramics International 40(2014)5307–5311Preparation,dielectric property and infrared emissivity of Fe-doped ZnOpowder by coprecipitation method at various reaction timeXiaolei Su n ,Yan Jia,Xiaoqin Liu,Junbo Wang,Jie Xu,Xinhai He,Chong Fu,Songtao LiuCollege of Mechanical &Electronic Engineering,Xi'an Polytechnic University,Xi'an Shaanxi 710048,ChinaReceived 12August 2013;received in revised form 14October 2013;accepted 23October 2013Available online 1November 2013AbstractFe-doped ZnO powders have been synthesized by the coprecipitation method at 6001C with various reaction time,using zinc nitrate as the staring material,urea as the precipitator,and ferric nitrate as the doping source,respectively.The phase and morphology of the prepared powders have been characterized by X-ray diffraction and scanning electron microscopy,respectively.It was found that the prepared product synthesized for 1h had a pure ZnO wurtzite structure and was a ZnO(Fe)solid solution powder.The real part,imaginary part,and dielectric loss of complex permittivity of prepared powders in the frequency range of 8.2–12.4GHz decreased with increasing reaction time.The average infrared emissivities of prepared powders at the waveband range of 8–14μm increased with extending reaction time.&2013Elsevier Ltd and Techna Group S.r.l.All rights reserved.Keywords:ZnO;Dielectric property;Infrared emissivity1.IntroductionZinc oxide (ZnO)is one of the most important and versatile semiconductors with a direct wide band gap of 3.37eV at room temperature.It has also many excellent properties,such as,nontoxic,cheap,unique optical,and electrical proper-ties,which has wide applications in the solar cells,sensors,photocatalysis,transparent thin film transistors [1–3].In recently years,ZnO has recently attracted increasing interest due to its remarkable microwave absorbing property and infrared shielding property.Zhuo et al.[4]synthesized intriguing ZnO dendritic nanos-tructures by a two-step chemical vapor deposition (CVD)process.The RL (re flection loss)value of the composite with 50vol%ZnO dendritic nanostructures reached À42dB at 3.6GHz with a thickness of 5.0mm.Chen et al.[5]fabricated the tetrapod-like ZnO nanostructures by rapid heating metal Zn pellet at 9001C in air,which showed the good microwave absorption property in the frequency range of 2–18GHz.Wang et al.[6]synthesized Al-doped ZnO (AZO)powders by a coprecipitation method.The real part (ε′)and imaginary part(ε″)of complex permittivity of the prepared AZO powders have been improved in the frequency range of 8.2–12.4GHz due to the generation of Al Zn defects.Zhou et al.[7]prepared microwave absorption coating using tetra-needle-like ZnO whiskers as the main functional agent.It showed the excellent microwave absorption property in the frequency range of 8–18GHz because of the formation of semi-conductive networks,diffuse re flections,multipoles,and the multi-interfaces.In addition,ZnO shows also the low infrared emissivity at the waveband range of 8–14μm.Yao et al.[8]synthesized Zn 0.99Àx Mn 0.01Co x O (x ¼0.00,0.01,0.03,and 0.05)powders at different calcination temperatures by a solid-state reaction and the best infrared emissivity value was 0.754.Dongmei et al.[9]fabricated AZO thin films by a sol-gel method and studied the effect of Al concentration and temperature on the infrared emissivity of AZO films at the waveband range of 8–14μm.The prepared AZO film showed the low infrared emissivity.Zhang et al.[10]synthesized the Co-doped ZnO powder by the conventional solid state reaction.The prepared powders presented the low infrared emissivity at the waveband range of 3–5μm and 8–14μm and the excellent microwave absorption property in the frequency range of 8.2–12.4GHz.Therefore,because the Fe element belongs also to the VIII group,it presents the same effects on the microstructure,/locate/ceramint0272-8842/$-see front matter &2013Elsevier Ltd and Techna Group S.r.l.All rights reserved./10.1016/j.ceramint.2013.10.107nCorresponding author.Tel.:þ862962335812;fax:þ862962335812.E-mail address:suxlei@ (X.Su).dielectric property and infrared emissivity of ZnO powder as the Co element possibly.Compared with Co-doped ZnO powder,Fe-doped ZnO powder has the good magnetic property and optical property besides microwave wave absorp-tion property and infrared shielding property,which is a multifunctional material [11].In addition,because the density of Fe element is lower than that of Co element,the Fe-doped ZnO powder become a lighter mass shielding material than Co-doped ZnO powder possibly.In the paper,Fe-doped ZnO powders have been synthesized by coprecipitation method at 6001C with various reaction time,using zincnitrate as the staring material,urea as the precipitator and ferric nitrate as the doping source,respec-tively.The dielectric property in the frequency range of 8.2–12.4GHz and the average infrared emissivity at the waveband range of 8–14μm have been determined.The effects of Fe-doping on the microstructure,dielectric property and infrared emissivity of ZnO powder have been studied.2.Experimental 2.1.Sample preparationFe-doped ZnO powders were synthesized by the coprecipi-tation method,using zinc nitrate (Zn(NO 3)2Á6H 2O)as the staring material,urea (CO(NH 2)2)as the precipitator and ferric nitrate (Fe(NO 3)3Á9H 2O)as the doping source,respectively.All the chemical reagents were analytical grades and were used without further puri fication.First,Zn(NO 3)2Á6H 2O,Fe(NO 3)3Á9H 2O and CO(NH 2)2were separately dissolved in de-ionized water.Second,appro-priate amounts of Fe(NO 3)3Á9H 2O solutions were added into the Zn(NO 3)2Á6H 2O solution according to the experimental design.In our study,the molar ratio of Fe to (Zn þFe),n Fe /(n Fe þn Zn ),was 0.06.Finally,CO(NH 2)2solution was slowly added into above mixture solutions.The as-prepared solutions were continually stirred at 1001C for 1h to yield precipitates.After filtration,the precipitates were washed with distilled water and ethanol for several times,and then dried in air at 1201C in stove.Fe-doped ZnO powders were obtained after the calcination of precipitates at 6001C for 1h,2h,3h,and 4h,respectively.2.2.Microstructure,infrared emissivity and dielectric property characterizationThe phases of the as-prepared powders were identi fied by X-ray diffraction (XRD,X'Pert PRO MPD,Cu K α).The 99.99%Si (a ¼5.43088Å)was used as an inner standard.The morphology of the prepared powders was investigated by scanning electron microscope (SEM,JSM-6360LV,JEOL,Tokyo,Japan).The average infrared emissivities of prepared powders at the waveband of 8–14μm were determined by the reference's method [10].The permittivities of prepared pow-ders in the frequency range of 8.2–12.4GHz were determined by the reference's method [12],in which the measuringsamples were prepared by mixing the produced powders with paraf fin in a mass ratio of 10:90.3.Results and discussionThe XRD patterns of prepared Fe-doped ZnO powders at 6001C with various reaction time are shown in Fig.1.It can be seen that the synthesized powders had a hexagonal wurtzite structure belonging to the C 46v space group (P 63mc )according JCPDS card.When the reaction time is 1h,no impurity phase is observed and the prepared product is a ZnO (Fe)solid solution powder.However,when the reaction time is up to 2h,ZnFe 2O 4impurity phase appeared.The reason is that the more and more Fe atoms entering ZnO crystal and substituting Zn atoms of ZnO lattice precipitated from ZnO lattice with increasing reaction time.Therefore,the Fe con-centration is higher than the solubility limit of Fe in ZnO in some areas of ZnO crystal [13].The ZnFe 2O 4impurity has been generated by the following reactions:4Fe (precipitated)þ3O 2-2Fe 2O 3(1)Fe 2O 3þZnO -ZnFe 2O 4(2)In addition,the main peak intensities of ZnO phase at 2θ¼31.781,34.381,and 36.281increase with extending reaction time,indicating that the prepared Fe-doped ZnO powder presents the better crystallization.According to related study [14],Fe doping can inhibit ZnO crystallization.Con-versely,the precipitation of Fe atoms from ZnO lattice leads to the better crystallization.The lattice constants a and c calculated by Bragg formula of all samples corresponding to ZnO doped by Fe are shown in Table 1.According to related study [14],when the Fe atoms entered ZnO lattice,the Fe atoms occupied Zn site in ZnO lattice and substituted Zn ions preferentially.Because the ion radius of Fe 3þ(0.645Å)is smaller than that of Zn 2þ(0.74Å),the decrease of lattice constant of ZnO is caused by the substitution of Zn atoms of ZnO lattice by Fe atoms.So theFig.1.XRD patterns of the prepared Fe-doped ZnO powders at 6001C with various reaction time.X.Su et al./Ceramics International 40(2014)5307–53115308lattice constant of the Fe-doped ZnO powder synthesized for 1h is less than the standard lattice constant values (a ¼3.2524Åand c ¼5.2071Å)of ZnO.According to above analysis,because the more and more Fe atoms precipitated from ZnO lattice with extending reaction time,the increase of lattice constant of prepared Fe-doped ZnO with increasing reaction time is expected.Fig.2shows SEM photos of the prepared Fe-doped ZnO powders at 6001C with various reaction time.It is observed that the synthesized ZnO powders have fine spherical particles and present narrow particle size distribution.The average sizes of Fe-doped ZnO powders synthesized at 6001C for 1h,2h,3h,and 4h are about 300nm,800nm,1.5μm,and 2μm,respectively,showing that the powder sizeincreases gradually with increasing reaction time.The reason isthat the precipita-tion of Fe atoms from ZnO lattice improves the grain growth of ZnO.Fig.3shows real part ε′,imaginary part ε″,and dielectric loss tg δof complex permittivity as a function of frequency inthe frequency range of 8.2–12.4GHz for the prepared Fe-doped ZnO powders at 6001C with various reaction time.It can be seen that dielectric properties of prepared powders decreased with increasing reaction time.Because the Fe atom presents trivalent state usually and Fe 3þis a stable state,there are three electrons bonded with the other elements.Synchro-nously,when the Fe atoms entered the ZnO lattice,the Fe atoms substituted Zn atoms in ZnO crystal preferentially and the Fe Zn defects have been generated.Therefore,there are bound electrons around Zn Fe defects in the ZnO crystal.Under the alternating electromagnetic field,these bound electrons will migrate to and fro to form relaxation polarization and loss,thus leading to the higher ε″and tg δ,respectively.The more the substitutions have been generated,the higher the ε″and tg δare.Additionally,impurity at interfaces is another important factor affecting loss tangent of Fe-doped ZnO powders.Because the high surface area supplies opportunities for impurities to be distributed,the additives are mostly positioned at grain bound-aries or crystal surfaces in crystal materials [15].Some impurity atoms congregated near the grain boundary also,which may cause impurity conduction.Interfacial conduction and impurities play an important role in increasing the ε″and tg δof the prepared Fe-doped ZnO powders.Additionally,the charge accumulation at materials interfaces induced the interfacial polarization,Maxwell –Wagner effects [16],which may partly explain the phenomena observed above.Interfacial polarity causes a build-up of charges near heterogeneities and grain boundaries in polycrystalline materials.This kind of polarity may contribute also to the ε″and tg δ.Because the Fe-doped ZnO powder synthesized for 1h has the most amounts of Fe ZnTable 1lattice constant and infrared emissivity of prepared Fe-doped ZnO powders at Fig.2.SEM photos of the prepared Fe-doped ZnO powders at 6001C with various reaction time;(a)1h;(b)2h;(c)3h;(d)4h.X.Su et al./Ceramics International 40(2014)5307–53115309defects,the most amounts of bound electrons and the highest surface area,the ε′,ε″,and tg δhave the highest values,ε′E 3.3,ε″E 0.82,and tg δE 0.25.Therefore,the Fe-doped ZnO powder synthesized at 6001C for 1h shows the best dielectric property in the frequency range of 8.2–12.4GHz.In addition,the average infrared emissivities of Fe-doped ZnO powders prepared at 6001C with various reaction time at the waveband range of 8–14μm have been presented,as shown in Table 1.It can be seen that the infrared emissivities of prepared Fe-doped ZnO powders increase with increasing reaction time.According to above analysis,the bound elec-trons have been generated arounds Fe Zn defects in ZnO crystal.Because Fe-doped ZnO is an ionic crystal and relative vibration between different ions will produce a certain change in the electric dipole moment,which will produce the interac-tion between long optical wave and infrared radiation and then infrared radiation is produced and absorbed.Additionally,the high surface area improves also the production and absorption of infrared radiation.Therefore,the most amounts of Fe Zn defects,the most amounts of bound electrons and the highest surface area lead to the best infrared emissivity (0.84)at the waveband range of 8–14μm for the Fe-doped ZnO powder synthesized at 6001C for 1h.4.ConclusionsFe-doped ZnO powders have been prepared successfully by coprecipitation method at 6001C for 1h,2h 3h,and 4h,using zinc nitrate as the staring material,urea as the pre-cipitator,and ferric nitrate as the doping source,respectively.XRD analysis reveals that the sample synthesized for 1h had a pure ZnO wurtzite structure and is ZnO(Fe)solid solution powder.SEM photos indicate that the prepared Fe-doped ZnO powders have narrow size distribution and show the particle size increases with increasing reaction time due to the precipitation of Fe from ZnO crystal.The ε′,ε″,and tg δin the frequency range of 8.2–12.4GHz and infrared emissivity at the waveband range of 8–14μm of Fe-doped ZnO powder synthesized at 6001C for 1h reached the best combination due to the generation of the most amounts of Fe Zn defects,the most amounts of bound electrons and the highest surface area.AcknowledgementThe authors gratefully acknowledge the support of the National Natural Scienti fic Foundation of China (Grant No.51002113),the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2012JQ6021)and Foundation of Shaanxi Educational Committee (Grant No.2013JK0932).References[1]H.-M.Xiong,Y.Xu,Q.-G.Ren,Y –.Y.Xia,Stable aqueous ZnO@Polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,J.Am.Chem.Soc.130(2008)7522–7523.[2]F.Pan,C.Song,X.J.Liu,Y.C.Yang,F.Zeng,Ferromagnetism andpossible application in spintronics of transition-metal-doped ZnO films,Mater.Sci.Eng.R 62(2008)1–35.[3]D.Sridevi,K.V.Rajendran,Synthesis and optical characteristics of ZnOnanocrystals,Bull.Mater.Sci.32(2009)165–168.[4]R.F.Zhuo,H.T.Feng,J.T.Chen,D.Yan,J.J.Feng,H.J.Li,B.S.Geng,S.Cheng,X.Y.Xu,P.X.Yan,Multistep synthesis,growth mechanism,optical,and microwave absorption properties of ZnO dendritic nanos-tructures,J.Phys.Chem.C 112(2008)11767–11775.[5]Y.J.Chen,M.S.Cao,T.H.Wang,Q.Wan,Microwave absorptionproperties of the ZnO nanowire-polyester composites,Appl.Phys.Lett.84(2004)3367.[6]Yuan Wang,Fa Luo,Ling Zhang,Dongmei Zhu,Wancheng Zhou,Microwave dielectric properties of Al-doped ZnO powders synthesized by coprecipitation method,Ceram.Inter.39(8)(2013)8723–8727.[7]Zuowan Zhou,Longsheng Chu,Shuchun Hu,Microwave absorptionbehaviors of tetra-needle-like ZnO whiskers,Mater.Sci.Eng.B 126(2006)93–96.[8]Yin-Hua Yao,Quan-Xi Cao,Infrared emissivities of Mn,Co co-dopedZnO powders,Chin.Phys.B 21(2012)124205–124206.[9]Dongmei Zhu,Kun Li,Fa Luo,Wancheng Zhou,Preparation andinfrared emissivity of ZnO:Al (AZO)thin films,Appl.Surf.Sci.255(2009)6145–6148.[10]Shuyuan Zhang,Quanxi Cao,Microwave absorbing performance andinfrared emissivity of Co-doped ZnO,Adv.Mater.Res.399–401(2012)880–885.[11]T.Rattana,S.Suwanboon,P.Amornpitoksuk,A.Haidoux,P.Limsuwan,Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modi fied zinc nitrate solution,J.Alloys Compd.480(2009)603–607.[12]Xiaolei Su,Yan Jia,Junbo Wang,Jie Xu,Xinhai He,Chong Fu,Songtao Liu,Preparation and microwave absorption properties of Fe-doped SiC powder obtained by combustion synthesis,Ceram.Inter.39(2013)3651–3656.Fig.3.Real part ε′,imaginary part ε″,and dielectric loss tg δof complex permittivity as a function of frequency in the frequency range of 8.2–12.4GHz for the prepared Fe-doped ZnO powders at 6001C with various reaction time.X.Su et al./Ceramics International 40(2014)5307–53115310[13]Sergei A.Degterov,Evgueni Jak,Peter C.Hayes,Arthur D.Pelton,Experimental study of phase equilibria and thermodynamic optimization of the Fe–Zn–O system,Metall.Mater.Trans.B32B(2001)643–657.[14]Huilian Liu,Jinghai Yang,Yongjun Zhang,Lili Yang,Maobin Wei,Xue Ding,Structure and magnetic properties of Fe-doped ZnO prepared by the sol–gel method,J.Phys.:Condens.Matter.21(2009)145803.[15]E.Mouchon,Ph.Colomban,Microwave absorbent:preparation,mechan-ical properties and r.f.-microwave conductivity of SiC(and/or mullite)fibre reinforced Nasicon matrix composites,J.Mater.Sci.31(1996) 323–334.[16]Weijun Yin,J.Tanaka,D.H.Damon,A study of dielectric relaxation inaluminosilicate-filled low-density polyethylene,IEEE Trans.Dielectr.Electr.Insul.1(1994)169–180.X.Su et al./Ceramics International40(2014)5307–53115311。

相关文档
最新文档